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Abstract. Space curves are highly descriptive features for 3-D objects. Two invariant representations
for space curves are discussed in this paper. One represents space curves by complex waveforms. The
other represents space curves using the 3-D moment invariants of the data points on the curves. Space
curve matching using invariant global features is discussed. An algorithm for matching partially
occluded 3-D curves is also presented, in which rigidity constraints on pairwise curve segments are
used to determine the globally consistent matching. An association graph can be constructed from
the local matches. The maximal cliques of the graph will determine the visible part of the model
curves in the scene. Experimental results using 3-D curves obtained from stereo matching and edges
detected from the range data are also presented.
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tor, Legendre function.

1. Introduction

Because of the recent development of range sensing techniques, many researchers
have proposed robust object recognition and positioning algorithms using 3-D in-
formation [6]. In order that the computers can efficiently recognize objects in the
scene, the vast amount of noisy image data is generally compressed into highly
descriptive and discriminative features. The space curves (3-D curves) are impor-
tant 3-D features, since they are rich in information and can be easily stored and
manipulated. The 3-D coordinates of curves can be obtained from edge detection
on range data or from matching of stereo images, etc. Edges which correspond
to discontinuities of depth or surface orientation are not sensitive to changes of
viewpoint. Space curves also appear in some computer representations of 3-D ob-
jects, such as the generalized cone and cylinder representation of elongated objects
[1, 20]. Computer recognition of such objects is to match the spine axes and the
junctions of the axes with those of the models. The curves are distinct from other
geometric entities in that they have an invariant and intrinsic parametrization by
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their own arc length. Volumes and surfaces do not have such a natural parametriza-
tion. This parametrization of space curves provides a natural ordering of points on
the curves, and a natural correspondence mapping between two curves. Therefore,
in curve matching problems, no more computation is required to find the point
correspondence than that to determine the relative offset between two curves.

Space curves can be either represented by the intersection of two surfaces, or
by the parametric equatiofx(¢), y(¢), z(t)). Neither of these two representations
is invariant under translation and rotation of the coordinate system. Invariant rep-
resentation of the 3-D objects is important in pattern recognition systems. Closed
contours have been represented by a set of invariant features constructed from the
elliptic Fourier coefficients of the contours [13, 14]. On the other hand, Mokhtarian
[18], and Kehtarnavaz and de Figueiredo [11] proposed to use the curvature and
torsion functions to represent space curves. Their approach is a straightforward
extension of the curvature representation of 2-D curves to 3-D curves. The scalar
curvature functions of 2-D curves have been used to guide the curve segmentation
[23, 27] and to compute global [34] and local features [3, 22] for curve match-
ings. The scale-space images [30] of the curvature functions have been used in a
syntactic approach to 2-D shape analysis [19]. However, the curvature and torsion
representation of 3-D curves can not be used for many computer vision applica-
tions, because the torsion function can not be defined at a point where the curvature
vanishes. In other words, the representation of a curve becomes meaningless when
the curve contains straight line segments.

In this paper, we propose an invariant waveform representation of the 3-D space
curves. The waveform is represented by a complex function. The magnitude of the
waveform is the nonnegative curvature function of the space curve and the phase
of the waveform depends on the torsion of the curve. Thus, the waveform vanishes
wherever the curvature of the curve vanishes. The phase of a complex function
is undefined at a point where the function vanishes. This invariant waveform is
unambiguously defined for any (smooth) curve appearing in the computer vision
problems. It contains the complete 3-D information of the curve. Invariant features
can be extracted from the waveform. Criterion functions which depend on the
waveform and its derivatives can be defined for the decomposition of the curve into
smooth segments separated by breakpoints. Using this representation, the segmen-
tation and recognition of 3-D curves can be reduced to the problem of segmentation
and recognition of 1-D complex waveforms. The scale-space description of the
complex waveform can also be derived when it is expanded by convolution with
a Gaussian filter. We found that the fingerprint theorem [31, 32] can still be used
to reconstruct the complex waveform from its scale-space image. The waveform
representation of space curves provides a framework that allows many statistical
and syntactic pattern analysis techniques for planar curves and 1-D signals to be
extended to 3-D curves. Another invariant representation of a space curve is to
describe it by a feature vector of invariant 3-D moment functions computed from
the curve or its breakpoints [16, 24]. This representation is straightforward and the
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invariant moment features are robust in pattern recognition. Moment computation
does not require estimation of derivatives from noisy data. So it is less sensitive to
noise than the first representation.

When curves are represented by vectors of invariant global features, the sta-
tistical pattern classification techniques can be applied for the recognition. The
recognition scheme will identify a given curve with a model curve. The relative
orientation and translation between these two curves can then be computed by the
method of least mean square estimation. We will show that the point correspon-
dence between the curves can be quickly determined by matching the waveforms
of the two curves.

If the curves on the object are partially occluded, their global features can not
be used for pattern classification. We propose a template/structural curve matching
algorithm for recognizing the partially occluded space curves. The curves in the
scene are divided into segments which are used as templates. Each template is
locally matched to various portions of the model curves. Rigidity constraint can be
applied to pairwise curve segments to obtain a globally consistent matching. An
association graph is constructed from the matched pairs. The maximal set of struc-
turally compatible matches is determined by the maximal cliques in the association
graph. Each clique corresponds to one model curve, and determines the visible part
of the model curves in the scene. The proposed waveform representation can be
used for fast template matching. A short and preliminary version of this paper was
presented in [17].

The paper is organized as follows. In Section 2, we give a brief discussion of the
differential geometry of the space curves, and the derivation of the invariant repre-
sentation of the space curves. In Section 3, we propose an algorithm for recognizing
space curves using the global features. We then discuss the determination of the
point correspondence and the coordinate transformation. In Section 4, we discuss
the template/structural approach to recognize the partially occluded curves. The
experimental and simulation results are given in Section 5. Section 6 concludes the
paper with a summary of results and a few remarks.

2. Invariant Representation of Space Curves

A regular space curve segment is a vector-valued funatiofu, ] — R3. The
derivatives ofx exist and are continuous up through ordef > 1) for all ¢ in

[a, b]. A regular space curve segment can always be reparametrized by the arc
length parameter. A curve parametrized by its arc length is called a unit speed
curve. In this paper, we shall assume that all space curves are unit speed curves.
The curvature functior (s) of a unit speed curve is the magnitude of the vector
field dT'/ds along the curve, wherd is the tangent vector field, and(s) =

V(X2 4 (y")2 + (z7)2. The principal normal vector fieldV (s) is defined by the
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direction of dI' /ds at each point on the curve. The binormal vector field is defined
as [10, 21]

B(s) =T (s) x N(s). Q)
The torsion function is defined by
T(s) = —(B'(s), N(s)). (2)

The triple[T, N, B] forms a local orthonormal system at each point of the space
curve. The normal vector, binormal vector and torsion can be unambiguously de-
fined only at those points where the curvatures do not vanish. A straight line in
3-D space has a vanishing curvature function, so its torsion function can not be de-
fined. The evolution of T, N, B] along the curve is governed by the Frenet—Serret
equation

[T'(s), N'(s), B'(s)]" = A[T(s), N(s), Bs)]", (3)
whereA is the following 3x 3 matrix
0 Kk (s) 0
A= |:—K(S) 0 r(s)i| . (4)
0 —7(s) 0

The fundamental theorem of curves states as follows [10, 21]: Any regular curve
of C® with « > 0 is completely determined, up to position and orientation, by its
curvature and torsion. In fact, given the total length of the curve segment, a starting
point xq in R3, and an orthonormal basis which is the trinedf@h N, B] at xo,
the system of linear differential equations in (3) can be integrated and the space
curve can be reconstructed. Thus, the pait), (s)] can invariantly represent
any space curve whose curvature is positive at every point on the curve. For planar
curves, their torsion functions vanish. The curvature function of a planar curve is
often calculated by the following formula

do
K(s) = &

k]

whered is the angle between the tangent vector at a point on the curve aid the
coordinate axis.

In computer vision problems, the data of a space curve are generally available
in the form of a list of 3-D points which are the sampled and digitized values of a
piece-wisely smooth space curve function. Curve smoothing algorithms using reg-
ularization [28], cross validation [26], and smoothing kernels (Gaussian kernel [3]
and B-spline kernel [11]) exist in the literature. It has been shown analytically
that the variance of the positions of the breakpoints due to noisy data is inversely
related to the support of the smoothing kernel [11]. In our experiments discussed
later, we smooth the curves by B spline kernel, so that the smoothed versions of
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the curves have sufficient differentiability. In the following, we shall present two
representations for curves. One uses the differential geometric descriptors of their
smoothed version. The other uses the invariant functions of the 3-D moments of
the space curves.

Complex Waveform Representation

We propose an Euclidean invariant representation for general space curves. Our in-
variant representation is a complex waveform whose magnitude is the nonnegative
curvature function and whose phase depends on its torsion function. The complex
function can be defined at every point on the curve, even at those points whose
curvatures vanish. The form of the phase function can be rather arbitrary. In this
paper, we explicitly defined the complex function for a (smoothed) space curve as

1(s) = «(s) exp(j2tan "h(s)). (5)

I(s) = 0 whenever(s) = 0; h(s) in (5) is called helicity, which is defined at
every point whera (s) > 0, by

hs) = 6)

K (s)
The fundamental theorem of the space curves ensures that every space curve is
uniquely represented by such a complex waveform. The wavef@sivis invariant
under rotation and translation of coordinate system. Under space inversion, i.e.,
x — —x, x(s) remains unchanged bufs) and(s) change their signs. Thus
the torsions and helicities are pseudoscalar functib@. = 0 for a straight line.
When the curve is planar, the invariant waveform is simply the real nonnegative
curvature function. The helices are nonplanar curves and have constant helicity
function, so their waveforms have constant phases.

Many sophisticated signal processing algorithms require multiresolution sym-
bolic descriptions of the signals. The scale maps or fingerprints are such descrip-
tions [30]. We can construct the scale map of a space curve by first passing the
complex waveform of the curve or the derivatives of the waveform, denoted by
J (s), through a Gaussian filter

_ _ 2
E(s,0) = G(s,0) % J(s) = (;) / J () exp(%). @)

The scale map is the zero-crossing conter) of the complex filtered signal
E (s, o) on thes—o plane. The filtered signdl (s, o) obeys the diffusion equation

92E  OE o2

gE_9E T 8
952 o1 2 ®)

so that the derivative can be expressed as tlaerivative. The fingerprint theorem
[31, 32] is crucially important in determining how much information of a signal
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is stored in the scale map. The theorem ensures that the derivatives of the zero-
crossing contours at two distinct points at the same scale, uniquely determine
a signal up to a constant scale [31]. The proof of fingerprint theorem for a 1-
D real signal consists of three steps [32]. We present here a brief proof of the
fingerprint theorem for the compleX(s, o), following the same three steps. The
first step is to show that the derivative at a point on a zero-crossing contour, i.e.,
9"E/0&" = 0 whereg parametrizes the zero-crossing contour, constraints on the
“complex moments’M,, of the Fourier transform of (s, o)

"E
asn’

M, (t =0%/2) = /oo(jw)”ewzfed‘wf(w) do = (9)

whereJ (w) is the Fourier transform of (s). In fact, then equation®"E /9" =0
are a set of homogeneous linear equations of the first@ments. The second step
relates the “complex moments” to the coefficients in the expressidi(afo) in
Hermite polynomial. Explicitly,/ (s) can be expanded as

J(s) =Y an(0)du(s, o), (10)

n=0

whereg, (s, o) is the following Hermite function

O_anl S2 ar —S2
buls, o) = n\2r eXp(ﬁ) ds” exF)(ﬁ)'

The complex coefficients, (o) are related to the “complex moments” by

an(0) = (=1)"M, (o).

The third step is to show that it is generally possible to use the derivatives of
another point on the zero-crossing contour to obtaiadditional and indepen-
dent equations for the “complex moments” such thft(c) anda,(c) can be
determined. The original signal can be reconstructed from (10). Therefore, we con-
clude that the scale-space image for 3-D curves can be derived and the fingerprint
theorem holds true for the complex waveforms.

Moment Invariant Representation

3-D geometric moments of a space curve are defined by the following integral

1 L
Mis = 7 fo ¥ ()™ (5)2" (s) ds, (11)

whereL is the total length of the curve. There are totdlh+ 1) (p+2) /2 moments

of orderp (p = I + m + n). Since the central moments are invariant under
translation, we shall use features which are rotation invariant functions of them.
We denote the central moments bg,,,. These scalar moment functions can be
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used as features for curve recognition. Three second order 3-D moment invariants
are the eigenvalues of the following moment matrix of the curve [24],

Ma00 Mi10 Mion

Mi10 Moo Monr
Mior Moix Mooz
Higher order moments represent the fine spatial details on the curve and should
be included in the feature vector for complete description. We have proposed a
group-theoretic technique to derive scalar moment functions from the compounds
of 3-D geometric moments via Clebsch—Gordon expansion [16]. This method is
systematic and general. Explicit expressions of some invariant functions contain-
ing the second-order and the higher order moments are given in the Appendix.
Moment calculation does not require estimation of derivatives from the noisy dig-
itized data. Therefore, moment features are more robust for pattern classification.
Experimental study has shown that the moment invariant features have very high
discriminative power for noisy data.

Important feature points of a curve can be extracted when the curve is seg-
mented into smooth segments. Kehtarnavaz et al. [11] used the magnitude of the
Darboux vector|Q(s)| = (k2(s) + 12(s))Y? = «k(s)/1 + h2(s), as the criterion
function for 3-D curve segmentation. The breakpoints determined by their criterion
function may correspond to the first- or the second-order discontinuities of the
space curve. This criterion function for segmentation can be elegantly expressed as
I'(s) = 0, if we define the following complex waveform for the space curve

1(s) = k(s) exp(j2tan /1 + h2(s)). (12)

The waveform defined in (12) works just as well in curve matching as that defined
in (5), even though the waveform is imaginary for planar curves. Nevertheless,
the first order discontinuities of the curve can be more reliably detected and are
more significant, because they are the control points for spline reconstruction of
the curve. In our experiments, we simply define breakpoints to be the curvature
maxima. In our breakpoint extractior(s) of the smoothed curves are analyzed
over a range of spatial scales. Breakpoints found at multiple scales are located at
the finest scale. Geometric 3-D moments of the list of breakpintsy;, z;), i =

1,..., N} are defined as

N
My, = lely,mZ,” (13)
i=1

A curve can be represented by the moment invariants of its breakpoints.

3. Matching and Recognition of Space Curves

In this section, we shall present algorithms for space curve matching using invariant
global features which are either extracted from the complex waveforms or derived
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from 3-D moments. The curves can be reliably identified by their global features
when occlusion does not occur. The arc lengths of the curves depend, to some
extent, on the orientations of the curves, because different amounts of digitizing
noise are introduced into the curves at different orientations. The total length of the
curve is thus a random variable and will be considered as one of the components
in the global feature vector. The feature space can be partitioned into regions by
the discriminant functions [9]. The data curve will be identified with a prototype, if

its feature vector falls in the region of that prototype. We found in the experiments
that the minimum distance classifier is suitable for space curve classification. Once
a data curve has been identified with a model curve, the relative alignment and
Euclidean transformation can then be determined by procedures described later in
this section. The Euclidean transformation is not only useful in object positioning,
but also useful as the rigidity constraint for integrating the individual curve match-
ings into a globally consistent matching, when the object is represented by a set of
3-D curves. In the following, we shall discuss the global feature extraction from
the waveforms of the closed contours and the open 3-D curves.

3.1. GLOBAL FEATURES FROM THE INVARIANT WAVEFORM
3.1.1. Fourier Descriptor

The boundary contours of objects or smooth regions in the range data are closed
curves. The invariant waveforms of closed contours are periodic functions of the
arc length parameter. The period of each complex waveform is the total length of
the corresponding contour. These periodic invariant functions can be expanded into
Fourier series. The Fourier coefficients are defined as

1t —j2mns
Cp, = Z /O' I(S) eXp(T) ds. (14)

The data points on the boundary contours are usually extracted by contour fol-
lowing algorithms. Different starting points for contour tracing may be selected,
when the boundary curve is extracted with the object in different orientations in
the scene. The misalignment between the waveform of the curve in the g¢ene,
and that of the corresponding curve on the model objé¢t) can be expressed as
1(s) =1I'(s + s0),
wheresg is the offset. Their Fourier coefficients are related by
—j2mnsg
e

The magnitude of the Fourier coefficients are not affected by the choice of the
starting point. Therefore, they can be chosen as the global features. We have found
in our experimental study that, using five to eight Fourier features, it is possible to
reliably classify various contours in the range data.
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If the curve is planar, the invariant waveform becomes the curvature function of
the curve, a smoother periodic functiets) can be defined as

s 2
a(s) = / k(1) dr + E (15)
0 L
The Fourier features of planar curves are usually extracted from this function [34].

3.1.2. Legendre Function Expansion

Open space curve segments often appear in computer vision problems. Edges in the
range data may not form closed curves. Moreover, the spine axes of the generalized
cylinder representation of 3-D data are generally open curves. Global shape fea-
tures of the open curves can be extracted from the orthogonal function expansion.
The invariant waveform of an open space curve can be expressed as the following
series

I(s):Zk;,/l—l—%P;(%—l), (16)
=0

where P;(x)'s are the Legendre functions which are orthogonal gvet, 1]. In

(16), we have expressed the argument of the Legendre function in terms of the arc
length,x = (2s/L) — 1, so that these functions are orthogonal over the interval
[0, L]. The complex coefficienty are defined by the integrals

L
b=2 /1+%/0 1<s>pl(%_1> ds. (17)

The feature vector for an open space curve can be constructed from the real and
imaginary parts of these coefficients.

3.2. COORDINATE TRANSFORM ESTIMATION

When a model curve entirely appears in the scene, the coordinate transformation
can be calculated from the principal axes and the centroids of the curve in two
coordinate frames [15, 16]. There is no need to establish exact point correspon-
dence between two frames. However, this simple method is sensitive to noise. The
least squares estimation method presented in the following is more robust. It works
even when the curve is only partially visible in the scene. In 3-D space, the input
data curve can be related to a corresponding segment of the model curve by an
Euclidean transformation which minimizes the integral

L
A(R, a, sg) = / |Rx(s) +a— y(s +so)|2ds, (18)
0

wherex (s) andy(s +sp) are the data and the corresponding model curve segments,
respectivelyR is the rotation matrixg is the translation vector, ang is the offset
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parameter. The integral can be expanded as

L

L
A(R, a, so) :f |x(s)—xo|2ds+ATAL+/ ly(s + so) |2 ds
0 0

L
—2/ yT(s + s0) R(x(s) — xg) ds
0

L
2T f ¥(s + s0) ds, (19)
0
where
1 L
A =a+ Rxy, Xo = Z/ x(s)ds. (20)
0

To minimize (19) overd, we get

1 L
A= —/ y(s + sg) ds. (21)
L Jo

Substitute (21) into (19), we obtain

L L
A(R,a,sg) = / |x(s)—x0|2ds+/ |y(s +s0)|2ds
0 0

2
— 2Tr(RE,,(50)), (22)

L
7 /0 y(s + sg) ds

The cross-correlation matrix is defined to be

L
Yy (s0) = /0 (x(s) — x0)y" (s + s50) ds. (23)

The rotation matrix that maximizes the trace term in (22), will minimize the inte-
gral A. To find such rotation matrix, we apply the singular value decomposition to

ny (SO)
%,y (50) = U(s0) A(so) V" (s0), (24)

whereA (so) is the diagonal singular value matriX,(sg) andU (so) are the ortho-
gonal matrices. The rotation matrix

R(s0) = V(s0)U (s0) (25)

will maximize the trace term. The maximum value of R, (s0)), is Tr(A(so)).
OnceR (sp) is determined, the translation veciosg) can be calculated as

1 [t 1 [t
a(sg) = R—/ x(s)ds — —/ y(s + sp) ds. (26)
L Jo L Jo
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Both the rotation matrix and the translation vector are functions of the offset pa-
rametersg. Moreover, the point correspondence betwagn) and y(s) is also
determined by the value &§. The offset parametay is the value which minimizes

the following quantity

L L
Anin(so) = / |x(s)—x0|2ds+/ |y(s +s0)|2ds
0 0

L 2
— %‘ /0 y(s +s9)ds| — 2Tr(A(s0)). 27)
A similar approach of parameter estimation can be found in [5, 25], where the
authors used polar decomposition to factor Mg into a product of orthogonal
matrix and a nonnegative definite symmetric matrix [25]. The rotation matrix that
maximizes T(RX,,(so)) is the transpose of the orthogonal matrix in the polar
decomposition.

The rotation matrix can not be unambiguously determined when the cross cor-
relation matrix is degenerate. The cross-correlation matrix of two straight lines is
degenerate because it has two zero singular values. Straight lines have vanishing
waveform, so they can be easily detected before using the least squares estimation.
The relative orientation of two straight lines can be determined from their tangent
vectors up to a sign ambiguity. The algorithm of matching 3-D line segments and
its application to multiple-object recognition and motion estimation are discussed
in [8].

When we implement our algorithm on a digital computer, the integrals in (27)
will be approximated by discrete sums and evaluated at every sampled value of
so. Each element in the cross-correlation matrix can be calculated by two FFT
and one inverse FFT. Each FFT takesMDlog, M) operations. Singular value
decomposition of a x n matrix takes @n3) operations. Decomposition af,, (s0)
takes 12x 3% = 324 flops. ForM = 256, 512, the total matrix operations for
the whole sequencA(sp),so = 0,1,2,..., M — 1 have more or less the same
number of computations as that for the evaluation of the cross-correlation matrix.
By introducing the complex waveform matching, the computation complexity of
the searching fosg can be reduced. If the model curve segment which starts at
y(so) and ends ay(L + so) is the Euclidean transformed image of the data curve
x(s), then the invariant shape waveforms of the two curves will be exactly the
same. The offset parametey which minimizes (18) is one of the zeroes of the
functions D 1(so) or D2(sg) defined by

L
D1(so) = /0 |11(s) — In(s +so)|2ds, (28)

L
D2(sg) = / |11(L —s5)— (s + s0)|2ds, (29)
0

wherel(s) andl,(s) are invariant shape waveformsxofs) andy(s), respectively.
A(sg) is evaluated at each zero Bfl(sg) or D2(sg) and the offset parameteg
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is the one that predicts the smallest valueAdfy). In the noisy curve data, we
search forsg in the neighborhood of every pronounced local minimaDdf(sq)

or D2(sg). We then computex,, (so), A(so) and R(sg) with O(M) operations.
However, the rotation matrices calculated from the cross-correlation matrix of mis-
matched curves are generally improper orthogonal matrices [2]. By checking the
determinants of rotation matrices at various local minima, we can quickly find the
offset parameterD1(sg) and D2(sg) are dominated by the correlation terms

L L
Re/ Ii(s)I5(s +s0)ds and Re/ I1(L — s)I5 (s + so) ds,
0 0

respectively. They can be calculated with complexity of the orde? @og, M).

4. Matching Partially Occluded Curves

When one object is occluded by another object, the extracted boundary curves will
contain boundaries from both objects. The global features of the boundary curves
can not be used for classification. We may have to divide the boundary curve into
segments, and match each segment to the curves of the model objects. In general,
the scene may contain many discontinuous pieces of curves from several model
objects. We shall determine the largest portion of each model curve existing in the
scene and its position and orientation relative to its standard position. Our approach
is to decompose a given data curve into a set of curve segine@tss}. Eachx; (s)

is used as a template and matched to various portions of each modelyg¢uryve
whose length is not shorter than thatagts). The list of breakpoints will guide

the decomposition of data curves into templates. The intersection of boundaries of
two objects will generally be a breakpoint. Therefore, templates can be the curve
segments between breakpoints. The measure of the mismatch is the expression
given in (18), or its equivalent in (27). Appropriate subscripts must be introduced
to those equations, because each pie¢e on the data curve will match to every
model curvey;(s) in the library. Ambiguities often occur when a template can
locally match to several model curves, or to various portions of a model curve.
These ambiguities can be resolved when we apply the rigidity constraint on pair-
wise curve segments. Moreover, the longest segment of a model curve in the scene
can be determined, when the maximal set of mutually compatible matches to that
model curve is found. The Euclidean transformations of these matches calculated
from (25) and (26) will determine their structural compatibilities. To find the max-
imal set of mutually compatible matches, an association graph is constructed as
follows. The node of the association graph is the pair of the matched curve seg-
ments (x; (s), y;(so, so + L;)), wherex;(s) is a template and;(so, so + L;) is

a segment of thgth model curve with end points at;(so) and y;(so + L;).

Two nodes are connected by an edge, if the two templates in them match to the
same model curve, and the relative Euclidean transformation parameters of these
two matches are identical. The maximal cliques in the association graph are then
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determined. Each clique is associated with only one model curve. The part of the
model curve which appears in the scene is the union of all the templates in its
clique. Since the computation of the translation vectors depends on the estimated
rotation matrices, the estimation error of the rotation matrix will propagate to the
estimated translation vector. Therefore, we usually give a relatively larger tolerance
to the difference between translation vectors. We define the “distances” of rotation
matrices and translation vectors by the following formulae

d(Ry, Ro) = Tr((Ry — R2) ' (Ry — Ry)) < &g, (30)
‘al—az‘ < éer. (31)

The above template/structural algorithm can be used to recognize objects and
interpret scenes which are represented by a set of 3-D curves. In these cases, the
association graph generally contains a large number of nodes. The maximal cliques
can be found by recursive procedures [4, 7]. They have the worst case complexity
of exponential time. The template/structural curve matching algorithm may require
a large amount of computation. The cluster growing approach in [12] finds a set of
consistent matches with (@) time complexity, where: is the number of nodes
in the graph. However, this approach can not guarantee that the resulting set is a
maximal clique. The computation of curve matching can be reduced if we divide
each data curve into long curve segments, and the attempted match is performed
by matching invariant shape waveforms of the corresponding curve segments. We
use long curves in waveform matching, because they can have significant shape
characteristics. The waveform matching will be able to more efficiently find the
corresponding curve segment on the model curve, and their relative offset parame-
ter. In this case, the association graphs will contain relatively smaller numbers of
nodes, and the cliques can be more quickly found.

Turney et al. proposed a template matching algorithm of 2-D curves using
6—s waveforms [29]. Our algorithm can be considered as a 3-D extension of their
approach. Turney defined the saliency of each segment on the template, although
the structural compatibility of matches was not emphasized in their paper. Based on
our proposed complex waveform representation of space curves, other 2-D curve
matching algorithms also have their 3-D extensions. The authors in [19] proposed
a scale-space description of planar curves. The scale space image is a hierarchical
representation and the zero-crossing contours can be structured into a tree. The
matching of curves is to match their scale space images. This algorithm can be
used to recognize partially visible curves. Since we have shown that the scaling
theorem [33] and the fingerprint theorem are true for the scale maps of 3-D curves,
the algorithm in [19] can be straightforwardly extended to 3-D curve matchnig.

5. Experimental Results

In the following, we present the computer simulation results and experimental
study of our curve matching algorithm. We first tested our algorithm using curves
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Table I. Means and standard deviations of Fourier features
extracted from the invariant waveforms of curvésind B,
respectively

Fourier Mean Stand.dev. Mean Stand. dev.
features (A) (A) (B) (B)

o 0.153 0.0 0.177 0.0
c1 0151 20x10°° 0175 12x10°°
o 0.137 15x 104 0.164 80x 10°°
3 0.116 20x10°° 0.150 01x10°°
¢ 0.107 17x107® 0.146 08x 10°°
s 0.098 14x10° 0.134 15x10°°
6 0.092 02x107° 0.126 08x 10°°

which can be described by parametric equations. In the first experiment, the se-
lected closed curves can be described by

x(t) = r,SiN6(t) cose (1),
y(t) = rysing(t) sing(z),
z(t) = r, COSH(t),

where
0(t) = 2712, o) =2nt, 0<t<1.

CurvesA and B were generated by the equations using paramefets 30, ryA =

30, r# = 50 andrf = 30, r? = 40, r? = 50, respectively. The curves were
rotated to 216 different orientations. At each orientation, they were uniformly
sampled, and the Fourier features of the invariant waveforms of these curves were
computed. The statistical parameters of these Fourier features are shown in Table I.
As can be seen, these features are essentially invariant under rotation and transla-
tion. We have also tested our algorithms using the synthetic curves generated by
Hermite splines, which are open curves. The tangents of the curves were made
discontinuous at certain points. The locations of these breakpoints were determined
by tracking the curvature maxima from the coarse to fine scales. The Legendre
featuresk,, as defined in (17), were extracted from these open space curves. The
invariance of these features have been justified in the experiments. In the following
experiment, the spiral curves were used, which can be described by the following
equations

x(1) = re’ coq f1),
y(t) = ré’ sin(f1),
2(t) = ré”,
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Table Il. Means and standard deviations of the real and the imaginary parts of
the Legendre features, extracted from the open space erye= re”’ coq f1),

y(t) = ré’! sin(f1), 2(1) = re?"

Legendre Mean Stand. dev. Mean Stand. dev.
features (real) (real) (imag.) (imag.)

ko 121 x102 30 x108 134x102 227x10°

k1 —151 x102 335 x108 -169x102 310x10°6

ko 9544x 103 2647x10°%  1.08x 102 227x10°6

k3 —286 x103 190 x106 —326x103 174x10°6

kg —741 x10° 221 x10% —140x10% 200x 106

ks —268 x10% 300 x10% —212x10% 272x10°©

(a) (b)

Figure 1. Two range images.

where 0< ¢ < 2, andr = 10, = 0.5, f = 5. The statistical variances of the
computed Legendre features due to digitizing errors are shown in Table Il. As can
be seen, they are also invariant under rotation and translation.

We then tested our algorithm using space curves determined by the depth dis-
continuity in the range images. The synthetic range image in Figure 1(a) was
generated by a computer graphics technique. The range image in Figure 1(b) was
obtained by a laser range scanner. The objects in these images were first segmented
from the background. Their external boundaries were then extracted by a contour
following procedure and were stored in one-dimensional arrays. The objects were
rotated and translated to various positions in a way such that the same views were
preserved, i.e., the visible portion of the objects were the same except that the
viewing angles were different. Because of aliasing, the boundary contours of the
objects look jagged. Also, the boundary contours, of each object in different orien-
tations contain different numbers of pixels. The contours were smoothed by spline
fitting. The Fourier features were then extracted from the smoothed boundaries of
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Table Ill. Means and standard deviations of Fourier fea-
tures extracted from the invariant waveforms of the exter-
nal boundaries of the objects in Figures 1(a) and (b)

Fourier Mean Stand.dev. Mean Stand. dev.

features €) (€)) (b) (b)
o 0.48 0.23 2.60 0.22
c1 0.09 0.07 0.32 0.18
c 0.12 0.10 0.32 0.10
c3 0.11 0.08 0.39 0.13
cq 0.09 0.08 0.30 0.09
c5 0.09 0.06 0.13 0.07
e 0.05 0.02 0.20 0.10

Table IV. Moment invariants evaluated from the boundaries in Fig-
ures 1(b) and 2

Moment .
invariants  Figure 2(a) Figure 2(b) Figure 2(c) Figure 1(b)

12, 0.159 0.159 0.159 0.150
1%, -0.051 ~0.501 0501  -0.046
3 -6.833 ~7.760 ~6.946 -1.036
3 44904  —46558 51731  -8.937
123 2.074 2271 2.129 0.304
%3 -1.293 ~1.347 ~1411  -0.218
%3 3.381 3.486 3.898 0.652
13333 27.992 35527  28.742 0.627
I35,  -16.880  -10.722  -18.936  -0.442
13133 10.693 12.292 12.596 0.321
13,  -27.408 28800  -34597  -0.941

the objects in various positions. The means and variances of these features were
estimated and are shown in Table Ill. We constructed the maximum likelihood
classifiers with Gaussian distribution using these statistical parameters and found
that the classifiers could always unambiguously distinguish between these two
boundary curves. To show the performance of the 3-D moment invariants for space
curves as listed in Appendix, we computed them for the boundary contours of the
synthetic object in various positions shown in Figure 2(a)—(c), and Figure 1(b). The
results are shown in Table IV. Among the eleven 3-D invariant moment functions
in Table 1V, 12,, 12,, contain the second-order moments;, 13, 1305 13555 12125
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(a) (b) (c)

Figure 2. Range images of an object in various orientations.

(a) (b)

Figure 3. Overlapping of the transformed boundaries in Figures 2(a) and 2(b) on the boundary
in Figure 2(c), respectively.

13,5 contain the third-order moments; angf3, 125, 155, contain both the second-

and the third-order moments. It is evident that these moment features are invariant
to the 3-D rotations and translations. The point correspondence and motion para-
meters between these curves in Figure 2 were also calculated using the algorithm
given in Section 3. The boundary contours of the images in Figures 2(a) and (b)
were transformed by the estimated motion parameters and were overlapped on the
boundary of the image in Figure 2(c). The results are shown in Figures 3(a) and
(b), respectively. The range data in Figure 1(b) were also rotated to a different
orientation, and 15% edge points were deleted from its boundary by occlusion, as
shown in Figure 4(a). This partially obscured contour was matched to the boundary
of the image in Figure 1(b) following the procedure given in Section 4. The result
is shown in Figure 4(b).

3-D data of curves can also be obtained by stereopsis. We present in the fol-
lowing the experimental results of curve matching using 3-D data extracted from
the stereo images. The first scene contains a single chair whose stereo images are
shown in Figure 5(a). The second scene contains two chairs whose stereo images
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Figure 4. (a) Boundary of a partially occluded object in Figure 1(b). (b) Overlapping of the
matched boundaries in Figures 4(a) and 1(b).

Figure 5. (a) Stereo images of a chair, and (b) stereo images of the occluded chairs.
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v

Figure 6. (a) Stereo images of two chairs, and (b) stereo images of the occluded chairs.

are shown in Figure 6(a). The chairs were then occluded by paper boxes. The stereo
images of the occluded scenes are shown in Figures 5(b) and 6(b), respectively. The
images were first adaptively thresholded into binary images. The large regions in
the thresholded images were then labeled. The boundaries of the large regions were
traced, smoothed and stored, which formed the characteristic curves of the scene.
The curves in the occluded scenes were used as data curves, and the curves in the
non-occluded scenes were used as model curves. There were one model curve and
five templates in the first scene, three model curves and ten templates in the second
scene, which are shown in Figures 7(a) and 7(b), respectively. The epipolar line is
along theX-axis. We computed the disparity map of the chairs by a correlation-
based stereo matching algorithm. The disparity map contains the information of
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Figure 7. Labeled model curves (left) and the templates of unknown objects (right) of the first
scene and the second scene, respectively.

point correspondence between the left and right images. The disparity map is in
one-to-one correspondence to the right image. The grey value at each pixel is
a linear function of the disparity value at that pixel. The 3-D coordinates of the
boundary curves were computed from the formula

_p (disparity+ 2x,)/2
N disparity
_ it y/2
disparity ’
_ b
°= disparity’
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(a) {bl

Figure 8. Disparity maps computed from Figures 5(a) and (b), respectively.

Figure 9. Disparity maps computed from Figures 6(a) and (b), respectively.

where the focal lengthy and base line for the images in Figure 5 arg =

35 mm andb = 70 mm. For the images in Figure 6, they gfe= 17.5 mm

andb = 35 mm. The generated disparity maps are shown in Figures 8 and 9,
respectively. As can be seen, they are very noisy. Disparity might be undetermined
at some points along the boundary curves. A particular grey value, 132, was given
to that point of the curve. The assumption of slowly varying disparity was used for
interpolation. The disparity map in Figure 9(b) has large regions of undetermined
disparities. The 3-D coordinates of the curve segments in those regions could not
be calculated and the segments were discarded. Some templates, such as those in



146 C.-H. LO AND H.-S. DON

(a,4)

(a,5)

(a)

(a, 1) (b,4) (0,6)><(C,9)
(a,2) (b,5) (c,7) (c,8)
(b)

Figure 10. The consistent matches between the templates of unknown objects and the model
curves for the first scene and the second scene, respectively.

(a) (b

Figure 11. The visible part of the model curves predicted by the curve matching algorithm for
the first scene and the second scene, respectively.
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Figure 7(b), are discontinuous. The templates were matched to the models using the
algorithm described in Section 4. The offset paramefemd coordinate transfor-
mations of the matches were determined. There are two consistent matches in the
first scene, eight consistent matches represented by three cliques in the association
graph in the second scene. These graphs are shown in Figure 10. The visible model
curves predicted by our curve matching algorithm are displayed in Figure 11. We
can see that our algorithm of curve matching works satisfactorily.

6. Conclusions

In this paper, we have proposed an invariant waveform representation for space
curves. We have also discussed the problem of space curve matching. The proposed
invariant representation contains the complete 3-D shape information of a space
curve. This invariant representation allows us to manipulate the segmentation and
recognition of 3-D curves in the same way as those of 1-D waveforms, which have
been very well studied in the literature. Moment invariants of 3-D curves have also
been discussed, which are very discriminative features for pattern classification.
An algorithm using the invariant global features for matching the nonoccluded 3-D
curves has been discussed. This approach is fast and robust. A template/structural
algorithm has been proposed for the recognition of partially occluded curves. The
waveform matching can be used for efficient template matching and point cor-
respondence problems. All of our results can be used to describe and match 2-D
curves. In our current research, we are trying to improve the result of curve smooth-
ing and to scale the performance of template waveform matching. We are also
developing a robust object recognition algorithm using curve matching, where the
saliency of the features will be taken into account.
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Appendix

A brief summary of some of the 3-D moment invariants are listed below, which
were used in the experiments given in this paper.

2 v(2, 2)8 2 nv 3 v(3, 3)8

2= T 0w 222= T N3’ 33~ T ov105°
(v9)2 (vg)° (vg)12/5
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s v 1] 23 V(3,312 23 V(3 Doy

LS gEs s fm g

23 V(L Dovy s V(3.3 3 _ v(33)(3 1)
llZ_W’ 3333—W, 1333—W,
3 _ V2(3, 1)2 3 _ U(3, 1)21)(1a 1)2

1133 — (V8)24/5’ 1113 — (V8)24/5

The detailed definitions and derivations of the quantitiés j)”,’s appeared in the
above expressions can be found in [16].

References

1.

2.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Agin, G. J. and Binford, T. O.: Computer description of curved objectsRiac. of the 3rd
Internat. Joint Conf. on Atrtificial Intelligen¢&tanford, CA, August 20-23, 1973, pp. 629-640.
Arun, K. S., Huang, T. S., and Blostein, S. D.: Least square fitting of two 3-D point B&,
Trans. Pattern Anal. Mach. Intel@ (1987), 698—700.

Asada, H. and Brady, M.: The curvature primal sketEfE Trans. Pattern Anal. Mach. Intell.
8(1986), 2-14.

Ballard, D. H. and Brown, C. MComputer VisionPrentice-Hall, Englewood Cliffs, NJ, 1982.
Bastuscheck, C. M. et al.: Object recognition by three-dimensional curve matdhing,

Intell. System4 (1986), 105-132.

Besl, P. J. and Jain, R. C.: Three-dimensional object recognkiol] Comput. Surveyk7(1)
(1985), 75-145.

Bolles, R. C. and Cain, R. A.: Recognizing and locating partially visible objects: The focus
feature methodnternat. J. Robotics Re§(3) (1982), 57-81.

Chen, H. H. and Huang, T. S.: An algorithm for matching 3-D line segments with application
to multiple-object motion estimation, iffroc. of Workshop on Computer Visiddiami, FL,
November 30-December 2, 1987, pp. 151-156.

Duda, R. O. and Hart, P. ERattern Classification and Scene Analy$iéley, New York, 1973.
Hsiung, C. C.A First Course in Differential GeometryViley/Interscience, New York, 1981.
Kehtarnavaz, N. and de Figueiredo, R. J. P.: A 3-D contour segmentation scheme based on
curvature and torsionEEE Trans. Pattern Anal. Mach. Intell0 (1988), 707—713.

Koch, M. and Kashyap, R.: Using polygons to recognize and locate partially occluded objects,
IEEE Trans. Pattern Anal. Mach. Inted.(1987), 483-494.

Kuhl, F. P. and Giardina, C. R.: Elliptic Fourier features of a closed cor@amputer Graphics
Image Processin8(1982) 236-258.

Lin, C. S. and Hwang, C. L.: New forms of shape invariants from elliptic Fourier descriptors,
Pattern Recognitior20 (1987), 535-545.

Lin, Z., Lee, H., and Huang, T. S.: Finding 3-D point correspondences in motion estimation,
in: Proc. the Eighth Int. Conf. on Pattern Recognitid®86, pp. 303-305.

Lo, C. H. and Don, H. S.: 3-D moment forms: Their construction and application to object
identification and positionindEEE Trans. Pattern. Anal. Mach. Intell1 (1989), 1053-1064.

Lo, C. H. and Don, H. S.: Representation and recognition of 3-D curvé2dn: CVPR 1989,

pp. 523-528.

Mokhtarian, F.: Multi-scale description of space curves and three-dimensional objeRtecin:
CVPR 1988, pp. 298-303.

Mokhtarian, F. and Mackworth, A.: Scale-based description and recognition of planar curves
and two-dimensional shapdEEE Trans. Pattern Anal. Mach. InteB.(1984), 34—43.



SPACE CURVES 149

20.

21.
22.

23.

24.

25.

26.

27.

28.

20.

30.

31.

32.
33.

34.

Nevatia, R. and Binford, T. O.: Description and recognition of complex-curved objects,
Artificial Intell. 8 (1977), 77-98.

O’'Neill, B.: Elementary Differential Geometrnacademic Press, New York, 1966.

Pavlidis, T. and Ali, F.: A hierarchical syntactic shape analyllEE Trans. Pattern Anal.
Mach. Intell.1 (1979), 2-9.

Pavlidis, T. and Horowitz, S. L.: Segmentation of plane cutsE Trans. CompuR3(1974),
860-870.

Sadjadi, F. A. and Hall, E. L.: Three-dimensional moment invariBE: Trans. Pattern Anal.
Mach. Intell.2 (1980), 127-136.

Schwartz, J. T. and Sharir, M.: Identification of partially obscured objects in two and three
dimensions by matching noisy characteristics cur¥eternat. J. Robotics Re$ (1987),
29-44.

Shahraray, B. and Anderson, D.: Optimal estimation of contour properties by cross-validated
regularization]EEE Trans. Pattern Anal. Mach. Intell1 (1989), 600—610.

Shapiro, L. G. and Haralick, R. M.: Decomposition of two-dimensional shape by graph
theoretic clusterindEEE Trans. Pattern Anal. Mach. Intefl. (1979), 10-20.

Terzopoulos, D.: Regularization of inverse visual problems involving discontinuii&s
Trans. Pattern Anal. Mach. Intel8 (1986), 413—-424.

Turney, J., Mudge, T., and Volz, R.: Recognizing partially occluded pBEE Trans. Pattern
Anal. Mach. Intell.7 (1985), 410-421.

Witkin, A.: Scale-space filtering, ilRroc. Internat. Joint Conf. on Artificial Intelligenc&983,

pp. 1019-1022.

Yuille, A. and Poggio, T.: Fingerprints theorems, Rroc. Internat. Joint Conf. on Artificial
Intelligence 1984, pp. 362—365.

Yuille, A. and Poggio, T.: Fingerprints theorerdsOptic. Soc. AmeR(5) (1985), 683—692.

Yuille, A. and Poggio, T.: Scaling theorems for zero crossiliffSE Trans. Pattern Anal. Mach.
Intell. 8 (1986), 15-25.

Zahn, C. T. and Roskies, R. Z.: Fourier descriptors for plane closed cUBEE, Trans.
Comput.21(1972), 269-281.



