14 research outputs found

    Synthesis of Planar Parallel Mechanism

    Get PDF
    Parallel mechanisms are found as positioning platforms in several applications in robotics and production engineering. Today there are various types of these mechanisms based on the strcture, type of joints and degree of freedom. An important and basic planar mechanism providing three degree of freedom at the end-effector (movable platform) is a 3-RPR linkage. Here the underscore below P indicates the presence of actuated prismatic joints and 3 indicates the number of legs used to carry the mobile platform. A lot of work has been done on this mechanism since 1988. In the present work, the kinematics of 3-RPR linkage is specifically studied to understand the synthesis procedure. The forward kinematics in parallel mechanisms is a multi-solution problem and involves cumbersome calculations compared to inverse kinematics. In inverse kinematics, we design the actuator input kinematic parameters for a known table center coordinates. In other words it is a transformation of platform pose vector to the actuator degrees of freedom. In 3-RPR mechanism considered in present task, the actuators are sliders and hence the slider displacements reflect the input degrees of freedom. On the other hand, for a known posture (available slider displacement status), the table center coordinates are predicted in forward kinematics. In present work, forward kinematics solutions are obtained by defining error function and optimizing it using genetic algorithms programs. Also, the workspace and Jacobian matrices are computed at corresponding solution and singularity analysis is briefly highlighted

    A New Methodology for Tolerance Synthesis of Parallel Manipulators

    Get PDF
    International audienceComputing the maximal pose error given an upper bound on perturbations is challenging for parallel robots, mainly because the direct kinematic problem has several solutions, which become unstable near or at parallel singularities. In this paper, we propose a local uniqueness hypothesis that will allow safely computing pose error upper bounds using nonlinear optimization. This hypothesis , together with a corresponding maximal allowed perturbation domain and a certified pose error upper bound valid over the complete workspace, will be proved numerically using a parametric version of Kantorovich theorem and certified nonlinear global optimization. We will then show how to synthesize tolerances reaching a prescribed maximal pose error over a workspace using approximate linearizations. This approximate tolerance synthesis will finally be checked using the certified pose error upper bound we propose. Preliminary experiments on a RPRPR and a 3RPR with fixed orientation parallel manipulators are presented

    Design, development and control of a new generation high performance linear actuator for parallel robots and other applications

    Get PDF
    The main focus of this research is to design and develop a high performance linear actuator based on a four bar mechanism. The present work includes the detailed analysis (kinematics and dynamics), design, implementation and experimental validation of the newly designed actuator. High performance is characterized by the acceleration of the actuator end effector. The principle of the newly designed actuator is to network the four bar rhombus configuration (where some bars are extended to form an X shape) to attain high acceleration. Firstly, a detailed kinematic analysis of the actuator is presented and kinematic performance is evaluated through MATLAB simulations. A dynamic equation of the actuator is achieved by using the Lagrangian dynamic formulation. A SIMULINK control model of the actuator is developed using the dynamic equation. In addition, Bond Graph methodology is presented for the dynamic simulation. The Bond Graph model comprises individual component modeling of the actuator along with control. Required torque was simulated using the Bond Graph model. Results indicate that, high acceleration (around 20g) can be achieved with modest (3 N-m or less) torque input. A practical prototype of the actuator is designed using SOLIDWORKS and then produced to verify the proof of concept. The design goal was to achieve the peak acceleration of more than 10g at the middle point of the travel length, when the end effector travels the stroke length (around 1 m). The actuator is primarily designed to operate in standalone condition and later to use it in the 3RPR parallel robot. A DC motor is used to operate the actuator. A quadrature encoder is attached with the DC motor to control the end effector. The associated control scheme of the actuator is analyzed and integrated with the physical prototype. From standalone experimentation of the actuator, around 17g acceleration was achieved by the end effector (stroke length was 0.2m to 0.78m). Results indicate that the developed dynamic model results are in good agreement. Finally, a Design of Experiment (DOE) based statistical approach is also introduced to identify the parametric combination that yields the greatest performance. Data are collected by using the Bond Graph model. This approach is helpful in designing the actuator without much complexity

    Profile Synthesis Of Planar Variable Joints

    Get PDF
    Reconfigurable mechanisms provide quick changeover and reduced costs for low volume manufacturing applications. In addition, these mechanisms provide added flexibility in the context of a constrained environment. A subset of planar reconfigurable mechanisms use variable joints to provide this added adaptability. In this dissertation, the profile synthesis of planar variable joints that change from a rotational motion to a translational motion was investigated. A method was developed to perform automated profile synthesis. It was shown that combinations of higher variable joints can be used to create kinematically equivalent variable joints that are geometrically different. The results were used to create two new reconfigurable mechanisms that utilize the synthesized variable joints. The first reconfigurable mechanism is a four-bar mechanism that performs a rigid body guidance task not possible using conventional four-bar theory. The second mechanism uses variable joints in a 3-RPR parallel mechanism for singularity avoidance without adding redundant actuation

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Optimum-synthesis methods for cable-driven parallel mechanisms

    Get PDF
    Les mécanismes parallèles entraînés par câbles sont une classe spéciale de mécanismes parallèles pours lesquels les liaisons rigides sont remplacées par des câbles. Ces mécanismes comprennent une plateforme mobile et une base fixe, qui sont reliées par plusieurs câbles. Le contrôle des longueurs des câbles produit le mouvement désiré de la plateforme mobile. Ces mécanismes ont le potentiel de fournir des espaces de travail à grande échelle comparativement aux mécanismes parallèles conventionnels car les câbles peuvent être enroulés sur des bobines sur de grandes longueurs. Cependant, cette caractéristique est limitée par la nature des câbles, qui doivent demeurer en tension afin de produire un mouvement désiré de la plateforme principale. L'objectif principal de cette thèse est de concevoir des méthodes efficaces pour la synthèse dimensionelle optimale des mécanismes parallèles entraînés par câbles surcontraints, c'est-à-dire, des mécanismes pour lesquels le nombre de câbles excède le nombre de degrés de liberté. Plus précisément, nous souhaitons obtenir la géométrie des mécanismes parallèles entraînés par câbles dont l'espace des poses polyvalente (EPP) comprend des espaces de travail prescrits. L'espace des poses polyvalentes d'un mécanisme parallèle entraîné par câbles est l'ensemble des poses (les positions et les orientations) de l'organe terminal pour lesquelles tous les torseurs appliqués sont réalisables. Un torseur appliqué est dit réalisable, s'il peut être produit par un ensemble de câbles dont les tensions sont non-négatives. Une fois le problème de la synthèse dimensionnelle résolu, nous pouvons appliquer la solution à plusieurs reprises pour différents nombres de câbles afin d'effectuer la synthèse de la structure. Cette thèse est divisée en trois parties principales. Tout d'abord, l'espace des poses polyvalentes des mécanismes parallèles plans entraînés par câbles et les caractéristiques de leurs frontières sont étudiés. Cette étude révèle les relations jusqu'ici inconnues entre l'EPP à orientation constante (EPPOC) et les aires orientées. Un algorithme graphique est proposé afin de déterminer les types de sections coniques formant les frontières de l'EPPOC . Puis, sur la base des expressions mathématiques obtenues, une méthodologie est proposée pour résoudre le problème de la synthèse dimensionnelle des mécanismes parallèles plans entraînés par câbles pour les orientations discrètes c'est-àdire, les translations. L'algorithme est basé sur des techniques de relaxation convexe qui nous amènent à formuler la synthèse dimensionnelle comme un programme non linéaire. L'idée est de maximiser la taille de plusieurs boîtes qui représentent une approximation d'un espace de travail prescrit, tout en essayant de les garder à l'intérieur de l'EPP du mécanisme parallèle plan entraîné par câbles pendant la procédure d' optimisation. Une telle approximation de l'espace de travail prescrit est obtenue via la méthode d'analyse par intervalles. L'algorithme obtenu est étendu au cas de l'orientation en continu pour un intervalle donné d'angles d'orientation. En fait, nous introduisons un programme non linéaire permettant de varier la géométrie du mécanisme parallèle plan entraîné par câbles et maximiser le facteur d'échelle de l'ensemble prescrit de boîtes. Lorsque le facteur d'échelle optimal est supérieur ou égal à un, l'EPP du mécanismes parallèle plan entraîné par câbles résultant contient l'ensemble des boîtes prescrit. Sinon, l'EPP obtenu offre généralement une bonne couverture des boîtes prescrites. Enfin, sur la base des résultats obtenus pour des mécanismes parallèles plans entraînés par câbles, un algorithme est proposé pour résoudre la synthèse dimensionelle de mécanismes parallèles spatiaux entraînés par câbles. Comme pour le cas plan, nous proposons un programme non linéaire à grande échelle dont les solutions optimales peuvent fournir des geometries de mécanismes parallèles spatiaux entraînés par câbles pour un espace de travail prescrit dans une plage donnée des angles d'orientation. L'efficacité de ces méthodes est émontrée par plusieurs exemples en utilisant un logiciel développé. En outre, cette thèse fournit un outil efficace pour les concepteurs de robots parallèles entraînés par câble

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    Multibody dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: Formulations and Numerical Methods, Efficient Methods and Real-Time Applications, Flexible Multibody Dynamics, Contact Dynamics and Constraints, Multiphysics and Coupled Problems, Control and Optimization, Software Development and Computer Technology, Aerospace and Maritime Applications, Biomechanics, Railroad Vehicle Dynamics, Road Vehicle Dynamics, Robotics, Benchmark Problems. The conference is organized by the Department of Mechanical Engineering of the Universitat Politècnica de Catalunya (UPC) in Barcelona. The organizers would like to thank the authors for submitting their contributions, the keynote lecturers for accepting the invitation and for the quality of their talks, the awards and scientific committees for their support to the organization of the conference, and finally the topic organizers for reviewing all extended abstracts and selecting the awards nominees.Postprint (published version
    corecore