4,733 research outputs found

    Restricted rr-Stirling Numbers and their Combinatorial Applications

    Get PDF
    We study set partitions with rr distinguished elements and block sizes found in an arbitrary index set SS. The enumeration of these (S,r)(S,r)-partitions leads to the introduction of (S,r)(S,r)-Stirling numbers, an extremely wide-ranging generalization of the classical Stirling numbers and the rr-Stirling numbers. We also introduce the associated (S,r)(S,r)-Bell and (S,r)(S,r)-factorial numbers. We study fundamental aspects of these numbers, including recurrence relations and determinantal expressions. For SS with some extra structure, we show that the inverse of the (S,r)(S,r)-Stirling matrix encodes the M\"obius functions of two families of posets. Through several examples, we demonstrate that for some SS the matrices and their inverses involve the enumeration sequences of several combinatorial objects. Further, we highlight how the (S,r)(S,r)-Stirling numbers naturally arise in the enumeration of cliques and acyclic orientations of special graphs, underlining their ubiquity and importance. Finally, we introduce related (S,r)(S,r) generalizations of the poly-Bernoulli and poly-Cauchy numbers, uniting many past works on generalized combinatorial sequences

    Normal Order: Combinatorial Graphs

    Full text link
    A conventional context for supersymmetric problems arises when we consider systems containing both boson and fermion operators. In this note we consider the normal ordering problem for a string of such operators. In the general case, upon which we touch briefly, this problem leads to combinatorial numbers, the so-called Rook numbers. Since we assume that the two species, bosons and fermions, commute, we subsequently restrict ourselves to consideration of a single species, single-mode boson monomials. This problem leads to elegant generalisations of well-known combinatorial numbers, specifically Bell and Stirling numbers. We explicitly give the generating functions for some classes of these numbers. In this note we concentrate on the combinatorial graph approach, showing how some important classical results of graph theory lead to transparent representations of the combinatorial numbers associated with the boson normal ordering problem.Comment: 7 pages, 15 references, 2 figures. Presented at "Progress in Supersymmetric Quantum Mechanics" (PSQM'03), Valladolid, Spain, July 200

    Combinatorial Physics, Normal Order and Model Feynman Graphs

    Full text link
    The general normal ordering problem for boson strings is a combinatorial problem. In this note we restrict ourselves to single-mode boson monomials. This problem leads to elegant generalisations of well-known combinatorial numbers, such as Bell and Stirling numbers. We explicitly give the generating functions for some classes of these numbers. Finally we show that a graphical representation of these combinatorial numbers leads to sets of model field theories, for which the graphs may be interpreted as Feynman diagrams corresponding to the bosons of the theory. The generating functions are the generators of the classes of Feynman diagrams.Comment: 9 pages, 4 figures. 12 references. Presented at the Symposium 'Symmetries in Science XIII', Bregenz, Austria, 200

    Combinatorial approach to generalized Bell and Stirling numbers and boson normal ordering problem

    Full text link
    We consider the numbers arising in the problem of normal ordering of expressions in canonical boson creation and annihilation operators. We treat a general form of a boson string which is shown to be associated with generalizations of Stirling and Bell numbers. The recurrence relations and closed-form expressions (Dobiski-type formulas) are obtained for these quantities by both algebraic and combinatorial methods. By extensive use of methods of combinatorial analysis we prove the equivalence of the aforementioned problem to the enumeration of special families of graphs. This link provides a combinatorial interpretation of the numbers arising in this normal ordering problem.Comment: 10 pages, 5 figure

    Laguerre-type derivatives: Dobinski relations and combinatorial identities

    Get PDF
    We consider properties of the operators D(r,M)=a^r(a^\dag a)^M (which we call generalized Laguerre-type derivatives), with r=1,2,..., M=0,1,..., where a and a^\dag are boson annihilation and creation operators respectively, satisfying [a,a^\dag]=1. We obtain explicit formulas for the normally ordered form of arbitrary Taylor-expandable functions of D(r,M) with the help of an operator relation which generalizes the Dobinski formula. Coherent state expectation values of certain operator functions of D(r,M) turn out to be generating functions of combinatorial numbers. In many cases the corresponding combinatorial structures can be explicitly identified.Comment: 14 pages, 1 figur

    Combinatorially interpreting generalized Stirling numbers

    Get PDF
    Let ww be a word in alphabet {x,D}\{x,D\} with mm xx's and nn DD's. Interpreting "xx" as multiplication by xx, and "DD" as differentiation with respect to xx, the identity wf(x)=xmnkSw(k)xkDkf(x)wf(x) = x^{m-n}\sum_k S_w(k) x^k D^k f(x), valid for any smooth function f(x)f(x), defines a sequence (Sw(k))k(S_w(k))_k, the terms of which we refer to as the {\em Stirling numbers (of the second kind)} of ww. The nomenclature comes from the fact that when w=(xD)nw=(xD)^n, we have Sw(k)={nk}S_w(k)={n \brace k}, the ordinary Stirling number of the second kind. Explicit expressions for, and identities satisfied by, the Sw(k)S_w(k) have been obtained by numerous authors, and combinatorial interpretations have been presented. Here we provide a new combinatorial interpretation that retains the spirit of the familiar interpretation of {nk}{n \brace k} as a count of partitions. Specifically, we associate to each ww a quasi-threshold graph GwG_w, and we show that Sw(k)S_w(k) enumerates partitions of the vertex set of GwG_w into classes that do not span an edge of GwG_w. We also discuss some relatives of, and consequences of, our interpretation, including qq-analogs and bijections between families of labelled forests and sets of restricted partitions.Comment: To appear in Eur. J. Combin., doi:10.1016/j.ejc.2014.07.00

    A generic Hopf algebra for quantum statistical mechanics

    Get PDF
    In this paper, we present a Hopf algebra description of a bosonic quantum model, using the elementary combinatorial elements of Bell and Stirling numbers. Our objective in doing this is as follows. Recent studies have revealed that perturbative quantum field theory (pQFT) displays an astonishing interplay between analysis (Riemann zeta functions), topology (Knot theory), combinatorial graph theory (Feynman diagrams) and algebra (Hopf structure). Since pQFT is an inherently complicated study, so far not exactly solvable and replete with divergences, the essential simplicity of the relationships between these areas can be somewhat obscured. The intention here is to display some of the above-mentioned structures in the context of a simple bosonic quantum theory, i.e. a quantum theory of non-commuting operators that do not depend on space-time. The combinatorial properties of these boson creation and annihilation operators, which is our chosen example, may be described by graphs, analogous to the Feynman diagrams of pQFT, which we show possess a Hopf algebra structure. Our approach is based on the quantum canonical partition function for a boson gas.Comment: 8 pages/(4 pages published version), 1 Figure. arXiv admin note: text overlap with arXiv:1011.052
    corecore