22,026 research outputs found

    Computer vision

    Get PDF
    The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed

    The geometry and matching of curves in multiple views

    Get PDF
    In this paper there are two innovations. First, the geometry of imaged curves is developed in two and three views. A set of results are given for both conics and non-algebraic curves. It is shown that the homography between the images induced by the plane of the curve can be computed from two views given only the epipolar geometry, and that the trifocal tensor can be used to transfer a conic or the curvature from two views to a third. The second innovation is an algorithm for automatically matching individual curves between images. The algorithm uses both photometric information and the multiple view geometric results. For image pairs the homography facilitates the computation of a neighbourhood cross-correlation based matching score for putative curve correspondences. For image triplets cross-correlation matching scores are used in conjunction with curve transfer based on the trifocal geometry to disambiguate matches. Algorithms are developed for both short and wide baselines. The algorithms are robust to deficiencies in the curve segment extraction and partial occlusion. Experimental results are given for image pairs and triplets, for varying motions between views, and for different scene types. The method is applicable to curve matching in stereo and trinocular rigs, and as a starting point for curve matching through monocular image sequences

    Invariant representation and matching of space curves

    Get PDF
    Space curves are highly descriptive features for 3-D objects. Two invariant representations for space curves are discussed in this paper. One represents space curves by complex waveforms. The other represents space curves using the 3-D moment invariants of the data points on the curves. Space curve matching using invariant global features is discussed. An algorithm for matching partially occluded 3-D curves is also presented, in which rigidity constraints on pairwise curve segments are used to determine the globally consistent matching. An association graph can be constructed from the local matches. The maximal cliques of the graph will determine the visible part of the model curves in the scene. Experimental results using 3-D curves obtained from stereo matching and edges detected from the range data are also presented

    Globally minimal surfaces by continuous maximal flows

    Get PDF
    In this paper we address the computation of globally minimal curves and surfaces for image segmentation and stereo reconstruction. We present a solution, simulating a continuous maximal flow by a novel system of partial differential equations. Existing methods are either grid-biased (graph-based methods) or sub-optimal (active contours and surfaces). The solution simulates the flow of an ideal fluid with isotropic velocity constraints. Velocity constraints are defined by a metric derived from image data. An auxiliary potential function is introduced to create a system of partial differential equations. It is proven that the algorithm produces a globally maximal continuous flow at convergence, and that the globally minimal surface may be obtained trivially from the auxiliary potential. The bias of minimal surface methods toward small objects is also addressed. An efficient implementation is given for the flow simulation. The globally minimal surface algorithm is applied to segmentation in 2D and 3D as well as to stereo matching. Results in 2D agree with an existing minimal contour algorithm for planar images. Results in 3D segmentation and stereo matching demonstrate that the new algorithm is robust and free from grid bias

    A Framework for SAR-Optical Stereogrammetry over Urban Areas

    Get PDF
    Currently, numerous remote sensing satellites provide a huge volume of diverse earth observation data. As these data show different features regarding resolution, accuracy, coverage, and spectral imaging ability, fusion techniques are required to integrate the different properties of each sensor and produce useful information. For example, synthetic aperture radar (SAR) data can be fused with optical imagery to produce 3D information using stereogrammetric methods. The main focus of this study is to investigate the possibility of applying a stereogrammetry pipeline to very-high-resolution (VHR) SAR-optical image pairs. For this purpose, the applicability of semi-global matching is investigated in this unconventional multi-sensor setting. To support the image matching by reducing the search space and accelerating the identification of correct, reliable matches, the possibility of establishing an epipolarity constraint for VHR SAR-optical image pairs is investigated as well. In addition, it is shown that the absolute geolocation accuracy of VHR optical imagery with respect to VHR SAR imagery such as provided by TerraSAR-X can be improved by a multi-sensor block adjustment formulation based on rational polynomial coefficients. Finally, the feasibility of generating point clouds with a median accuracy of about 2m is demonstrated and confirms the potential of 3D reconstruction from SAR-optical image pairs over urban areas.Comment: This is the pre-acceptance version, to read the final version, please go to ISPRS Journal of Photogrammetry and Remote Sensing on ScienceDirec

    Entropy-difference based stereo error detection

    Full text link
    Stereo depth estimation is error-prone; hence, effective error detection methods are desirable. Most such existing methods depend on characteristics of the stereo matching cost curve, making them unduly dependent on functional details of the matching algorithm. As a remedy, we propose a novel error detection approach based solely on the input image and its depth map. Our assumption is that, entropy of any point on an image will be significantly higher than the entropy of its corresponding point on the image's depth map. In this paper, we propose a confidence measure, Entropy-Difference (ED) for stereo depth estimates and a binary classification method to identify incorrect depths. Experiments on the Middlebury dataset show the effectiveness of our method. Our proposed stereo confidence measure outperforms 17 existing measures in all aspects except occlusion detection. Established metrics such as precision, accuracy, recall, and area-under-curve are used to demonstrate the effectiveness of our method

    Stereo Matching in the Presence of Sub-Pixel Calibration Errors

    Get PDF
    Stereo matching commonly requires rectified images that are computed from calibrated cameras. Since all under-lying parametric camera models are only approximations, calibration and rectification will never be perfect. Additionally, it is very hard to keep the calibration perfectly stable in application scenarios with large temperature changes and vibrations. We show that even small calibration errors of a quarter of a pixel are severely amplified on certain structures. We discuss a robotics and a driver assistance example where sub-pixel calibration errors cause severe problems. We propose a filter solution based on signal theory that removes critical structures and makes stereo algorithms less sensitive to calibration errors. Our approach does not aim to correct decalibration, but rather to avoid amplifications and mismatches. Experiments on ten stereo pairs with ground truth and simulated decalibrations as well as images from robotics and driver assistance scenarios demonstrate the success and limitations of our solution that can be combined with any stereo method
    corecore