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Résumé 

Les mécanismes parallèles entraînés par câbles sont une classe spéciale de méca­
nismes parallèles pours lesquels les liaisons rigides sont remplacées par des câbles. Ces 
mécanismes comprennent une plateforme mobile et une base fixe, qui sont reliées par 
plusieurs câbles. Le contrôle des longueurs des câbles produit le mouvement désiré de 
la plateforme mobile. Ces mécanismes ont le potentiel de fournir des espaces de tra­
vail à grande échelle comparativement aux mécanismes parallèles conventionnels car les 
câbles peuvent être enroulés sur des bobines sur de grandes longueurs. Cependant, cette 
caractéristique est limitée par la nature des câbles, qui doivent demeurer en tension afin 
de produire un mouvement désiré de la plateforme principale. 

L'objectif principal de cette thèse est de concevoir des méthodes efficaces pour la 
synthèse dimensionelle optimale des mécanismes parallèles entraînés par câbles surcon­
traints, c'est-à-dire, des mécanismes pour lesquels le nombre de câbles excède le nombre 
de degrés de liberté. Plus précisément, nous souhaitons obtenir la géométrie des méca­
nismes parallèles entraînés par câbles dont l'espace des poses polyvalente (EPP) com­
prend des espaces de travail prescrits. L'espace des poses polyvalentes d'un mécanisme 
parallèle entraîné par câbles est l'ensemble des poses (les positions et les orientations) 
de l'organe terminal pour lesquelles tous les torseurs appliqués sont réalisables. Un tor-
seur appliqué est dit réalisable, s'il peut être produit par un ensemble de câbles dont 
les tensions sont non-négatives. Une fois le problème de la synthèse dimensionnelle ré­
solu, nous pouvons appliquer la solution à plusieurs reprises pour différents nombres de 
câbles afin d'effectuer la synthèse de la structure. 

Cette thèse est divisée en trois parties principales. Tout d'abord, l'espace des poses 
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polyvalentes des mécanismes parallèles plans entraînés par câbles et les caractéristiques 
de leurs frontières sont étudiés. Cette étude révèle les relations jusqu'ici inconnues 
entre l'EPP à orientation constante (EPPOC) et les aires orientées. Un algorithme 
graphique est proposé afin de déterminer les types de sections coniques formant les 
frontières de l'EPPOC . Puis, sur la base des expressions mathématiques obtenues, une 
méthodologie est proposée pour résoudre le problème de la synthèse dimensionnelle des 
mécanismes parallèles plans entraînés par câbles pour les orientations discrètes c'est-à-
dire, les translations. L'algorithme est basé sur des techniques de relaxation convexe qui 
nous amènent à formuler la synthèse dimensionnelle comme un programme non linéaire. 
L'idée est de maximiser la taille de plusieurs boîtes qui représentent une approximation 
d'un espace de travail prescrit, tout en essayant de les garder à l'intérieur de l'EPP du 
mécanisme parallèle plan entraîné par câbles pendant la procédure d' optimisation. Une 
telle approximation de l'espace de travail prescrit est obtenue via la méthode d'analyse 
par intervalles. L'algorithme obtenu est étendu au cas de l'orientation en continu pour 
un intervalle donné d'angles d'orientation. En fait, nous introduisons un programme 
non linéaire permettant de varier la géométrie du mécanisme parallèle plan entraîné 
par câbles et maximiser le facteur d'échelle de l'ensemble prescrit de boîtes. Lorsque 
le facteur d'échelle optimal est supérieur ou égal à un, l'EPP du mécanismes parallèle 
plan entraîné par câbles résultant contient l'ensemble des boîtes prescrit. Sinon, l'EPP 
obtenu offre généralement une bonne couverture des boîtes prescrites. Enfin, sur la base 
des résultats obtenus pour des mécanismes parallèles plans entraînés par câbles, un al­
gorithme est proposé pour résoudre la synthèse dimensionelle de mécanismes parallèles 
spatiaux entraînés par câbles. Comme pour le cas plan, nous proposons un programme 
non linéaire à grande échelle dont les solutions optimales peuvent fournir des geome­
tries de mécanismes parallèles spatiaux entraînés par câbles pour un espace de travail 
prescrit dans une plage donnée des angles d'orientation. L'efficacité de ces méthodes 
est démontrée par plusieurs exemples en utilisant un logiciel développé. En outre, cette 
thèse fournit un outil efficace pour les concepteurs de robots parallèles entraînés par 
câbles. 
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Abstract 

Cable-driven parallel mechanisms are a special kind of parallel mechanisms in which 
the rigid links are replaced by cables. These mechanisms include a moving platform 
and a fixed base which are connected by several cables. Controlling the lengths of 
the cables provides the desired motion of the moving platform. These mechanisms 
have the potential of providing large workspaces compared to conventional parallel and 
serial mechanisms, as cables can be wound onto reels over long lengths. However, this 
characteristic is restricted by the nature of the cables, which must be kept in tension 
in order to provide the desired motion for the main platform. 

The main objective of this dissertation is to devise efficient methods for the optimum 
dimensional synthesis of the redundantly constrained cable-driven parallel mechanisms 
i.e., those mechanisms for which the number of cables exceeds the number of degrees 
of freedom. More precisely, we wish to obtain the geometry of a cable-driven parallel 
mechanism whose wrench-closure workspace includes a prescribed workspaces. The 
wrench-closure workspace (WCW) of a parallel cable-driven mechanism is the set of 
end effector poses for which all applied wrenches are feasible. An applied wrench is 
said to be feasible if it can be produced by a set of a non-negative cable tensions. Once 
the dimensional synthesis problem is solved, we can apply the solution repeatedly to 
various numbers of cables to perform the structural synthesis. 

This thesis is divided into three main parts. First, the wrench-closure workspace of 
planar cable-driven parallel mechanisms (PCDPMs) and characteristics of their bound­
aries are investigated. This study uncovers the unseen relationships between the con­
stant orientation wrench-closure workspace (COWCW) of PCDPMs and the oriented 



areas. A graphical algorithm is proposed to determine the type of conic sections forming 
the boundaries of COWCWs. Then, based on the obtained mathematical expressions, 
a methodology is proposed to solve the dimensional synthesis problem of PCDPMs for 
discrete orientations ,i.e., translations. The method is based on convex relaxation tech­
niques, which allow us to formulate the dimensional synthesis as a nonlinear program. 
The idea is to maximize the size of multiple boxes which represent an approximation of 
a prescribed workspace while constraining them inside the WCW of the PCDPM dur­
ing the solution procedure. A multiple-box approximation of the prescribed workspace 
is obtained via the interval analysis method. 

The resulting algorithm is extended to the continous orientation case or a given 
range of orientation angles as well. In fact, we introduce a nonlinear program through 
which the PCDPM geometry is changed while maximizing the scaling factor of the 
prescribed set of boxes. When the locally optimum scaling factor is greater or equal 
to one, the WCW of the resulting PCDPM contains the set of boxes. Otherwise, the 
obtained WCW generally offers a good coverage of the prescribed one. Finally, based 
on the results obtained for planar parallel cable-driven mechanisms, an algorithm is 
proposed to solve the dimensional synthesis of spatial parallel cable-driven mechanisms. 
Alike the planar case, we propose a large-scale nonlinear program whose optimum 
solutions can provide geometries of PCDMs for a prescribed workspace within a given 
range of orientation angles. The efficiency of these methods is demonstrated by solving 
various case studies using a developed piece of computer code. Therefore, this thesis is 
expected to provide an effective tool for the designers of parallel cable-driven robots. 
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Yet Freedom! yet thy banner torn but flying, 
Streams like the thunder storm against the wind 1. 

Dedicated to the honorable people of South Azerbaijan whom Iran is obliged his 
existence to their dedication and patriotism but they are even refused from their 

absolute right of writing and studying in their own language! 

^ g i a n s t the Wind (TV Series 1978) by George Miller and Simon Wincer 
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Chapter 1 

Introduction 

1.1 Cable-Driven Parallel Mechanisms 

A parallel robot consists of an end effector and a fixed base that are connected by at least 
two independent kinematic chains. The payload is distributed among the legs, so that 
each leg supports only a fraction of the total load. For this reason, parallel manipulators 
have a larger payload-to-weight ratio, higher stiffness and a better positioning accuracy 
than do serial manipulators. It is also possible to reduce the weight of the moving 
parts by fixing the actuators on the base of the manipulator. This condition gives good 
inertial properties to parallel manipulators and allows to move the end effector at high 
velocities. As a drawback, in general, parallel manipulators have a smaller workspace 
than do serial manipulators of the same size. A special kind of parallel manipulators 
are cable driven, an example of which are shown in Fig. 1.1. The mechanical structure 



(a) (b) 

Figure 1.1: (a) conventional and (b) cable-driven parallel manipulators [1]. 

of a cable-driven parallel manipulator consists of a moving platform (MP) and a fixed 
base, which are connected to one another by multiple cables. Cable-driven parallel 
manipulators are structurally similar to traditional parallel ones. The end effector is 
moved by extending and retracting cables, the joint variables being the cable lengths. 
In general, each cable is wound around an actuated reel fixed to the base and attached 
to the moving platform at its other end. Forces on the end effector are obtained by 
pulling the cables. Since cables can be wound onto reels over long lengths, the reachable 
workspaces of cable-driven mechanisms can be larger than those of conventional parallel 
mechanisms. However, it is not possible for the platform to reach every pose of this 
workspace, because unlike the links of a conventional parallel mechanism, cables can 
only pull. Indeed, there generally exist many poses inside this workspace for which the 
cables cannot balance all applied wrenches because at least one of them would have to 
push on the platform. 

Cable-driven parallel manipulators offer some other advantages over conventional 
parallel mechanisms. They have few moving parts, with only small masses, which gives 
them good inertial properties and make them suitable for applications that require 
high velocities and accelerations. Other characteristics include high payload-to-weight 
ratios, transportability, and low cost. Notice that it is also possible to easily reconfigure 
these mechanisms by relocating their cable attachment points. They also offer some 
other advantages, as described in [3], including the remote location of motors and 
controls, rapid deployability, high load capacity, and reliability. The main drawbacks 



of cable-driven parallel manipulators are due to the cables, which can only pull and not 
push. Consequently, they must be maintained in tension during operation. Assuming 
no limits on the strength of the cables and the torques delivered by the actuators, the 
relationship between the pose and the feasible wrenches at the platform appears as 
a fundamental issue for the cable-driven parallel mechanisms design. In the spatial 
case, the interferences between cables, which must generally be avoided, form another 
problem. 

1.1.1 Applications 

Robots have had a great influence on industrial manufacturing and assembly. How­
ever, for some applications such as the inspection and repair in shipyards and airplane 
hangars, classical industrial robots are inefficient. Generally speaking, the workspace 
provided by conventional serial and parallel manipulators is not large enough for such 
applications. Cable-driven parallel mechanisms have the potential of providing such 
large workspaces and other unique characteristics mentioned in section 1.1. These ma­
nipulators have been used in several kinds of applications in a recent past. Because 
of their high payload to weight ratio, they have been studied for load lifting and po­
sitioning, [4], as shown in Fig. 1.2(a). In this field, very high loads must be moved 
and high stiffness and stability are requested for the employed devices. Cable-driven 
parallel manipulators can have a large workspace and reach high velocities. Because of 
these characteristics, they can be used in sports recording, as in the case of the Sky-
cam [8]. This device, shown in Fig. 1.2(b), has been developed as a parallel cable-driven 
mechanism moving a camera for use in stadiums and indoor arenas. Their modularity 
and low inertia give them good characteristics for operation in remote or unreachable 
locations [6] (see Fig. 1.2(c)). Rapid deployability and large workspace of cable-driven 
parallel mechanisms make them ideal for the handling of hazardous materials and dis­
aster search and rescue efforts [7] (see Fig. 1.2(d)). 

Recently, these robots have demonstrated their capabilities in actuated sensing [9] 
and [10] aquatic applications as well. If many applications involve spatial cable-driven 
robots, there is also an interest for planar cable-driven robots in several applications 
[10-12]. 



(a) Automated construction system including 
a cable-driven mechanism [4] 

(b) The Skycam, a sport 
recording device [5] 

(c) A helicopter operation for a ship 
replenishment in midsea using a cable-
driven manipulator [6] 

(d) A spatial cable-driven mechanism handling po­
tentially hazardous material [7] 

Figure 1.2: Various applications of cable-driven parallel mechanisms. 

Evidently, for such applications, the available workspaces of these robots have 
a great impact on their performances. Hence, the study and determination of the 
workspace of this kinds of manipulators has recieved attentions. 

1.1.2 Classification of Cable-Driven Parallel Mechanisms 

A classification of cable-driven parallel mechanisms can be obtained by considering the 
number of degrees of freedom of the end effector n and the number of cables m. 



• If m < n + 1 , then the manipulator is said to be under constrained, and cables 
cannot balance all applied wrenches unless an external force such as gravity is 
applied to the end-effector. 

• If m = n + 1 , then the manipulator is said to be completely constrained. The 
movement of the end effector can be fully controlled with this minimum number 
of cables. 

• If m > n + 1 , then the number of cables exceeds the number of degrees of freedom 
by more than one, and the manipulator is said to be redundantly constrained. 

For redundant cable-driven parallel mechanisms, whose dimensional synthesis is the 
main concern of this work, the motion of the end effector can be completely controlled 
and the additional cables can be used in order to avoid singular configurations in the 
performed trajectory. For these manipulators a drawback can be the increased risk of 
cable interferences. 

1.1.3 Synthesis and Analysis 

According to Norton [13], in engineering, the word analysis means to decompose, to 
take apart, to resolve into its constituent parts. "This is quite necessary and requires a 
thorough understanding of both the mathematical techniques and fundamental physics 
of the function of the system. Since a system must exist before it can be analyzed, the 
first step in any engineering design is synthesis. Hence, synthesis actually means design 
and bringing an engineering system into existence." 

In the mechanical design of industrial robots the kinematic structure is often se­
lected and designed on the basis of previous experiences. Synthesis can help to design 
new types of robots to achieve a desired goal and application. Evidently, the shape 
and size of the workspace of a robot are among its most important properties, which 
must be investigated in the design procedure. While workspace analysis examines the 
properties of an already defined manipulator, robot design describes the opposite task 
of finding the optimal robot for a given task such as a given workspace. To identify the 
optimal robot, usually different designs have to be compared with respect to the desired 



properties which generally makes the design process a computationally intensive task. 
Finally, one or more designs turn out as most favorable. 

According to Merlet [14], the design (or synthesis) task can be divided into two 
separate subtasks: 

1. Structural synthesis: This step includes the determination of the topology of the 
mechanical structure. In particular, the number and types of degrees of freedom 
of the joints and their interconnections are identified. 

2. Dimensional synthesis: Here, the positions and orientations of the joints as well 
as the link lengths are specified. 

For the special case of a cable-driven robot, the link topology is fixed and the structure 
synthesis only consists in choosing the number of cables. Once the structure synthesis 
is completed, a dimensional synthesis can be performed. For a cable-driven parallel 
robot, this is nothing but the identification of the cable attachment points on the base 
and on the end effector or, more briefly, the geometry of the robot. 

1.2 Background and Objectives of the Thesis 

The wrench-closure workspace (WCW) of parallel cable-driven mechanisms is the set 
of poses for which all applied wrenches are feasible. An applied wrench is said to be 
feasible if it can be balanced by a set of non-negative cable tensions. This is a special 
case of the wrench-feasible workspace (WFW), which is the set of poses of the moving 
platform for which the cables can balance any wrench of a given set of wrenches, such 
that the tension in each cable remains within a prescribed range. The WCW of cable-
driven parallel mechanisms has been studied in several research works. A necessary 
condition for the WCW to be non empty is that the number of cables be greater 
than the number of degrees of freedom of the moving platform [15, 16]. We refer to 
these mechanisms as fully-constrained, as opposed to under constrained cable-driven 
mechanisms, which use the weight of the platform to control its motion, while keeping 
the cables in tension [17]. For fully-constrained cable driven mechanisms, the WCW 



depends only on the geometry of the mechanism, i.e, on the locations of the attachment 
points on the fixed frame and on the moving platform. 

A large body of literature is already available for determining the workspace of 
parallel cable-driven robots due to the unilateral nature of the forces applied by the 
cables on the mobile platform. Most of the available methods allow to determine 
the workspace of these robots, by means of a symbolic method [2] or by a discretiza­
tion method [18]. Fattah and Agrawal [19] proposed a methodology to calculate the 
workspace of redundant and non redundant planar cable driven robots by means of 
a discretization method. In their method, tensions in the cables are calculated and 
conditions are obtained to verify whether a reference point on the moving platform 
is reachable with positive tensions. Riechel and Ebert-Uphoff [20] present a means of 
analytically deriving the WFW for the case of a point-mass end-effector and analyze 
the characteristics and trends of the WFW. Some authors apply the antipodal theorem 
to calculate the WCW of PPCDMs [21]. All these works pertain to the analysis of 
the workspace of cable-driven parallel mechanisms. Very few of them tackle the dif­
ficult design problem of finding a parallel cable-driven mechanism from a prescribed 
workspace, i.e., the synthesis problem. 

Gouttefarde et al. [22] propose an interval-analysis based approach to find boxes 
guaranteed to be fully inside or fully outside of the WFW. The proposed approach 
can be applied to verify whether a given prescribed workspace is fully included in the 
WFW of a given cable-driven mechanism. This is a valuable tool for the dimensional 
synthesis of cable driven robots, but because of its computational cost, we do not know 
that it has been already applied to such problems. 

Agrawal et al. [23] deal with the mechanical design of a 6-6 cable-suspended parallel 
robot. They use the global conditioning index (GCI) and the volume of the workspace 
as performance indices for the design optimization of a 6-DOF cable-suspended robot 
driven by six cables. The main objective of the design problem is to determine which 
cable-suspended parallel robot is able to orient itself perpendicular to the surface in 
question with the largest workspace volume and the maximum GCI. In their approach, 
they consider different possible designs and calculate the volume of workspace and 
GCI by discretizing the surface into several points while considering the orientations 
of MP constant. Based on the obtained results, they choose the mechanism with the 
largest workspace as well as the highest GCI. The proposed method may be an effective 



tool when designing similar cable suspended parallel robot, but does not deal with the 
synthesis problem of CDPMs. 

To the knowledge of the authors, Hay and Snyman [24] were the first and only 
researchers to report directly on the synthesis of parallel cable-driven manipulators. 
They defined the dexterous workspace of a PCDPM as the intersection of all constant 
orientation workspaces in a given set of rotation angles, while cable tensions are con­
strained to lie within a given set and cable lengths are greater than a given minimum. 
Their main goal is to maximize the area of the dexterous workspace for a given range 
of rotation angles by finding the locations of fixed points of the robot along a fixed 
rectangular frame. They begin with a randomly chosen PPCDM design and maximize 
the area of its dexterous workspace by varying its geometry. In this manner, they find 
a locally optimum configuration of the fixed points of the robot, while the locations of 
the attachment points on the platform have already been assumed. It was observed 
by some researchers [25] that the locations of the attachment points on the moving 
platform tend to have more effect on the WCW than the locations of the attachment 
points on the fixed frame. Therefore, this locally-optimum robot design corresponds to 
a dexterous workspace of maximum area, but not for a prescribed workspace. 

The principal goal of this thesis is to find effective algorithms for the dimensional 
synthesis of cable-driven parallel mechanisms. In other words, we aim at devising algo­
rithms leading to the geometry of a CDPM whose wrench-closure workspace includes 
a prescribed workspace. In trying to find such algorithms, we uncover some hidden 
properties of the WCW of planar cable-driven parallel mechanisms (PCDPM) as well. 

Devising a methodology for the optimum design of cable-driven parallel mechanisms 
for a desired workspace enables us to prepare a series of computer codes, which prove 
the efficiency of these methods while we solve various case studies. It is hoped that 
the algorithms and corresponding computer codes will provide an efficient tool for the 
designers of cable-driven parallel mechanisms. 



1.3 Overview of the Thesis 

Before attempting to find the required geometry of a cable-driven parallel mechanism 
for a prescribed wrench-closure workspace, we have to set up a standard mathematical 
description and investigate the characteristics of the wrench-closure workspace of such 
robots. This means that we must begin with the analysis of cable-driven parallel 
mechanisms before attempting their synthesis. In the next chapter we recall the kineto-
static equations of planar cable-driven parallel mechanisms and formally define the 
WCW of such mechanisms. We present the relationships between the oriented areas 
concept and the boundaries of WCW of these mechanisms. Finally, we introduce a 
graphical algorithm to determine the types of conic sections forming the boundaries of 
the constant orientation WCW (COWCW) of PCDPMs. 

The kinetostatic equations obtained in Chapter 2 are the starting point of our 
approach to the dimensional synthesis of CDPMs. In Chapter 3, we investigate the 
dimensional synthesis of PCDPMs for a constant orientation. We introduce a linear 
program to verify whether a given box lies inside the COWCW of a PCDPM. The 
approach is based on convex relaxation techniques and leads to the contracted COWCW 
concept. We then introduce a scaling factor to maximize the size of the prescribed box, 
while considering the geometic parameters of the PCDPM as unknowns. This leads 
to a nonlinear program whose solution provides us optimum geometries of different 
PCDPMs. The COWCW of these PCDPMs includes the scaled box. Evidently, if the 
corresponding scaling factor at the optimum point is greater than or equal to one then 
the COWCW of the obtained PCDPM is guaranteed to include the prescribed box. 
Integrating multiple boxes in this nonlinear program allows for the representation of an 
irregular prescribed workspace. The local optima provide geometries of PCDPM whose 
COWCWs include the prescribed workspace. We use the interval analysis method to 
approximate the prescribed workspace by multiple boxes. The results obtained for 
discrete orientations of the end effector are extended to the continuous orientation 
case, i.e., to ranges of orientation angles, at the end of chapter 3. The introduced 
approach is again based on convex relaxation techniques and the final solutions of 
the corresponding nonlinear programs provides geometries of PCDPMs whose WCWs 
within the given range of orientations include the prescribed workspace. 

Finally, based on the results obtained for planar CDPMs, we introduce an algorithm 
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for the dimensional synthesis of spatial CDPMs in Chapter 4. Alike for the planar 
case, the convex relaxation technique is applied to a linear program to verify whether 
a given six-dimensional box, i.e., bounded orientations and positions, is inside the 
WCW of a given CDPM. This leads to a nonlinear program whose optima represent 
CDPM geometries whose WCW includes a prescribed workspace within a given range 
of orientation angles. The introduced nonlinear program may easily become a large 
scale problem, depending on the number of three-dimensional boxes representing the 
prescribed workspace, and solving such problems can be challenging. We resolve this 
issue using a custom tailored sequential linear program. The efficiency of the introduced 
algorithms is illustrated by several examples throughout the Chapters 3 and 4. Finally, 
conclusions are drawn and future work is suggested in Chapter 5. 



Chapter 2 

Kinetostatics and Wrench-Closure 
Workspace of Planar Cable-Driven 

Parallel Mechanisms 

This chapter provides the basic framework required for the analysis and synthesis of planar 
cable-driven parallel mechanisms (PCDPMs). First, we recall the kinetostatic of the PCDMs 
and formally define the WCW of these robots. Then, we introduce a linear program to cal­
culate the wrench-closure workspace of the PCDPMs. We demonstrate the analogy between 
the 3-RPR planar parallel robots and PCDPMs with three cables. We investigate the bound­
aries of COWCWs of PCDPMs and uncover their relationships with oriented-area concepts. 
Finally, we propose a graphical algorithm for the determination of the types of conic sections 
that compose the boundary segments of the COWCWs. 

11 
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2.1 Introduction 

A planar cable-driven parallel mechanism (PCDPM) consists of a moving platform 
(MP) and a fixed frame, which are connected with multiple cables, as shown in Fig. 2.1. 
The cables and the moving platform are assumed to be contained in the same plane. 
The moving-platform pose in this plane is controlled by winding and unwinding the 
cables. Each cable is wound around an actuated reel fixed to the base and attached to 
the moving platform at its other end. Forces on the moving platform are obtained by 
pulling on the cables with the servo-controlled reels. Since the cables can be wound onto 
reels over long lengths, the workspace of a cable-driven mechanism can be larger than 
that of a conventional parallel mechanism. However, this is only a potential advantage, 
since the workspace of a PCDPM is further limited by the inability of cables to push on 
the moving platform. Indeed, there generally exist many poses inside this workspace 
for which the cables cannot balance all applied wrenches, because at least one of them 
would have to push on the platform. 

Base 

_' i 7 i i 
i i i i i 

- ' - -'.»... J - _7 _'_ 
i i - - ' -- I I 

(a) Schematic of a planar parallel cable-
driven mechanism with six cables 

(b) A prototype of planar parallel cable-
driven mechanism with four cables at 
Robotics Laboratory of Université Laval [11] 

Figure 2.1: Planar parallel cable-driven mechanism. 

Many existing works deal with the limitation of the workspace of cable-driven par­
allel robots induced by the unilateral nature of the forces applied by the cables on the 
mobile platform. Most of them propose methods allowing to determine the workspace of 
these robots, for instance, by means of discretization [18] or of symbolic calculations [2]. 
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In the discretization method, a superset of the workspace is first discretized. This 
gives a set of poses, which are then tested one by one to see whether each of them 
lies in the WCW. Unlike the discretization method, the symbolic method consists in 
computing the boundaries of the WCW and determining which side of each boundary 
corresponds to the WCW. Evidently, this method is more reliable than the discretiza­
tion method, which can be considered as an estimation method, because there may 
exist some points between validated mesh points that lie outside the WCW. More­
over, because symbolic expressions of the WCW boundaries are readily available, the 
symbolic method is generally significantly faster than the discretization method. 

Several research works can be found about the symbolic method. Stump and Ku­
mar [2] derive limiting conditions that lead to symbolic expressions for the boundary of 
the wrench-closure workspace. They apply Farka's lemma to provide the necessary and 
sufficient condition to evaluate the reachable workspace of a cable-driven parallel mech­
anism. They present an algebraic procedure to find a hyperplane that separates the 
convex hull formed by the cable wrench vectors and the wrench of external forces. Then, 
they extend the method to find the sufficient condition for ensuring that the platform of 
the mechanism can resist any arbitrary applied wrench. Gouttefarde and Gosselin [26] 
- [27] present a detailed analysis of the constant-orientation wrench-closure workspace 
(COWCW) of planar parallel mechanisms and propose theorems that characterize the 
poses of the WCW of a planar cable-driven mechanism. They show that the boundary 
of this workspace is composed of conic sections. Apparently, these conic sections can 
be any of the three types, i.e., hyperbola, parabola or ellipse. 

The main goal of this chapter is to set up mathematical equations for the analysis 
of PCDPMs and shed light on the relationship between the geometry of a PCDPM 
and the types of conic sections forming the boundary of its COWCW. In particular, 
we shall provide a graphical method, which allows to determine the types of each conic 
section forming the boundary without any calculations. Since the proposed method 
involves some geometric constructions, we also provide sufficient conditions that can 
be assessed from mere inspection in many instances of PCDPMs. 

These results may be used by the designer of a PCDPM to quickly analyze various 
geometries. Moreover, the analysis being completely general, these results are regarded 
as a contribution to the theory of parallel cable-driven mechanisms. Finally, the facts 
presented in this chapter can be equally applied to find the singularity loci of 3-RPR 
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parallel manipulators [28] and [29]. This significantly extends the reach of the proposed 
graphical method. 

2.2 Kinetostatic Model 

The first step to the analysis of the boundaries of the WCW of a planar cable-driven 
parallel mechanism is the definition of its kinetostatic model. Such a planar cable-driven 
mechanism is schematically shown in Fig. 2.2. It consists of a moving platform (MP) 
that is connected by m cables to m fixed points Aiy i = 1 , . . . , m. Cable i is attached to 
the MP at _3j, and winds at Ai around an actuated reel. In order to analyze the motion 

Figure 2.2: Sketch of a planar cable-driven mechanism with ra cables. 

of the MP, we have to consider two frames: the reference frame A, which is fixed to 
the base at point O, and the moving frame B, which is attached to the MP at reference 
point P . The moving platform can be transformed to the reference frame by a rotation 
of angle (p. The cables and the moving platform are assumed to lie in parallel planes. 
In this sense, they are said to be coplanar. The i th cable connects points Â  and Bi. 
We use the following notation for the analysis of a generic PCDPM: 

Vector a* G R 2 represents the position of the actuated reel _4j in the fixed frame A; 
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• Vector bj € R2 is a constant vector and represents the position of the attachment 
point B t of the i th cable in frame B ; 

• Vector p _R 2, which is expressed in A, represents the position of the point P with 
respect to point O; 

• Vector Cj points from Bi to Ai, and its magnitude represents the length of the _th 

cable; 

• 4> is the angle between the fixed axis X and the moving axis X'. 

Vector Cj representing the i cable is obtained as 

Cj = a. ­ p — Qbj . (2.1) 

where Q is the rotation matrix taking the fixed frame onto the moving frame, and can 
be expressed as 

Q = 12X2 cos0 + E sin0, (2.2) 

­ l " 
where, E = and 12X2 £ R2x2 is the 2 x 2 identity matrix. The wrench applied 

by the . th cable at P, the origin of the moving frame, is 

v t = [ f f n t ] T , (2.3) 

where f* and nj are the force and moment about P produced by the _th cable. Since 
the exerted force is parallel to its corresponding cable and its related moment is per­

pendicular to the plane, their mathematical expressions are 

fi = -Ci, ni = det([Qb; -a]). (2-4) 

where ^ and ti are the length and tension of cable i, respectively. If we assume that 
points Ai and Bi do not coincide, then the wrench applied to the platform by cable i 
is yWi, with Wj defined as 

H 
T 

W,; = (2.5) cf cfEQb, 

Equation (2.5) shows that Wj is a function of the geometric parameters of the mechanism 
and the orientation angle of the moving platform. We define the wrench matrix and 
tension vector of the mechanism as 

W = [■ W i w 2 w r 
and t = 

lh h (2.6) 
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respectively. The static equilibrium of the moving platform may be expressed as 

W t + w P = 03, (2.7) 

where 03 is the three-dimensional zero vector and w P is the wrench applied on the MP 
at P , and is equivalent to the system of external forces and moments. These external 
loads may include gravity forces, for example. 

2.2.1 The Wrench-Closure Workspace and Its boundaries 

Now we can define the wrench-closure workspace of planar cable-driven parallel mech­
anisms as follows. 

Definition 1 The Wrench-Closure Workspace (WCW) 

The WCW of planar parallel cable-driven mechanisms is formally defined as the set of 
poses for which 

VwP € R3, 3 t € Rm | t X 0m and W t + w P = 03, 

where the symbol __ denotes the componentwise inequality. 

2.2.1.1 A Linear P rog ram to Verify Whether a Pose Lies in the W C W of 
a P C D P M 

In order to find a valid tension vector t for a given pose, we need to solve the linear 
system of equations given by eq. (2.7). From linear algebra, we know that the vector 
sum of any solution of eq. (2.7) with a vector in the null space of W is again a solution 
to eq. (2.7) [30]. In other words, if we consider t* and t 1 as a solution of eq. (2.7) and 
a vector in the null space of W, respectively, then 

t = t* + A t \ A e R + , (2.8) 

is also a solution of eq. (2.7). 
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For t x whose components are all (strictly) positive, we can add a sufficiently large 
scalar multiple A of this vector to any particular solution t* of eq. (2.7) to obtain a cable-
tension vector t with positive components. Therefore, in order to determine whether a 
given pose is inside the WCW of the mechanism, we need to determine whether there 
exists a set of positive tensions such that 

W t = 03, (2.9) 

where 03 is the three-dimensional zero vector. In other words, we need to solve the 
following feasibility problem for each pose of the MP: 

W t = 03, 

t >- 0m . (2.10) 

Therefore, the WCW of a PCDPM is the set of poses for which eq. (2.10) is satisfied. 
We can use this equation in a linear program to calculate the wrench-closure workspace 
of planar parallel cable-driven robots as follows. 

In order to verify whether a given pose lies within the wrench-closure workspace of 
a PCDPM, we introduce the following linear programming (LP) problem: 

= maximize d. 

subject to t y d i m , 

wt = 03, 
d < 1, 

over d and t, 

and l m = [1 1 ••• ir e 

(2.11) 

n. When solving this 
LP, the solver pushes d in the positive direction as much as it can. Since d is equal or 
smaller than all the components of vector t and is being maximized, it remains equal to 
the smallest component of vector t. But the solver can also vary the components of t, 
since they are also optimization variables. Therefore, when solving the LP, the solver 
always increases the smallest component of vector t in order to allow d to increase 
further. If d becomes greater than zero, then this means that the smallest component 
of vector t is also greater than zero, which means that all the components of t are 
greater than zero. This, in turn, means that the given pose lies in the WCW. 

If d cannot be made greater than zero, that means there is no strictly positive t, and 
the pose is outside the WCW. For poses outside the WCW, notice that d will always 



IS 

end up equal to zero, since s = 0 and t = 0m is always a feasible point of this LP (i.e., 
it satisfies all the constraints). Therefore, for this LP, we have 

r = < 
1 if the pose lies in the WCW, 

0 otherwise. 
(2.12) 

We can calculate the constant orientation wrench-closure workspace (COWCW) of 
PCDPMs using this linear program and discretizing the plane to several points. We 
illustrate this with the following example. 

2.2.1.2 Example: W C W of a Planar Cable-Driven Parallel Mechanism 

Figure 2.3 shows a sample PCDPM drawn from Stump and Kumar [2]. The pa­
rameters of the considered PCDPM are given in Table 2.1. 

Table 2.1: Geometric parameters of the assumed PCDPM. 
i af bf 
1 [0 0] [-.5 0] 
2 [6 0] [.5 0] 
3 [6 5] [.5 .5] 
4 [0 5] [-.5 .5] 

5< 
0=0 rac 

• 

4.5 

4 N . 

3.5 

3 

3.5 

3 

Cables 2.5 

2 

15 

Cables "" MP 2.5 

2 

15 

(i.r, 

i 1 2 3 4 5 6 

Figure 2.3: A PCDPM with four cables. 

Discretizing the xy plane and the (p axis provides us with a set of poses whose 
inclusion in the WCW is to be verified, based on the introduced linear program. Figure 
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2.4 shows the resulting COWCWs, each corresponding to a different orientation angle. 

0.08 

0.06 

0.04-

0.02-

0 -

-0 .02-

-0 .04-

-0 .06-

6 5 

Figure 2.4: COWCWs of the robot depicted in Fig. 2.3 for different orientations. 

2.2.1.3 The Boundaries of the Constant-Orientation WCW 

Gouttefarde and Gosselin [26] proved that the boundary of the constant-orientation 
WCW (COWCW) of a PCDPM is composed of segments of conic sections. The math­
ematical expressions of these conic sections, are obtained in terms of p by computing 
the determinant of each 3x3 matrix obtained by choosing three distinct columns of the 
wrench matrix W. If we call the selected columns p, q and r, then the related conic 
section equation is given by 

det ( • wp wg wr 
) = 0 . (2.13) 
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2.3 Singularities of 3-RPR Planar Parallel 
Mechanisms 

One of the simplest parallel robots is the 3-RPR planar robot, where R and P stand 
for revolute and prismatic joints, respectively and the underlined joints are actuated. 
It is composed of three identical legs connecting the fixed base to the end effector, as 
shown in Fig. 2.5. Each leg is of RPR design, with two passive revolute joints and an 
active prismatic joint in between. Using the notation already introduced in section 2.2, 

Figure 2.5: A 3 RPR planar parallel mechanism. 

we obtain the following expression for the length of the . th prismatic joint of this type 
of robots 

Ç = (^ - p - QbO r(aj - p - Qb.). (2.14) 

The differentiation of eq. (2.14) gives 

k = h&i - p - Qb,)r(p + 0EQbO. (2.15) 

Let 1 = k h. h and s = p (fi , so that 

i = j s , 

where 

J = 
uf ufEQbj 
uf u fEQb 2 

uf u fEQb 3 

(2.16) 

(2.17) 
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is the Jacobian matrix of the robot and Uj represents the unit vector along the i link, 
Q. 

i.e., Uj = —. Substituting eq. (2.5) in eq. (2.17) gives 

J = 
W i W 2 W 3 " 1 T 

(2.18) L li h h 
In order to find the singularities of these robots, we need to solve the equation 

det(J) = 0. (2.19) 

Assuming that the lengths of the rigid links are greater than zero, equation (2.19) is 
analogous to the equation of the conic sections forming the boundary of the COWCW 
as it was presented in section 2.2.1.3. The quadratic nature of the singularity loci of 
these mechanisms was revealed in [31]. While the geometric loci are the same, the 
physical phenomena they represent are distinct. One represents possible boundaries 
of the COWCW, and the other, the singularities of the robot. Hence, the proposed 
method in this thesis can be applied to 3-RPR planar robots to find their singularities 
as we explain in the next section. 

2.4 Conditions for Determining the Types of 
Conic Sections of the Boundaries of the 
COWCW 

Expanding eqs. (2.13) and (2.19) and rewriting them in matrix form leads to 

±pTD p q rp + hT
pqrp + fpqr = 0, (2.20) 

where Dp ç r 6 R2 x 2 is symmetric indefinite, hpqr £ R2, and Jpqr E R. Notice that all 
the elements of Dp 9 r , hpqr and also scalar fpqr, are functions of 0 and the geometric 
parameters of the given mechanism, a* and b;, i — 1 , . . . , ra. 

From calculus, we know that the type of a conic section is recognized by the sign 
of its discriminant, det(Dpgr). Therefore, the following relations allow us to recognize 
the type of the conic section: 

ellipse if det(Dpgr)>0, 

parabola if det(Dpgr)=0, (2-21) 

hyperbola if det(Dp(?r)<0. 
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Notice that for some values of Dpgr , hpgr and fpqr, these conic sections can degenerate 
into lines. Matrix Dpgr is obtained by expanding eq. (2.13) and considering the second-
order terms. In other words we need to expand the following equation 

det 
b f Q T E r c p b f Q r E T c g b fQ T E T c r 

Expanding eq. (2.22) leads to 

= 0, (2.22) 

0 = bf QTE rupdet([cg cr]) + bf QTETcgdet([c r cp]) + bf QTETc rdet([cp c,]), (2.23) 

which, in turn gives 

0 = bf QTETcpcf Ec r + bf QTETcgcf Ecp + bf Q T E T c r cf Ecg. 

Substituting eq. (2.1) into eq. (2.24) leads to 

p T E T F p Ep -f first-and zero-order terms in p = 0, 

(2.24) 

(2.25) 

where 

Tr\T F p g r = Q ( - b p b f Q r + bpaf - b paf + bpbf Q r + bgaf - bgbf Q r - bgaf + bgbf Q 

+ b r a j - b r bf Q T - b r a f + b r bf QT) . 

Since p T E T F p g r Ep = - p T E T ( F p g r + Ff9r)Ep, matrix Dp g r is given by 

D = F 
'-'pqr *- pqr 

F T 

* pqr-

Hence, for a constant end-effector orientation, matrix Dpqr is expressed as 1 

Unar = t)p^ag a rJ t- b g (a r ap) + b r (ap agJ 'pqr 

(2.26) 

(2.27) 

(a, - a r)bf + (ar - ap)bf + (ap - ag)b? 

in which vectors bp , bq and b r are expressed in the reference frame A. Hence, the 
discriminant of eq. (2.20) is given by 

det(Dpgr) = - ( 7
2 - 4 a / . ) , (2.28) 

where 

. T p T , a = a^ E1 aq + a* E1 ar + a; E1 ap, 

0 = b T E T b g + bf E T b r + bf E r b p , (2.29) 

7 = af E T b g + bf E r a g + af E T b r + bf E T a r + af E T b p + bf ETap . 

^or a constant orientation matrix Q is a constant, and we can remove it from the formula if we 
express the coordinates of bp,b, and br in the fixed frame A. 
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One can verify that variables a and P represent twice the oriented areas [32] of the 
triangles A and B formed by the vertices Ap, Aq, Ar and Bp , Bq, B r , respectively. As 

Positive Area Negative Area 

Figure 2.6: Oriented area of the triangle formed by three selected fixed points, Ap, Aq 

and Ar, of a given PCDPM. 

depicted in Fig. 2.6, the oriented area is positive if the sequence Ap, Aq and Ar is in 
the counter clockwise order, and negative otherwise. 

The expression of 7 in eq. (2.29) represents a combined area of the two triangles. 
It is different from the Minkowski mixed area [32] of the triangles, but it can be con­
sidered as the mixed area of the triangle obtained by linearly combining the vectors 
of the corresponding vertices of the triangles A and B. Equation (2.29) leads to the 
definition of the function taking as inputs the coordinates of the vertices of a triangle, 
and returning its oriented area times two, namely, 

area(pi,p2 ,p3) = det 
1 1 1 

P i P2 P3 
(2.30) 

Using eq. (2.30), the expressions of the variables defined in eq. (2.29) can be rewritten 
as 

Où  = = £tr6£ll clp, 3-0) &r ) j 

(3 = area(bp, bg , b r) , (2-31) 

7 = area(ap, b q — b r , 0) + area(ag, b r — bp , 0) + area(ar, b p — b9 , 0). 

Note that 7 in eq. (2.31) can be written in different forms, the one making use of the 
oriented-area function being preferred here. 
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2.5 Equivalent Conditions for Determining the 
Types of Conic Sections 

An investigation of eq. (2.28) shows that the discriminant has a direct relation with 
the orientations of the triangles, i.e, the signs of a and (3. As a result, we reach the 
following lemmas. 

Lemma 1 If triangles A and B have opposite orderings, then the conic section is a 
hyperbola. 

Proof. When triangles A and B have opposite orderings, then a and (3 have opposite 
signs, and a/3 < 0, so that the discriminant is positive. Therefore, in such a case, the 
associated conic section is always a hyperbola.□ 

Lemma 2 If one or both of the triangles A and B degenerate into a line, then the 
conic section is a hyperbola or a parabola. If one of these triangles degenerates to a 
point, then the conic section is a parabola. 

Proof. When one or both triangles degenerate into a line, we have a/. = 0. Conse­

quently, the discriminant is non­negative, and the boundary is either a parabola or a 
hyperbola. If one of the triangles degenerates into a point, which means that the three 
corresponding attachment points coincide, then a(3 — 7 = 0, and the discriminant is 
zero, and the shape of the COWCW boundary is that of a parabola.□ 

Lemma 3 If all the edges of triangle A are parallel to their corresponding edges on 
triangle B, then the conic section is a parabola. 

Proof. When all the edges of triangles A and B are parallel, which does not imply that 
they are similar, we have a ; — ap = A (b,­ — bp), j={q,r} where A G R is a real number. 
Substituting these relations in eq. (2.29) gives a = \(3 and 7 = 2A/3. Consequently, 
from eq. (2.28), the discriminant is zero and the corresponding boundary segment is a 
parabola.D 



For the case in which two triangles have the same orientation, cc(3 >0, additional 
work is required in order to recognize the sign of the discriminant in eq. (2.21). For such 
cases, we define the triangle CpCqCT obtained through the homotopy of ApAq Ar onto 
BpBqB r . Hence the vertices of this triangle are obtainable by the following equations. 

cp = pap + (1 - p)bp, 

cg = /.a, + (1 - /_)bg, 

cr = /_ar + (1 — pt)br. 

(2.32) 

where p is a free parameter. 
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Notice that the variables defined in eq. (2.29) are translation invariant. Conse­
quently, shifting the origins of these frames to Ap and Bp has no effect on these vari­
ables. Therefore, we can consider the origins of the reference and moving frames to 
coincide with vertices Ap and Bp , which, in turn, means that 

a_ — or 0 2- (2.33) 

Figure 2.7 shows the triangles A, B, whose vertices Ap and Bp coincide at the origin. 
One of their linear combinations C is also shown, which corresponds to p = 0.4. In 

A p ,B p ,Cp i 

Figure 2.7: Triangles A and B and one of their possible linear combinations C. 

general, the area of triangle C can be given by the following equations 

2Ac = area(cp, c„ c r), (2.34) 
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Substituting eq. (2.32) into eq. (2.34) and expanding it according to the function defined 
in eq. (2.30) leads to 

2AC = p2(a + fi - 7 ) + /_(7 - 20) + 0, (2.35) 

which is quadratic in the variable /_. Interestingly, the discriminant of eq. (2.35) is 
the negative of that of the conic section equation given in eq. (2.28). As a result the 
conditions in eq. (2.21) can be rewritten as a function of the number of real roots of 
eq. (2.35) when set to zero, namely, 

ellipse no real root, 

parabola one real double root, (2.36) 

hyperbola two real roots. 

Therefore, in order to determine the types of the conic sections forming the boundary, 
we must find out how many times Ac = 0, that is, how many times the triangle C 
degenerates into a line segment. 

In order to obtain graphical conditions equivalent to those of eq. (2.36), we define 
the following function: 

2A(p) = area(p, c„ c r). (2.37) 

Notice that we have the relation A(cp) = Ac, so that A(p) may be regarded as the area 
of triangle C, where we left the position of vertex Cp as a free variable. Since cg and 
c r are linear in p, A(p) is a quadratic equation in this parameter. Using the defined 
area function and expanding eq. (2.37) leads to 

2A(p) = Sp? + (7(p) - 20(p))p + 0(p), (2.38) 

where a(p),/ . (p) and 7 (p ) are affine functions of p and are given by 

a(p) = area(p,ag ,a r), 

/3(p) = area(p,bg ,b r) , (2.39) 

7(p) = a(p) + 0(p) - S, 

S = area(ag, ar, bg) + area(bg, b r , ag) . 

The discriminant of eq. (2.38) is given by 

A ( p ) = 7 ( p ) 2 - 4 o . ( p ) / . ( p ) , (2.40) 
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Equation (2.40) is a quadratic function of p . Hence A(p) = 0 represents a conic 
section. Substituting eq. (2.39) into eq. (2.40) leads to 

(a(p) - 0(p))2 - 2(a(p) + 0(p))5 + S2 = 0. (2.41) 

Letting a and 0 be the independent variables in eq. (2.41), one may rewrite the 
quadratic term as (KTe)2 = KTeeTK, where K = [a 0}T and e = [1 — l ] r . Clearly, 
the matrix eeT of quadratic coefficients is singular, and, therefore, eq. (2.41) represents 
a parabola in oc and 0. Because K is affinely related to p, eq. (2.41) also represents a 
parabola in p. This leads to the following lemma. 

Lemma 4 The type of conic section composing the boundary of the COWCW can be 
determined from the following conditions: 

ellipse Cp is inside of the parabola (A(cp) < 0), 

parabola Cp is on the parabola (A(cp) = 0), 

hyperbola Cp is outside of the parabola (A(cp) > 0). 

(2.42) 

Parabola Tangent lines | ^Triangle B I H Triangle A Open tetragon 

-<ip) -Lspi ^p 

Figure 2.8: Two triangles of a selected set of base and moving-platform points, with 
their corresponding parabola. 
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To clarify what is meant by the outside and the inside of the parabola, notice that 
when there are two possible tangent lines to the parabola passing through Cp, then it 
is outside, when there is only one, then it is on the parabola, and otherwise, it is inside. 

Figure 2.8 shows the triangles A and B depicted in Fig. 2.7 with their corresponding 
parabola A(p) = 0. In this case Cp is located outside the parabola, and the conic section 
corresponding to the two triangles is a hyperbola. 

Figure 2.8 leads to the following intuitive reasoning. Since the area inside the 
parabola is generally smaller than the area outside the parabola, although both of them 
extend to infinity, the most probable type of boundary of a random PCDPM geometry 
should be the hyperbola, and the least probable type, the parabola. In practice, this 
conjecture seems to be verified. 

From a computational standpoint, the conditions of Lemma 4 do not bring any im­
provement over those of eq. (2.21). Nevertheless, these new conditions can be exploited 
in order to obtain a graphical solution to the problem, as we show in the following 
section. 

2.6 Graphically Determining the Types of Conic 
Sections 

Let us call the lines passing through vertices {Ar, Aq}, {B r, Bq}, {Ar, B r} and {Aq, Bq}, 
C\, £2, £3 and £4 respectively, as depicted in Fig. 2.8. Consider the following lemma: 

Lemma 5 All lines Ci, i = 1, . . . ,4 are tangent to the parabola, A(p) = 0. 

Proof In order to prove this lemma, we first need to find the number of the intersection 
points between each of these lines and the parabola. Let us begin with line £1, which 
is the set of points whose positions can be expressed as p = Aa, + (1 — A)ar. The 
intersection points of this line with the parabola can be found by solving the following 
equation for A: 

A(Aag + (1 - AK) = 0. (2.43) 



29 

Substituting p = Xâ  + (1 — A)ar in eq. (2.39) leads to a(p) = 0. Hence, we have 
A(p) = 7

2(p)- Substituting this in eq. (2.43) yields 7(Aa<j -f (1 — A)ar) = 0. Since 
this is an affine function of A, we are bound to have exactly one solution. The same 
approach can be used to prove that line £ 2 intersects the parabola in only one point. 
In this case, however, we have 0(p) = 0. 

In the case of line £3 , substituting the corresponding equation p = Aar + (1 — A)br 

in eq. (2.39) gives the following results: 

«(P) = (1 - A)o, 
0(p) = Xb, (2.44) 

5 = a + b, 

7 (p ) = -(Aa + ( l - A ) _ ) . 

where a = area(ag, a,., b r) and b = area(ar, bg , b r ) . Substituting eq.(2.44) into eq.(2.40) 
gives 

A(p) = (a + b)2X2 - 2b(a + 6) A + b2 = ((a + b)X - bf. (2.45) 

Clearly the only (double) root of eq. (2.45) is A = , which means that line £3 
and the parabola have only one common intersection point. With the same approach, 
we can prove that £4 and the parabola have only one intersection point as well. 

In order to ascertain that these lines are not parallel to the symmetry axis of the 
parabola we need to show that the following equation is satisfied at the intersection 
points: 

(dA/dp)Tdi = 0, . = 1...4, (2.46) 

where dj is the direction vector of line £j. In order to calculate ô A/dp, we first need 
to calculate <9(area(p, a,,, ar))/<9p. From the definition of the area function given in 
eq. (2.30), one can verify that 

<9(area(p, a, b ) ) /dp = E(a - b). (2.47) 

Hence, taking the derivatives of both sides of eqs. (2.39) gives 

d a / d p = E(ag — ar), 
«9/./<9p = E(bg-br), 
d j / d p = (da/dp + 80/dp) = E(ag - a, + bg - br). (2.48) 
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From eq. (2.40), we also know that 

<9A/dp = 2 7 (p )d 7 /dp - 4\3(p)da/dp + a(p)d0/dp\ . (2.49) 

Hence, we can calculate <9A/<9p at each intersection point p by substituting eq. (2.48) 
into eq. (2.49). Remembering that for line £i , a = 0, and 7 = 0 at an intersection 
point, we obtain 

dA/dp = - 4 / . E ( a g - a r ) , (2.50) 

The direction vector of C\ is given by 

di = (a, - a r ) / | | a g - a r | | , (2.51) 

which gives 

( d A / d p ^ d , = -4/.(ag - a r)
TET (a g - a r) / | |ag - a r | | = 0. (2.52) 

Since £i has only one intersection point with the parabola and satisfies eq. (2.46), it 
is a tangent line of the parabola. Using the same approach for line £3 , we substitute 
eq. (2.44) and eq. (2.48) into eq. (2.49) which leads to 

<9A/d(p) = -2E(c(ag - a r) + d(bq - b r)) , (2.53) 

where c = Xa + (A + 1)6 and d = (2 - X)a + (1 - X)b. 

The direction vector of line £3 is given by 

d3 = ( a r - b r ) / | | a r - b r | | . (2.54) 

and hence, 

(dA/3p)Td 3 - -2(c(ag - a r) + d(bq - b r ) ) T E T (a r - b ^ / I K - b r | | = 

- 2 ( a c - b d ) / \ \ a r - b r \ \ = -2(A(a + b) - b)(a + b)/\\ar - b r\\ . (2.55) 

, , b 
We already proved that A = at the intersection point of line £3 and the parabola, 

a + b 
. Substituting this value for A in eq. (2.55) leads to 

(dA/<9p)Td3 = 0, (2.56) 

which implies that line £3 is not parallel to the symmetry axis of parabola as well. 

With the same approach we can prove that lines £ 2 and £4 are also tangent to the 
parabola, which completes the proof. □ 

Now we can propose the following theorem: 
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Directrix 

Figure 2.9: A line segment between the focus point and the directrix of a parabola 
equally divided by a perpendicular tangent line. 

Theorem 1 The circumcircle of a triangle formed by three tangents to a parabola 
passes through the focus point of the parabola. 

For the proof, see Lambert's theorem [33], p.206-208. 

Hence, if we consider the triangles made by lines £ i , £2 , £3 and £1, £2 , £4, their 
corresponding circumcircles intersect in two points, one of which is the intersection of 
lines £1 and £2 , and the other being the focus point of the parabola. Because of the 
geometric properties of the parabola, when a line segment between the focus point and 
the directrix line is perpendicular to a given tangent line, it is divided into two line 
segments of equal lengths by this tangent line [34]. As depicted in Fig. 2.9, the line 
segment F E ' is divided into two line segments F T and TE ' of equal lengths by the 
tangent line £*. This, in turn, means that the intersection point of line F E ' and the 
directrix is the image of the focus point reflected about the tangent line. Since lines £1 
and £ 2 are tangent lines, we can find two points of the directrix from this property, and 
find the directrix. Also, since a parabola is the locus of the points that are equidistant 
to the focus point and the directrix, we can verify whether a point lies inside or outside 
the parabola by comparing its distances to the focus and the directrix, respectively. 
Hence, if the chosen origin Cp is outside the parabola, its distance from the focus point 
is greater than its distance from the directrix line. From lemma 4, we then conclude 
that the corresponding boundary is a hyperbola. 

We now summarize the proposed method as a graphical algorithm for determining 
the types of the conic segments that form the boundary of the COWCW for a selected 
set of fixed and moving attachment points of a PCDPM. 
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1. Draw the triangles A and B with their vertices Ap and Bp coinciding at the origin O. 

2. Draw the four lines through ArAq, BrBq, ArBr and AqBq. 

3. Draw the circle through Ar, BT and the common intersection of ArAq and BrBq. 
Call this circle C\. 

4. Draw the circle through Aq, Bq and the common intersection of ArAq and B rBq . 
Call this circle C2. 

5. The parabola focus point F is one of the two intersection points of C\ and C2. The 
other is the intersection point of lines ArAq and BTBq. 

6. Reflect F about lines ArAq and BrBq, respectively, to obtain points FA and FB-

7. Trace the parabola directrix, which is the line through FA and FB. 

8. If the origin O is closer to the directrix than to the focus point, then the correspond­
ing conic section is a hyperbola. If the origin O is at equal distances from the focus 
point and the directrix, then the conic section is a parabola. If the origin O is closer 
to the focus point F than the directrix, then it is an ellipse. 

It is often possible to determine the type of conic section just by a mere inspection, 
according to eq. (2.42). If Cp is outside of the open tetragon formed by tangent lines 
and contains the parabola, then the type of conic section is a hyperbola. If Cp is inside, 
then the corresponding conic section is an ellipse. For the depicted example in Fig. 2.8, 
this open tetragon passes through B r , Bq and Aq, and does not contain Cp, so that the 
type of conic section for this example is a hyperbola. 

Notice that some special cases such as those where edges ArAq and B rBq are parallel 
or line £ 2 passes through Aq, the parabola degenerates into a line, one or both of the 
circles is undetermined and the proposed method cannot be applied. In the following, 
section the proposed method is illustrated by two examples. 

2.7 Examples 

Let us first consider a simple planar parallel cable-driven mechanism, and then a 3-RPR 
mechanism. 



2.7.1 A Planar Cable-Driven Parallel Mechanism 

Figure 2.10: A planar parallel cable-driven robot with four cables. 
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In this section, we apply the proposed method to find the type of a conic section 
composing a portion of the boundary of the PCDPM with four cables and a trapezoidal 
moving platform, as shown in Fig. 2.10. The locations of the fixed and moving attach­
ment points are chosen as ai = 02, a2 

bi = 02, b 2 = U l l T , b 3 = [ 2 . 5 2.2517 

6 0 a3 = 
and b4 = 1.5 2 

7 5 
i l 

a4 = 1.5 

For this case, we have I j = 4 possible combinations of three cables, each corre­
sponding to one conic section. We consider the cables 1, 2 and 4 in order to illustrate 
the proposed algorithm, i.e., we choose p = 1, q = 2, and r = 4. As can be seen from 
Fig. 2.10, the ordering of A\A2A^ and their corresponding attachment points on the 
moving platform B\B2B± are both in the counter clockwise direction. Hence both of 
these triangles have the same orientation. Figure 2.8 shows the corresponding parabola 
and tangent lines defined in section 2.5 for the selected attachment points. The appli­
cation of the proposed algorithm is depicted in Fig. 2.11. First, we draw the triangles 
A and B with their vertices A\ and Bx coinciding at the origin O. For the second step, 
we draw lines d , i = 1 , . . . , 4, defined in section 2.6. Lines C\ and £ 2 intersect at point 
PAB- In the third step, we draw the circles C\ passing through A4, B4, PAB, a n d C2, 
passing through A2, B2, PAB- These circles intersect in two points. One of them is 
PAB, arid the other is the focus point F of the parabola. The next step is to find the 
points F A and F B which are the reflected points of F about lines £1 and £2 , respec­
tively. The line passing through these two points is the directrix of the parabola. The 
last step is to find the distances from the origin to the directrix line and focus point. 
These distances are represented by dry and dF, respectively. Apparently, do < dp, and 
the corresponding conic section for this example is a hyperbola. The equation of this 
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Figure 2.11: Graphical algorithm applied to determine the type of conic 
section of two triangles depicted in Fig. 2.8. 

hyperbola can be obtained directly from eq. (2.13): 

9.0 x - 6.0 y + 5.5 xy + 3.0 y2 - 4 x2 = 0. 

Notice that we could have reached this conclusion even more quickly by noticing 
that Ai lies outside of the open tetragon BAB2A2, which contains the parabola A(p). 
This fact is sufficient to conclude that A, is outside the parabola and, hence, the type 
of conic section is a hyperbola. 
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2.7.2 A 3-RPR Parallel Mechanism 

In this subsection, we illustrate the proposed algorithm by finding the type of singularity 
curve of a 3-RPR mechanism with a constant orientation of its end effector, shown in 
Fig. 2.12. The exact geometry of this mechanism is as follows: 

Singularity loci 

Figure 2.12: A 3-RPR planar parallel mechanism with a constant orientation of its end 
effector and corresponding singularity loci. 

= 5 5\/3]T , b, = 02, b2 = [3 5^3 /2] T and b 3 = a, = 02, a2 = 10 0 
T 

, a3 = 
0 3 

T 

As we can see from Fig. 2.12, the triangles AxA2A3 and BiB2B3 both follow a 
counterclockwise order. Figure 2.13 shows the application of the developed algorithm 
for this mechanism in order to find the type of conic section of its singularity curve. 
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Dircctix 

Figure 2.13: Application of the proposed graphical algorithm to find the type of singu­
larity curve of a 3-RPR mechanism. 

The process is the same as in the previous example. First, we draw the triangles A 
and B with their vertices _4_ and B\ coinciding at the origin. Then, we draw the lines 
£ i , £ 2 , £ 3 and £ 4 passing through vertices A2A3, B2B3, A2B2 and A3B3, respectively. 
The next step consists in drawing the circles C2 and C\ according to the steps 3 and 4 
of the algorithm. Circle C\ passes through A2 B2 and the intersection of lines £i and 
£2 , while circle C2 passes through _4.3, B3 and the intersection of lines C\ and £2 . One 
of the two intersection points of these circles is the focus point F , while the other one, 
PAB, is the intersection of lines £\ and £2 . Reflecting the focus point about lines £1 
and £ 2 gives the points FA and FB , respectively. The line passing through these points 
is the directrix of the parabola. In the last step we find the distance from the focus 
point to the directrix dD and the origin dF. As we can see from this figure, the distance 
between the focus point F and the origin is less than the distance from the directrix 
to the origin (dp < do)- Hence, the corresponding conic section is an ellipse which is 
depicted in Fig. 2.12. 

The equation of this ellipse can be obtained directly from eq. (2.19): 

375.0 x + 105 y + 27.5 x\fty - 37.5 xy/3 - 125.0yy/3 - S O y x - 37.5 x2 - 15 y2 = 0. 
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2.8 Conclusions 

A linear program was introduced to calculate the wrench closure workspace of PCDPMs 
via a discretization method. A relationship between the boundaries of the constant 
orientation wrench closure workspace (COWCW) and the geometry of the planar cable-
driven parallel mechanisms also was unveiled. A graphical method was proposed to 
determine the types of conic sections forming the boundary of the constant orientation 
wrench-closure workspace of a planar parallel cable-driven mechanism. This may be 
regarded as a contribution to the theory of these mechanisms. It was also shown that 
these conic sections have a direct relation with the geometry and ordering of the fixed 
and moving attached points. In fact, the proposed method provides a quick and effective 
tool to determine the types of conic sections forming the boundary of the constant-
orientation wrench-closure workspace of planar cable driven parallel mechanisms. This 
can prove useful when verifying the validity of the computed WCW for a given geometry, 
for example. This method can also be applied to find the singularities of 3-RPR planar 
parallel robots because of the analogy between the Jacobian matrix of these robots and 
the wrench matrix of planar cable-driven parallel mechanisms. It is hoped that the 
results reported here can lead to the development of a graphical method for tracing 
the boundaries of the constant orientation wrench-closure workspace of a given planar 
parallel mechanism. However, because of the intricate equations involved, this task 
appears to be extremely challenging. 
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Chapter 3 

The Dimensional Synthesis Of 
Planar Cable-Driven Parallel 

Mechanisms 

In this chapter, we tackle the dimensional synthesis problem of finding a geometry for a planar 
cable-driven parallel mechanism (PCDPM) whose WCW contains a prescribed workspace. 
To this end, we first introduce a linear program to verify whether a given pose is inside 
or outside the WCW of a given PCDPM. The relaxation of this linear program over a box 
leads to a nonlinear feasibility problem that can only be satisfied when this box is completely 
inside the WCW. We extend this feasibility problem to find a PCDPM geometry whose 
WCW includes a given set of boxes. These multiple boxes may represent an estimate of the 
prescribed workspace, which may be obtained through interval analysis. Finally, we introduce 
a nonlinear program through which the PCDPM geometry is changed while maximizing the 
scaling factor of the prescribed set of boxes. When the optimum scaling factor is greater or 
equal to one, the WCW of the resulting PCDPM contains the set of boxes. Otherwise, the 
WCW generally offers a good coverage of the set of boxes. 
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3.1 Verifying Whether a Pose Lies in the W C W of 
a P C D P M 

In the previous chapter we developed the kinetostatic equations of PCDPMs and for­

mally defined the wrench­closure workspace concept. In order to devise a formulation 
for the synthesis problem of PCDPMs, we define the following vector and matrices 

A = a j •• am 6 R2xm, 

B = bi • • • b m 6R2 x m , 

f = bfQrETa_ ■•• b £ 0 / E r a m ] T G 

which let us rewrite the wrench matrix W as 

W = 
A ­ QB ­ P l m " 

­ p rEQB GM3xm 

(3.1) 

(3-2) 

In section 2.2.1.1, we introduced the feasibility problem 2.10 to verify that a given pose 
is inside or outside of the WCW of a PCDPM. However, we may as well use Stiemke's 
theorem [35] to verify whether a given pose is inside or outside the WCW. We recall 
this theorem as follows. 

Theorem 2 (Stiemke's Theorem) Dual WCW Membership Condition [2] 
A pose is outside the WCW of a PCDPM if and only if there exists a small­displacement 
screw AGI 3 such that 

W TA t 0m, 

W TA ^ 0m. 

(3.3) 

A geometric interpretation of Stiemke's theorem may be obtained by considering A as 
the normal of a supporting hyperplane, meaning that the convex cone formed by wrench 
vectors x : W T x y 0m, lies entirely on one side of the plane, as depicted in Fig.3.1. In 
order to give a physical interpretation to Stiemke's theorem, we may consider the vector 
A as a small displacement screw [2]. In this case, the quantity wf A represents the work 
done by the wrench i over the displacement represented by the screw A. Hence, the 
inequalities W r A y 0m imply that there is a motion described by screw A, such that 
the work done by each of the cables is non­negative. The equality W T A ^ 0m further 
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plane 

Figure 3.1: Geometric interpretation of Stiemke's theorem. 

requires that at least one of the wrenches does strictly positive work. Therefore, the 
physical interpretation of Stiemke's theorem is that there is a motion for which the 
system of wrenches does positive work, while none of the cables does negative work. 

We can now introduce the following feasibility problem to calculate the WCW of a 
PCDPM: 

W T A y om, 
l m W ' A = l . 

(3.4) 

This problem yields 0 whenever the given pose is outside of the corresponding WCW, 
and is infeasible otherwise. In other words, the given pose is outside of the WCW if 
the problem admits a feasible solution, and inside if it does not. Hence, this equation 
can be used to estimate the WCW of a given PCDPM by discretizing the examined 
region. This linear feasibility problem is to serve as the corner stone to the proposed 
formulation of the dimensional synthesis of PCDPMs. 
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3.2 Verifying Whether a Box Lies Inside the 
COWCW 

We wish to determine whether a given small box lies completely inside the constant­

orientation WCW of a given PCDPM. To this end, notice that the problem (3.4) can 
be turned into a phase­one problem as per the following Lemma. 

Lemma 6 Linear Program WCW Membership Condition 
Consider the linear program 

6* = maximize 5, 

subject to W r A y 0m, (3.5) 

l£W TA > 5, 
over A and S. 

Then, we have 
. +00 if the pose lies outside the WCW, 

Ô* =­­ { (3.6) 
0 otherwise. 

Proof First consider the case where the MP (Moving Platform) pose lies outside the 
WCW. From eq. (3.4), we then have a A such that WTA y 0m and l m W r A = 1. 
Thus, the point (A, 8) = (A, 1) lies in the feasible set of problem (3.5), and so do the 
points (k \ ,k ) , where k > 0. In this latter case, the objective to be maximized is k, 
which can be chosen arbitrarily large, so that the optimization problem (3.5) becomes 
unbounded. 

Second, we treat the case where the MP pose lies inside the WCW. Then, from 
Theorem 2, there exists no A such that WTA y 0TO and WTA ^ 0m . Conversely, any 
A . l 3 satisfying W T A y 0m also satisfies WTA = 0m . Substituting these results 
in eq. (3.5) inevitably leads to ô = 0, provided that there exists a feasible A. Notice 
that (A, S) = (03, 0) is always a feasible point of problem (3.5), so that its optimum be 
always 0 when the pose lies inside the WCW. □ 

Consider now a box B with the lower­left and upper­right corners p and p, respec­

tively, i.e., B = {p G R2 : p ■< p < p}. In order to find a necessary condition for B to 



43 

be outside of the COWCW, we substitute eq. (4.11) in problem (3.5),and we let p be 
a decision variables of the problem, while constraining it inside B. This leads to 

maximize 5, 

subject to 0m < A Tp, - Q TB T/i - lmp T/z + fpo ~ B TQ TE Tpp0, 

6 < lT
mPJp - l £ Q T B V - mpTp + lTJpQ - l£BTQTEr

PA_o, (3.7) 

P < P < P, 
over p, A = [ii T poY and 5. 

Considering p, the operation-point position as an optimization variable, while the 
MP orientation <p remains constant, we obtain a nonlinear optimization problem which 
includes bilinear terms. This problem provides us a tool to find a necessary condition 
for a box to be outside of the COWCW, i.e., a condition that is necessarily met by any 
box B outside the WCW, but that may also be met by some boxes that are partly or 
completely inside this workspace. The approach consists in relaxing the constraints of 
problem (3.7), which makes it easier for a pose to be excluded from the COWCW. 

To this end, let us define the variables 

v = p0p and 77 = diag(jz)p, (3.8) 

which represent the bilinear terms in eq. (3.7), when considering p, p and po as opti­
mization variables. While p is bounded, i.e., 

P =< P __ P, (3-9) 

the variables po and pL remain unbounded. For the sake of this analysis, let us assume 
that the signs of p0 and pt, are known in advance, and label them 

cr0 = sgn(/u0) and a = sgn(/x), (3.10) 

where sgn() represents the signum function. Knowing the signs of po and p,, we can 
generate the following bounds on v and 77: 

coP^o __ oo» di O-QPPQ, 

diag(cr)diag(p)/x ^ diag(o-).7 < diag(cr)diag(p)/Lt. (3-H) 

When treating a0 and a- as constants, the set formed by eq. (3.11) represents a con­
vex polyhedron, which approximates the non-convex surfaces of eq. (3.8). Therefore, 



11 

replacing the latter with the former, we obtain a convex relaxation of eq. (3.8). This 
approximation converges to the exact relationship as the size of box B becomes in­
finitesimal. This approach is called the reformulation-linearization technique (RLT), 
and was originally proposed by Sherali and Tuncbilek [36]. Hence, the relaxed form of 
problem (3.7) is 

maximize 5, 

subject to A T p - Q r B r ^ - lm l_rç + fyo - B T Q T E T f y 0m , 

1^AT
M - l™Q rB r /_ - mlT

2r) + lT
mîp0 - 1^B T Q T E T ^ > S, 

voppo __ OQV -< o0ppo, (3-12) 

diag(o-)diag(p)/x __ diag(<r)T? ^ diag(cr)diag(p)/_, 

a0 = sgn(p0), o- = sgn(p). 

The only non-convex constraints in problem (3.12) are the last two equalities. However, 
these equalities yield exactly eight possible combinations of <7o and cr, which are the 
solutions to 

a2 = 1 and diag(<r)2 = l2 x 2 . (3.13) 

Let us label these solutions a0 j and a-j , j = 1 , . . . , 8. As a result, the solution to 
problem (3.12) is the maximum of the outcomes of the eight resulting linear programs. 
This leads to following Lemma. 

Lemma 7 Linear Sufficient Conditions for a Box to Lie Inside the WCW 
Consider the eight distinct linear programs 

maximize 5j, 

subject to Gj£j :< 0m + 9 , (3.14) 

3 = 1,. . . , 8 . 

where Gj = 
Rj om+24 

(m+9)x8 
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g 

Ry = 

- l £ ( A - Q B ) r - l £ f l £ B r Q r E r 

- ( A - Q B ) r - f B T Q T E T 

0*2x2 a O , j P — 0 O , j l 2 x 2 

0 2 x 2 — 0"0,_P O"0,j 1­2x2 

diag(aj)diag(p) 02 02 x 2 

­diagia^diagip) 02 02 x 2 

i T 

ml) 

1 1 T 

J-m x 2 

o2 

o2 

— diag(cTj) 
diag(a-j) 

- |T 

n7x(m+8) 

û n d ^ ­ = [ / x J /xoj v j rjj 53\ € M8. 

T/ien the given box B = {p G M2 : p _< p __ p} is / « % inside the WCW if all of the 
problems (3.14), j = 1 , . . . ,8 , yie.­i zero. 

­Proof. First consider a box which is outside of the OWCW. According to Lemma 6, for 
all positions p inside this box, problem (3.7) is unbounded. Since this is a maximization 
problem, the solution of its relaxed form in eq. (3.12) provides a upper bound to the 
true solution. This means that problem (3.12) is also unbounded whenever the box is 
outside the COWCW. On the other hand, the solution to problem (3.7) is the maximum 
outcome of the eight linear programs of problem (3.14). Hence, at least one of the 
eight distinct linear programs in eq. (3.14) is unbounded whenever the box is outside 
of the COWCW. Second, = 08 is always feasible for problem H p v 1 r\ L ô 
(3.12), which implies that whenever all positions p of the given box are inside the 
WCW, problem (3.12) yields zero. Since the solution to problem (3.12) is the maximum 
outcome of the eight distinct LPs of eq. (3.14), and because £■ — 0%, j ' = 1, . . . ,8, is 
always feasible, a given box is completely inside the COWCW whenever all these LPs 
yield zero. □ 

Figure 3.2 shows an example of the effect of the proposed convex relaxation on 
the estimated COWCW. The considered PCDPM is the same as in Fig. 2.3, and the 
corresponding geometry appears in the foreground of Fig 3.11. We calculate the real­

constant orientation wrench­closure workspace (COWCW) of this mechanism for <f> = 
.02 rad. by discretizing the examined region into several points and solving problem 
(3.4) for each of them. Upon partitioning the plane into boxes instead of points and 
solving the relaxed problem (3.14) for each box, we obtain a contracted COWCW. In 
this figure the real COWCW is represented by a cloud of points, while the contracted 
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COWCW is the negative of the area covered with boxes. As can be seen from this figure, 
relaxing the constraints results in an underestimation of the corresponding COWCW. 
In this example, we used square boxes with edge lengths of 0.1. Smaller boxes would 
have led to a better estimate of the COWCW, as the convex relaxation (3.11) then 
forms a tighter approximation of (3.8). As they were obtained in problem (3.14), the 

• pose inside the COWCW 
■ boxes outside the contracted COWCW 

(j> = .02 rad. 
>-___ 1 

4.5 

4 

f "i 

2.:> 

1 

0.5 

( 1 2 3 4 5 6 

Figure 3.2: Contracted and real COWCW of a PCDPM. 

inequality constraints can always be satisfied by choosing £ • = 08. For the purpose of 
later assembling them, we would like these constraints to be feasible only if a given box 
is fully inside the WCW. To this end, we compute the Lagrange dual [37] of problem 
(3.14). In the case of linear programs, recall that either of the following cases may 
occur [38]: 

1. The primal problem admits a feasible solution and has an unbounded objective 
value, in which case the dual problem is infeasible; 

2. The dual problem admits a feasible solution and has an unbounded objective 
value, in which case the primal problem is infeasible; 

3. Both problems admit feasible solutions, in which case both problems have equal 
optimal values; 

4. Both problems are infeasible. 
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In order to obtain its Lagrange dual, let us start by writing the Lagrangian of problem 
(3.14), 

L(x i , e i )=xjG i ^ - o j , (3.15) 

where Xj G R++ 9 is the vector of Lagrange multipliers and R+ represents the non-
negative real numbers. Hence, the Lagrange dual problem 3.14is that of maximizing 
0(xj), where 

d(xj) = inf^ L(x„£.) , j = 1 , . . . ,8 . (3.16) 

Recalling that 5j = e ^ , where e8 = [Of 1]T € R8, and substituting eq. (3.15) into 
eq. (3.16) gives 

c?(xJ) = i n f ^ ( x j G J - e ^ , (3.17) 

where inf refers to the infimum of its argument. Clearly, 

#(x.) = 
0 if G j X j = e8, 

—oo otherwise. 
(3.18) 

Hence, the dual of problem (3.14) can be stated as the feasibility problem 

maximize 0, 

subject to Gjx j — e8 = 08, (3.19) 
x . it: 0 m+_, 

for a given value of j = 1 , . . . , 8. The last equality constraint of this program implies 
that Xj,! — 1 = 0. Substituting this in eq. (3.19) eliminates x^i as a variable and reduces 
the number of equality constraints from eight to seven. Therefore, for given &QJ and 
<Tj, the corresponding dual problem is 

maximize 0, 

subject to RjYj + g = O7, (3.20) 

y. it 0m+8, 
over yj, 

where y^ € M!^+8 represents the vector of Lagrange multipliers. 

Problem (3.20) is equivalent to its primal problems (3.14) but is feasible when all 
problems (3.14) yield zero and is infeasible when any of them is unbounded. These 
correspond to cases 3. and 1., respectively, of the primal-dual relationships enumerated 
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above. We may combine all of these distinct linear programs into one in order to verify 
whether a given box [p p] is inside the WCW of a given PCDPM. This can be done 
by summing the objective values of these problems while considering their constraints 
all together as follows: 

maximize 0, 

subject to Rtf j + g = 07, j = 1 , . . . , 8, (3.21) 

over y­j y 0m + 8 , j = 1,. . . , 8 . 

Notice that eq. (3.20) represents eight distinct linear programs while eq. (3.21) rep­

resents only one, with eight times more constraint equations and variables. Equation 
(3.21) may now be regarded as a single feasibility problem of 56 linear equations into 
8m + 64 non­negative decision variables. This linear program yields the same results 
as its primal problems, to the difference that it is feasible only when the correspond­

ing box is completely inside the WCW. Having this information, we can now turn our 
attention to the synthesis problem. 

3.3 A Formulation for the Problem of Synthesizing 
a P C D P M for Constant Orientations 

Problem (3.21) serves as a building brick to formulate the dimensional synthesis of 
PCDPMs. Suppose we are interested in finding a PCDPM geometry whose constant­

orientation WCW contains a given box B. In order to solve this problem, we introduce 
the nonlinear feasibility problem 

R. y. + g = 07, (3.22) 

y. h om + 8 , j = l , . . . , 8 , 
__ __ &j ■< â, b ■< bj :< b, i = 1,... ,m, 

over yj e R++8 , a< e R2, b t G R2. 

Here, a, a, b and b are lower and upper bounds on the positions of the base and MP 
attachments points, which would otherwise be drawn to infinity during the solution 
process. Problem (3.22) is a nonlinear feasibility problem with 12m + 64 variables and 
56 equality constraints. If it exists, the associated solution yields a PCDPM geometry 
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whose COWCW is guaranteed to include the prescribed box B. On the other hand, the 
absence of a solution to this problem does not imply that there is no possible PCDPM 
geometry containing B. Hence, this method lacks practicality, since failing to obtain 
a feasible solution does not provide any information regarding a good but not perfect 
geometry. For this reason introducing an objective function is thought to be more 
attractive to the designers. This is the object of the following section. 

3.3.1 Introducing an Objective Function 

Suppose we want to find the geometry of a PCDPM whose COWCW includes a given 
box for a given orientation angle 4>. Evidently, if we use a scaled version of this box 
in problem (3.22) and can find a geometry of a PCDPM whose COWCW allows for a 
scaling factor above one, then the original problem is solved. Quite naturally, the idea 
is to consider the scaling factor as an objective function to be maximized. If, at the 
optimum point, this factor is smaller than one, then the designer is left with the best 
infeasible solution. 

This scaling process is depicted in Fig. 3.3 for a prescribed box. The box B' with 
dashed lines in blue is the scaled image of the smaller one with solid lines in red. The 
scaling factor is s and the scaling point is C. From this figure, we obtain the lower-left 

scaled box B' 

P = Pc + S(P ~ Pv) 

; *(£- Pv)^J 

P / \ 

; *(£- Pv)^J 

c // 

; *(£- Pv)^J - //f/' prescr bed box B 

Figure 3.3: An scaled-up box and its corresponding parameters. 
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and upper­right coordinates of the scaled box B' as 

p ' = p c + s(p ­ pc) and p" = p c + s(p ­ pc), (3.23) 

respectively. Vector p c and scalar s represent the position of the homothetic center C 
and the scaling factor, respectively. If we consider the centroid of the box as the scaling 
point, then p c = | ( p + p). Introducing this objective function enables us to develop a 
nonlinear program for the dimensional synthesis of PCDPMs. 

3.3.2 A Nonlinear Program for the Dimensional Synthesis of 
P C D P M s in Translation 

We now turn the feasibility problem (3.22) into a nonlinear program where RJ is ob­

tained by substituting p ' and p ' for p and p, respectively, in the expression of Rj given 
in problem (3.14). Moreover, to ensure that p ' and p ' remain the lower left and upper­

right corners of the scaled box, we constrain the scaling factor s to the non­negative 
real numbers. 

maximize s 

subject to K'­yj + g = 07, (3.24) 

p ' ­ P c ­ S ( p ­ P c ) = 02, 

p ' ­ p c ­ s ( p ­ p c ) = 02, 

a __ a, ­< a~, b ­< bj ■< b, i = 1 , . . . , m, 

y. t om + 8 , j = i , ­ . ­ , 8 , 

s >o, 
over yj G R++ 8 , at G R2, b* G R2, s& R. 

As the problem is non­convex, the geometry obtained by finding a local maximum 
of problem (3.24) highly depends on the chosen initial guess. We illustrate this with a 
synthesis example in the following section. 

Example 3.1 Constant Orientat ion W C W for a Given Box 

Figure 3.4 shows an illustrative example of the results obtained through the for­

mulation of eq. (3.24). The assumed upper and lower bounds for the geometry of the 
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mechanism and the lower-left and upper-right coordinates of the given box that need 
to be inside of the constant orientation WCW for the rotation angle <j> = 0 are given in 
Table 3.1. The number of cables is set to m = 4, which is the minimum necessary for 
a WCW to exist. In order to solve the problem, we need to begin with an initial guess 
on the decision variables. The initial guess of the geometry is reported in Table 3.2, 
while we choose yJ)0 = 0m + 8 , j = 1 , . . . ,8, and s0 = 0 for the remaining variables. The 
prescribed box appears in solid black lines and the resulting scaled box is in dashed 
red lines. The resulting robot geometry is also shown in Fig. 3.4, which is obtained by 
applying a descent method to the problem (3.24). The precise numerical values of the 
obtained geometry are listed in Table 3.3. 

This PCDPM design was computed by resorting to the fmincon function of Matlab 
7.6.0 /.2008a, with its default active-set algorithm. This algorithm solves nonlinear 
programs by sequential quadratic programming (SQP). For this example, it takes 12.52 
seconds to obtain the result by using a desktop computer equipped with an Intel(R) 
Core(TM)2 CPU 6400 @ 2.13GHz, and 4GB RAM. Figures 3.5 and 3.6 show respec­
tively the evolutions of the scaling factor and the geometry of the robot from the initial 
guess to the final local optimum. 

Rotation angle, 

scaled box 3' 

Figure 3.4: Geometry obtained for a PCDPM with four cables and constant orientation 
for a given box. 

The optimum value of the scaling factor is s* = 4.6298 > 1, which means that the 
scaled box and the original box are both inside the resulting COWCW. Notice that 
we applied the method proposed in [2] with the algorithm proposed in [39] in order to 
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■ objective function 

10 20 30 40 50 60 70 80 90 100 
iteration 

Figure 3.5: Evolutions of the scaling factor during the solution procedure. 

5 

4.1 

I 

3.5 

3 

►. 2.5 

2 

1.5 

1 

0.8 

0 

0 fixed points 
• attachment points 

on MP 
cable 

Figure 3.6: Variations of the geometry of the robot from the initial guess to the final 
solution. 

calculate the WCW, which is represented by the yellow region in Fig. (3.4). This figure 
confirms that the scaled box, and, consequently, the prescribed box, are both located 
inside of the constant orientation WCW. 

Let us now change the initial guess only by modifying a.0 to 3aj,0, b i i 0 to 3b,0 , 
i = 1 , . . . , 4, while setting _0 = 1 and leaving the other variables as they were before. 



53 

Table 3.1: Assumed parameters for examph 5 3.1. 
T 

a 
âT t / b r £ PÏ 

[0 0 [6 5] - .5 - .5] [.5 .5] [3 2.5] [3.5 3] 

Table 3.2: nitial geometry of example 3.1. 

\o 
[0 0] 
[6 0] 
[6 5] 
[0 5] 

b T 

°i,0 
[-.5 - . 5 ] 
[.5 - . 5 ] 

[.5 .5] 
[-.5 .5] 

Solving the problem with this modified initial guess yields s* = 4,6683, a slightly better 
result, and the geometry shown in Fig. 3.3.2. Notice that we obtained two completely 
different geometries for the same box, only by changing the initial guess. The detailed 
values of the resulting geometry for the modified initial guess are reported in Table 3.4. 
This example confirms that the initial guess can have a great effect on the obtained 
geometry. 

Table 3.3: Obtained geometry of example 3.1. 
i af bf 
1 
2 
3 
4 

[2.2339 0.0000] 
[3.6406 0.0000] 
[6.0000 3.7.216] 
[0.0000 4.6358] 

[0.5000 -0.1669] 
[-0.2600 0.1097] 

[-0.0277 - 0.0008] 
[0.0434 0.0102] 

In the foregoing examples, we assumed a constant orientation angle to solve the 
dimensional synthesis of PCDPMs. Although one may think of applications, e.g., in 
haptics [11], where the MP should undergo pure translations while being able to apply 
moments, in general, the MP is required to rotate and translate in the plane. Therefore, 
we have to investigate the synthesis problem for different orientations as well. This is 
the topic of the next section. 
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Table 3.4: Obtained geometry with modified initial guess of example 3.1 
i af bf 
1 
2 
3 
4 

[0.1014 0.0000] 
[5.9631 0.0000] 
[6.0000 4.8535] 
[0.0000 4.9203] 

[0.4335 -0.1433] 
[-0.5000 0.1379] 

[-0.2416 - 0.0782] 
[0.1015 0.1668] 

Rotation angle, <j> = 0 

COWCW 

3.3.3 The Dimensional Synthesis of P C D P M s for Different 
M P Distinct Orientations 

We show that formulation (3.24) can be developed to find the geometry of a PCDPM 
whose COWCWs includes a given box including several orientation angles. In order to 
solve such a problem, we discretize along the 0 axis, i.e., we combine the nonlinear pro­
grams of (3.24) defined for a set of fixed orientation angles. Evidently, this increases the 
numbers of constraints and variables. More precisely, if the number of fixed orientation 
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angles is n, then the nonlinear program to solve the dimensional synthesis problem is 

maximize s 

subject to Rk,jYk,j + gfc = 07, (3.25) 

Pfe ­ Pc ­ «(P* ­ Pc) = 02, 

Pfe ­ Pc ­ S(pk ­ pc) = 02, 

a _̂  a* •< a, b ­< bj ■< b, _ = l , . . . , m , 

s > 0, 

Yk,j h Om+8, j = 1,• • • ,8 , k = 1,...,n, 

over Yk,j G Km+8, aï G M2, bj € M2, s G M. 

Notice that constructing the matrix R/y and vector g^ requires substituting the corre­

sponding orientation angle fa in eq. (3.14). Problem (3.25) is a nonlinear non­convex 
program with (8m + 64)n + 4m + 1 variables, 60n equality, and (8m + 64)n + 8m + 1 
inequality constraints. We illustrate this approach with the following example. 

Example 3.2 A Prescribed Box at Different Orientations 

Suppose we have a given box with the same coordinates as in example 3.1. We 
seek a PCDPM whose constant­orientation WCWs include the prescribed box for three 
different orientations: fa = — | , fa = 0 and 03 = | . We set the lower and upper bounds 
on the geometry to the values given in Table 3.7, and the initial guess is the same as 
the one displayed in Fig. 3.4. We use the "trust­region­reflective" algorithm of Matlab 
to solve the problem (3.25), which is called through the fmincon command. This 
method is based on the gradients, which generally accelerates the calculations when 
these gradiants are specified by the user. The symbolic expressions of the gradients of 
problem (3.25) are reported in Appendix A. Using the machine mentioned in example 
3.1, fmincon yields s* = 4.3568, and the obtained geometry is shown in Table 3.5, after 
a computation time of 161.3 seconds. 

This geometry and the corresponding constant orientation WCW for 0 = 0 is de­

picted in Fig. 3.7. Figure 3.8 shows the COWCWs corresponding to the chosen values 
of 0, the prescribed boxes, and their scaled version all together. One can easily verify 
that all of these COWCWs include the scaled version of the given box. 

In this section and the previous one, we developed formulations to find the geometry 
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Table 3.5: Obtained geometry for three prescribed orientation angles. 
1 T bf 
1 
2 
3 
4 

[0.0000 0.0000] 
[5.1281 0.0000] 
[6.0000 5.0000] 
[0.0000 5.0000] 

[0.3729 - 0.5000] 
[-0.2570 -0.1436] 
[-0.1238 -0.1244] 

[0.1690 0.3179] 

COWCW 

Figure 3.7: Geometry obtained for a PCDPM with four cables for the prescribed box 
and orientation angle 0 = 0. 

of a PCDPM whose COWCW includes a given box. In the next section, we show that 
the proposed approach can be used to synthesize PCDPMs for prescribed workspaces 
that are non-rectangular. 

3.3.4 The Constant-Orientation Dimensional Synthesis of 
P C D P M s for Non-Rectangular Prescribed Workspaces 

Since the main challenge of the synthesis problem consists in finding a PCDPM whose 
WCW contains a prescribed workspace with an irregular shape, we may estimate such 
a shape by multiple boxes. To this end, we use interval analysis [40] as a tool to 
over-estimate the prescribed workspace with a set of boxes. The procedure consists 
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Figure 3.8: Constant orientation WCWs of the obtained geometry with the prescribed 
and the resulting scaled boxes. 

in considering a large rectangle that includes the prescribed workspace. Dividing this 
large rectangle along its longer edge into smaller boxes, provides two new boxes which 
are examined to verify whether they are inside or outside the prescribed workspace. 
When a box is found to be completely inside or outside of the prescribed workspace, 
then it is marked as a certain box and put aside. Otherwise, the box remains uncertain 
box and must be divided into two smaller boxes. Again, we examine these new boxes 
to verify whether they are completely inside or outside the prescribed workspace. The 
procedure ends whenever the total number of certain and uncertain boxes reaches a 
given maximum number of boxes. Evidently, larger numbers of boxes provide more 
precise estimates of the prescribed workspace. 

In order to solve the dimensional synthesis problem for a prescribed workspace com­
posed of multiple boxes, we reuse (3.25), which can already accommodate an arbitrary 
number of boxes. Recall that this is a nonlinear program with n(8m + 64) + 4m + 1 
variables, 60n equality, and (8m + 64)n + 8m + 1 inequality constraints. Evidently, 
depending on the number of boxes required, this problem can become a medium or 
even large-scale nonlinear program. Problem (3.25) provides us with a tool to find a 
PCDPM whose single or multiple COWCWs include a prescribed workspace. We illus­
trate formulation (3.25) for a constant-orientation synthesis example in the following 
section. 
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Example 3.3 Synthesis of a PCDPM for a Non-Rectangular Prescribed 
Constant-Orientation Workspace 

Suppose we want to find the geometry of a PCDPM whose constant-orientation 
WCW at 0 = 0, includes the unit disk (x — 3)2 + (y — 2)2 < 1. In order to ensure 
that the entirety of the disk is covered with boxes, we may keep both the certainly-

inside boxes and the uncertain boxes provided by an interval analysis method. But 
this approach will unnecessarily increase the number of boxes which may lead to longer 
calculation time and memory error. To avoid this, we may overestimate this disk by 
approximating a slightly larger disk Cs, (x — 3)2 + (y — 2)2 < 1.22 whose certainly 
inside boxes cover the entire unit disk. We approximate disk Cs, by means of interval 
analysis, as depicted in Fig. 3.9. As seen in this figure, the certainly-inside boxes of 

3 

■ H certainly inside box 
| uncertain box 

H ^ certainly outside box 1 

2 2 

^H 

1 

^H 

1 

(1 (1 
• 

Figure 3.9: Approximating a unit disk with multiple boxes, 

disk Cs, which are depicted in green, cover the entire unit disk. 

For this estimation we have n = 20 prescribed boxes, and the parameters are the 
same as in Example 3.1, to the difference that the initial guess is y^o = lm+8, j = 
1 , . . . , 8, and s0 = 0.1. We use the same algorithm as for Example 3.2 to solve problem 
(3.25). With the assumed parameters, the optimum solution is s* — 1.2317, and 
the detailed values of the obtained geometry axe reported in Table 3.6. Since 5* is 
greater than one, the prescribed workspace is located inside the constant-orientation 
WCW. Fig. 3.10 shows the obtained geometry and the corresponding COWCW for this 
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Table 3.6: Obtained geometry for the estimated prescribed workspace with multiple 
boxes depicted in of example 3.3. 

i T bf 
1 
2 
3 
4 

[0.3392 0.0000] 
[6.0000 0.0000] 
[6.0000 2.2082] 
[1.9459 4.9996] 

[0.4991 0.0219] 
[-0.1651 -0.1187] 

[-0.1581 0.5000] 
[0.4933 -0.1746] 

scaled boxes £_ 

COWCW 

Figure 3.10: Four-cable PCDPM obtained for an irregularly shaped workspace esti­
mated with multiple boxes. 

example. In this figure, the boxes in solid black represent the approximated prescribed 
workspace, while their scaled versions is depicted in red dashed lines. Interestingly, 
the geometries obtained for this example and the Example 3.2 are somewhat similar to 
those obtained in Figs. 1.2 and 2.23 of [25]. 
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3.4 Synthesis of a P C D P M for a Prescribed 
W C W Including a Range of Orientations 

In this section we extend the formulation developed in the previous sections for constant-
orientations to a continous range of orientations. In other words, we look for a PCDPM 
whose WCW includes a prescribed workspace covering a given range of orientations. 
For this purpose, we must explicit the relationship between the wrench matrix W and 
the orientation angle 0. Therefore, we substitute eq. (2.2) in eq. (4.10) which, leads to 

f = cos 0u + sin 0v, 

where u = bfE 'a_ K&*m v = — bfa_ ®m am 
-\T 

consequently, the wrench matrix can be rewritten as 

W = Wo + Wi cos 0 + W 2 sin 0, 

where W 0 = A T - l m p T 0 r 

W 2 = B T W v + B ' E 7 p p3xm 

, Wi = f - B T u - B T E T p 
l T 

(3.26) 

', and, 

(3.27) 

»3xm 

Consider now a box B with the lower-left and upper-right corners (0, p) and (0, p), 
respectively, i.e., B<t> = {(0, p) e R x _ _ 2 : 0 < 0 < 0 , p _ _ p _ _ p}. In order to find 
a necessary condition for 3$ to be outside of the WCW, we substitute eq. (3.27) in 
problem (3.5), we let p in the decision variables of the problem, while confining it to 
B^. This leads to 

maximize 5, 

subject to Om :< (A T — lmp T — B T cos 0 — B rE T sin fa)\i 

+ (u cos 0 + v sin 0 — B T E T p cos 0 + B T p sin fapo, 

ô < l ^ ( ( A T - l m P
r - B r c o s 0 - B r E r s i n 0 ) / / 

+ (u cos 0 + v sin 0 — B TE Tp cos 0 + B rp sin 4>)po), 

0 < 0 < 0 , P ^ P _ ^ P , 

where A = [pf po] T. 

(3.28) 

Considering p, the operation-point position, and 0, the MP orientation, as opti­
mization variables, we obtain a nonlinear optimization problem. If one were able to 
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solve this complex problem, then it would be possible to determine whether there is at 
least one pose of 3$ that is not inside the WCW. Conversely, if the global optimum 
of (3.28) is 5* = 0, then box B<p is completely inside the WCW. This global optimum, 
however, is very difficult to compute in general. Instead, we resort to convex relax­
ations, whereby we relax the non convex constrains of (3.28) into convex ones, over the 
box 3$. To this end, let us consider the trilinear terms of eq. (3.28), i.e., pcos0/iO and 
psincppo, and define the new variables 

a = pcos0 and /3 = ps in0. (3.29) 

Substituting these new variables in eq. (3.28) leads to 

maximize S, 

subject to 0m < (AT - l m p T — B T cos 0 - B T E r sin fap 

+ (u cos 0 + v sin fap0 - B T E T a + B T 3 , 

5 < l ^ ( ( A : ^ - l m p T - B ^ c o s 0 - B T E T s i n 0 ) / -

+ (u cos 0 + v sin fap0 - B T E T a + B T 3) , (3.30) 

0 < 0 < 0 , P _ ^ P _ ^ P , 
a = p cos 0, P — p sin 0, 

which reduces the degree of the constraints to two, while adding four equality con­
straints. For the given box 3^, we can obtain upper and lower bonds on these new 
variables a and 3 , as they are the multiplications of the interval variables [40] p, cos 0 
and sin 0. For a given interval of orientation angles, 0 < 0 < 0 we have 

ç < cos 0 < c and s < sin 0 < s, (3.31) 

where ç = min(cos0, cos0),c = max(cos0, cos0), s = min(sin0, sin0) and s = max(sin0, sin0), 
respectively. Thus we obtain 

a ^ a ^ cx and PdPdiP, (3.32) 

where a = min(S a ) ,a — max(SQ), and {3 = min(S/3), 3 = max(S/j), and S a = 
pç pc pç p c G R2x4 , S/3 = ps ps ps p s 6 M2x4. Let us now separate the 

bilinear terms appearing in eq. (3.30) when considering p,,p0 ,p,a,3,cos(j) and sin0 
as optimization variables, and define the following variables 

T7 = diag(/_)p, p = /xcos0, r = ^ s i n 0 , x = «/^o, 

ip = 3pQ, p0 = /_ocos0 and r0 = //osin0. (3.33) 
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While the variables p , a , 3 , cos 0 and sin 0 are bounded, the variables p 0 and p. remain 
unbounded. Alike for the constant orientation case, let us assume that the signs of p 0 

and p are known in advance, and label them as in eq. (4.27). Knowing the signs of po 
and p enables us to generate the following bounds on the newly defined variables of 
eq. (3.33): 

diag(<r)diag(p)p X diag(a)r7 X diag(cr)diag(p)p, 

cdiag(o~)p ■< diag(<r)p ­< cdiag(<r)p, 

s di&g(cr)p X diag(o*)r < s diag(<r)p, (3.34) 

0"oPoo_ d cr0x _< o­0p0a, 

ooPoP r< ooip __ o­oMo/3, 

ÇcTo/Xo < CToPo < CVOPO, 

s a0p0 < a0T0 < s a0po­

When treating a0 and er as constants, the set formed by eq. (3.34) represents a convex 
polyhedron, which approximates the non­convex surfaces of eq. (3.33). Therefore, re­

placing the latter with the former, we obtain a convex relaxation of eq. (3.33). Hence, 
the relaxed form of problem (3.28) is 

maximize _*, 

subject to 0 m < A T p ­ l m l j f 77 ­ B r p ­ B T E T r + p0u + r 0 v 

­ B r E r
X + BT*p, 

S < l T
m A T p ­ mlTrj ­ l ^ B T p ­ l ^ B T E r r 

+ p 0 l l u + r o l i v ­ l f ; B T E T
X + 1 ^ B T ^ , 

diag(cr)diag(p)p ^ diag(o­)». :_ diag(er)diag(p)p, 

çdiag(cr)/x <̂ diag(cr)p ­< cdiag(cr)p, 

sdiag(cr)p ■< diag(cr)r ­< sdiag(cr)p, (3.35) 

o'oA'oa __ cr0x __ cr0/_0â, 

CoAio/3 _< cr0i/> __ o­oPo/3, 

ctTo^o < croPo < ca 0 po, 

sa 0 po < a0T0 < s a o p 0 , 

CT0 = sgn(/_0), o­ = sgn(p). 

Alike for problem (3.12), the only non­convex constraints in problem (3.35) are the 

latter two equations, which yield exactly eight possible combinations of a, and a , i.e., 
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the solutions to the eq. (4.30). Labeling these solutions as a 0 j and o~j , j = 1, . . . , 8, 
the solution to problem (3.35) is the maximum of the outcomes of the eight resulting 
linear programs. This leads to the following Lemma. 

Lemma 8 Sufficient Condition for a Box to Lie Inside the WCW within a Given Range 
of Orientation Angles 
Consider the eight distinct linear programs 

maximize 

subject to 

where u>j = 

5j, 

B.jUJj ■< 0 m + 25> 

j = l,..-,8, 

POJ P0,j T0). Pj ij PJ xj V, s, 
i T 

(3.36) 

>16 

H ^ 
h T 1 

|_Uj 0m +24 
(m+25) x 16 anrf vecior fo and matrix Uj are given in Appendix 

B. Then, the given box 3$ = {(0, p) G IR x R 2 : 0 < 0 < 0, p < p -< p} is fully inside 
the WCW if all of the problems (3.14), j = 1,... ,8, yield zero. 

Proof. The proof is similar to that of lemma 7, and, for the sake of conciseness is 
omitted. □ 

Hence, problem (3.36) provides a sufficient condition for a box to lie completely 
inside the WCW within a given range of orientation angles. This condition may be 
used to compute a contracted WCW, namely, a subset of the Cartesian workspace 
that is guaranteed to lie inside the WCW. Let us consider the mechanism depicted 
in Fig. 2.3 again. We divide the Cartesian space into boxes that cover the interval 
—0.03 rad < 0 < 0.03 rad along the 0 axis, and that have edges of length 0.1 m along 
the x and y axes. We solve problem (3.36) for each of these boxes, and keep only 
those for which the maximum is 0. We obtain the contracted WCW, which is shown in 
Fig. 3.11, along with cross-sections of the exact WCW. Evidently, this contracted WCW 
is the intersection of the constant orientation WCWs (COWCWs) corresponding to all 
orientations within the given range. Smaller boxes would have led to a closer estimate 
of the WCW, as the convex relaxation (3.34) then forms a tighter approximation of 
(3.33). 
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contracted WCW exact COWCW 

(a) 3D view 

5 

4.5 

:!.r. 

:! 
>. 2.5 

2 

1.5 

1 -

0.5 -

0 0 

Box inside the contracted WCW 
1 Common workspace  

r r T I _ 

^ C O W C W o f / 
^^V^cii^O rad. / 

. : : : : i : : : : : : : i : : ±__ _ _ _ Y 
: : : : :£:: / \ E--- -:-- + --/ \ E;=; | | _r / \ 

/ C O W C W o f ^ 
/ 4>=-. 03 r a d ^ ^ ~ 

^ C O W C W o f l 
^__0=.O3 rad. \ 

(b) Top view 

Figure 3.11: Contracted WCW and cross sections of the exact WCW of the PCDPM 
geometry found in [2]. 

notice that the inequality constraints in problem (3.36) can always be satisfied by 
choosing u)j = 0i6. Alike for the constant orientation synthesis problem, we would like 
these constraints to be feasible only if a given box were fully inside the WCW within 
a given range of orientation angles. Hence, we compute the Lagrange dual of problem 
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(3.36). Let us start by writing the Lagrangian of problem (3.14), 

L(xj,u>J) = x J ( H J u ; j ) - 5 j , (3.37) 

where Xj G R™+25 is the vector of Lagrange multipliers. Hence, the Lagrange dual of 
our problem is that of maximizing 0(xj), where 

9 j(x j) = mf„.L(-Xj, Uj), j - 1 , . . . ,8. (3.38) 

Considering Oj = ej6u)j, where ei6 = [0f5 1]T e R16, and substituting eq. (4.33) into 
eq. (4.34) gives 

6J(XJ) = ink.(xjH_ - e l )u r (3.39) 

Evidently, 
0 if H j x , = ei6, 

c? j(x j)= J J (3.40) 
—oo otherwise. 

Hence, the dual problem of problem (3.36) can be stated as the following feasibility 
problem: 

maximize 0, 

subject to Hjx j — ei6 = 016, (3-41) 

x. y 0m+25, j = 1,...,8. 
over Xj. 

The last equality constraint of this linear program implies Xjt\ = 1, j = 1,... ,8, 
where Xj^ represents the first element of the Lagrange multiplier Xj. Substituting 
this in eq. (3.41) eliminates x^_ as a variable and reduces the number of the equality 
constraints from 16 to 15 which yields 

maximize 0, 

subject to \JjYj + h = O15, (3.42) 

y. h 0m+24, j = 1,...,8. 
over Yj, 

where Yj £ R++ 2 4 represents the vector of Lagrange multipliers after eliminating the 
last equality constraint of eq. (3.41). 

Problem (3.42) is equivalent to its primal problems (3.36) but it is feasible when all 
problems (3.36) yield zero, and infeasible when any of those problems is unbounded. 

file:///JjYj
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Like in the constant-orientation case these correspond to cases 3 and 1, respectively, 
of the primal-dual relationships. We may combine all of these problems into a single 
one in order to verify whether a given box 3$ is inside the WCW of a given PCDPM 
for a given continous range of orientation angles. This can be done by summing the 
objective values of these problems while considering all of their constraints together as 
follows: 

maximize 0, 

subject to U^yj + h = 0_5, j = 1 , . . . , 8, (3.43) 

yj h Om+24, j = l , - - . , 8 , 

over yj, j = l , . . . , 8 . 

Notice that eq. (3.42) represents eight distinct linear programs while eq. (3.43) repre­
sents only one. Equation (3.43) may now be regarded as a single feasibility problem 
of 120 equality constraints and 8m + 192 non-negative variables. If there is a feasi­
ble solution to this problem then the given box 3$ is inside the WCW. Having this 
information, we can now turn our attention to the synthesis problem. 

3.5 A Formulation for the Problem of 
Synthesizing a P C D P M 

Problem (3.43) provides a tool to solve the dimensional synthesis of PCDPMs. Suppose 
we are interested in finding a PCDPM geometry whose WCW contains a given box 3$ 
within a given range of orientation angles. In order to solve this problem we introduce 
the nonlinear feasibility problem 

satisfy UjYj + h = 015, j = 1 , . . . , 8, (3.44) 

yj __ om+24, j = i , . . . , 8 , 

__ __ a. __ â, b __ bj ^ b, . = 1 , . . . , m, 

over yj 6 Rm+24, a , . i 2 , b4 € R2, 

where, a, â, b and b are lower and upper bounds on the positions of the base and 
MP attachments points. If it exists, the associated solution of problem (3.44) yields a 
PCDPM geometry whose WCW is guaranteed to include the prescribed box 3$. On 
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the other hand, the absence of a solution to this problem does not imply that there is 
no possible PCDPM geometry containing 3$. Hence, this method lacks practicality, 
since failing to obtain a feasible solution does not provide any information regarding a 
good but not perfect geometry. For this reason, we add the objective function defined 
in section (3.3.1) over the constraints. 

3.5.1 A Nonlinear Program for the Dimensional Synthesis of 
P C D P M s 

We now turn the feasibility problem (3.44) into a nonlinear program where Û ­ is ob­

tained by substituting p ' and p ' for p and p, respectively, in the expression of Uj 
given in problem (3.36). Hence, the nonlinear program corresponding to the synthesis 
of PCDPMs for a prescribed box is 

maximize s 

subject to JJ'jYj + h = O15, (3.45) 

p ' ­ p c ­ s(p ­ pc) = 02, 

P' ­ Pc ­ S(P ­ Pc) = 02, 
__ __ »i __ â, b :< b^ ■< b, * = 1,...,m, 

Yj __ Om+24, j = l , ­ . . , 8 , 

S > 0, 

over yj G R™+24, at G R2, b t G R2, s G R+. 

As in section 3.3.4, for a prescribed workspace with an irregular shape, we may use 
interval analysis as a tool to over­estimate this workspace with a set of boxes. Also, 
notice that it may prove useful to divide even a rectangular prescribed WCW into 
smaller boxes, since the proposed convex relaxations are tighter over smaller boxes, 
and may thus lead to a larger maximum value of the scaling factor. 

In order to solve the dimensional synthesis problem for a prescribed workspace 
composed of multiple boxes, the formulation (3.45) can be developed to include several 
boxes. This is done by considering the constraints corresponding to each box while 
attempting to maximize a common scaling factor s with respect to a common scaling 
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point, which may be the centroid of the approximated WCW. Symbolically, we obtain 

maximize s 
subject to U'kjYkj 4- h = 015, 

Pi - Pc - S{pk ~ p c) = 02 , 

P k - P c - s(Pk ~ Pc) = 02 , 

a ^ a ( ^ S, b -< bi < b , i = 1 , . . 

s >0 , 

y*;,j y 0m+24, j = L • • • i 8, A: = 1 

(3.46) 

,m, 

n, 

over yfc,j G R™+24, ^ G R", b* G R*, s G R+. 

where n is the number of boxes. Notice that we must consider the lower-left corner p ' 
and upper-right corner p'fc of each scaled box to construct the matrix U^ •. This forms 
a nonlinear program with 8n(m + 24) + 4ra-|-1 variables, 120n equality constraints, and 
8n(m + 24) + 8m + 1 inequality constraints. Evidently, depending on the number of 
boxes required, this problem can become a large-scale nonlinear program. Nevertheless, 
problem (3.46) provides us with a tool to find a PCDPM whose WCW includes a 
prescribed workspace within a given range of orientations. As the problem (3.46) is 
non-convex, the geometry it yields depends on the chosen initial guess. We illustrate 
this with a synthesis example in the following section. 

Example 3.4 Dimensional Synthesis of P C D P M s for a Given Box and a 
Given Range of Orientat ions 

Suppose we are given a prescribed rectangular WCW with lower-left and upper-right 
coordinates p = [.4 A]T and p = [.55 .55]T, respectively and the range of rotation 
angles is —7r/3 < 0 < 7r/3. We want to find a PCDPM whose WCW within this given 
range of rotation angles includes this prescribed workspace. The assumed upper and 
lower bounds for the geometry of the mechanism are given in Table 3.7. The number of 

Table 3.7: Upper and lower bounds on the geometry of the PCDPM of example 3.4. 
a r a T  b T b r 

[0 0] [1 1] [-.2 - .2] .2 .2] 

cables is set to m = 4, which is the minimum necessary for a WCW to exist. In order 
to tighten the constraints on the variables defined in the previous section and obtain a 
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PCDPM with a larger WCW, we divide this prescribed box into n = 9 similar boxes 
with edges of 0.05 in the xy plane. 

One of the most popular methods of finding local maxima to problem (3.46) is 
to use the standard Matlab solvers, which are called through the fmincon function. 
Unfortunately, we found this solver too slow when applied to the obtained formulation 
for the synthesis of PCDPMs. Also, as the function cannot accept sparse matrices, it 
often encounters memory errors, depending on the memory available on the computer 
and on the number of boxes n. In order to circumvent these problems, we decided 
instead to use our own specific Matlab implementation of the penalty successive linear 
programming algorithm (PSLP) [38] to solve the problem. The algorithm is in the class 
of SLP algorithms, which employ the -i-norm i.e., the absolute value in the direction-
finding subproblem, which becomes a linear program based on first-order Taylor series 
approximations of the objective and constraint functions. A brief explanation of this 
algorithm is reported in Appendix C. These linear-programming subproblems were 
solved using Matlab's linprog command with its Large-Scale Algorithm which exploits 
the sparsity pattern to improve speed and reduce memory cost. By successively solving 
this linear program, the PSLP algorithm converges towards a local maximum of the 
principal problem, which is defined over a hypercube-shaped trust region. 

In order to solve the current example, we used the parameters of the PSLP algorithm 
that are proposed in [38]. The algorithm was implemented in Matlab 7.6.0 i_2008a on 
a PC with Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz, with 4GB RAM memory. In 
order to find a better local optimum, the problem was solved repeatedly for 100 initial 
guesses, which were generated using uniformly distributed pseudo-random numbers 
produced by the rand function in Matlab. In order to ensure that the produced initial 
guesses cover well the feasible set, we used the following formulation to produce the 
initial geometry: 

a_ = a + diag(a — a)o_j, (3-47) 

bj = b + diag(b - b)/3i, i = l,...,m, 

where cm G M2 and di G R2 are the random numbers produced by the rand function 
of Matlab. Figure 3.12 shows the histogram of the obtained results for the generated 
points. As can be seen from this figure, 32% of the generated initial guesses end 
with an optimum scaling factor greater than 1, which means that the WCWs of the 
corresponding PCDPMs are guranteed to include the prescribed box for the given 
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Scaling factor 

Figure 3.12: Distribution of the randomly generated initial points with the obtained 
scaling factors. 

range of orientation angles. As for the remaining 68% initial guesses we cannot draw 
conclusions, but the prescribed box may yet be inside of the resulting WCW, as the 
proposed method always underestimates the WCW. 

Two of the resulting robot geometries are shown in Fig. 3.13. Figure 3.13(a) cor­
responds to the best scaling factor, s* = 2.8273 and Fig. 3.13(b) is very close to the 
mechanisms reported in reference [25]. The corresponding scaled boxes and WCW cross 
sections are depicted in Fig. 3.14. As can be seen, the scaled boxes and, consequently, 
the prescribed boxes, are entirely inside the WCW of the mechanism obtained. The ex­
act initial guess and final optimum are reported in Tables 3.8 and 3.9, respectively. For 
this example, it took 42 min to obtain the final solution by using a desktop computer 
equipped with an Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz, and 4GB RAM. Figure 
3.15 shows the evolution of the scaling factor during the solution procedure. Notice 
that the initial decrease in s is a result of the PSLSP algorithm first seeking to satisfy 
the constraints at the expense of the objective. 

Table 3.8: Initial geometry of example 3.4. 
i a i ,0 b r 

ui,0 
1 
2 
3 
4 

[0.4972 0.1391] 
[0.5965 0.5021] 
[0.1940 0.2865] 
[0.3583 0.2099] 

[0.1813 -0.1943] 
[-.0612 -0.1840] 
[-0.1971 0.1408] 
[0.1447 0.0457] 
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(a) Obtained PCDPM with the best scaling factor, 
s*=2.8273 

11 

(U 0.2 0..1 0.4 0.5 0.6 0.7 0.8 0.9 

(b) Obtained PCDPM with the scaling factor, 
s* =0.2752 

Figure 3.13: Two of the obtained PCDPMs. 

Table 3.9: Final geometry of example 3.4. 
i T 

Ki Kf 
1 
2 
3 
4 

[0.2627 0.0000] 
[1.0000 0.4566] 
[1.0000 0.4566] 
[0.2627 1.0000] 

[0.0000 0.0000] 
[0.0399 - 0.1748] 
[-0.0399 0.1748] 
[0.0000 0.0000] 

Example 3.5 Synthesis of a PCDPM for a Non-Rectangular Prescribed 
Workspace 

Suppose we want to find the geometry of a PCDPM whose WCW for the given range 
of orientations — ir/6 < 0 < 7r/6, includes the desired elliptic workspace £_ represented 
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Scaled boxes 

COWCW 

Figure 3.14: Scaled boxes and COWCWs for the orientations 0 
- 7 T / 3 , -TT/9 , TT/9, TT/3. 

Evolution of objective function 

Figure 3.15: Evolution of scaling factor. 

by (x — 3.5)2/1.62 + (y — 3) 2 / l . l 2 < 1. We approximate this prescribed WCW by means 
of interval analysis, as depicted in Fig. 3.16. In order to ensure that the multiple boxes 
will cover the entirety of the prescribed WCW, we overestimate the desired WCW with 
£e represented by (x — 3.5)2/1.92 + (y — 3)2/1.332 < 1 whose corresponding certainly-
inside boxes cover £_. For this estimation, we have n = 32 prescribed boxes and the 
selected lower and upper bounds for the base and moving platform anchor points are 
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certainly inside box 
uncertain box 
certainly outside box 

1.5 2 2.5 3 3.5 4 4.5 5 5.5 

Figure 3.16: Approximated desired workspace with multiple boxes. 

shown in Table 3.10. The number of cables is set to m = 5, and we solve this problem 

Table 3.10: Upper and lower bounds on the geometry of the PCDPM for the prescribed 
workspace of example 3.5. 

aT â7 b7 b r 

[0 0] [6 5] - . 5 - .5] [.5 .5] 

using the PSLP algorithm for 50 initial uniformly-distributed random points. 

The best solution obtained using these initial guesses is s* = 1.3832, and its cor­
responding geometry and COWCW for the angles 0 = — 7r/6, 0,7r/6 are depicted in 
Fig. 3.17. Table 3.11 shows the coordinates of the attachment and anchor points cor­
responding to the initial guesses and its resulting solution. 
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(a) The obtained PCDPM 

Scaled boxes 

5 6 

(b) COWCWs for the orientation angles 0 = -7r/6,0,7r/6 

Figure 3.17: The obtained PCDPM and its corresponding COWCW. 

As can be seen from this figure the scaled boxes, and, consequently, the prescribed 
ellipse £_, are all inside the WCW of the obtained PCDPM for the provided range of 
orientations. 
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Table 3.11: Initial and final geometries of example 3.5. 

i a t , 0 Ko 
1 [0.4884 0.3551] [0.1656 0.2700] 
2 [2.9599 2.2603] [0.6799 0.5078] 
3 [1.7818 1.3436] [0.0239 0.8245] 
4 [0.7605 0.4252] [0.3723 0.3152] 
5 [0.9550 3.8578] [0.7498 0.1322] 

i T 
Kl Kf 

1 [1.6382 0.0033] [0.3774 -0.1935] 
2 [5.9999 4.9995] [0.0000 0.0000] 
3 [5.9999 0.1784] [0.0000 0.0000] 
4 [1.6382 0.0033] [-0.3774 0.1935] 
5 [0.2906 4.7378] [0.0000 0.0000] 

3.6 Conclusions 

A method for the dimensional synthesis of planar cable driven parallel mechanisms 
(PCDPMs) was proposed. To achieve this goal, an optimization problem was first in­
troduced to verify whether a given pose is inside the wrench-closure workspace (WCW) 
of a given PCDPM. We then relaxed this problem over a box in the workspace, which 
led us to a sufficient condition for this box to be inside the COWCW of a given PCDPM. 
These mathematical conditions allowed the formulation of a nonlinear program in which 
the scale of the prescribed workspace is maximized while being constrained inside the 
PCDPM COWCW. The robot geometry being included in the decision variables of 
the nonlinear program, this optimization problem is the tool sought for the constant-
orientation dimensional synthesis of PCDPMs. The value of the scaling factor at the 
optimum indicates whether the prescribed box is inside the COWCW. Solving the prob­
lem for different initial guesses may provide us with a larger scaling factor, and thus 
a larger COWCW. It was shown that the proposed approach can be applied to pre­
scribed workspaces that cover several fixed orientations and that are not rectangular. 
We extended the results to the continous-orientation case, in which we seek geome-
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tries of PCDPMs whose WCWs include a prescribed workspace within a given range of 
orientations. Finally, our intuition is that the same approach could be applied to the 
dimensional synthesis of conventional mechanisms. 



Chapter 4 

The Dimensional Synthesis Of 
Spatial Cable-Driven Parallel 

Mechanisms 

In this chapter we extend the methods developed in the previous chapter for the dimensional 
synthesis of PCDPMs for the spatial cable-driven mechanisms. First, we recall the kinetostatic 
model and expressions for theses mechanisms and introduce a linear program to calculate their 
WCW. A relaxation of the introduced linear program provides a sufficient condition to verify 
whether a given six- dimensional box, i.e., a box covering point-positions and orientations, is 
inside or outside of the WCW of a given spatial CDPM. Then the geometry of the mechanism 
is considered as a set of optimization variables and scaling factor controlling the size of the 
prescribed box is used as the objective function, to be maximized. This leads us to a nonlinear 
program whose optima represent CDPMs whose WCWs include the prescribed box. The 
formulation is further extended to multiple boxes, which may represent an approximation of 
an irregularly-shaped prescribed workspace. The developed methods are illustrated through 
several examples. 

77 
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4.1 Kinetostatic Model of Spatial Cable-Driven 
Parallel Mechanisms 

Before searching for the geometry of a spatial parallel cable-driven mechanism for a 
prescribed workspace, we have to set up a standard mathematical description of the 
statics of such a mechanism, and more specifically, of its wrench-closure workspace. 
Such a spatial parallel cable-driven mechanism is schematically shown in Fig. 4.1. It 
consists of a moving platform (MP) that is connected by m cables to m fixed points. 

^ B Actuated reel 

• Attachment points on the platform 

— Cable 

Fixed base 

Figure 4.1: Sketch of a spatial cable-driven mechanism with 7 cables. 

Alike the planar case, in order to analyze the motion of the MP, we have to consider 
two frames: the reference frame A, which is fixed to the base, and the moving frame 
3 , which is attached to a reference point of the MP as depicted in Fig. 4.2. Cable i is 
attached to the MP at Bi, and winds at fixed point At around an actuated reel. 

We use the same notation as that introduced in Chapter 2 for planar cable-driven 
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Frame A 

Figure 4.2: Notation used for the kinetostatic analysis of spatial cable-driven parallel 
mechanisms. 

parallel mechanisms, namely: 

• Vector aj e M 3 represents the position of the actuated reel Ai in the fixed frame A; 

• Vector bj G I 3 is a constant vector and represents the position of the attachment 
point B t of the _th cable in frame 3 ; 

• Vector p G M 3, which is expressed in A, represents the position of point P with 
respect to point O; 

• Vector Cj points from Bi to Ai, and represents the length of the _th cable; 

Frames A and B are connected via the rotation matrix Q, which may be represented 
by three Euler angles. These angles can be any type of the twelve possible definitions 
of Euler angles [41]. Vector Cj representing the . th cable, is obtained as 

Ci = a t - p - Q b j . (4.1) 

The wrench applied at P , the origin of the moving frame, by the i th cable is 

v t = [ f f n f ] T e R 6 , (4.2) 
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where f* and _ij are the force and moment about P produced by the zth cable on the 
MP. The moment applied by cable i is expressed as 

n* = (Qb.) x f̂  (4.3) 

where symbol x represents the cross product of the two vector. In order to find a proper 
expression for the moments applied to the MP at reference point P, let us define the 
following matrices 

ET — 
0 i o~ 

-, Ef, — 
"l o o" 

, E_ = 
1 o o" 

0 0 1 0 0 1 0 1 0 

n - 1 
and E = 

i 0 
(4.4) 

Hence, the moments applied by cable i on the MP are given by 

i_i = [det(E I(Qb i),E sf i) -det(E I /(Qb i),E1 /f i) det(E„(Qb i), E_fO]T G R3, (4.5) 

i = 1 , . . . ,m. Simplifying eq. (4.5) leads to 

'(Qb^HJi (Qb.fH^ (QbifUJi 1  
n* = (4.6) 

where H x = EfE T E x , Hy = - E ^ E r E y and H2 = EfE r E_. 
These latter matrices are readily computed as, 

HT = 
0 o o~ "o 0 - 1 r 0 1 0 
0 0 1 , H j , = 0 0 0 ,H 2 = - 1 0 0 
0 - 1 0 1 0 0 0 0 0 

(4.7) 

Since the exerted force is parallel to its corresponding cable, mathematical expressions 
for the force exerted by cable i is 

f.-h 

where 4, U are the length of cable i and the tension in that cable, respectively. Assuming 
that points Ai and Bi do not coincide, and substituting eqs. (4.8) and (4.6) in eq. (4.2), 
the wrench applied to the platform by cable i is v< = — w<, with wf defined as 

W ; = cf (Qb^EUc* (Qb^HyC. (Qb,)TH2 C l (4.9) 

Equation (2.5) shows that w. is a function of both the geometric parameters of the 
mechanism and the orientation of MP. Note that tt should always be non-negative for 
the cables to remain in tension. We define the wrench matrix and tension vector of the 
mechanism as 

W = W i W 2 wT 
»6xm and t __ _a 

'm 
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respectively. In order to find a proper and compact expression of the wrench matrix, 
let us define 

»3xm 

(4.10) 

A = M . . . am]GR3 x m , 

B = [ b, ­.. bm] GR 3 x m , 

" (Qb. f l^a . ••• (Qbm)THxam 

F = (Qb.fHya, ■■■ (Qbm) rHyam 

( Q b ^ H . a , ••• ( Q b ^ H . a ™ 

(Qb!)THxP ..■ (Qb m ) T H l P 

K = (Qb.fByP (Qbm)THyP ( 
( Q b ^ H . p . . . (Qbm)TH2p 

»3xm 

which allows us to rewrite W as 

W = 
A ­ Q B ­ p l £ 

F ­ K 
p6xm (4.11) 

The static equilibrium equation for the moving platform may be expressed as 

W t + w F = 06, (4.12) 

in which wp is the wrench applied on the MP at P, equivalent to all external forces 
and moments. These external loads may include gravity forces, for example. Now we 
can define the wrench closure workspace of CDPMs as follows. 

Definition 1 The Wrench­Closure Workspace (WCW) of a Generic Cable­Driven Par­

allel Mechanism 

The WCW of spatial parallel cable­driven mechanisms can be formally defined as the 
set of poses for which 

VwP G R6, 3 t G Mm | t >­ 0 m and W t + w P = 06, 

where the symbol >­ denotes the strict componentwise inequality. 
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4.2 Verifying Whether a Pose Lies in the W C W of 
a CDPM 

In order to verify whether a given pose is inside or outside of the WCW of a provided 
spatial CDPM, we need to solve the linear system of equations given by eq. (4.12). 
Alike eq. (2.7) for the planar CDPMs, letting t* be a solution of eq. (4.12), and t x be 
a vector in the null space of W, then 

t = t* + A t \ A e R , (4.13) 

is also a solution of eq. (4.12). 

For a strictly positive t x , we can add a sufficiently large positive scalar multiple A 
of this vector to any particular solution t* of eq. (4.12) to obtain a cable-tension vector 
t with positive components. Now we can introduce the following theorem in order to 
see whether a given pose is inside the WCW of a spatial CDPM. 

Theorem 3 A given pose is inside the WCW of a CDPM if there exists a set t of 
tensions in the cables such that 

W t = 06, t ^ 0 m . (4.14) 

where 06 is the six-dimensional zero vector. 

According to theorem 3, in order to calculate the WCW of a CDPM, we need to 
solve the feasibility problem (4.14) for each pose of the MP. Therefore, the WCW of a 
CDPM is the set of poses for which eq. (4.14) is satisfied. We may also use Stiemke's 
theorem [35] to verify whether a given pose is inside or outside of WCW. We recall this 
theorem for spatial CDPMs as follows. 

Theorem 4 The system of eq. (4-H) has no solution if and only if the following system 
of equations has a solution 

W T A ^ 0 m , (4.15) 

WTA ^ 0m . 

where A G M6. 



S3 

In other words, a given pose of the MP lies outside the WCW if and only if eq. (4.15) 
admits a solution. Now, we can introduce the following linear program to calculate the 
wrench-closure workspace of a CDPM: 

minimize 0, 

subject to W T A y 0m , (4.16) 

l ^ W ^ A = 1. 

over A G M6. 

Problem (4.16), alike that of eq. (3.4), its counterpart for the planar cable-driven paral­
lel mechanisms, yields 0 whenever the given pose is outside of the corresponding WCW 
and +00 otherwise. In other words, the given pose is outside of the WCW if the prob­
lem admits a feasible solution and inside if it does not. Hence, this equation can be 
used to calculate the WCW of a given CDPM by discretizing the examined region. 
This linear feasibility problem is the corner stone to the formulation of the dimensional 
synthesis of spatial cable-driven parallel mechanisms. 

4.3 Verifying whether a Six-Dimensional Box Lies 
in the W C W of a Spatial Cable-Driven 
Parallel Mechanism 

Let us now turn our attention to our main concern: the dimensional synthesis of 
CDPMs. Suppose we wish to find a condition to determine whether a given small six-
dimensional box ,i.e, three-dimensions for the point-position and the remaining three 
for the orientation angles is completely inside the wrench-closure workspace of a given 
parallel cable-driven robot. Problem (4.16) can be turned into a phase-one problem 
by replacing the equality constraint with an inequality constraint and by maximizing 
a dummy variable 5S. We formalize this by the following lemma: 
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Lemma 9 Linear program WCW Membership Condition for a Six­Dimensional Pose 

s; = maximize 5B, 
subject to w TA y om, 

lmW TX > 6S, 

over A andôs. 

Then, we have, 

* ; = < 

­
+00 if the pose lies outside 

0 otherwise. 
< 

(4.17) 

(4.18) 

Proof. Proof of this lemma is the as same as the proof of lemma 6. □ 

Linear program 4.18 provides us with a good tool to calculate the constant­orientation 
WCW of a spatial CDPM by dicretizing the Cartesian space to several 3D points. The 
following example illustrates this. 

Example 4.1. W C W of a Spatial Cable­Driven Mechanism 

Figure 4.3 shows a sample spatial CDPM drawn from [42]. The parameters of this 
mechanism are given in Table 4.1 

Table 4.1: Geometric parameters of the assumed CDPM. 
i af bf 
1 [0 0 0] [­0.15 ­0 .1 ­0.05] 
2 [1 0 1] [0.15 ­ 0 . 1 ­0.05] 
3 [1 1 0] [0.15 0.1 ­ 0.05] 
4 [0 1 0] [­0.15 0.1 ­0.05] 
5 [0 0 1] [­0.15 ­ 0 . 1 0.05] 
6 [1 0 1] [0.15 ­ 0.1 0.05] 
7 [1 1 1] [0.15 0.1 0.05] 
8 [0 1 1] [­0.15 0.1 0.05] 



v. 

Figure 4.3: A spatial CDPM with eight cables (0 = 0 rad, 9 = 0 rad, ip = 0 rad). 

Discretizing the xyz space provides us with a set of 3D positions to be tested for 
their membership to the WCW based on the introduced linear program (4.17). Figure 
4.4 shows the constant-orientation WCWs of the depicted robot, for various ZYZ type 
Euler angles, following ZYZ convention. 



86 

(a) 0 = 2°,0 = 0 , ^ = 0, (b) (f> = -2°,6 = 0,ip = 0, 

(c) <p = A o , 0 = Q,i> = 0, (d) - 4 ° , . = 0 , V = 0, 

Figure 4.4: COWCWs of the CDPM depicted in Fig. 4.3, for various sets of ZYZ 
(cj),6,ip) Euler angles. 

Consider now a six-dimensional box 3$ with diagonally opposite corners (C_, p) and 
(C,p), respectively, i.e., 3 C = { « , p ) 6 R3 x I 3 : ( j ( ^ (, p ^ p ^ p} , and in 
which C G M3 is a three dimensional vector whose elements represent the selected Euler 
angles. In order to find a necessary condition for Bç to be outside of the WCW, we 
substitute eq. (??) in problem (4.17), and we let p and Ç, become decision variables of 
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the problem, while confining them to 3^. This leads to 

maximize 5S, 

subject to A V - l m p V - B T Q r p + F T 7 - K T 7 y 0m , 

lT
mATp - m p T p - l £ B T Q V + 1^FT7 - l ^ K r

7 > *., (4.19) 

Ç ^ C d C , P ^ P d i > , 

where A = [p,T 7 T ] r . Considering p and £ as optimization variables in (4.19) provides 
us a tool to find a necessary condition for 3ç to be outside of the WCW. If we let W 
represent the set of moving-platform that is necessarily met by any box Bç such that 
Bc n W = 0. 

In order to find explicit upper and lower bounds on the elements of the rotation 
matrix Q, they are treated as interval variables. As an example, suppose that the 
rotation matrix Q is computed from (z, y, z) Euler angles cp, 8 and ip, namely, 

Q = 
cos# cos0 cosip — sincp sinip —cosO coscp sinip — sincp cosV> sine? coscp 
cose* sincp cosip + cos<p sinip —cos9 sincp sinip + coscp cosip sine* sin0 

—sinô cosip sin6 simp cose1 

(4.20) 

Then, for a given ranges of orientation angles 9 < 9 < 9, cp< cp < cp and ip_<ip<ip, 
we have 

0+ < cos(0) < C0, S4 < sin(0) < S0, 

eg < cos(6) <CQ, Sg < sin(9) < sg, 

c^ < cos(ip) <C0, s^, < sin(^) < s^. 

(4.21) 

Hence, the elements of the rotation matrix are interval variables, which are obtainable 
by interval arithmetics. Let us represent this by introducing the matrices Q and Q, 
whose elements are the lower and upper bounds of the elements of the rotation matrix 
Q, that is 

Q _< Q __ Q. (4.22) 

Hence eq. (4.19) can be relaxed as 

maximize _*_, 

subject to A T p - l m p V - B r Q T / i + F T 7 - K T j t Om, 

llATfM - m p T p - l ^ B r Q V + l ^ F r
7 - l £ K r

7 > 5a, (4.23) 

Q ^ Q ^ Q , P ^ P ^ P 
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Notice that eq. (4.23) is the relaxed form of eq. (4.19) and these equations are not 
equivalent. 

Considering the position vector p and rotation matrix Q as optimization variables, 
equation (4.23) provides us a non linear program whose global optimum indicates 
whether at least one pose of the box 3ç is outside of the WCW. Conversely, if the 
global optimum of this problem corresponds to __ = 0, then the box 3^ is completely 
inside the WCW. Instead, alike the planar case studied in Chapter 3, we relax the non 
convex constraints of problem (4.23), to convex constraints over box Bç which makes 
it easier for a pose to be excluded from the WCW. 

Equation (4.23) includes the bilinear elements p T p , F r 7 , and Q T p , and the trilinear 
element K r 7 , in terms of p , 7, Q and p. In order to eliminate the trilinear term 
appearing in problem (4.23) let us define the variable 
V = [Ojp CÇp Ojp j G R3*3 where, Qx = H^Q, Qy = H^Q, and Q2 = H j Q . 
Upper and lower bounds are obtainable for the components of matrices Qx , Qy, Q2, 
as their components are directly those of the rotation matrix Q. Consequently, we can 
obtain upper and lower bonds on the components of the matrix V by using interval 
arithmetics as they are the result of the multiplication of interval variables. We express 
this by the following equation: 

Y ± V X V. (4.24) 

Introducing this new variable enables us to rewrite the expressions of matrices F and 
K appearing in eq. (4.10) as 

\l<ixbm) am 

• (QybTO)Tam t R 3 x r a , K = V r B . (4.25) 
• (Q2bm)Tam_ 

Substituting eq. (4.25) in problem (4.23) removes the trilinear element K r 7 and changes 
it to a bilinear element in terms of V and 7. Let us now separate the bilinear elements 
appearing in eq. (4.23) in terms of /x, 7, Q V and p and define the new variables as 
follows: 

F = 
(Qxbi) T

a i 

(Q_b_)Ta_ 

r] = diag(Az)p G R3, 

A = diag(I67)QX!/2 G 

v = Qrdiag(/i.) G R3, 

l6x3, A = Vdiag(7) G R3x3, 

(4.26) 

where Qxyz = [Q£l% Q j E j Q f E ^ G R6*3, and I6 = 
1_ o. 02" 
0, 12 02 

Oo o_ 12 

i x3 
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While the variables p, V and Q are bounded, the variables p and 7 are unbounded. 
Alike the planar case, for the sake of this analysis, let us assume the signs of /_ and 7 
to be known in advance, and let us label them 

a­ = sgn(p) and T EE sgn(7), (4.27) 

where sgn represents the signum function. Knowing the signs of p and 7 enables us to 
find the following bounds on the newly defined variables: 

diag(o­)diag(p)/Li _< diag(cr)T7 * diag(<r)diag(p)/x, 

Vdiag(r)diag(7) ^ Adiag(r) z< Vdiag(r)diag(7), 

Qrdiag(/Lt)diag(<r) ■< i^diag(cr) ^ Q diag(/Li)diag(cr), 

diag(I6r)diag(I67)Q_„, 1 diag(I6r)A ^ diag(I6r)diag(I67)Q 
'­a­xyz xyz (4.28) 

Treating r and cr as constants, the set formed by eq. (4.28) represents a closed convex 
polytope, which approximates the non­convex surfaces of eq. (4.26). Therefore, replac­

ing the latter with the former, we obtain a convex relaxation of eq. (4.26). This approx­

imation converges to the exact relationship as the size of box 3$ becomes infinitesimal. 
This is the reformulation­linearization technique (RLT) [36], and was introduced in 
Chapter 3. 

Introducing the matrix IE = K EJ EJ 5x6 and substituting the newly 
defined variables in eq. (4.23) enables us to write the relaxed form of equation (4.23) 

as 

maximize 

subject to A T p ­ B T u l 3 ­ l m l [ i 7 + diag(ATIE_lB) ­ B T A 1 3 __ 0m, 

l l A T p ­ l m B T u l 3 ~ ml l r j + l£diag(AT I £AB) ­ 1^B T A1 3 > ôs, 

diag(<7)diag(p)/z < diag(<r).7 < diag(<r)diag(p)/x, 

Vdiag(r)diag(7) ■< Adiag(r) ■< Vdiag(r)diag(7), (4.29) 

QTdiag(/i)diag(cr) ■< i>diag(<r) ­< Q diag(^t)diag(cr), 

diag(I6r)diag(I67)Qxy2 _< diag(I6r)A ■< diag(I6T)diag(I67)Qx2/z» 

a = sgn(p) and r = sgn (7). 

The only non­convex constraints in problem (4.29) are the last two equalities. How­

ever, these inequalities yield exactly 64 possible combinations of a and r , which are 
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the solutions to 

diag(cr)2 = l 3 x 3 and diag(r)2 = 1 3x3- (4.30) 

Let us label these solutions Oj and Tj , j — 1, . . . ,64. As a result, the solution to 
problem (4.29) is the maximum of the outcomes of the 64 linear programs. Introducing 
the function vec() as 

vec() : R p x q —► R p q, vec(U) = [ui u2 

VU G R p x q, U = [uj u­J .. ~ T ] T  

up]TG 
> l x _ 

(4.31) 

uf, ut6R l x«, i = l,...,p. 

enables us to represent these linear programs by the following lemma 

Lemma 10 Sufficient Condition for a 3D Box to Lie Inside the WCW of a Spatial 
Cable­Driven Parallel Mechanism within a Given Range of Orientation Angles 
Consider the 64 distinct linear programs 

maximize Ssj, 

subject to Gj£j ■< 0m+79 

J = l 64, 

(4.32) 

where 

Gj = 
RJ m+78 

G ]R(m+79)x46
) f». and vector g are given in Appendix D, and 

Ç,­ = [p j i f rfj vec(vj)T vec(A7) r vec(A7)T 5 s j \ G R46. Then, the given box 
Bç = {(C, p) G R3 x R3 : Ç ^ C d C. P ­< P r< P} is fully inside the WCW if all of the 
problems (4.32), j = 1 , . . . , 64, yield zero. 

Proof The proof is similar to that of lemma 7. □ 

Hence, problem (4.32) provides a sufficient condition for a 3D box to lie completely 
inside the WCW within a given range of orientation angles. This condition may be 
used to compute a contracted WCW, namely, a subset of the Cartesian workspace that 
is guaranteed to lie inside the WCW. The following example illustrates the concept of 
the contracted WCW in the case of spatial CDPMs. 
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Example 4.2 The Contracted W C W of a Spatial Cable-Driven 
Parallel Mechanism 

Consider again the CDPM depicted in Fig. 4.3. We calculated the real wrench closure 
workspace of this mechanism by discretizing the examined region into several points, 
and by applying eq. (4.16) in example 4.1. Using the same procedures with several 
3D boxes instead of points and applying eq. (4.32), instead of eq. (4.16) we calculate 
the contracted WCW of this mechanism within a given range of orientation angles. 
We divide the Cartesian space into three-dimensional boxes, each box covering the 
interval [-0.03 - 0.03 - 0.03]T rad < C < [0.03 0.03 0.03]T rad in the rotation 
workspace ,i.e., the workspace specified by ZYZ Euler angles. In the Cartesian space, 
each box has an edge of length 0.02 along the x, y and z axes. We solve problem 
(4.32) for each of these 3D boxes, and keep only those for which the maximum is 
0. We obtain the contracted WCW, which is shown in Figs. (4.5), along with cross-
sections of the exact COWCWs. This contracted WCW is the common WCW of 
the constant-orientation WCWs (COWCWs) corresponding to each orientations within 
the given range. Smaller boxes would have led to a closer estimate of the WCW, 
as the convex relaxation (4.28) then forms a tighter approximation of (4.26). Also, 
notice that dividing the rotation workspace accompanying with dividing the Cartesian 
workspace can provide even tighter bounds on the convex relaxation of eq. (4.28), but 
it increases the size of the corresponding linear program and may make the formulation 
more complicated for our main concern of finding a formulation for the dimensional 
synthesis of spatial CDPMs. However this could be the main goal of the future works. 
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Contracted WC 

1 0 

Real COWCW 

(a) cp = -0.03 rad, 9 = -0.03 rad, ip = -0.03 rad 

Contracted WC 
Real COWCW 

1 0 

(b) cp = 0.03 rad, 9 = 0.03 rad, ip = 0.03 rad 

Figure 4.5: The contracted and the real COWCW of a spatial CDPM. 
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As they were obtained in problem (4.32), the inequality constraints can always be 
satisfied by choosing ^ = 046. For the purpose of later assembling them, we would like 
these constraints to be feasible only if a given box is fully inside the WCW. To this 
end, we compute the Lagrange dual [37] of problem (4.32). Let us start by writing the 
Lagrangian of problem (4.32), 

L(xj,$j) = xJ(GjZj)-ô8j, (4.33) 

where Xj G R++46 is the vector of Lagrange multipliers and R+ represents the non-
negative real numbers. Hence, the Lagrange dual of our problem is that of maximizing 
9j(xj), where 

6j(zKj)=m£ii L ( X J , ^ J ) , (4.34) 

Considering 6sj = e^Çj, where e46 = [045 1]T G R46, and substituting eq. (4.33) into 
eq. (4.34) gives 

9j(xj) = mfii(xjGj-e^j. (4.35) 

Clearly, 

{0 if Gjx7- = e46, „ 

(4.36) 
—oo otherwise. 

Hence, the dual problem of problem (4.32) can be stated as the following feasibility 
problem: 

(4.37) 
maximize U, 
subject to Gjxj -- e 4 6 — 0 4 6 , 

Xj y 0m_i_79, 

over Xj. 

The last equality constraint of this linear program implies Xjti = 1, where Xjt\ represents 
the first element of the Lagrange multiplier Xj. Substituting this in eq. (4.37) eliminates 
Xjti as a variable and reduces the number of equality constraints from 46 to 45, which 
yields, 

maximize 0, 

subject to B-jYj + g = 045, (4.38) 

Yj it 0m+78, 

over yj, 
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where Yj £ R++T8 represents the vector of Lagrange multipliers after eliminating the 
last equality constraint of eq. (4.37). 

Problem (4.38) is equivalent to its primal problem (4.32) but is feasible when the 
corresponding problem (4.32) is zero and infeasible when the primal is unbounded. 
These correspond to cases 3 and 1, respectively, of the primal­dual relationships enu­

merated in Chapter 3. In order to verify whether a given box 3ç is inside the WCW of 
a given spatial CDPM for a given range of orientation angles, we may combine all these 
linear programs into one for j = 1, . . . ,64.. Alike problem (3.20), this is done by sum­

ming the objective values of these problems while considering all of their constraints 
together as follows: 

maximize 0, 

subject to B­jYj + g = O45, J = L ■ • •, 64, (4.39) 

Yj tZ Om+78, j = 1, . . ­ ,64, 

over Yj, j = 1, . . . ,64. 

Notice that eq. (4.38) represents 64 linear programs while eq. (4.39) represents only 
one, but with 64 times more variables and constraints. Equation (4.39) may now be 
regarded as a single feasibility problem of 2880 equality constraints and 64(m + 78) 
non­negative variables. If there is a feasible solution to this problem, then the given 
box Bç is inside the WCW. Having this information, we can now turn our attention to 
the problem of the synthesis of spatial cable­driven parallel mechanisms. 

4.4 A Formulation for the Problem of 
Synthesizing a Spatial CDPM 

We start from problem (4.39) in order to solve the dimensional synthesis of CDMPs. 
Suppose we are interested in finding a CDPM geometry whose WCW contains a given 
box Bç within a given range of orientation angles. In order to solve this problem, we 
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introduce the nonlinear feasibility problem 

satisfy RjYj + g = 045, j = 1 , . . . ,64, (4.40) 

Yj cr Om+78, 3 = 1, . . , 6 4 , 

a _< aj :_ â", b __ bj ^ b , . = l , . . . , m , 

over y j G Rm+78, j = 1 , . . . , 64, a* G R3, b, G R3, i = 1 , . . . ,m, . 

Here, a, â, b and b are lower and upper bounds on the positions of the base and MP 
attachments points, which would otherwise be drawn to infinity during the solution 
process. Any solution to problem (4.40) yields a CDPM geometry whose WCW is 
guaranteed to include the prescribed box Bç- However, the absence of a solution to 
this problem does not imply that there is no possible CDPM geometry containing Bç. 
Moreover, the failure to obtain a solution from this feasibility problem does not provide 
any information regarding a good but not perfect geometry. For this reason, in the next 
section, we add an objective function over the constraints, which is thought to be more 
attractive to the designer. 

4.4.1 Adjoining an Objective Function to the Feasibility 
Problem (4.40) 

Suppose we look for the geometry of a CDPM whose WCW includes a prescribed 
box Bç- Alike the planar case introduced in Section 3.3.1, if we use a scaled version of 
3ç in problem (4.40) and can find a CDPM geometry whose WCW allows for a scaling 
factor above one, then the original problem is solved. Hence, we must consider the 
scaling factor as an objective function to be maximized. If, at the optimum point, this 
factor is smaller than one, then the designer is left with the best infeasible solution. 

Since the prescribed box has six dimensions and includes point-position and orien­
tation intervals, we suggest to set the priority on one of the two sets of components 
so as to preserve the dimensional homogeneity of the problem. Hence, we restrict the 
problem to that of finding a CDPM with a large WCW for a given range of orientation 
angles. In other words, we consider the prescribed six-dimensional box as Cartesian 
product of two three-dimensional boxes, one covering point-position, the other covering 
the Euler angles. We then maximize the size of point-position box while keeping the 
size of the orientation box constant. 
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This scaling process is depicted in Fig. 4.6 for a prescribed six dimensional box 
Bç, which is split in two point-position and orientation boxes. Figure 4.6(a) shows 
the scaled point-position box B'p with dashed lines in pale yellow, which is the scaled 
image of the smaller point-position box Bp with solid lines in orange. Figure ?? shows 
the orientation box B0 whose size remains unchanged. The scaling factor is s and the 
position of the scaling point is represented by pc . From this figure, we obtain the 

Box B'„ 

?=p » m 

Box a 

(a) Scaled point-positional box and its corresponding 
parameters 

_.= __ fl El 

(b) Orientation box 

Figure 4.6: Representing the six-dimensional prescribed box as the Cartesian product 
of two three-dimensional boxes. 

coordinates of the lower-left-front and upper-right-back vertices of the scaled box B'p as 

p ' = p c + s(p - pc) and p1 = p c + s(p - pc), (4.41) 

respectively. If we consider the centroid of the box as the scaling point, then p c = 
_(P + P)- Introducing this objective function enables us to develop a nonlinear program 
for the dimensional synthesis of CDPMs. 

4.4.2 A Nonlinear Program for the Dimensional Synthesis of 
CDPMs 

We now turn the feasibility problem (4.40) into a nonlinear program where R' is ob­
tained by substituting p ' and p ' for p and p, respectively, in the expression of Rj given 
in problem (4.32). Moreover, to ensure that p ' and p ' remain the lower-left-front and 
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upper­right­back corners of the scaled 3D positional box, we constrain the scaling factor 
s to non­negative real numbers. Hence, the corresponding nonlinear program to solve 
the synthesis of CDPMs for a prescribed box 3c is 

maximize s 

subject to K'jYj + g = 045, (4.42) 

p ' ­ p c ­ s(p ­ pc) = 03, 

p ' ­ p c ­ s(p ­ pc) = 03, 

__ __ a* ■< â, b ^ bj ■< b, i = 1 , . . . ,m, 

Yj >T om+78 , j = 1,...,64, 

s > 0, 

over yj G Rm+78, a* G R3, bj G R3, s G R. 

We illustrate problem (4.42) with a synthesis example in the following section. 

Example 4.3 The Dimensional Synthesis of a C D P M for a Prescr ibed 
Three-Dimensional Box 

Suppose we look for a spatial CDPM whose WCW contains a three­dimensional 
prescribed box within a given range of orientations. The lower­left­front and upper­

right­back coordinates of this box are p = [0.4 0.4 0.4]T and p = [0.6 0.6 0.6]T, 
respectively. This box is required to lie inside the WCW of a spatial CDPM within 
ï f I3 di C d: 12I3 where C = [<P 9 ip]T represents ZYZ Euler angles. The number of 
cables is set to 7 which is the minimum required for a WCW to exist. The geometry 
of the CDPM is constrained inside the bounds reported in Table 4.2. In order to 

able 4.2: Bounds on the geometry of the sought spatial CDPM. 

a 
[0 0 0] 1 1 1 -0.2 - .2 - 0.2] [0.2 .2 0.2] 

solve the nonlinear program (4.42) associated with this example, we implemented the 
PSLP method [38] in Matlab. This method was introduced in Chapter 3 and a brief 
explanation of it is reported in Appendix C. We use the "Large­scale" algorithm of 
the Linprog function in Matlab to solve the direction­finding subproblems of the PSLP 
method. The required initial guess is uniformly­distributed pseudo­random , produced 
by the rand function in Matlab. In order to ensure that the produced initial guesses 
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cover well the feasible set, we use the following formulation to produce the initial 
geometry, this formulation being the counterpart of eq. (3.47): 

a, = a + diag(a - a)a*, 

b, = b + diag(b - b)/3», i = 1, 

(4.43) 

,m, 

where a» G R3 and 3i G R3 are pseudo-random numbers produced by rand function 
of Matlab. Applying the PSLP method to problem (4.42) with the initial geometry 
reported in Table 4.3 yields the mechanism depicted in Fig. 4.7. The coordinates 
describing the geometry of this CDPM are reported in Table 4.4. 

Table 4.3: The initial CDPM geometry in example 4.3. 
i a i , 0 Ho 
1 [0.7195 0.9388 0.0529] [-0.0660 - 0.0621 0.0492] 
2 [0.5544 0.2530 0.4870] [-0.0489 -0.1087 -0.0920] 
3 [0.8436 0.1315 0.9629] [0.1859 -0.0882 -0.1333] 
4 [0.8422 0.8157 0.4625] [0.0238 0.0821 - 0.0163] 
5 [0.3223 0.7279 0.2520] [-0.1676 0.1788 -0.1051] 
6 [0.2353 0.1533 0.9439] [-0.1835 -0.0044 0.1826] 
7 [0.1222 0.5299 0.1280] [0.1904 0.1273 - 0.0582] 

An optimum scaling factor of 5* = 1.5663 is obtained after 44 minutes of calculation 
time on a computer equipped by Intel(R) Core(TM) i7-2600 CPU @3.40GHz and 8 GB 
of RAM memory. Figure 4.8 shows the evolution of the objective during the calculation. 
Notice that, PSLP is a penalty based method and during the solution procedure we 
may increase the penalty parameter as it must be at least as large as the absolute 
value of any Lagrange multiplier associated with equality and inequality constraints. 
Increasing the penalty parameter gives the priority to find a feasible solution rather 
than of maximizing the objective. Hence, the objective may not increase monotonically 
during the solution procedure. 

Since the optimum value is greater than one, the scaled box and the prescribed 
one are both inside the WCW of the obtained mechanism, within the given range of 
orientation angles. This is confirmed in Fig. 4.9, as the scaled box in dashed lines 
and prescribed box in solid lines are both located inside the COWCWs of the resulting 
spatial CDPM, which are represented by cloud of points. Notice that we only show 
constant-orientation WCW of the resulting CDPM, because a six-dimensional WCW 
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Table 4.4: The optimum CDPM geometry in example 4.3. 
i T 

Kl * 
1 [1.0000 1.0000 0.5632] [0.0000 0.0000 0.0000] 
2 [0.0006 0.4487 1.0000] [0.0000 0.0000 0.0000] 
3 [0.9961 0.0000 0.5402] [0.0834 - 0.0297 - 0.0710] 
4 [0.9961 0.0000 0.5402] [-0.0833 0.0297 0.0710] 
5 [0.0849 0.6725 0.0005] [-0.0491 - 0.0031 0.0001] 
6 [0.3174 0.0093 0.0072] [0.0000 0.0000 0.0000] 
7 [0.0849 0.6725 0.0005] [0.0492 0.0031 - 0.0001] 

cannot be represented directly. On the right side of Fig. 4.9, we display the cable-cable 
interference regions of the corresponding MP orientations, although they were not taken 
into account in the proposed synthesis method. These regions were obtained by using 
the algorithm proposed in [43]. According to this algorithm, two cables that have a 
common attachment point either on the fixed base or on the moving platform do not 
collide. Interestingly, with the CDPM geometry obtained, several pairs of cables are 
in this situation. More precisely,the pairs of points {a 3 j , a4 j} and {&5,f,&7,f} coincide 
on the fixed base and the triplet {biy, b2 ) / , b 6 j } coincide on the moving platform, as 
shown in Table 4.4. Hence, although the obtained mechanism is not free of interferences, 
it has relatively few interference regions for this reason. Moreover, the location of the 
attachment points on the edges of the MP limits the interferences between the cables 
and the end-effector [44]. 

The formulation developed in this section is only applicable to rectangular pre­
scribed workspaces. In order to cover irregularly-shaped workspaces, one would need 
a set of boxes. Moreover, the performance of the method, depends on the size of the 
prescribed box, as smaller boxes lead to better approximations of the WCW. On the 
contrary, when the prescribed box becomes too large, problem (4.42) may not admit any 
feasible solution even though, in practice, some exist. Hence, accounting for multiple 
boxes presents some interest, and is the subject of the following section. 
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(a) 3D view, rjJ = 0, () = 0, 'ljJ = 0 

(b) Topview, r/J=O, B=O, 1/J=O (c) SideviewrjJ=O, 0=0, '1/J=:=O 

Figure 4. 7: A resulting CDPM with seven cab-les. 
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Iwratinn number 

Figure 4.8: Evolution of the objective of example 4.3. 

4.5 The Dimensional Synthesis of CDPMs for 
Multiple Prescribed Boxes and 
Non-Rectangular Workspaces 

Splitting a prescribed box into several smaller boxes provides tighter bounds on the 
variables defined in problem (4.32) as the bounds on the position vector p become 
tighter. This generally leads to a CDPM with a larger WCW compared to that obtained 
for a single large prescribed box. In order to solve the dimensional synthesis problem 
for a prescribed workspace composed of multiple boxes, the formulation (4.42) can 
be developed to include several boxes. This is done by considering the constraints 
corresponding to each box while attempting to maximize a common scaling factor 5 
with respect to a common scaling point, which may be the centroid of the prescribed 
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Po i M " 

(a) cp = -7I-/12 rod, 9 = - n / 1 2 rad, ip = —TT/12 rad 

(b) 0 = 0 ra»i, 0 = 0 rad, V = 0 rad 

(c) 0 = 7T/12 rad, 9 = 7r/12 rad, V = 7r/12 rad 

Figure 4.9: COWCWs of the CDPM of example 4.2 and the corresponding cable-cable 
interferences regions. 
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set of boxes. The corresponding formulation is 

maximize s 

subject to RkjYkj + g = 045, (4.44) 

P'fc - Pc ~ «(P* - Pc) = 03, 

P ' k - P c - S(pk ~ p c) = 03, 

a l_ a i __ â, b X bj :< b , z = 1 , . . . , m, 

s > 0, 

y/c,j _: 0 m + 7 8 , j = 1 , . . . , 64, fc = 1 . . . n, 

over yfeJ G Rm + r 8 , a, G R3, bj G R3, s G R, 

where n is the number of boxes. Notice that we must consider the lower-left-front cor­
ner p ' and the upper-right-back corner p^ of each three-dimensional box to construct 
the matrix Rk,j- This forms a nonlinear program with 64n(ra + 78) + 6m + 1 variables, 
2886n equality constraints, and 64ri(m.-r-78) + 12ra-fT inequality constraints. Evidently, 
depending on the number of boxes required, this problem has a high potential of be­
coming a large-scale nonlinear program. Nevertheless, problem 4.44 provides us with a 
tool to find a CDPM whose WCW includes a prescribed three-dimensional workspace 
composed of multiple boxes within a given range of orientations. We illustrate this 
formulation with the following example. 

Example 4.4 The Dimensional Synthesis of a C D P M for a Prescr ibed 
Three-Dimensional Workspace Composed of Mult iple Boxes 

Let us reconsider the prescribed box of example 4.3 and divide it to 4 equally sized 
boxes. These boxes are obtained by dividing the prescribed box along the y and z 
axes. We keep the upper and lower bounds on the geometry as reported on Table 4.2, 
and the ranges of the Euler angles and the number of cables are also the as same as 
in example 4.3. Depending on the initial point, we obtain different mechanisms two of 
which are represented in this example. 

Figure 4.10 shows the CDPM resulting from a randomly chosen initial guess and 
the application of the PSLP method to problem 4.44. The corresponding initial and 
final geometries are reported in Tables 4.5 and (4.6), respectively. The scaling factor 
s* at the optimum point equals 1.5898, which is slightly larger than the scaling factor 
obtained in example 4.3. Figure 4.11 shows the evolution of the scaling factor for this 
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optimization process. Using the same machine mentioned in previous example, it took 
eight hours and 47 minutes to obtain this result. 

Table 4.5: Initial geometric parameters of example 4.4. 
i T ai,0 Ho 
1 [0.9690 0.9178 0.4683] [-0.1988 0.1279 -- 0.0475] 
2 [0.0638 0.1057 0.5077] [0.0662 - 0.0737 - 0.0043] 
3 [0.2365 0.7545 0.4688] [-0.0563 -0 .1111-- 0.1354] 
4 [0.1437 0.5582 0.4022] [-0.1894 -0.0877 -0.1913] 
5 [0.4330 0.6551 0.4869] [-0.0676 -0.1327 0.1083] 
6 [0.2424 0.0505 0.0663] [0.0666 -0.1153 -- 0.0809] 
7 [0.8958 0.0958 0.9464] [-0.1167 0.1026 -- 0.0304] 

Table 4.6: Geometric parameters of the obtained CDPM of figure4.10 
. T 

Ki * 
1 [1.0000 1.0000 0.4940] [0.0000 0.0000 0.0000] 
2 [0.1691 0.3729 1.0000] [0.0000 0.0000 0.0000] 
3 [0.0028 0.9996 0.2484] [-0.0263 - 0.0036 - 0.0476] 
4 [0.1650 0.2071 0.0000] [-0.1287 0.0326 -0.1416] 
5 [0.0028 0.9996 0.2484] [0.0263 0.0036 0.0476] 
6 [0.1650 0.2071 0.0000] [0.1232 - 0.0312 0.1356] 
7 [1.0000 0.0001 0.6008] [0.0000 0.0000 0.0000] 

Different COWCWs of the obtained geometry and their corresponding cable-cable 
interferences regions are depicted in Fig. 4.12. Once more, the obtained mechanism has 
coinciding attachment points on the fixed base and on the moving platform, leading 
again to relatively few cable-cable interference regions. 

Another interesting result computed using the same approach is depicted in Fig. 4.13. 
This CDPM was obtained from randomly chosen initial guess while keeping the initial 
geometry as same as the values reported in Table 4.5. In other words, we change the 
Lagrange multipliers, y<.j,o while keeping the initial geometry same as that of Table 
4.5. The detailed values of the obtained geometry is reported in Table 4.7. As can 
be seen from Fig. 4.13 and Table 4.7, two of the seven cables i.e., cables 2 and 4, are 
almost coincident, and we may end up with an under constrainted CDPM rather than 
a fully constrained one. Indeed, if the points B\,..., B$ coincide while B\, B6 and By 
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(a) 3D view, <p = 0, 9 = 0, ip = 0 

0 0.1 0.2 0.3 04 0.5 OS 0.7 OJ OJ 0 0.1 0 2 0 3 0 4 0.5 OJ 07 OJ OJ 1 

(b) Top view, </> = 0, 9 = 0, ip = 0 (c) Side view <p = 0, 9 = 0, ip = 0 

Figure 4.10: First optimum CDPM with seven cables for example 4.4. 
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Figure 4.11: Evolution of the objective of example 4.4 for the first solution. 

are collinear, then the cables cannot balance a pure moment about the line through 
BUB6,B7. 

Table 4.7: Geometric parameters of the CDPM obtained in figure 4.13. 
i * 
1 [0.2206 0.9195 1.0000] [0.0000 0.0000 0.0000] 
2 [1.0000 0.0000 0.4048] [0.0000 0.0000 0.0000] 
3 [0.0000 0.0399 0.4434] [0.0000 0.0000 0.0000] 
4 [1.0000 0.0000 0.4038] [0.0000 0.0000 0.0000] 
5 [0.5001 0.8828 1.0000] [0.0000 0.0000 0.0000] 
6 [0.5446 0.9999 0.0824] [0.1432 - 0.06140.1456] 
7 [0.5446 0.9999 0.0824] [-0.1432 0.0614 -0.1456] 

The value of the optimum objective corresponding to this result is s* = 1.4387 and 
its evolution through the optimization is shown in Fig. 4.14. Figure 4.15 shows the 
COWCWs of the resulting CDPM, along with the corresponding cable-cable interfer­
ence regions. Interestingly, this mechanism has even less interference regions than the 
the other two obtained previously. 

Since a prescribed workspace may have an irregular shape, and the main challenge 
of the synthesis problem consists in finding a CDPM whose WCW contains such an 
arbitrary workspaces. Here the strategy is to estimate this prescribed workspace with 
multiple three-dimensional boxes. Alike the planar case, we use interval analysis as a 
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(a) cp = — 7r/12 rad, 9 = —IT/12 rad, ip = —7r/12 rad 

(b) cp = 0 rad, 9 = 0 rad, ip = 0 rad 

(c) cp = 7T/12 rad, 9 = ic/12 rad, ip = 7r/12 rad 

Figure 4.12: COWCWs of the first resulting CDPM of example 4.4 and the correspond­
ing cable-cable interferences regions. 
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(a) 3D view, cp= 0, (} = 0, '1/J = 0 

(b) Top view, 4> = 0, (} = 0, '1/J = 0 (c) Sideview4J=0, 0=0, '1/J=O 

Figure 4.13: Second optimum with six cables for example 4.4. 
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Iteration number 

Figure 4.14: Evolution of the objective of example 4.4 for the second solution. 

tool to over-estimate the prescribed workspace with a set of such boxes. The procedure 
is the same as the one we used to estimate the planar prescribed workspaces in Chapter 
3. For the sake of conciseness, we avoid reexplaining it here, and rather refer the reader 
to example 3.3. Once the appropriate set of boxes has been computed, nonlinear 
program (4.44) can be directly applied to solve the dimensional synthesis of CDPMs. 
We illustrate this with the following example. 
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(a) cp = — 7r/12 rad, 9 = —7r/12 rad, ip = —7r/12 rad 

r r » « »■• Uj " 

(b) 0 = 0 rad, 0 = 0 rad, ip = 0 rad 

o.i I " •■ r « «s •< «' 

(c) 0 = 71­/12 rad, 9 = 7r/12 rad, 0 = TT/12 rad 

Figure 4.15: COWCWs of the second resulting CDPM of example 4.4 and the corre­

sponding cable­cable interference regions. 
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Example 4.5 The Dimensional Synthesis of a CDPM for a Prescribed 
Irregular Three-Dimensional Workspace 

Suppose that we seek for a CDPM whose WCW includes a prescribed workspace 
with the shape of a unit ball represented by (x — 2)2 + (y — 2)2 + (z — 2)2 = 1 within 
the same orientation range as in the previous example. We set the number of cables to 
eight and the geometry of the CDPM is bounded within the values provided in Table 
4.8. 

Table 4.8: Bounds on the geometry of the spatial CDPM of examp 
T 

a 
—T 
a 1  b T b 1  

[0 0 0] [5 5 5] -0.5 - .5 -0.5] [0.5 .5 0.5] 

le 4.5. 

A good approximation of this sphere is depicted in Fig. 4.17. Such an approxima­
tion includes 54 boxes, and cover the entire sphere. 

However, applying problem 4.44 for these multiple boxes requires solving a nonlinear 
program with 308273 variables and 155844 equality constraints. So as to give the reader 
an idea of the size of the direction finding sub-problem of the PSLP method, this 
means solving a linear program with 587825 variables, 308321 inequality constraints 
and 161280 equality constraints at each iteration. Evidently, this requires a high-
performance computer with a strong CPU and a large amount of memory. Instead, we 
elect to use a rough approximation of this prescribed workspace by only 16 boxes as 
depicted in Fig. 4.17. 

For such approximation, we have to solve the corresponding nonlinear program with 
88113 variables and 46176 equality constraints. In each iteration of the direction finding 
subproblem of the PSLP method, we must solve a linear program with 167985 variables 
and 88161 inequality constraints and 46080 equality constraints. Unfortunately, linprog, 
the built-in linear program solver of Matlab, is relatively slow to solve such large scale 
problems, and requires large amounts of memory. Instead, we resort to IBM ILOG 
CPLEX version 12.3 [45] integrated with Matlab, through which we call its linear 
program solver CPLEXLP. This solver is capable of parallel optimization via shared 
memory parallelism and enjoys good memory-management properties. We use the 
concurrent optimizer [46] of this solver which runs the dual simplex, the primal simplex, 
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Figure 4.16: A good approximation of the unit ball with 54 boxes. 

and barrier methods in parallel on different microprocessors and terminates as soon as 
the first method finishes. 

The mechanism depicted in Fig. 4.18 is the CDPM obtained by applying the PSLP 
method to problem (4.44) while using CPLEXLP as linear program solver during the 
solution procedure and with the initial geometry reported on Table 4.9. 

The coordinate values of the final geometry are reported in Table 4.10, and the 
evolution of the objective is shown in Fig. 4.19. The optimum objective value for 
this example is s* = 0.1319 and the corresponding COWCWs and their cable-cable 
interference regions are shown in Fig. 4.20. This figure shows that the corresponding 
COWCWs cover the scaled boxes, depicted with dashed lines, which are smaller than 
the prescribed boxes, depicted with solid line. Using the same machine mentioned in 
example 4.3, it took twelve hours and 59 minutes to obtain this result. Although we 
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Figure 4.17: A rough approximation of the unit ball with 16 boxes. 

Table 4.9: Initial geometric parameters of example 4.5. 
i a i , 0 b T 

u i ,0 
1 [4.4545 3.1258 3.5588] [-0.0530 - 0.0917 -0.1943] 
2 [4.3631 2.6244 1.0961] [0.3497 - 0.4420 - 0.2606] 
3 [3.0892 4.1774 0.4404] [0.2094 0.2531 - 0.0391] 
4 [1.2424 4.3662 3.4800] [0.3146 - 0.0028 - 0.1019] 
5 [1.7157 3.6551 2.4686] [0.4722 0.2395 0.1641] 
6 [3.8849 2.2735 1.8958] [-0.0092 0.4212 - 0.3672] 
7 [2.5938 2.8668 0.6995] [0.3914 0.4546 - 0.0284] 
8 [1.0909 3.7087 0.0040] [-0.4818 0.2894 -0.1322] 

ended with a scaling factor smaller than one, notice that we are left with a CDPM 
design which is not perfect but nevertheless seems to cover the major part of the pre­
scribed boxes with its corresponding COWCWs. Notice that using CPLEX integrated 
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Table 4.10: Geometric parameters of the CDPM shown in Fig. 4.18. 
i T 

Ki * 
1 [5.0000 1.9522 4.9169] [-0.2193 - 0.5000 - 0.3040] 
2 [5.0000 0.3122 0] [-0.1917 -0.4566 0.1850] 
3 [1.6660 5.0000 1.8937] [0.4380 0.4980 0.1310] 
4 [0 4.5004 5.0000] [-0.4392 - 0.5000 - 0.3456] 
5 [0.0422 0.0000 5.0000] [0.4341 0.4940 0.4274] 
6 [0 0.0000 0.1995] [0.1515 0.2452 -0.5000] 
7 [5.0000 2.7841 0.9454] [0.1645 0.4831 0.0893] 
8 [0.0000 2.0421 0.0000] [-0.3498 - 0.4354 0.2662] 

in Matlab enabled us to do the computation for this example in a reasonable time, 
while Matlab built-in function linprog is not capable of doing such calculation with the 
aforesaid machine. Also, increasing the number of boxes or changing the initial guess 
may lead to results different from the optimum scaling factor reported here. But based 
on our experience, this may require several days of calculation and ending up with an 
optimum scaling factor that is very close to zero. The reported result in this example 
is the best we obtained among the different examples we tried. However, interested 
readers may try to find a better result. 
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Figure 4.18: The resulting CDPM for example 4.5. 
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Figure 4.19: Evolution of the objective of example 4.5. 

4.6 Conclusion 

An algorithm for the dimensional synthesis of spatial cable-driven parallel mechanisms 
was proposed. We extended the results obtained in Chapter 3 for planar cable-driven 
parallel mechanisms to formulate the dimensional synthesis of CDPMs. We formally 
defined the WCW of spatial CDPMs and introduced a linear program to compute 
the WCW of such mechanisms. This linear program provided us a foundation to 
find a formulation to determine whether a six-dimensional box, within the space of 
point-positions and Euler angles, is inside or outside of the WCW of a given CDPM. 
As in the planar case, considering the pose of the moving platform as optimization 
variables turned this linear program into a nonlinear program whose global solution 
determines whether the box lies completely inside of the WCW. The global optimum 
being difficult to find, we resorted to multiple-convex linear relaxations of this nonlinear 
program in order to find a computable sufficient condition for the prescribed box to be 
inside of the WCW. These linear programs are infeasible whenever the box is inside 
the WCW. Hence we calculated the duals of these optimization problems to end up 
with linear programs that are feasible whenever the prescribed box is inside the WCW. 
Combining all of these linear programs and considering the geometry of the CDPM 
as optimization variables lead us to a nonlinear feasibility problem. Any solution to 
this problem if it exists, provides a CDPM whose WCW is guaranteed to include 
a prescribed six-dimensional box. However, failure to find such a solution does not 
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(a) <p = -IT/12 rad, 9 = -TT/12 rad, ip = -TT/12 rad 

(b) 0 = 0 rad, 9 = 0 rad, ip = 0 rad 

(c) 0 = 7r/12 rad, 9 = 7r/12 rad, ip = 7r/12 rad 

Figure 4.20: COWCWs of the resulting CDPM of example 4.5 and the corresponding 
cable-cable interferences regions. 
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provide any information about a good but not perfect geometry. Hence, alike the 
planar case, we introduced an objective function and changed the feasibility problem 
into a nonlinear program. In fact, we considered the prescribed six-dimensional box 
as two three-dimensional boxes in the space of point-positions and Euler angles, and 
scaled only the first of the two, leaving the second constant. Evidently, depending on 
the application one could also give priority to the box of Euler angles by introducing 
its scaling factor as the objective to be maximized. Splitting the prescribed box into 
several boxes refines the relaxations and generally leads to better solutions. Hence, we 
extended the formulation obtained for one prescribed box to multiple prescribed boxes. 
The obtained formulation is applicable to irregular shapes approximated by multiple 
three-dimensional boxes. However, the resulting optimization problems quickly fall into 
the large scale category, as they consist of many variables and constraints. Solving such 
problems is always a challenge and may require an advanced solver and several hours of 
computation time. We illustrated the effectiveness of the proposed algorithm by some 
examples throughout the chapter. 



Chapter 5 

Conclusions 

In this chapter, the results obtained in the previous chapters are summarized, the contribu­
tions are highlighted, and future possible work is suggested. 

5.1 Summary of the Thesis 

In this thesis, a systematic study was conducted on the dimensional synthesis of cable-
driven parallel mechanisms (CDPMs). The dimensional synthesis of CDPMs consists 
in finding the geometry or design of a CDPM whose wrench-closure workspace (WCW) 
contains a prescribed workspace. Compared to the analysis problem, which is that 
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of finding the WCW of an existing CDPM, the synthesis problem is generally more 
difficult. In this study, we developed a formulation which led us to find different designs 
of CDPMs whose WCWs include prescribed workspaces. 

In chapter one, cable-driven parallel mechanisms and their characteristics, including 
their advantages, disadvantages, and applications, were introduced. We reviewed the 
classification of these mechanisms based on their numbers of cables and degrees of 
freedom, which was followed by an overview of the relevant literature. 

In Chapter 2, the analysis of planar cable-driven parallel mechanisms (PCDPMs) 
was investigated as a requisite to our main concern, their dimensional synthesis. We 
recalled the kineto-static model of PCDPMs, which provided the basic mathematical 
expressions for the synthesis problem. We showed that the concept of workspace is dif­
ferent for CDPMs compared with conventional parallel mechanisms, due to the nature 
of cables, which always have to be in tension in order to apply a force on the main 
platform. Consequently, we introduced the concept of the wrench matrix and formally 
defined the wrench-closure workspace (WCW) of CDPMs. We introduced a linear pro­
gram to calculate the WCW of PCDPMs. We pushed further the analysis and, showed 
that there are relationships between the boundaries of the constant-orientation WCW 
(COWCW) of PCDPMs and the oriented area concept. We already knew that the 
boundaries of COWCWs of PCDPMs are formed by segments of conic sections. The 
equations of these conic sections are represented by three by three determinants, which 
are constructed by different combinations of the three selected columns of the wrench 
matrix. We showed that the the equations of these conic sections are related to the 
geometry of the triangles made by the corresponding triplets of fixed and moving at­
tachment points of the mechanism. We proved that whenever the two triangles have 
the opposite orderings of vertices then the conic section is a hyperbola. For the case in 
which the two triangles have the same ordering, we developed a graphical algorithm to 
identify the type of the corresponding conic section. The algorithm is based on some 
interesting properties of parabolas. We showed that the developed algorithm can be 
applied to find the type of singularity curves of 3RPR planar parallel mechanisms as 
well, because of the similarities between the Jacobin matrix of a 3RPR planar par­
allel robots and wrench matrix of a PCDPMs. We hope that the results reported in 
this chapter can lead to the development of a graphical method for tracing the bound­
aries of the constant orientation wrench-closure workspace of a given planar parallel 
cable-driven mechanism. 
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In Chapter 3, we focused on the dimensional synthesis of planar cable-driven parallel 
mechanisms. In order to find a basic formulation, we began with the simpler case of the 
constant-orientation dimensional synthesis. In other words, we proposed a method for 
finding a PCDPM whose WCW includes a prescribed constant-orientation workspace. 
To this end, we used Stiemke's theorem to introduce a linear program which is fea­
sible if and only if a given pose is outside of the WCW. The relaxation of this linear 
program over a box of constant-orientation workspace led us to eight distinct linear pro­
grams whose optimal solutions determine whether a given box is inside of the COWCW 
of the provided PCDPM. The relaxation is based on the Reformulation-Linearization 
Technique (RLT) which changes non-convex constraints into convex constraints. The 
resulting linear programs are feasible whenever the examined box is outside of the 
COWCW. Based on this relaxation, we introduced the contracted COWCW concept 
by which the COWCW is underestimated with a set of boxes, its size depending on the 
size of the approximating boxes. Since, we were interested in finding a convex problem 
which is feasible whenever the examining box is inside the COWCW, we computed the 
duals of these eight distinct linear programs. Assembling these dual linear programs 
and including the geometry of the PCDPM in the decision variables provided us a 
nonlinear feasibility problem for the synthesis of these mechanisms. The solutions to 
this problem, if they exist, provide us with a PCDPM whose COWCW includes the 
prescribed box. On the other hand, the absence of such solutions gives no information, 
even though a feasible solution may exist, having been discovered by the relaxation. 
For this reason, we appended our feasibility problem with the scaling factor of the 
prescribed box, as the objective function to be maximized. This led us to a nonlinear 
program, which is the formulation sought for the dimensional synthesis of CDPMs. 
Maximizing this objective function and obtaining optimum scaling factor greater or 
equal to one then guarantees that the prescribed box is included in the COWCW of 
the obtained PCDPM. Otherwise, we are left generally with a good but not perfect 
geometry of a PCDPM. 

Since the main challenge here is to design a robot whose workspace includes a 
prescribed workspace of irregular shape, we proposed to use interval analysis to ap­
proximate such irregular shapes with multiple boxes. Hence, we adapted the aforesaid 
nonlinear program so that it takes into account n prescribed boxes. Solutions to the 
resulting formulation provide PCDPMs whose COWCW contains the prescribed set of 
boxes. We also showed that the developed nonlinear program can be applied to find 
the geometry of a PCDPM whose COWCWs defined at several orientations contain a 
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prescribed workspace. 

The developed formulations in the first part of Chapter 3 are restricted to constant-
orientation workspaces. In practice, we look for designs of PCDPMs which are capable 
of operating within a continous range of orientations. In order to accommodate this 
more general case, we included the orientation angle of the main platform as a variable in 
our calculations. Hence, we considered a three dimensional box whose first and second 
dimensions represent the position of a point, while the third represents the orientation 
angle. We converted from the linear program obtained through the Stiemkie's theorem 
to verify the WCW. This problem was relaxed over a 3D box in the workspace to find 
a necessary condition which determines whether the box is inside the WCW of the 
provided PCDPM within a given range of orientation angles. This led to a nonlinear 
program whose optimum value equals to zero when the given 3D box is inside the 
WCW of the provided PCDPM. Since finding the global optimum is a difficult task, 
we resorted to convex relaxation over this three-dimensional box. This led us to eight 
distinct linear programs, which provided sufficient conditions for the prescribed box to 
lie inside the WCW within a given range of orientations. This allowed us to compute 
the contracted WCW, which is a subset of the Cartesian space that is guaranteed to 
lie inside the WCW. 

As in the case of the constant-orientation dimensional synthesis, we calculated the 
dual of these eight distinct linear program to find a linear program which is feasible 
whenever a prescribed three-dimensional box lies inside the WCW. Considering the 
geometry of the PCDPM as optimization variables, led us to a nonlinear feasibility 
problem whose solutions are feasible PCDPM designs. However, the failure to obtain 
such solutions does not imply that there is no PCDPM design whose WCW includes 
the prescribed box. In order to find those designs, we used the same objective function 
introduced for the constant-orientation synthesis problem of PCDPMs, thus turning 
the feasibility problem into a nonlinear program. If the value of the objective function 
at the optimum point is greater or equal to one then we obtain a PCDPM for which 
the WCW includes the prescribed box. Developing this nonlinear program for multiple 
boxes, which may represent an approximation of the prescribed workspace, yields a 
nonlinear program for the dimensional synthesis of PCDPMs. This nonlinear program 
can be a medium or large scale problem, depending on the numbers of cables and 
prescribed boxes. Therefore, solving this optimization problem is a challenge, which 
was overcome by resorting to Penalty Sequential Linear Programming (PSLP). The 
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effectiveness of the developed algorithms for the dimensional synthesis of PCDPMS 
were illustrated through Chapter 3 via several examples. 

In general, planar robots have limited applications compared with their spatial 
counterparts. Cable-driven parallel robots are no exception, and for this reason, we 
investigated the dimensional synthesis of spatial cable driven mechanisms in Chapter 
4. The approach towards a proper formulation for the dimensional synthesis of these 
mechanisms was similar to that of the planar case. We recalled the kinetostatic of spa­
tial CDPMs and introduced a formulation for the wrench matrix of these mechanisms. 
We formally defined the WCW of spatial CDPMs and introduced a linear program 
by which one can verify the WCW membership of a given MP pose. Considering the 
point-position vector and the rotation matrix as optimization variables of this linear 
program yields a nonlinear program whose global solution over a six-dimensional box to 
be out side of the WCW. In fact, this 6 dimensional box may beviewed as the Cartesian 
product of two three-dimensional boxes associated respectively with point-position and 
orientation of the MP. An unbounded nonlinear program indicates that at least one 
pose of the prescribed box is not inside the WCW, while ending up with zero as the 
global optimum means that the box is completely inside the WCW. 

Since finding the global optimum is very difficult in general, we relaxed the non 
convex constraints of this nonlinear program into convex constraints over the prescribed 
box thus making it easier for a pose to be excluded from the WCW. To this end we had 
to introduce sixty-four distinct linear programs, which represented a us linear sufficient 
condition for a six-dimensional box to lie inside the WCW of a spatial CDPM. Alike for 
planar CDPMs, we showed the effect of this relaxation over the WCW by introducing 
the contracted WCW. 

Calculating the dual of these distinct linear programs and including the geometry 
of the CDPM among the optimization variables lead to a nonlinear feasibility problem. 
The solutions to this nonlinear feasibility problem, if they exist provides designs of 
CDPMs whose WCWs include the prescribed six-dimensional box. Alike the planar 
case, we turned this feasibility problem to a nonlinear program by introducing an ob­
jective function. This objective function is the scaling factor of the prescribed box. We 
showed that the WCW of the obtained CDPM is guaranteed to include the prescribed 
six-dimensional box whenever this scaling factor is equal to or greater than one. In­
terestingly, we observed that the CDPMs resulting from this synthesis method exhibit 
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relatively small interferences regions, as some of their attachment points coincide. We 
extended this formulation to compute designs of CDPMs to prescribed six-dimensional 
workspaces approximated by multiple boxes. The resulting nonlinear program for the 
dimensional synthesis of spatial CDPMs is generally a large scale problem, depending 
on the numbers of cables and boxes. Solving such a problem remains a challenge and 
requires high-performance algorithms and computers. This has led us to use the IBM 
Cplex solver integrated with Matlab to solve the direction-finding subproblems of the 
PSLP algorithm. The effectiveness of the developed algorithms were illustrated by 
implementing them in Matlab and applying them to several examples. 

5.2 Contributions 

The contributions of this thesis to the literature of cable-driven parallel mechanisms 
are highlighted below. 

We revealed hidden geometric properties of the boundaries of the constant-orientation 
wrench-closure workspace of planar cable-driven parallel mechanisms. We showed that 
there is a relationship between the boundaries of COWCWs of PCDPMs and the con­
cept of oriented area concept. We introduced a graphical algorithm to verify the types 
of conic sections forming the boundaries of COWCWs of PCDPMs. This algorithm 
applied to find the type of singularity curve of 3RPR planar parallel robot as well. 

Applying the convex relaxation techniques to the dimensional synthesis of cable-
driven parallel mechanisms was reported for the first time in this thesis. These tech­
niques allow for a formulation for the dimensional synthesis of planar and spatial cable-
driven parallel mechanisms. It is believed that these techniques may be suitable for 
synthesizing conventional parallel mechanisms as well. Indeed, these manipulators are 
limited by their singularity regions, which are represented by polynomial equality con­
straints. Relaxing these equality constraints over a box in the workspace provides a set 
of convex constraints that, when satisfied, are sufficient for a box to be free of singu­
larities. However, the effectiveness of these methods must be compared with currently 
available methods. 

Implementing the developed algorithms in Matlab via computer codes and func-
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tions enables the designers to perform the dimensional synthesis in practice.Structural 
synthesis may be solved through these codes as well, by varying the number of cables, 
once the dimensional synthesis solved. 

5.3 Future Works 

This thesis provides a foundation for the following topics, which may deserve some 
attention in the future. In this thesis we gave priority to the point-position rather than 
orientation during the development of the formulation for the dimensional synthesis 
of CDPMs. However, depending on the application, we may require a CDPM which 
is capable of operating in wide ranges of orientations. Introducing a multiobjective 
function including scaling factors for both the point-position and orientation boxes 
seems to be a good method of turning the obtained feasibility problem into a nonlinear 
program. The effect of this proposed method may be greater when synthesizing spatial 
CDPMs, as the orientation workspace has three dimensions and suffers from coarser 
relaxations of its constraints than planar case. However, this may increase the size of 
the problem, which is already in the large-scale category. 

Including a kinematic sensitivity index in the objective function may result in a 
CDPM design whose WCW is guaranteed to include a prescribed workspace, but also 
enjoys good kinematic properties. 

Considering the number of cables as optimization variables, may lead to develop 
a formulation for the dimensional and structural synthesis of CDPMs simultaneously. 
The resulting formulation will be a mixed integer nonlinear program, the solution of 
which is even more challenging. 

Considering the cable interference problem during the prescribed-workspace syn­
thesis is another interesting topic. This may be done by introducing the inequality 
constraints that guarantee a minimum distance between the cables, and adding them 
to the constraints of the developed nonlinear programs. 

Applying the procedures presented in this thesis for wrench feasible concept may 
lead us to designs of CDPMs whose wrench feasible workspaces include a prescribed 
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workspace. This is more interesting from a practical point of view, as tensions in cables 
are limited to maximum possible tensions due to their limited strength. 

Finally, finding the global optimum for the developed optimization problems will 
lead to the best possible design of CDPMs. Applying the branch and bound method [38] 
may result achieving such a global optimum. 
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Appendix A 

The Gradients Corresponding to Problem (3.25) 

As we mentioned in example 3.2, we may provide with gradients of the nonlinear objective and 
constraints for the "trust­region­reflective" algorithm in order to accelerate the calculations. 
In this appendix, we report the symbolic expressions of these gradients. 

A.l Linear and Nonlinear Constraints Appearing 
in Problem (3.25) 

In order to accelerate the calculations of problem (3.25), we can specify the gradi­

ents of corresponding nonlinear constraints thorough the required function of nonlin­

ear constraints for fmincon. Hence, regarding the vector of optimization variables as 
x ^ = [YIJ af • • ■ a£ bf • • • b£ s]T e RMm+8^ w e split matrix R k j into a linear 
matrix Rk,j,i and a nonlinear matrix Rkj,ni as follows. 
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UlJn Of -diag(o- j) diag(o-j) 

- f B T Q T E r 

a 0 , j P — C 0 j l 2 x 2 

2x(m+8) 

i T 

(A-l) 

- ( A - Q B ) J 

02x2 

0_x2 -<rojP ffiylaxa 
diag(o-j)diag(p) 02 02X2 

-diag(o-j)diag(p) 02 02 x 2 

This allows us to split, the equality constraints of problem (3.25) into linear and non­
linear equations as 

Rk,j,iYk,j + ë i = 02, 

Rfcj.njyjfej + g„/ = 03, fc = 1 , . . . , n, j = 1, • • • , 8 

(A-2) 

(A-3) 

iT 
where gn, = -l£(A - QB) T -l£f l£B TQ TE T € R 5 and gl = ml2. 

Clearly, the Jacobian matrices of the linear equations are R^jj- Let us now we can 
calculate the corresponding gradients of eq. (A-3). 

A.2 Gradients of Nonlinear Equality Constraints 
of Problem (3.25) 

In order to calculate the gradients of the nonlinear equality constraints appearing in 
problem (3.25) let us define the function vec() as follows 

u p ] r G vec() : Rpxg —> RW vec(U) = [m u2 

VU G R p x q, U = [uf uf ... uJ] T, Ui 6 R l x q, i =-- 1,... ,p. 

Then, the Jacobian matrix of the nonlinear equality constraints appearing in problem 
(3.25) is given by 

0(8(m+8))x40 

0(8(m+8))x40 

VH 

H i 0(8(m+8))x40 

0(8(m+8))x40 H 2 
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N_ N 2 
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n(m+8)+4m+l)x40n 



where 
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RT k,l,nl 
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O(m+8)x5 
RT k,2,nl 

O(m+8)x5 
O(m+8)x5 

E JR8(m+8)x40 
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O(m+8)x5 O(m+8)x5 Rf,s,nl 
Nk [Gk,l Gk,s] E JR(4m+l)x4o, 

-vec( diag(tk,j )BTQfET) 
-vec( diag(tk,j )ATEQk) 

Ik,j - diag(vec(tk,j1D)L1, 
tk,j - (lm + ltYk,j), 
lt - [1mxm Omxs] E 1Rmx(m+8), 
Iv [ 12x2 12x2 · · · 12x2] T E IR2mx2, 

E JR(4m+l)x5, 

hk,j- -diag(uj)(diag(p- Pc)IJ Yk,j- diag(p- Pc)Ig_ Yk,jf, 
I [0 0 1 0 l E TID2X(m+8) 

4 - 2xm 2x4 2x2 2x2 m. , 
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ëi = 2xm) 2x6 2x2 m. , 
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Appendix B 

The Matrix and Vector Appearing in Problem 
(3.46) 

In this appendix, we present the expressions of matrix Uj and vector h j , which appear in 
eq. (3.46). In order to accelerate the solution of problem (3.46) via a gradient method, we 
also calculate the corresponding gradients of the nonlinear constraints in this problem. 

B.l The Expressions of Matrix U, and Vector h 

The expressions of matrix Uj G fl£i5x(m+24) a n c [ v e c _ o r h^ e M15 are given as follows: 
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B.2 The Gradients of the Nonlinear Constraints of 
Problem (3.46) 

In order to find an optimal solution to problem (3.46) through a gradient method, 
such as the PSLP algorithm we calculate the gradients of the nonlinear constraints 
of this problem. Hence, upon defining the vector of optimization variables as x_pt = 

\yh a ' bf ­ <K s] Te in(m+24)+6m+i ̂  w e s e p a r a t e the linear and nonlin­

ear appearing terms in matrix Ukj, j = 1 , . . . . 8, fc = 1, • • • , n, which yields 



138 

u k,j,nl — 

A T  B T  B T E T B T E T B T  u v 

-diag(o-j)diag(pJ t) 02x2 Û2x2 02x2 02x2 0_ o2 
diag(<r j)diag(p /

fc) Û2x2 Û2x2 Û2x2 02x2 o_ o. 
-çdiag(_Tj-) -diag(<rj) Û2x2 02x2 02x2 o_ 02 

cdiag(<Tj) diag(o-j) Û2x2 Û2x2 02x2 o2 02 

- sd iag(o- j ) Û2x2 -d iag(cr j ) 02x2 02x2 0 , o2 
sdiag(cTj) 02x2 diag(o-j) 02x2 02x2 02 o2 

02x2 02x2 02x2 — c r0,jl2x2 02x2 o_ 02 

02x2 Û2x2 02x2 0O,jl2x2 02x2 o. 0. 
02x2 Û2x2 02x2 02x2 00,. 12x2 02 02 

02x2 02x2 Û2x2 02x2 — 0O,jl2x2 02 0, 
Of of Of of of a0,j 0 
Of Of of of of -0o,_ 0 
o_ of of of oj 0 0o,. 
ol o! of of of 0 _ 0 o , j 

and 

Ufcj,/ = 
<£ Of Of Of O-QJQLI -o0 jOLk 

lalS " -diag(cr j) diag(cr i) 0 8 x 2 0 2 x 2 02x2 

ao,jÊÏ 
—T 

-°0,j&k 00,. Ç —O-QJC O0jS — cr0 j s 
T 

0 2 x 2 02x2 o2 o2 o2 o2 

which leads us to rewrite the equality constraints of problem (3.46) as 

Vk,j,iYk,j + hi = 03, 

~Uk,j,niYk,j + Ki = O12, fc = 1 , . . . , n, j = 1,. . . ,8, 

where 

(B-l) 

(B-2) 

(B-3) 

ht = [0 ml_] y G 

h>i - U n - l l v - l £ A r _ l B r _ Z B r E r l £ B r E r - _ £ B 

Then, the Jacobian matrix of eq. (B-3) is given by 

VH 

where 

H i 0(8(m+24))x96 ' 

0(8(m+24))x96 H 2 

0(8(m+24))x96 0(8(m+24))x96 " 

N_ -N2 

(8(m+24))x96 

(8(m+24))x96 

Hr; 
N„ 

, T 

n(m+24)+4m+l)x96n 

,12 



and 

H, 

Rfc.l.nJ 0 ( m + 2 4 ) x l 2 

0 ( m + 2 4 ) x l 2 

0(m+24)xl2 

0( m +24)x l2 

0 ( m + 2 4 ) x l 2 0(„_+24) x 12 • ' • 

N f c s [G*, i ••• G M ] e E ( 4 m + 1 ) x 9 6 

^,8,711 

m+24)x96 
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(B­4) 

(B­5) 

G*kj — 

IfcJ 0 2 m x 2 0 2 m x 2 0 2 m x 2 0 2 m X 2 

Û2mx2 I/.,. I A ; J E IjfcjE Ijfej 

hkj Of of of of 

vec(diag(t fc j)BTET) ­vec(diag(t f c j)B r) 
vec(diag(tjtj)ATE) ­vec(diag(tfcTj)Ar) 

0 0 

in which 

m + l ) x l 2 

diag(vec(t fc jlf))Iv, 

( l m + I_yfcj), 

[•■­mxm "mx24j £ 

L
2x2 J-2x2 

omx(m+24) 

l T 
1-2x2 

2mx2 

(B­6) 

(B­7) 

tfcj 

It 

Iv 

hktj = diag(crJ)(diag(pfc - pc)I5 ykJ - diag(pfc - pc)I<* Yk,j) T, 

h =[02xm 12x2 02x22] É R 2*( m + 2 4> and Ij = [0_x(m+2) 12x2 02x2o] € R 2 x^+ 2"K 



Appendix C 

Penalty Successive Linear Programming (PSLP) 
Algorithm 

Sequential Linear Programming (SLP) is a method to solve nonlinear programs in which at 
each iteration, a direction-finding linear program is formulated based on first-order Taylor 
series approximations to the objective and constraint functions, in addition to appropriate 
step bounds or trust region restrictions on the direction components. 

The Penalty Successive Linear Programming (PSLP) algorithm is a special class of algo­
rithm of SLP, which employs the _i-norm penalty function as the direction-finding problem 
itself, rather than as only a merit function, and enjoys good robustness and convergence 
properties. In this appendix we explain the method very briefly. For more details, see refer­
ence [38]. 
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C l A general Nonlinear Program 
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The problem we consider is of the form 

P : minimize / (x) 

subject to _/j(x) < 0 i = 1, 

hi(x) = 0 2 = 1 , 

A x ^ b, 

Aex 

• • )  ng, 

Mh, 

(C­l) 

where all functions are assumed to be continuously differentiable, and the latter two 
sets of constraints represent the linear constraints. Now, let FE{X) be the ii­norm or 
absolute­value, exact penalty function of eq. (C­l), namely, for a penalty parameter 
PP > 0, 

FE(x) = f(x) + pp 
n g ri/j 

£max{0,#(x)}+EMx) 
i = l i= l 

(C-2) 

Accordingly, consider the following linearly constrained penalty problem PP: 

P P : minimize F E ( X ) , 

subject to Ax ■< b, 

A ex = b e . 

(C-3) 

Substituting yi for max{0,g.(x)}, i = l , . . . , n g , and writing /ij(x) as the difference 
zf — Zj~of two nonnegative variables, where |/ii(x)| = zf — z~, for i = 1 , . . . , Uh we can 

ng rih 

2Zyi+Z(zt­z') 
L_=l i = l 

(C­4) 

rewrite eq. (C­3) without non differentiable terms as follows: 

PP : minimize /(x) + pp 

subject to y{> gi(x), i = 1,..., ng, 

zf ­ zï = hi(x), i = 1 , . . . , nh, 

Ax ^ b, 

A e X = De, 

yi > 0 i = l,...,ng,, 

zf and z~ > 0 i — 1 , . . . , n/j. 

Equation (C­4) is equivalent to eq. (C­3) and may also be viewed as an optimization 
problem in the variable x. 
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In order to solve problem P P , consider a current iterate x^ and a trust region or 
step­bound vector A*, with the same dimensions as x. Then, the linearization of P P , 
given by eq. (C­3) combined with imposed trust region step bound on the variation of 
x about Xk leads to 

LP : Minimize FEL(x) = f(xk) + Vf(xk) T(x ­ xk) 

+ pp ^2 max{0, _/j(xfc) + Vgi(xk)T(x - xk)} 
j = i 

:|/i t(x fc) + V/i i(x f c)
T
)(x-x f c) | 

i = l 
(C­5) 

subject to Ax ■< b, 

A e X = De, 

­ Ak ^ x ­ xfc ^ Afc. 

Similar to eq. (C­4), this can be restated as the following linear programming problem, 
where we have also used x = xfc + d and have dropped the constant /(xfc) from the 
objective function: 

« h 

(C-6) 

,nh. 

LP(xfc,dfc) : Minimize V/(xfc)
r(x ­ xfc) + pp ^ Vi + _C(^ + ­ zt ) , 

s - i t=i -I 

subject to yi > gi(xk) + Vgi(xk) Td, i = l,...,ng, 

zf ­ z~ = hi(xk) + S/hi(xk)Td i = l , . . . , n h , 

A(xfc + d) ^ b , 

Ae(xfc + d) = b e , 

­ Afe ^ d ^ Afc 

Vi __ 0, i = \ , . . . ,ng, zf and z~ > 0 i = 1 , . . . , : 

The linear program LP(xfc,dfc) given by eq. (C­6) is the direction­finding subproblem 
that yields an optimal solution dfc, say, along with the accompanying values of y^i = 
1, . . . ,ng , and zf, z~, i = 1 , . . . , nh, which are given as follows 

yi = max{0, gi(xk) + Vgi(xk) Tdk}, i = 1,..., ng, 

zf =max{0,hi(xk)­rVhi(xk) Tdk}, i = l,...,nh, 

z~ = max{0, ­[hi{xk) + V hi{xk) T dk]}, i = l,...,nh 

so that zf + z~ ■= hi(xk) + Vhi(xk) T)di 

(C­7) 

, i= l,...,nh. 
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The decision whether to accept or to reject the new iterate xfc + dk and the ad­
justment of the step bounds A k is made based on the ratio Rk of the actual decrease 
AFE k in the penalty function F E , to the decrease AFELk predicted by its linearized 
version F E i k , provided that the latter is nonzero. A summary of the PSLP algorithm 
is provided below. 

C.2 Summary of the Penalty Successive Linear 
Programming (PSLP) Algorithm 

Initialization Set the iteration counter fc = 1, and select a starting solution Xi, along 
with the trust region vector A^ >- 0. Let A L B y 0 be some small lower bound tolerance 
on Ak . Additionally, select a suitable value of the penalty parameter pp . Choose values 
for the scalars 0 < p_ < P\ < P2 < 1 to be used in the trust region ratio test, and for the 
step bound adjustment multiplier 3 G (0,1). (Typically, p0 = 10~6,pi = .25, p2 = .75, 
and 3 = .5.) 

Step 1: Linear Programming Subproblem Solve the linear program LP(xfc, dk) 
to obtain an optimum d^. Compute the actual and predicted decreases, AFEk = 
FE(xk) - FE(xk + dfc) and AFE L k = FE L(xk) - FE L(xk + dk). If AFE L k = 0 then stop. 

AFE k Otherwise, compute the ratio Rk = . If Rk < po, then the penalty function has AFELk 

either worsened or its improvement is insufficient. Hence, reject the current solution, 
shrink the A^ to 3A k , and repeat this step. On the other hand, if Rk > po, then 
proceed to Step 2. 

Step 2: New I te ra te and Adjustment of Step Bounds Let x^+i = xk + dk. If 
Po < Rk < p\ then shrink the A& to Ak+X = 3A k , since the penalty function has not 
improved sufficiently. If pi < Rk < p2, then retain A^+i = Ak . On the other hand, if 
Rk >p 2, amplify the trust region by letting Afc+1 = A k / 3 . In all cases, replace Afe+1 

with max{Afc+i and A L B } , where max{.} is taken componentwise. Increase fc by 1 
and go to Step 1. 



Appendix D 

Matrix R, and Vector g Appearing in Eq. (4.32) 

In this appendix, we present the expressions of the matrix Rj and vector g appearing in 
eq. (4.32). Moreover, in order to solve problem (4.32) via a gradient -based method, we must 
calculate the derivative of the nonlinear constraints in this problem. This appendix presents 
these gradients as well. 

D.l Expressions of Matrix Uj and Vector g 

The vector g G M45 and the matrix R, e R45x(™+78) appearing in eq. (3.14) are 

g ^ [-l£Ar Of mlf l ^ l f l ^ I f - l £ l J T ( 

144 



145 

Rj = 

-A T  

-diag(o-j)diag(p) 
diag(«rj)diag(p) 

-diag(vec(Q diag(<rj)))ICT 
diag(vec(QTdiag(o-J)))I(7 

OgX3 
0gx3 
0i8x3 
Oi8x3 

1 1 T  

diag(crj) 
-diag(<ry) 

09x3 
0gx3 
0gx3 
09x3 
0i8x3 
0i8x3 

where 

L> = 
13 03 

o3 13 

03 03 

03 

03 

13 

B rIf 
03x9 

03x9 

diag(ICTfrj) 
-diag(I(T (Tj) 

09x9 
09x9 
0i8x9 
0i8x9 

.9x3 

0 m x 3 

0 3 x 3 

0 3 x 3 

0gx3 

09x3 

-diag(vec(Vdiag(Tj)))ICT 

diag(vec(Vdiag(rj)))I(7 

-diag(vec(diag(I6r j)Q I Î,2)IT 

diag(vec(diag(I6rj)Qx!/2)IT 

B r I f 
03x9 

03x9 

09x9 

0gx9 

diag(ICTrj) 
- d i a g ( I a T j ) 

0 i8x9 

0 l8x9 

-IA 

O3XI8 

O3XI8 

O9XI8 

O9XI8 

0 g x i 8 

O9XI8 

di&g(lTTj) 

- d i a g ( I T T j ) 

I A = 

L = 

(vec(E i a i bf) ) T (vec(Ey a ibf))T (vec(E,a_bf))5 

(vzc(Examb T
m))' 

P 

13x3 13x3 

i 6 o6 06 

06 le 06, 
06 06 16 

iT 
1-3x3 

(vec(Eyambm)f 
s- n_9x3 

(vec(E2amb£))^ 

»18x3 

»mxl8 
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D.2 Gradients of the Nonlinear Constraints 
Appearing in Eq. (4.44) 

In order to find a locally optimum solution to problem (4.44) through a gradient based 
descending method, like PSLP algorithm, we must calculate the gradients of the non­
linear constraints of this problem. Hence, upon defining the vector of optimization 

m + 7 8 ) + 6 m + 1 , we separate variables as x_pt = [yf j af • • • am bf • • • b m s]T € 
the linear and nonlinear terms appearing in matrices Rk , j , j = 1, 
which leads to the following new matrices 

. , 8 , fc = l, 

Rk,j,nl = 

x(m+78) 

Rk,j , l = 

-A T  B T I f B ^ I f -IA 

-diag(cr j)diag(pj t) 03x9 03x9 03x18 

diag(<r j)diag(p'J 03x9 03x9 03x18 

-d iag(vec(Q diag(<7j)))ICT diag(ICTcrj) 09x9 09x18 

diag ( vec ( Q Tdiag ( <Tj ) ) ) la -diag(I (Tcr j) 0gxg 09x18 

0gx3 0gX9 diag(ICTTj) 0 g x l 8 

0g X 3 0gx9 -diag(ICTTj) 0g x 18 

0 i 8 x 3 0 i8x9 0 i8x9 diag( I T r i ) 

0 i 8 x 3 0 i8x9 0 i8x9 -diag(ITTj) 

0 m X 3 1 1 T  T 

0 3 x 3 diag(o-j) 

0 3 x 3 -diag(o-j) 

0 g X 3 0gx3 

0 g X 3 0gx3 
£ J |6x(m+78 

-diag(vec(V f cdiag(r j)))ICT 0g X 3 

diag(vec(V f cdiag(r j)))I- 0g X 3 

-diag(vec(diag(I6T ;)Q I ! / 2))IT 0 l 8 x 3 

II. 

-[T 

diag(vec(diag(I6rj)Q^!/2))Ir 0 18x3 
This allows us to split the equality constraints appearing in eq. (4.44) into linear and 
nonlinear equality constraints as follows: 
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Rk,j,iyk,j + g; = o6, (D-l) 

Rk,j,nlYk,j + gni = O39. (D-2) 

The Jacobian matrix of the nonlinear equality constraints of problem (4.44) is given 
by: 

V H = 

H i 064(m+78)x2496 

064 (m+78) x 2496 H 2 

064(m+78)x2496 064 (m+78)x 2496 

N i N 2 

064(m+78)x2496 

064(m+78)x2496 

H n 

n(m+78)+6m+l)x2496n w h e r e 

(D-3) 

H k — 

DT r vk,l,nl 
0 

0(m+78)x39 

RÏ (m+78)x39 iLfc,2,n/ 

0(m+78)x39 0 ( m + 7 8 ) x 3 9 

_0(m+78)x39 0 ( m + 7 8 ) x 3 g 

(m+78)x39 

(m+78)x39 

(m+78)x39 

Rk,64,nl . 

m+78)x2496 

Nfc = [G M 'fc,64 G 
m+l)x2496 

Gk,j = 

- I 

of 

k,j 0 3 m x 9 0 3 m x 9 -diag(vec(tfe)Jlf))U(, 
03mx3 Ifcjlf Ifcjlf -diag(vec(t fc j-lf))Ua 

hfc,. O9 

IkJ = diag(vec(tfcj-lf ))I3m, 

tfcj = (lm + hYk,j), 
If = [lmvm 0mX78] ^ R m X ( m ^ 

s- i_>3mx3 

of8 

(6m+l)x39 

l3m — l 3 x ; 1-3x3 

hfcj = (diag(o-j)(diag(pfc - pc)_d y k J - diag(pfc - p c)I5 y*,,)) 

I 3 = [0 3 xm 13X3 03x72]GlR3><(m+78), 

Id = [03x(m+3) 13x3 03x69] G M * ( m + ' . 

The expressions of matrices U a and U(, are 

e2bf e3bf eibf e3bf d b f e2bf 
Lh 

e2hm e 3 b l e . b l e3b£ e . b l e2b 

ï3mxl8 

U_ — ["-y " -z " -x " - z " x -"-y J S 
_3mxl8 

(D-4) 

(D-5) 

(D-6) 
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where Ax = diag(vec(A reilf ))I3m, Ay = diag(vec(A re2lf ))I3m, A2 = diag(vec(A re3lf ))I3m 

and e,, i = 1 , . . . , 3, represents the canonical base vectors of IR3. 


