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Globally minimal surfaces by continuous

maximal flows

Abstract

In this paper we address the computation of globally minimal curves and surfaces for image

segmentation and stereo reconstruction. We present a solution, simulating a continuous maximal flow

by a novel system of partial differential equations. Existing methods are either grid-biased (graph-based

methods) or sub-optimal (active contours and surfaces).

The solution simulates the flow of an ideal fluid with isotropic velocity constraints. Velocity

constraints are defined by a metric derived from image data. An auxiliary potential function is introduced

to create a system of partial differential equations. It is proven that the algorithm produces a globally

maximal continuous flow at convergence, and that the globally minimal surface may be obtained trivially

from the auxiliary potential. The bias of minimal surface methods toward small objects is also addressed.

An efficient implementation is given for the flow simulation.

The globally minimal surface algorithm is applied to segmentation in 2D and 3D as well as to

stereo matching. Results in 2D agree with an existing minimal contour algorithm for planar images.

Results in 3D segmentation and stereo matching demonstrate that the new algorithm is robust and free

from grid bias.

I. INTRODUCTION

Geometric optimisation methods provide an exciting approach to solving image analysis

problems. They have been applied with great success to image segmentation and to stereo

reconstruction. They explicitly acknowledge the uncertainty commonly present in the extraction

of geometric structures from images due to noise, occlusions and background clutter, and can

in some cases obtain provably best estimates according to a measure of quality appropriate to

the application.

Broadly speaking there are two classes of geometric optimisation techniques. One class is the

active contours methods, including snakes [1], level sets [2], [3] and geodesic active contours and

surfaces [4], [5]. Another class of methods taking a very different approach is the graph-based

methods including shortest paths [6] and graph cuts [7].
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Active contour methods model the evolution of a curve or surface toward a structure of interest

in an image. They are usually based on a variational approach, performing a gradient descent

flow to locally minimise an energy function whose minima ideally correspond to the objects

of interest in the image. Unfortunately there are usually an extremely large number of local

minima due to noise and irrelevant objects, and as a result active contours are highly dependent

upon their initialisation. A wide array of heuristics have been proposed to assist in avoiding

or overcoming these irrelevant minima, including pressure forces designed to overcome shallow

minima [8], multiresolution approaches designed to focus on objects which persist at high scales,

and methods which modify the gradient descent to favor more significant contours [9]. Despite

the advent of these heuristics active contours typically require manual intervention which limits

their application.

Graph-based methods are well known in image analysis and in stereo matching. [10] and

[11] were among the first to propose stereo matching by shortest paths. Shortest paths remain

competitive in current stereo research as they form the core of a number of minimal surface

methods [12], [13]. Graph cuts have also been applied to 3D reconstruction, sacrificing speed for

improved accuracy [14]. These methods are also used in image segmentation. [15] segmented

cell nucleii using a polar trellis centered on the nucleus. They computed shortest paths using a

Viterbi or dynamic programming approach. Graph-based methods may obtain optimal solutions

to the associated minimisation problem. However their use is restricted in practice because they

suffer from discretisation artifacts. These typically result in a preference for contours and surfaces

to travel along the grid directions. See [16] for a good introduction to these methods.

Ideally geometric optimisation methods used in image analysis should be free of these prob-

lems, being both isotropic and optimal. In recent years several advances have been made in

the extension of optimal methods from discrete graphs to continuous spaces. Dijkstra’s classic

shortest path algorithm [6] was extended in [17] and [18] to compute minimal geodesics and

continuous distance functions. These have found broad application to optimal control, wave

propagation and computer vision. The problem of continuous graph cuts has also received some

attention. [19] described a method for approximating continuous minimal surfaces by a cut in

a vertex weighted graph. [20] recently proposed a method for computing edge weights which

approximate continuous graph cuts, toward the goal of computing globally minimal surfaces for

segmentation and stereo vision.
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In this paper we present an algorithm to compute globally minimal curves, surfaces and

partitionings in arbitrary Riemannian spaces. Section II introduces Geodesic Active Contours

and Surfaces. Section III introduces discrete weighted graphs and continuous Riemannian spaces

along with a number of relationships between geometric optimisation problems. Section IV then

presents an algorithm for obtaining continuous maximal flows in arbitrary Riemannian spaces

with scalar metric. Also presented is a proof of correctness and an efficient implementation.

Section V presents a solution to the inherent bias of minimal surfaces toward small objects.

Section VI presents the results of the application of this new algorithm and Section VII concludes.

II. GEODESIC ACTIVE CONTOURS AND SURFACES

Caselles et. al. introduced Geodesic Active Contours [4] and Geodesic Active Surfaces [5]

for segmentation in 2D and 3D images. They are closed curves or surfaces which evolve to

minimise their weighted length or area:���������
	���
������������
(1)�������

is often termed the energy of the surface
�

. In segmentation

������ �

is a soft edge

indicator function, tending toward zero where local image features suggest the presence of an

object boundary. [4] also proposed the following form for the metric
!� ""$#&%('*),+�-/.0% 1 # �2� (2)%('*),+�-3.0% is the magnitude of the gradient at scale 4 . It is usually raised to a power 5 � " or6
.
�

is an arc length or surface area penalty which effectively regularises the minimal surface.

They also demonstrated that all local minima are smooth surfaces for
�7�8�

.

Geodesic Active Contours and Surfaces evolve an initial surface via a gradient descent flow

toward a local minima of the energy functional. We may derive the gradient descent flow by

variational calculus, giving the Euler-Lagrange equation:9 �9�: �<;>=?
�@A; ' 
7BACDFEGCDH� (3)

Here
:

is the evolution parameter or time,
CDI� J�KL J�K L is the surface normal and

@F� ' B CD the

mean curvature.
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The evolution of this surface may be implemented using a level set embedding due to [2].

For a function M�NO.QP3RTS .QP whose zero level set is
���VUXW %YM �ZW[���>�[\ , we may evolve M so

as to implement the gradient descent flow for S given in (3):9 M9]: � ' B�^�
 '_M%('`M�%ba %('`M�% �
A more efficient, implicit update scheme has also been presented in [21]. Unfortunately as

we pointed out earlier these gradient descent flows usually converge to local minima with no

guarantee on the quality of the resulting segmentation.

III. WEIGHTED GRAPHS AND RIEMANNIAN SPACES

A number of optimal methods have been proposed for computer vision based on discrete

graphs [14], [15] and later continuous Riemannian spaces [22], [23]. Here we review the basic

theory and definitions of these closely related frameworks.

A. Minimal Paths and Geodesics

A graph ) is a pair
��c�de�f�

consisting of a vertex set
c

and an edge set
�Gghc
i_c

. Vertices

may be interpreted as points while edges are lines connecting pairs of points. A weighted graph

includes vertex costs jlk>N c S .QP and edge costs jnm>N � S .QP . In this paper we consider

only positive cost functions.

A simple path o is defined as a sequence of unique vertices, while a cycle has equal endpoints

so as to form a loop. The length p of a path o is the sum of vertex and edge costs along the

path, p � o ���>qrtsvu jnk �xw2� # q y�svu jzm ��{|�}�
The length of a cycle is defined analogously.

A path between two points ~ and � is a minimal or shortest path if there exists no connected

path of lower length. Such paths may be computed using Dijkstra’s shortest path algorithm [6],

which first computes the distance of each vertex from ~ before backtracking from � to ~ .
A Riemannian space P is the continuous equivalent of a weighted graph. It consists of anD
-manifold � and an associated metric


 N���S .bP . Here we consider only positive scalar
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metrics

�� .QP�� . A simple curve in a Riemannian space is a " -manifold embedded in � which

does not pass through itself. A curve j with parameter � in the range
�(�]d��e�

has lengthp � j ���>���� 
�� j � � �������� 9 j9 � ���� � � �
A simple curve between two points ~ and � is a minimal geodesic if there exists no such curve

of lower length. Minimal geodesics may be computed using the Fast Marching Method [18],

which first computes a distance function from ~ by wavefront propagation before backtracking

by gradient descent from � to ~ .
B. Minimal Cuts and Minimal Surfaces

A partitioning of a graph ) decomposes its vertex set into a collection ��� �<U�c��tdtc]�?d?�?�v��\ of

disjoint subsets: �kt� s��|� c����
c�d c]�2� c¢¡n�h£ ¤¦¥¨§ ©«ª��¬
To each partition �[� we associate a cost j � �[� � which is the total cost of the edges whose

endpoints lie in different partitions. j � �­� ��� qy®s m�¯ jzm ��{|�
Here the cut

�7°lg��
denotes the set of edges crossing the partition. The ~ - � minimal cut problem

seeks the partitioning of minimal cost such that the disjoint vertex sets ~ d � ghc lie in different

partitions. A good introduction to algorithms solving this problem is [16].

A partitioning of a Riemannian space P decomposes the space into a collection ��± �U � �}d � �?dv�?�?�²\ of compact subsets whose pairwise intersection has zero Lebesgue measure:�³ � s��|´ � �0� � d µ3� � �2� � ¡v���h� ¤¦¥¨§ ©«ª�¶¬¨�
Similarly to the discrete case, to each partition �·± we associate a cost j � �[± � which is the

integral of the metric



over the partition surfaces
9 � � ,j � �­± ��� "6 q³ � s��|´ 	�¸ ³ � 
¢�­� 9 � �x�t�

The potentially confusing term ¹ � 9 � �x� denotes an infinitesimal component of the partition surface9 � � . Fig. 1 depicts a binary partitioning of the plane � . In this paper we will only consider

binary partitionings.
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Fig. 1. A binary partitioning of the space º . Note that the seeds and the resulting partitions are not necessarily connected.

In this continuous case, the ~ - � minimal cut problem seeks the partition ��± of minimal total

cost such that the point sets ~ d � g � fall in different partitions. To the authors’ best knowledge

this paper is the first to solve this problem in continuous spaces with more than
6

dimensions.

C. Maximal Flows

1) Discrete case: Let ) be a graph with edge costs jlm now reinterpreted as capacities. A

flow » �¼N � S½.bP from a source set ~ ghc to a sink set � ghc has the following properties:¾ Conservation of flow: The total (signed) flow in and out of any vertex is zero.¾ Capacity constraint: The flow along any edge is less than or equal to its capacity:¿ {7�¼�*d » �¦{|�zÀ jzm �x{|���
An edge along which the flow is equal to the capacity is decribed as saturated. [7] demonstrated

that the maximal ~ - � flow equals the minimal ~ - � cut, with the flow saturated uniformly on the

cut. Fig. 2 gives an example of a capacitated graph and an ~ - � maximal flow through this graph.

In this example ~ and � are single vertices.

[16] describes how to convert the problem of computing a maximum flow between the sets~ and � to an equivalent problem of computing a maximum flow between single vertices ~�Á and�ÂÁ . First we add to the graph ) two new vertices ~XÁ and �ÂÁ , which become the new source and
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(a) (b)

Fig. 2. An example of the minimal cut — maximal flow duality. (a) A capacitated graph. Edge thickness corresponds to

capacity. (b) An Ã - Ä maximum flow. The set of saturated edges form a minimal cut.

sink respectively. Then from ÅXÆ to each source vertex in Å we add an edge of infinite capacity,

and from each sink vertex in Ç to Ç®Æ we do likewise. A maximum flow from ÅXÆ to ÇÂÆ directly

corresponds to a maximum flow from Å to Ç in the original graph È . In this paper we will make

implicit use of this direct correspondence between the two viewpoints.

A second convenience which we adopt in this paper is to add an implicit edge connectingÇ,É Å (equivalently Ç®Æ�É ÅvÆ ) with infinite capacity to conserve flow uniformly throughout È .

This ensures that the flow is conserved at every vertex in the graph, rather than treating the

source and sink vertices as special cases. With this viewpoint, a maximal flow in a capacitated

graph È then maximises the flow through the Ç�É Å edge. We denote this flow by Ê�ËxÌ , and its

maximisation is the objective of the maximal flow problem.

2) Continuous case: [24] and [25] explored the theoretical extension of maximal flows to

continuous domains. A continuous flow ÍÊ is a vector field over a continuous domain. It has the

following properties:Î Conservation of flow: ÏGÐ ÍÊÒÑhÓ .Î Capacity constraint: ÔÔÔ ÍÊÕÔÔÔ]ÖT× .
In the continous case the source Å and the sink Ç become compact subsets of the continuous

domain.

Let ÍÊ be any flow and Ø be any simple, closed and smooth surface containing the source Å .
Let Ù7Ú denote the normal to the surface Ø . The net flow out of the source is denoted ÊÛË¦Ì as in
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the discrete case. Then, combining the two properties stated above, we obtain:»·ÜxÝ �>	]� C» B CD � ����À>	���
¢����� (4)

Therefore, all flows are bounded from above by all smooth, simple and closed surfaces separating

the source and sink, and all simple closed surfaces have weighted area bounded from below by

all flows from source to sink. In fact, [25] showed that under very general continuity assumptions

the maximal flow » max is strictly equal to the minimal surface
�

min. For such a flow and surface,

the flow saturates the surface uniformly:¿ WH���
min
d » max

�ZW[���h
/�¦W[� CDÞ�ZW[���
(5)

The minimal surface algorithm presented in this paper makes explicit use of this duality.

The duality between maximal flows and minimal cuts and surfaces has a simple interpretation.

Any cut forms a bottleneck for a flow, limiting the flow to be less than the capacity of that cut.

The maximal flow is limited by all possible cuts, and therefore must be less than or equal to

the cost of the minimal cut. These dualities state that the maximal flow is indeed equal to the

minimal cut, and therefore that a maximal flow saturates a minimal cut.

D. The Planar Case

For planar graphs and spaces some special equivalences exist between, on the one hand,

minimal paths and geodesics, and on the other hand, minimal cuts and surfaces. In the discrete

case of a graph embedded in the plane, a minimal cut in this primal graph is identical to a

shortest path in the dual graph whose vertices correspond to the faces of the primal graph.

Fig. 3 presents an example of this planar duality between paths and cuts. A similar duality has

been noted in the continuous case between geodesics which are manifolds of dimension " , and

minimal surfaces which are manifolds of co-dimension " (and hence also dimension " ).
These dualities are important in the design of planar minimal cut algorithms because the

computation of shortest paths is more efficient compared to general maximal flow methods.

They are used in Weihe’s discrete maximal flow algorithm [26] and in Mitchell’s continuous

maximal flow algorithm [27].

The authors’ have previously presented an algorithm for
6
D image segmentation, Globally

Optimal Geodesic Active Contours (GOGAC), which can be interpreted under the planar duality
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Fig. 3. A planar graph (white) and its dual (black). The vertices of the dual graph correspond to the faces of the primal graph.

Edges connect adjacent faces in the dual graph and correspond uniquely to edges in the primal graph.

as a solution to the minimal surface problem in ß D spaces. However despite this connection

the GOGAC algorithm is fundamentally based on the computation of geodesics and cannot be

extended beyond 2 dimensions. The method presented in this paper is based on flows and may

therefore be applied to higher dimensional spaces.

E. Approximating minimal surfaces by graph cuts

A number of approaches have been proposed to compute approximate minimal surfaces by

transforming the problem to a graph cut. These approaches obtain a polyhedral surface of minimal

weighted area, where the weighting is derived from the metric of the original Riemannian space.

[19] presented a formulation of the minimal cut problem in a graph with vertex capacities

rather than edge capacities. Under this alternate formulation a cut becomes a set of vertices

whose removal disconnects the source and sink. The cost of a cut is the sum of the capacities

of these vertices. The continuous problem is modelled as a grid of square vertices of sidelengthà
. The vertex capacities are sampled directly from the metric of the continuous domain. All

vertices are connected within a radius áfâ à . It was shown that, in the limit as
àäã å

, á ã å
and æ ç ã å the minimal cut converges to a surface of minimal weighted area. As presented this

method only approximates isotropic metrics.
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[20] presents an approximation to the minimal surface problem using a graph with edge

capacities derived from the metric of the continuous domain. Their approach is able to handle

all convex metrics. Edge capacities are derived from the metric of the continuous domain using

the Cauchy-Crofton formula from integral geometry.

In both of these approximations the theoretical convergence of a minimal cut to a minimal

surface depends upon the degree of each vertex increasing toward infinity. In practice the number

of directions that each segment of the polyhedral approximation can take on is proportional to the

degree of each vertex. For an angular precision of è!é , the degree of each vertex is proportional

to
� �ê�ë � R in [19] and

� �ê�ë � R�ì � in [20]. Consequently the time and memory required by these

algorithms grows rapidly with the desired angular resolution, particularly in higher dimensions.

IV. MINIMAL SURFACES IN HIGHER DIMENSIONS

In this section we present a non-linear system of partial differential equations (PDEs) to

compute continuous maximal flows and hence obtain globally minimal surfaces. This extends

the previous presentation by the same authors in [28], giving a detailed description of the

implementation on regular grids and deriving the necessary and sufficient stability conditions.

The development of the following system of PDEs was motivated by considering existing

discrete maximum flow algorithms. Two of the more popular maximum flow algorithms are the

augmenting-path algorithm of Ford and Fulkerson and the pre-flow push algorithm of Goldberg

and Tarjan [16]. The augmenting-path algorithm maintains a conservative flow at each step,

repeatedly searching for paths along which the flow may be increased. However the direct

extension of this algorithm to continuous spaces seems problematic. Not the least of these

problems would be the requirement for a non-local system, corresponding to augmenting the

flow along curves. This implies that it would not be possible to obtain a partial differential

equation framework. Primarily this is due to the conservation constraint which imposes infinite

‘stiffness’ in the flow, making it difficult to modify the flow locally.

On the other hand, the pre-flow push algorithm relaxes the conservation constraint, allowing

more flow into a vertex than out of it. This algorithm introduces an additional variable at each

vertex which in some sense ensures that the system converges toward an incompressible flow.

This is the approach we take in developing a solution to the continuous maximal flow problem.

We allow the flow to have non-zero divergence during its evolution, but introduce a scalar
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potential field which stores this excess flow. The potential field is then used to drive the flow to

become incompressible at convergence.

A. A continuous maximal flow algorithm

The continuous maximal flow system developed in [28] is described by the following system:9 o9�: �í; ' B C» (6)9 C»9�: �í; '`o (7)

subject to ��� C» ��� ÀT
 (8)o � o �¦W�d : � N � � d .QP � � S .bP is a scalar potential field over the domain � evolving over time:
.
C» � C» �¦W�d : � N � � d .QP�R � S .QP�R is the vector flow field, also over the

D
-dimensional domain� and evolving over time

:
. For boundary conditions we fix the scalar field o at the source ~

and sink � : o �¦W­�î� " for
W�� ~ and o �¦W­�î�Þ� for

W�� � . These values are chosen arbitrarily

and without loss of generality. Initial conditions may be chosen as o �&� except at the source

and sink, and
C» �ï� everywhere. However suitably selected initial conditions may lead to faster

convergence, as we will discuss further in Section IV-D.

(6) relaxes the conservation constraint, instead storing excess flow in the potential field o .

(7) couples the flow
C» to the potential o such that gradients in the potential drive the flow.

(6) and (7) form a simple system of wave equations. They may be viewed as a linear model of

the dynamics of an idealised fluid with pressure o and velocity
C» , ignoring convection terms.

(8) constitutes a hard constraint on the magnitude of the flow velocity
C» .

B. Properties of the continuous maximal flow algorithm

1) Conservation of potential o : Let o�ð �&ñ ð o �Oò denote the total integral of o in a given

region
ò

not including ~ d � . Then, for smooth o and
C» ,9 o[ð9�: �Ò;�	�¸ ð C» B CD ¸ ð �ó� 9 ò�� (9)

So o is conserved in the interior of any sourceless region
ò

(any region not including the source~ or sink � ).
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2) Monotonic reduction of energy
�� � o � #Gô C» ô � � : Consider the temporal rate of change of

the total quantity of
�� � o � #8ô C» ô � � in a given region

ò
not including ~ d � . For smooth o and

C» ,99�: � ð "6 = o � #&ô C» ô � E ��òï�Ò; 	 ¸ ð o C» B CD ¸ ð �ó� 9 ò/� (10)

Note that we have momentarily ignored the magnitude constraint (8). Consequently
�� � o � #õô C» ô � �

is conserved in the interior of any sourceless region
ò

. Including the magnitude constraint

may only decrease ô C» ô � and hence the energy
�� � o � #íô C» ô � � must monotonically decrease in

the interior of a sourceless region. Since the energy is positive it must converge. To ensure

smoothness and convergence of o and
C» independently, a dissipative term can be added to the

equations. In practice this term is not necessary.

C. Correctness at convergence

At convergence any isosurface of o may be taken as the globally minimal surface
�

min

separating ~ and � .
Proof: Setting temporal derivatives to zero at convergence, we may restate the system (6),

(7), (8): ' B C» �h�'*o �>� öQ¤ ��� C» ���]÷ 
'`o �í;îø C» ùlú�û § û øÕ��� öQ¤ ��� C» ��� �h

The first equation simply restates the conservation of flow. The second equation is derived from

(7), (8). It states that where
C» is not saturated o must be constant, and where

C» is saturated'`o must be such that
C» cannot change direction or decrease in magnitude. Consequently'`o B C» À�� , indicating that o is a (non-strictly) monotonic function along the flow lines of

C» .

As
C» is divergence-free, flow lines may only initiate at ~ and terminate at � . Therefore there are

no local extrema in o .

Now consider the closed region
ò 1 obtained from o by the application of a threshold

� ÷5 ÷ " : ò 1 �<UXW % o �ZW[�$� 5 \
Due to the monotonicity of o this is a connected region containing the source ~ . On the isosurface�ü� 9 ò 1 we have '`o ª� C� by construction. Therefore the flow is uniformly saturated outward
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Pi−1,j−1 P P

PPP

P P P

i+1,j−1i,j−1

i−1,j i,j i+1,j

i−1,j+1 i+1,j+1i,j+1

F

F

Fi+1/2,j,xFi−1/2,j,x

i,j−1/2,y

i,j+1/2,y

Fig. 4. The discrete representation of the numerical scheme presented here. ý is stored at grid vertices while þÿ is stored by

component on grid edges.

on this surface and we obtain: ' B C»·Ü � 	 � C» BXD � ��� � 	 ��
¢�����
Hence

C» and
�

satisfy (5) for optimality. Therefore at convergence any isosurface of o is a

globally minimal surface. In the usual case of a unique minimal surface,
�

min will be the only

isosurface at convergence and hence o will approach an indicator function for the interior of�
min.

D. Implementation

(6), (7) are discretised on a staggered grid using an explicit first-order scheme in time and

space. The scalar field o is stored on grid points while the vector field
C» is stored by component

on grid edges, depicted in Fig. 4. The system of equations is iterated sequentially with the flow

magnitude constraint (8) enforced after each timestep.

Here for simplicity we describe the update scheme for a single iteration in
6

dimensions.

The spatial grid step is set to
� � " . We first consider the linear portion of the update scheme,

implementing (6), (7). We begin by defining the notation that we will use to describe this discrete

system. Let � denote the iteration number and è : the timestep. Let o����� ¡ denote the value of

March 24, 2005 DRAFT



15

the potential at time ��è : and grid point
�¦©�dÂ¬¢�

and let

 ��� ¡

denote the value of the metric at the

point
�x© dÂ¬¢�

. Let » ����
	� � ¡�� 
 and » ���� ¡��
	� � � represent the components of the flow along the four edges

incident on the point
�¦©�dÂ¬¢�

at time ��è : . Then we may give the explicit discretisation of the

PDE system as:o � � ���� ¡ � o ���� ¡ ; è : = � » �� � 	� � ¡�� 
 ; » �� ì 	� � ¡�� 
 � # � » ���� ¡ � 	� � � ; » ���� ¡ ì 	� � � � E d (11)» Á � � �� � 	� � ¡�� 
 � » �� � 	� � ¡�� 
 ; è : � o � � �� � ��� ¡ ; o � � ���� ¡ �» Á � � ���� ¡ � 	� � � � » ���� ¡ � 	� � � ; è : � o � � ���� ¡ � � ; o � � ���� ¡ �}� (12)

The magnitude constraint is applied immediately following the update of the flow velocity

field by (12). Here we describe the application of the magnitude constraint at point
�x© dÂ¬¢�

for

time
� �*#�" � è : , consisting of three stages:

1) Determine the maximal outward flow along each axis:�� » � � ���� ¡�� 
 �� Á � ����� = ; » Á � � �� ì 	� � ¡�� 
 d[�Od » Á � � �� � 	� � ¡�� 
 E�� » � � ���� ¡�� � �� Á � ����� = ; » Á � � ���� ¡ ì 	� � � d[�Od » Á � � ���� ¡ � 	� � � E
2) Compare the absolute maximal outward velocity to the metric


 ��� ¡
:

If
w Á � � ���� ¡ � � = �� » � � ���� ¡�� 
 �� Á E � # = �� » � � ���� ¡�� � �� Á E � ��
 ��� ¡ then% » � � ���� ¡�� 
 % � % » � � ���� ¡�� 
 % Á 
 ��� ¡w Á � � ���� ¡ ���O� % » � � ���� ¡�� � % � % » � � ���� ¡�� � % Á 
���� ¡w Á � � ���� ¡ �

3) Apply the magnitude constraint to each outward velocity component:» � � �� ì 	� � ¡�� 
 ������� = » Á � � �� ì 	� � ¡�� 
 d�; % » � � ���� ¡�� 
 % E d » � � �� � 	� � ¡�� 
 ���`ö�� = » Á � � �� � 	� � ¡�� 
 d % » � � ���� ¡�� 
 % E d» � � ���� ¡ ì 	� � � ������� = » Á � � ���� ¡ ì 	� � � d�; % » � � ���� ¡�� � % E d » � � ���� ¡ � 	� � � ���`ö�� = » Á � � ���� ¡ � 	� � � d % » � � ���� ¡�� � % E �
Despite the complexity of its formal description, this update scheme is simple enough that a

single implementation is used to handle input data of arbitrary dimension. This explicit scheme

is also simple to parallelise by domain decomposition.

Several heuristics have been found to increase the speed of convergence. The fields o and
C»

are rapidly initialised using the pre-flow push discrete maximal flow algorithm with both global

and gap relabelling [16]. A multiscale approach is also applied recursively for rapid convergence

at a fine grid resolution from a coarse grid initialisation. Computation may be avoided in the
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interior of the source ~ and sink � , yielding great savings when they occupy a significant portion

of the space.

At convergence in the continuous system, in the usual case of a single surface of globally

minimal value, the potential field o is theoretically perfectly binary with value 1 within the

volume bounded by the minimal surface, and 0 outside. However in the discrete implementation

convergence is deemed to be attained if the sum of the relative areas of potential % ò u! � ì#" % and% ò u!$ " % is greater than %'& . For example, ( � �2� �*) and % �,+�+
. Once convergence has been

obtained, the minimal surface is extracted from o as the isosurface of value
�� using a bilinear

interpolation.

E. Stability

In this section we derive the maximum timestep for which the update scheme described by

(11), (12) is stable. In this analysis we neglect the magnitude constraint as it may only reduce

the magnitudes of the variables of interest and hence cause the system to tend toward stability.

For simplicity we perform the derivation in the
6
-dimensional case and then give the general

solution.

By an appropriate combination of (11), (12) we may obtain the discrete update equation solely

for o : o � � ���� ¡ ; 6 o � � ���� ¡ #¶o ���� ¡ �V� è : � �.- ;0/ o � � ���� ¡ #�o � � �� � ��� ¡ #¶o � � �� ì ��� ¡ #�o � � ���� ¡ � � #�o � � ���� ¡ ì ��1 (13)

This is a discrete analogue to the wave equation

¸ � u¸32 � � ' � o which may be derived from (6), (7).

(13) describes a linear system and so is amenable to spectral analysis. Specifically, consider

the 4 -transform over 5 
 d 5 ��d 5 2 �76
with %85 
 % � %85 � % � " for a bounded field o :o � 5 
 d 5 ��d 5 2 ���
q��� ¡�� � o ���� ¡ 5 �
 5 ¡� 5 �2 (14)

For o ª�ï� substitution into (13) gives- 5 �2 ; 6 5 2 #h" 1 � � è : � �
- ;0/ #95 
 #95 ì �
 #95 � #95 ì ���1
(15)

For a stable and causal system we require %85 2 % ÷ " . Now the right side of (15) takes values in the

range
�²;;:]� è : � � d���� over the entire spatial spectrum. The left side has range

��;0/�d0� �
. Therefore
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in order that this equation have a solution for all spatial frequency components, we require that

it have a solution when the right side equals
;;:]� è : � � , i.e.;0/ ÷ ;<:]� è : � �= è : ÷ "> 6

More generally when the update is performed in
D

dimensions it is simple to show that è : ÷ �? R
as before. The same argument may be applied to the evolution of

C» but is not pursued here for

reasons of space. This condition on the timestep is therefore necessary and sufficient to obtain

a stable discrete implementation.

V. METRIC WEIGHTING FUNCTIONS

Minimal surface methods have an inherent bias in favor of small surfaces. In many applications

this is undesirable, resulting in incorrect or even trivial solutions. In this section we present a

technique to automatically remove this bias.

A. Construction

Consider a metric that is uniformly constant throughout the domain,

&� " . This metric

conveys no preference for any particular point through which the partition surface should pass.

Intuitively then, every point in the domain should belong to some (globally) minimal surface.

Unfortunately as the minimal surface problem is posed this is not the case. In order to improve the

behavior of the solutions to this problem then, we replace the metric



by

 Á �h
A@ , introducing

an appropriate weighting function
@

. This weighting function will account for the geometry of

the sources and sinks, so that the minimal surface depends only on the data as represented by

.

[23] considered the special case of a single point source B in a planar image. Here it

was demonstrated that the introduction of the weighting function
@f�¦W[�A� �L C ìAD L resulted in a

continuum of minimal surfaces, the set of all circles centered on B . In
D

dimensions it is simple

to see that the modified weighting function
@A�ZW[��� �L C ìAD L EGF 	 will behave similarly, ensuring that

each point in the domain belongs to a minimal surface (a hypersphere centered on B ). These

weighting functions may be extended to other seed geometries. For a line source in
)

dimensions

we obtain the weighting function
@A�ZW[��� �L C ìAD L where B is the nearest point to

W
on the line. More
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generally for a set of seeds which form an H -dimensional manifold embedded in
D

dimensions

we should expect a weighting function that decays as
�L C ìAD L EIFKJLF 	 in the neighborhood of the

manifold.

We wish to derive an unbiased flow
C» from which we may define the weighting function@h� ô C» ô . This flow will be produced by the source set ~ and absorbed by the sink set � ,' B C» ��M

(16)

where
M

is a distribution that is zero in the interior of the domain, positive on the source set ~ and

negative on the sink set � , with total source weight
ñ Ü M ��cG� " and sink weight

ñ Ý M ��cV�Þ; " .
There will naturally be many such flows; here we select a flow to minimise a measure of the

weighting function �_�N@ ���
� k "6 @ � ��cí�ï� k "6 ô C» ô � ��c��
In this way we will ensure that the weighting function is not arbitrarily large at any particular

point in space, as it could be for example for some flows with large rotational components.

We may minimise the measure
��� C» � � �_�N@ � by variational calculus: consider adding a

minimisation parameter
:

to obtain
@ � @A�¦W�d : �

. Then we may compute the first variation with

respect to
:

to determine the local minima of
��� C» � :O �_� C» �OX: � � k C» 2 B C» ��cÒ�>�

Here we have set the first variation to
�

to obtain a local minimum condition on
���8@«�

. This

minimisation must be carried out subject to the incompressibility constraint expressed in (16).

Taking the time derivative of the constraint, we obtain an equivalent constraint on
C» 2 :' B C» 2 �ï�

Therefore
C» 2 may be decomposed into cyclic components, and

C» is a local minimum of
��� C» �

if it is locally minimal with respect to all cyclic flows. Consider then
C» 2 � CPRQ the unit tangent

vector over the tube formed from the set of all points within a vanishing radius S of the smooth

closed curve j , with
C» 2 �ï� elsewhere. For

C» a local minimum of
��� C» � we haveO ��� C» �O|: � � k C» 2 B C» �]c� ò R�ì ��� S � 	 Q C» 2 B CP!Q�� j� �
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where
ò R�ì �}� S � is the volume of the

D�; " dimensional sphere of radius S . So we find that the

vector field is a potential flow. Set
C» 2 � '_M 2 then, and replace the divergence of the flow

C» in

(16) by the Laplacian of M to obtain ' � M ��M
We choose boundary conditions T ö�� L C¨L UWV '_M �¦W[�3� � so that the flow is zero at infinity. M is

then determined up to the addition of a constant which will not affect the weighting function@h� %Y'_M�% .
Observe now that all isosurfaces

�
of M in the interior of the domain have constant net fluxX � '`M B CD � �]�h� " . As

@G� %('_M�% we then obtain
X � @î���h� " over all isosurfaces of M , withX � @«���V� " for all closed surfaces

�
containing the seeds. So the isosurfaces of M form the

set of minimal surfaces under the metric
@

. In general we have '_M ª� � almost everywhere,

therefore almost every point in the domain belongs to some minimal weighted surface under the

metric
@

as desired.

B. Implementation

For the regular grids considered in this paper the weighting functions may be computed by

convolving the distribution
M

with the Green’s function MZY with the property ' � M[Y � O �¦W[�
. In.QP � this is M\Y � ��^] T ��� % W % � while in .bP`_ this is M[Y � ; �a ] L C¨L [29]. This convolution may be

efficiently computed on discrete images using the Fast Fourier Transform. The gradient of M
may then be numerically estimated in the discrete grid to obtain the weighting function

@
.

Fig. 5 shows an example of a set of seed points and the process of computing an appropriate

weighting function. The weighting function is highest in the neighborhood of point sources and

at the endpoints of line sources.

Fig. 6 depicts the application of metric weighting in the segmentation of a microscope

image of a protist, Chilomonas Paramecium. Presented are segmentations using a simple seed

geometry and a complex seed geometry. The metric weighting scheme proposed in this section

produces similar results on the two examples, demonstrating that it does not significantly bias

the segmentation.
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(a) (b) (c)

Fig. 5. Metric weighting example. (a) The seed geometry. Source points are depicted, while the sink points are the image

boundary. (b) The function b computed by convolution. (c) The metric weighting c , computed from the numerical derivative

of b .

(a) (b) (c)

Fig. 6. An example of the application of metric weighting. (a) A microscope image of a protist, Chilomonas Paramecium. (b)

Segmentation using a single internal seed. (c) Segmentation with complex seed geometry.

VI. RESULTS

In this section we demonstrate the results of using globally minimal surfaces for 2D and 3D

medical image segmentation and for stereo matching. All applications were performed using the

metric weighting scheme introduced in Section V.

All tests were performed on a quad 2.2GHz AMD Opteron Processor 848 under the Linux

operating system. The algorithm presented here has been implemented in C with no assembly
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optimisations. Timings for minimum cuts have been obtained using the Boost Graph Library

implementation of the preflow-push algorithm [30]. The preflow-push algorithm is generally

accepted as a fast general-purpose maximum flow algorithm, although a faster image-specific

maximum flow algorithm presented in [31] has not been considered here.

A. 2D Image Segmentation

Object boundaries are often difficult to detect along transitions to adjacent objects with similar

features. Segmentation via minimal contours uses the regularisation of the segmentation contour

to avoid leaking across such gaps. The authors have previously developed an algorithm, Globally

Optimal Geodesic Active Contours (GOGAC) [23], which efficiently computes globally minimal

contours in planar Riemannian spaces using the planar duality in Section III-D. Here we apply

discrete minimal cuts, GOGAC [23], and the algorithm presented in this paper to segment a

microscope image of a cluster of cells (Fig. 7(a)) and compare the results. In spite of its apparent

simplicity this problem demonstrates the challenge of delineating faint boundaries between cells

without leaking.

We compute a metric (Fig. 7(b)) from the microscope image as described in (2), with default

parameters 5 � " and
� � �

and with blurring at scale 4 � " . Low metric regions are dark

while high metric regions are bright. Observe that the regions of low metric correspond to the

boundaries of the cells, except where the cells overlap. The metric has been weighted according

to the method described in Section V. This is not displayed due to the extremely large range of

values. All methods used the same (weighted) metric.

The segmentation of each cell is performed independently in sequence for each method.

The source sets are depicted in (Fig. 7(b-d)) while the sink is the image boundary. The discrete

minimal cut solves a discretised minimal surface problem, resulting in a clear grid bias and a poor

segmentation. GOGAC and the continuous maximal flow algorithm solve the same continuous

optimisation problem and are in close agreement. Note that the continuous segmentations follow

the perceived cell contours despite the weakness of local cues.

The image depicted in Fig. 7(a) has dimensions
6 ) " i 6¨6 " . We reduce the amount of com-

putation required by expanding the sink to include only the cells of interest, a region of size"�d �Ai " �¨� .
The discrete minimal cuts required

�O�e/ " seconds to compute in total. GOGAC required
�O�gf�)
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seconds to compute in total. The continuous minimal surface algorithm presented here required�O�ih*:
seconds in total to converge.

B. 3D Image Segmentation

Here we demonstrate the application of globally minimal surfaces to a 3D segmentation

problem. Fig. 8 depicts a Computed Tomography scan of a chest in which the two lungs are

segmented. We compare the results from the application of globally minimal surfaces to those

obtained using geodesic active surfaces and discrete minimal cuts. All segmentations use the

same data, i.e. the weighted metric as well as the seeds. The sources are large spheres inside

each lung while the sinks are the volume boundaries. Large spheres were used because the

geodesic active surfaces are initialised using these same spheres, and such variational methods

require good initialisation in order to obtain a reasonable result. An artificial inflation term was

also used to drive the level sets to fill the lungs. The lungs are segmented independently in all

three methods.

The top row of Figure 8 depicts corresponding 2D slices of the original CT data, the metric

derived from this data, and the weighted metric. The weighted metric has been displayed on

a log scale due to its large range of values. The middle row of Figure 8 shows corresponding

2D slices of segmentations by each of the methods considered here: geodesic active surfaces,

minimal cuts, and globally minimal surfaces. The bottom row of Figure 8 provides identical 3D

views of segmentations obtained by the three different methods.

The geodesic active surfaces give a poor segmentation. At the base of the lung the inflation

term is too weak for the surface to completely fill the lung, becoming trapped on edges due

to alveoli. At the top of the lung the inflation term is too strong, causing the surface to leak

through the weak edges of the lung. This behavior is common in the application of active contour

methods.

The discrete minimal cuts also produce inaccurate segmentations. Observe the bias toward the

grid directions, which can be clearly seen as the flat boundaries in the interior surfaces at the

top of the lungs. By contrast, the continuous minimal surface does not exhibit such directional

bias, giving a faithful segmentation.

The CT data shown in Fig. 8 has dimensions
6 �¨�fi " h¨�óij+¨�

. The Geodesic Active Surfaces

required
6 f�+

seconds to converge to the final result. The discrete minimal cuts required
/*/
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seconds to compute using the pre-flow push algorithm. The continuous minimal surface algorithm

required only
6 :2�g:

seconds. Note that the minimal surface algorithm uses a multiscale framework

to obtain a good initialisation from the solution at a coarser scale. At the coarsest scale the fieldso and
C» are initialised using a minimum cut. In this example the minimal surface segmentation

is faster than the minimum cut segmentation due to the multiscale framework.

C. 3D Scene Reconstruction from Stereo Images

The reconstruction of a 3D scene from two or more images is often performed using an energy

minimisation approach [13], [14]. Here we adapt the framework of [14], replacing their discrete

graph cut by a globally minimal surface.

In general the application of globally minimal surfaces requires a suitable choice of metric

appropriate to the application. In stereo matching a number of metrics have been proposed for

real and synthetic images. Here we use the zero-mean normalised cross correlation (ZNCC)

window based matching score, which performs well on natural scenes with lighting variation

and specular reflections and may be computed very efficiently [12]. We set

A� " ; 4 D jój to

convert high matching scores to low metrics suitable for a minimal surface approach. Matching

scores are computed using a d i d window. The stereo pair being analysed has a disparity range

of
��; "�d d­� � . Following [14] the source and sink are connected to the first and last layers of the

disparity volume. Both the discrete minimal cut and the globally minimal surface are computed

from the same metric.

The results of the stereo matching are depicted in Fig. 9. These results are shown as disparity

maps (depth maps) as well as surface meshes. We observe that the discrete minimal cut produces

large flat regions due to the small number of disparities and hence poor depth resolution of

discrete methods. Compared to the graph cut we can see a great deal more detail in the disparity

map computed by the globally minimal surface. This includes the surface texture of the bushes

as well as the third parking meter. In addition to the apparent improvement in depth resolution is

the apparent spatial isotropy of the continuous method. This can be seen on the frame of the car,

where the discrete method produces a ‘rectangular’ curve while the minimal surface produces a

straight line.

The stereo image pair used here has dimensions
6 d h«i 6 / � . The discrete minimal cut required"¨" �i) seconds to compute. The continuous minimal surface algorithm required only

:O�i)
seconds.
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D. Accuracy

In the continuous theory the system of PDEs presented in (6), (7), (8) was proven to obtain

the globally minimal surface at convergence. However in order to develop a practical algorithm

it was necessary to discretise these equations in Section IV-D. It is natural to question whether

this discretisation introduces grid bias into the solution surfaces.

To address this question, we compare the surface obtained by the algorithm presented in this

paper with the analytic solution on a simple problem in 3 dimensions. Consider two circles of

equal radius P Á whose centers lie along the 5 -axis. These circles lie parallel to each other in the

planes 5 � ;;k and 5 �lk
respectively. Then the minimal surface which connects these two

circles is a catenoid. Representing the surface points by the triplet
�nm­dpo�d 5 � we may parameterise

by é ���(�Od 6�q � and 5 ���²;;kÕd3kÕ� as follows:m � P Ásr ¥*t ú =�5P Á E r ¥*tX� é �o � P Ásr ¥*t ú =�5P Á E t�ö��­� é �
Here the value P/Á is selected such that P/Á r ¥*t ú -vu±vw 1 � P in order to meet the boundary conditions.

We select P �x) d and
k � "�d and make a comparison between the analytic and numeric

solutions. The algorithm proposed in this paper is discretised on a regular grid with grid step� � " . For the Euclidean metric we set

 � " throughout the grid, without metric weighting.

Boundary conditions are enforced by placing disk-shaped sources of radius P on the vertical

boundaries 5 �yk
and 5 �Þ;;k , and sinks elsewhere on the volume boundary. The results for

this comparison are presented in Fig. 10. Fig. 10(a) depicts the analytic solution while Fig. 10(b)

depicts the solution obtained by the method proposed in this paper. The numeric and analytic

solutions are in clear visual agreement. Fig. 10(c) depicts a horizontal slice 5 �½� through

the potential function o computed by the new algorithm, overlayed with the corresponding

cross-section of the analytic solution (a circle of radius P3Á ). Fig. 10(d) depicts a vertical slicemF�<�
through o , overlayed with the corresponding cross-section of the analytic solution (two

catenaries). In both Fig. 10(c) and (d) the analytic solution closely coincides with the isosurfaceo �>�2� d .
In order to make a quantitative comparison we measured the average distance between the two

surfaces for
h¨�¨� �

points, consisting of
)¨�

values for 5 and
6 �¨�

values for é . The mean distance

between the surfaces was
�O� �*+

while the root-mean-square distance was
�O� "¨" . To summarise, in
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this simple example the new algorithm obtains a result which is accurate to approximately " � &
of the grid step.
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(a) (b)

(c) (d)

Fig. 7. Segmentation of a cluster of cells in a microscope image. (a) The original image. (b) Discrete minimal cuts. (c) Globally

Optimal Geodesic Active Contours. (d) Globally minimal surfaces.
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Fig. 8. Segmentation of the lungs in a CT image of a chest. Top row: 2D slices of original data, metric, and weighted metric

(log scale). Middle row: 2D slices of segmentations by geodesic active surfaces, minimal cuts, and globally minimal surfaces.

Bottom row: 3D views of segmentations by geodesic active surfaces, minimal cuts, and globally minimal surfaces.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Stereo matching from two views. (a, d) The original images. (b, e) Disparity map and corresponding mesh obtained

by a discrete maximal flow. (c, f) Disparity map and corresponding mesh obtained by a globally minimal surface. Note the

improved detail.
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(a) (b)

(c) (d)

Fig. 10. The catenoid test problem. (a) The correct minimal surface, constructed analytically. (b) The minimal surface computed

using the method described in this paper. (c) A horizontal slice through ý . The correct cross-section is overlayed in black. (d)

A vertical slice through ý . The correct cross-section is overlayed in black.
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VII. CONCLUSIONS

In this paper we have developed a new algorithm to compute globally minimal weighted

surfaces for image segmentation and stereo matching.

We obtain these surfaces using a non-linear system of partial differential equations which

simulate an ideal fluid flow. The velocity of the flow is constrained in magnitude by a spatially

varying metric, itself derived from the image or images being analysed. This simulation is

performed using a simple finite difference scheme with explicit update step. To improve efficiency

a multiresolution scheme is used to reduce computational costs and the solution is approximated

at the coarsest scale by a discrete maximal flow.

A proof is given that at convergence the algorithm produces a globally maximal flow. A simple

threshold of the auxiliary potential function produces the corresponding minimal surfaces. A

proof that the system converges is left to future work.

Results are given demonstrating the application of globally minimal surfaces to 2D and

3D segmentation and to stereo matching. Comparison to an existing optimal geodesic active

contour for 2D images demonstrates close similarity. Comparisons for 3D segmentation and

stereo matching demonstrate that globally minimal surfaces overcome the existing problems

with graph-based approaches and with active contours. On a simple test problem with known

analytic solution, the discrete implementation of this algorithm was shown to be accurate to " � &
of the grid step size. The algorithm is also efficient when compared to previous methods. These

results suggest that many existing applications using geodesic active surfaces or graph cuts will

benefit from the improved accuracy and robustness of globally minimal surfaces.
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