408 research outputs found

    Dynamically reconfigurable architecture for embedded computer vision systems

    Get PDF
    The objective of this research work is to design, develop and implement a new architecture which integrates on the same chip all the processing levels of a complete Computer Vision system, so that the execution is efficient without compromising the power consumption while keeping a reduced cost. For this purpose, an analysis and classification of different mathematical operations and algorithms commonly used in Computer Vision are carried out, as well as a in-depth review of the image processing capabilities of current-generation hardware devices. This permits to determine the requirements and the key aspects for an efficient architecture. A representative set of algorithms is employed as benchmark to evaluate the proposed architecture, which is implemented on an FPGA-based system-on-chip. Finally, the prototype is compared to other related approaches in order to determine its advantages and weaknesses

    Cognitive computing: algorithm design in the intersection of cognitive science and emerging computer architectures

    Full text link
    For the first time in decades computers are evolving into a fundamentally new class of machine. Transistors are still getting smaller, more economical, and more power-efficient, but operating frequencies leveled off in the mid-2000's. Today, improving performance requires placing a larger number of slower processing cores on each of many chips. Software written for such machines must scale out over many cores rather than scaling up with a faster single core. Biological computation is an extreme manifestation of such a many-slow-core architecture and therefore offers a potential source of ideas for leveraging new hardware. This dissertation addresses several problems in the intersection of emerging computer architectures and biological computation, termed Cognitive Computing: What mechanisms are necessary to maintain stable representations in a large distributed learning system? How should complex biologically-inspired algorithms be tested? How do visual sensing limitations like occlusion influence performance of classification algorithms? Neurons have a limited dynamic output range, but must process real-world signals over a wide dynamic range without saturating or succumbing to endogenous noise. Many existing neural network models leverage spatial competition to address this issue, but require hand-tuning of several parameters for a specific, fixed distribution of inputs. Integrating spatial competition with a stabilizing learning process produces a neural network model capable of autonomously adapting to a non-stationary distribution of inputs. Human-engineered complex systems typically include a number of architectural features to curtail complexity and simplify testing. Biological systems do not obey these constraints. Biologically-inspired algorithms are thus dramatically more difficult to engineer. Augmenting standard tools from the software engineering community with features targeted towards biologically-inspired systems is an effective mitigation. Natural visual environments contain objects that are occluded by other objects. Such occlusions are under-represented in the standard benchmark datasets for testing classification algorithms. This bias masks the negative effect of occlusion on performance. Correcting the bias with a new dataset demonstrates that occlusion is a dominant variable in classification performance. Modifying a state-of-the-art algorithm with mechanisms for occlusion resistance doubles classification performance in high-occlusion cases without penalty for unoccluded objects

    Embedded Vision Systems: A Review of the Literature

    Get PDF
    Over the past two decades, the use of low power Field Programmable Gate Arrays (FPGA) for the acceleration of various vision systems mainly on embedded devices have become widespread. The reconfigurable and parallel nature of the FPGA opens up new opportunities to speed-up computationally intensive vision and neural algorithms on embedded and portable devices. This paper presents a comprehensive review of embedded vision algorithms and applications over the past decade. The review will discuss vision based systems and approaches, and how they have been implemented on embedded devices. Topics covered include image acquisition, preprocessing, object detection and tracking, recognition as well as high-level classification. This is followed by an outline of the advantages and disadvantages of the various embedded implementations. Finally, an overview of the challenges in the field and future research trends are presented. This review is expected to serve as a tutorial and reference source for embedded computer vision systems

    3D Sensor Placement and Embedded Processing for People Detection in an Industrial Environment

    Get PDF
    Papers I, II and III are extracted from the dissertation and uploaded as separate documents to meet post-publication requirements for self-arciving of IEEE conference papers.At a time when autonomy is being introduced in more and more areas, computer vision plays a very important role. In an industrial environment, the ability to create a real-time virtual version of a volume of interest provides a broad range of possibilities, including safety-related systems such as vision based anti-collision and personnel tracking. In an offshore environment, where such systems are not common, the task is challenging due to rough weather and environmental conditions, but the result of introducing such safety systems could potentially be lifesaving, as personnel work close to heavy, huge, and often poorly instrumented moving machinery and equipment. This thesis presents research on important topics related to enabling computer vision systems in industrial and offshore environments, including a review of the most important technologies and methods. A prototype 3D sensor package is developed, consisting of different sensors and a powerful embedded computer. This, together with a novel, highly scalable point cloud compression and sensor fusion scheme allows to create a real-time 3D map of an industrial area. The question of where to place the sensor packages in an environment where occlusions are present is also investigated. The result is algorithms for automatic sensor placement optimisation, where the goal is to place sensors in such a way that maximises the volume of interest that is covered, with as few occluded zones as possible. The method also includes redundancy constraints where important sub-volumes can be defined to be viewed by more than one sensor. Lastly, a people detection scheme using a merged point cloud from six different sensor packages as input is developed. Using a combination of point cloud clustering, flattening and convolutional neural networks, the system successfully detects multiple people in an outdoor industrial environment, providing real-time 3D positions. The sensor packages and methods are tested and verified at the Industrial Robotics Lab at the University of Agder, and the people detection method is also tested in a relevant outdoor, industrial testing facility. The experiments and results are presented in the papers attached to this thesis.publishedVersio

    NOVEL DENSE STEREO ALGORITHMS FOR HIGH-QUALITY DEPTH ESTIMATION FROM IMAGES

    Get PDF
    This dissertation addresses the problem of inferring scene depth information from a collection of calibrated images taken from different viewpoints via stereo matching. Although it has been heavily investigated for decades, depth from stereo remains a long-standing challenge and popular research topic for several reasons. First of all, in order to be of practical use for many real-time applications such as autonomous driving, accurate depth estimation in real-time is of great importance and one of the core challenges in stereo. Second, for applications such as 3D reconstruction and view synthesis, high-quality depth estimation is crucial to achieve photo realistic results. However, due to the matching ambiguities, accurate dense depth estimates are difficult to achieve. Last but not least, most stereo algorithms rely on identification of corresponding points among images and only work effectively when scenes are Lambertian. For non-Lambertian surfaces, the brightness constancy assumption is no longer valid. This dissertation contributes three novel stereo algorithms that are motivated by the specific requirements and limitations imposed by different applications. In addressing high speed depth estimation from images, we present a stereo algorithm that achieves high quality results while maintaining real-time performance. We introduce an adaptive aggregation step in a dynamic-programming framework. Matching costs are aggregated in the vertical direction using a computationally expensive weighting scheme based on color and distance proximity. We utilize the vector processing capability and parallelism in commodity graphics hardware to speed up this process over two orders of magnitude. In addressing high accuracy depth estimation, we present a stereo model that makes use of constraints from points with known depths - the Ground Control Points (GCPs) as referred to in stereo literature. Our formulation explicitly models the influences of GCPs in a Markov Random Field. A novel regularization prior is naturally integrated into a global inference framework in a principled way using the Bayes rule. Our probabilistic framework allows GCPs to be obtained from various modalities and provides a natural way to integrate information from various sensors. In addressing non-Lambertian reflectance, we introduce a new invariant for stereo correspondence which allows completely arbitrary scene reflectance (bidirectional reflectance distribution functions - BRDFs). This invariant can be used to formulate a rank constraint on stereo matching when the scene is observed by several lighting configurations in which only the lighting intensity varies
    corecore