research

Combinatorially interpreting generalized Stirling numbers

Abstract

Let ww be a word in alphabet {x,D}\{x,D\} with mm xx's and nn DD's. Interpreting "xx" as multiplication by xx, and "DD" as differentiation with respect to xx, the identity wf(x)=xmnkSw(k)xkDkf(x)wf(x) = x^{m-n}\sum_k S_w(k) x^k D^k f(x), valid for any smooth function f(x)f(x), defines a sequence (Sw(k))k(S_w(k))_k, the terms of which we refer to as the {\em Stirling numbers (of the second kind)} of ww. The nomenclature comes from the fact that when w=(xD)nw=(xD)^n, we have Sw(k)={nk}S_w(k)={n \brace k}, the ordinary Stirling number of the second kind. Explicit expressions for, and identities satisfied by, the Sw(k)S_w(k) have been obtained by numerous authors, and combinatorial interpretations have been presented. Here we provide a new combinatorial interpretation that retains the spirit of the familiar interpretation of {nk}{n \brace k} as a count of partitions. Specifically, we associate to each ww a quasi-threshold graph GwG_w, and we show that Sw(k)S_w(k) enumerates partitions of the vertex set of GwG_w into classes that do not span an edge of GwG_w. We also discuss some relatives of, and consequences of, our interpretation, including qq-analogs and bijections between families of labelled forests and sets of restricted partitions.Comment: To appear in Eur. J. Combin., doi:10.1016/j.ejc.2014.07.00

    Similar works