70 research outputs found

    Waveform design and processing techniques in OFDM radar

    Get PDF
    Includes bibliographical referencesWith the advent of powerful digital hardware, software defined radio and radar have become an active area of research and development. This in turn has given rise to many new research directions in the radar community, which were previously not comprehensible. One such direction is the recently investigated OFDM radar, which uses OFDM waveforms instead of the classic linear frequency mod- ulated waveforms. Being a wideband signal, the OFDM symbol offers spectral efficiency along with improved range resolution, two enticing characteristics for radar. Historically a communication signal, OFDM is a special form of multi- carrier modulation, where a single data stream is transmitted over a number of lower rate carriers. The information is conveyed via sets of complex phase codes modulating the phase of the carriers. At the receiver, a demodulation stage estimates the transmitted phase codes and the information in the form of binary words is finally retrieved. In radar, the primary goal is to detect the presence of targets and possibly estimate some of their features through measurable quantities, e.g. range, Doppler, etc. Yet, being a young waveform in radar, more understanding is required to turn it into a standard radar waveform. Our goal, with this thesis, is to mature our comprehension of OFDM for radar and contribute to the realm of OFDM radar. First, we develop two processing alternatives for the case of a train of wideband OFDM pulses. In this, our first so-called time domain solution consists in applying a matched filter to compress the received echoes in the fast time before applying a fast Fourier transform in the slow time to form the range Doppler image. We motivate this approach after demonstrating that short OFDM pulses are Doppler tolerant. The merit of this approach is to conserve existing radar architectures while operating OFDM waveforms. The second so-called frequency domain solution that we propose is inspired from communication engineering research since the received echoes are tumbled in the frequency domain. After several manipulations, the range Doppler image is formed. We explain how this approach allows to retrieve an estimate of the unambiguous radial velocity, and propose two methods for that. The first method requires the use of identical sequence (IS) for the phase codes and is, as such, binding, while the other method works irrespective of the phase codes. Like the previous technique, this processing solution accommodates high Doppler frequencies and the degradation in the range Doppler image is negligible provided that the spacing between consecutive subcarriers is sufficient. Unfortunately, it suffers from the issue of intersymbol interference (ISI). After observing that both solutions provide the same processing gain, we clarify the constraints that shall apply to the OFDM signals in either of these solutions. In the first solution, special care has been employed to design OFDM pulses with low peak-to-mean power ratio (PMEPR) and low sidelobe level in the autocorrelation function. In the second solution, on the other hand, only the constraint of low PMEPR applies since the sidelobes of the scatterer characteristic function in the range Doppler image are Fourier based. Then, we develop a waveform-processing concept for OFDM based stepped frequency waveforms. This approach is intended for high resolution radar with improved low probability of detection (LPD) characteristics, as we propose to employ a frequency hopping scheme from pulse to pulse other than the conventional linear one. In the same way we treated our second alternative earlier, we derive our high range resolution processing in matrix terms and assess the degradation caused by high Doppler on the range profile. We propose using a bank of range migration filters to retrieve the radial velocity of the scatterer and realise that the issue of classical ambiguity in Doppler can be alleviated provided that the relative bandwidth, i.e. the total bandwidth covered by the train of pulses divided by the carrier frequency, is chosen carefully. After discussing a deterministic artefact caused by frequency hopping and the means to reduce it at the waveform design or processing level, we discuss the benefit offered by our concept in comparison to other standard wideband methods and emphasize on its LPD characteristics at the waveform and pulse level. In our subsequent analysis, we investigate genetic algorithm (GA) based techniques to finetune OFDM pulses in terms of radar requirements viz., low PMEPR only or low PMEPR and low sidelobe level together, as evoked earlier. To motivate the use of genetic algorithms, we establish that existing techniques are not exible in terms of the OFDM structure (the assumption that all carriers are present is always made). Besides, the use of advanced objective functions suited to particular configurations (e.g. low sidelobe level in proximity of the main autocorrelation peak) as well as the combination of multiple objective functions can be done elegantly with GA based techniques. To justify that solely phase codes are used for our optimisation(s), we stress that the weights applied to the carriers composing the OFDM signal can be spared to cope with other radar related challenges and we give an example with a case of enhanced detection. Next, we develop a technique where we exploit the instantaneous wideband trans- mission to characterise the type of the canonical scatterers that compose a target. Our idea is based on the well-established results from the geometrical theory of diffraction (GTD), where the scattered energy varies with frequency. We present the problem related to ISI, stress the need to design the transmitted pulse so as to reduce this risk and suggest having prior knowledge over the scatterers relative positions. Subsequently, we develop a performance analysis to assess the behaviour of our technique in the presence of additive white Gaussian noise (AWGN). Then, we demonstrate the merit of integrating over several pulses to improve the characterisation rate of the scatterers. Because the scattering centres of a target resonate variably at different frequencies, frequency diversity is another enticing property which can be used to enhance the sensing performance. Here, we exploit this element of diversity to improve the classification function. We develop a technique where the classification takes place at the waveform design when few targets are present. In our case study, we have three simple targets. Each is composed of perfectly electrically conducting spheres for which we have exact models of the scattered field. We develop a GA based search to find optimal OFDM symbols that best discriminate one target against any other. Thereafter, the OFDM pulse used for probing the target in the scene is constructed by stacking the resulting symbols in time. After discussing the problem of finding the best frequency window to sense the target, we develop a performance analysis where our figure of merit is the overall probability of correct classification. Again, we prove the merit of integrating over several pulses to reach classification rates above 95%. In turn, this study opens onto new challenges in the realm of OFDM radar. We leave for future research the demonstration of the practical applicability of our novel concepts and mention manifold research axes, viz., a signal processing axis that would include methods to cope with inter symbol interference, range migration issues, methods to raise the ambiguity in Doppler when several echoes from distinct scatterers overlap in the case of our frequency domain processing solutions; an algorithmic axis that would concern the heuristic techniques employed in the design of our OFDM pulses. We foresee that further tuning might help speeding up our GA based algorithms and we expect that constrained multi- objective optimisation GA (MOO-GA) based techniques shall benefit the OFDM pulse design problem in radar. A system design axis that would account for the hardware components' behaviours, when possible, directly at the waveform design stage and would include implementation of the OFDM radar system

    Radar Interference Mitigation for Automated Driving: Exploring Proactive Strategies

    Get PDF
    Autonomous driving relies on a variety of sensors, especially on radars, which have unique robustness under heavy rain/fog/snow and poor light conditions. With the rapid increase of the amount of radars used on modern vehicles, where most radars operate in the same frequency band, the risk of radar interference becomes a compelling issue. This article analyses automotive radar interference and proposes several new approaches, which combine industrial and academic expertise, toward the path of interference-free autonomous driving

    Space time adaptive processing in multichannel passive radar

    Get PDF
    Nowdays, passive bistatic radar (PBR) systems have become a subject of intensive research, owing essentially to its unique features, such as low probability of interception, small size and low cost. Passive radar is a concept where illuminators of opportunity are used. In a bistatic passive radar the main challenges are: estimating the reference signal which is required for detection, mitigating the direct signal, multipath and clutter echoes on the surveillance channel and finally achieving a sufficient SINR to detect targets. This thesis is concerned with the definition and application of adaptive signal processing techniques to a multichannel passive radar receiver. Adaptive signal processing techniques are well known for active pulse radars. A PBR system operates in a continuous mode, therefore the received signal is not avalaible in the classical array elements-slow time-range domain such as in active pulse radar. A major component of this research focuses on demonstrating the applicability of traditional adaptive algorithms, developed in the active radar contest, with passive radar. Firstly a new detailed formulation of the sub optimum “batches algorithm”, used to evaluate the cross correlation function, is proposed. Then innovative 1D temporal adaptive processing techniques are defined extending the matched filter concept to an adaptive matched filter formulation. Afterwards a new spatial adaptive technique, based on the application of the adaptive digital beamforming after the matched filter, is investigated. Finally both 1D spatial and temporal adaptive techniques are extended to 2D space-time adaptive processing techniques. Specifically we demonstrate the applicability of STAP processing to a passive bistatic radar and we show how the classical STAP algorithms, developed for active radar systems, can be applied to a PBR system. The new defined passive radar signal processing architectures are compared with the standard approaches and the effectiveness of the proposed techniques is demonstrated considering both simulated and real data

    Estudo de formas de onda e conceção de algoritmos para operação conjunta de sistemas de comunicação e radar

    Get PDF
    The focus of this thesis is the processing of signals and design of algorithms that can be used to enable radar functions in communications systems. Orthogonal frequency division multiplexing (OFDM) is a popular multicarrier modulation waveform in communication systems. As a wideband signal, OFDM improves resolution and enables spectral efficiency in radar systems, while also improving detection performance thanks to its inherent frequency diversity. This thesis aims to use multicarrier waveforms for radar systems, to enable the simultaneous operation of radar and communication functions on the same device. The thesis is divided in two parts. The first part, studies the adaptation and application of other multicarrier waveforms to radar functions. At the present time many studies have been carried out to jointly use the OFDM signal for communication and radar functions, but other waveforms have shown to be possible candidates for communication applications. Therefore, studies on the evaluation of the application of these same signals to radar functions are necessary. In this thesis, to demonstrate that other multicarrier waveforms can overcome the OFDM waveform in radar/communication (RadCom) systems, we propose the adaptation of the filter bank multicarrier (FBMC), generalized frequency division multiplexing (GFDM) and universal filtering multicarrier (UFMC) waveforms for radar functions. These alternative waveforms were compared performance-wise regarding achievable target parameter estimation performance, amount of residual background noise in the radar image, impact of intersystem interference and flexibility of parameterization. In the second part of the thesis, signal processing techniques are explored to solve some of the limitations of the use of multicarrier waveforms for RadCom systems. Radar systems based on OFDM are promising candidates for future intelligent transport networks. Exploring the dual functionality enabled by OFDM, we presents cooperative methods for high-resolution delay-Doppler and direction-of-arrival estimation. High-resolution parameter estimation is an important requirement for automotive radar systems, especially in multi-target scenarios that require reliable target separation performance. By exploring the cooperation between vehicles, the studies presented in this thesis also enable the distributed tracking of targets. The result is a highly accurate multi-target tracking across the entire cooperative vehicle network, leading to improvements in transport reliability and safety.O foco desta tese é o processamento de sinais e desenvolvimento de algoritmos que podem ser utilizados para a habilitar a função de radar nos sistemas de comunicação. OFDM (Orthogonal Frequency Division Multiplexing) é uma forma de onda com modulação multi-portadora, popular em sistemas de comunicação. Para sistemas de radar, O OFDM melhora a resolução e fornece eficiência espectral, além disso sua diversidade de frequências melhora o desempenho na detecção do radar. Essa tese tem como objetivo utilizar formas de onda multi-portadoras para sistemas de radar, possibilitando a operação simultânea de funções de radar e de comunicação num mesmo dispositivo. A tese esta dividida em duas partes. Na primeira parte da tese são realizados estudos da adaptabilidade de outras formas de onda multi-portadora para funções de radar. Nos dias atuais, muitos estudos sobre o uso do sinal OFDM para funções de comunicação e radar vêm sendo realizados, no entanto, outras formas de onda mostram-se possíveis candidatas a aplicações em sistemas de comunicação, e assim, avaliações para funções de sistema de radar se tornam necessárias. Nesta tese, com a intenção de demonstrar que formas de onda multi-portadoras alternativas podem superar o OFDM nos sistemas de Radar/comunicação (RadCom), propomos a adaptação das seguintes formas de onda: FBMC (Filter Bank Multicarrier); GFDM (Generalized Frequency Division Multiplexing); e UFMC (Universal Filtering Multicarrier) para funções de radar. Também produzimos uma análise de desempenho dessas formas de onda sobre o aspecto da estimativa de parâmetros-alvo, ruído de fundo, interferência entre sistemas e parametrização do sistema. Na segunda parte da tese serão explorados técnicas de processamento de sinal de forma a solucionar algumas das limitações do uso de formas de ondas multi-portadora para sistemas RadCom. Os sistemas de radar baseados no OFDM são candidatos promissores para futuras redes de transporte inteligentes, porque combinam funções de estimativa de alvo com funções de rede de comunicação em um único sistema. Explorando a funcionalidade dupla habilitada pelo OFDM, nesta tese, apresentamos métodos cooperativos de alta resolução para estimar o posição, velocidade e direção dos alvos. A estimativa de parâmetros de alta resolução é um requisito importante para sistemas de radar automotivo, especialmente em cenários de múltiplos alvos que exigem melhor desempenho de separação de alvos. Ao explorar a cooperação entre veículos, os estudos apresentados nesta tese também permitem o rastreamento distribuído de alvos. O resultado é um rastreamento multi-alvo altamente preciso em toda a rede de veículos cooperativos, levando a melhorias na confiabilidade e segurança do transporte.Programa Doutoral em Telecomunicaçõe

    Power minimization based robust OFDM radar waveform design for radar and communication systems in coexistence.

    Get PDF
    This paper considers the problem of power minimization based robust orthogonal frequency division multiplexing (OFDM) radar waveform design, in which the radar coexists with a communication system in the same frequency band. Recognizing that the precise characteristics of target spectra are impossible to capture in practice, it is assumed that the target spectra lie in uncertainty sets bounded by known upper and lower bounds. Based on this uncertainty model, three different power minimization based robust radar waveform design criteria are proposed to minimize the worst-case radar transmitted power by optimizing the OFDM radar waveform, which are constrained by a specified mutual information (MI) requirement for target characterization and a minimum capacity threshold for communication system. These criteria differ in the way the communication signals scattered off the target are considered: (i) as useful energy, (ii) as interference or (iii) ignored altogether at the radar receiver. Numerical simulations demonstrate that the radar transmitted power can be efficiently reduced by exploiting the communication signals scattered off the target at the radar receiver. It is also shown that the robust waveforms bound the worst-case power-saving performance of radar system for any target spectra in the uncertainty sets

    Nearly orthogonal, doppler tolerant waveforms and signal processing for multi-mode radar applications

    Get PDF
    In this research, we investigate the design and analysis of nearly orthogonal, Doppler tolerant waveforms for diversity waveform radar applications. We then present a signal processing framework for joint synthetic aperture radar (SAR) and ground moving target indication (GMTI) processing that is built upon our proposed waveforms. ^ To design nearly orthogonal and Doppler tolerant waveforms, we applied direct sequence spread spectrum (DSSS) coding techniques to linear frequency modulated (LFM) signals. The resulting transmitted waveforms are rendered orthogonal using a unique spread spectrum code. At the receiver, the echo signal can be decoded using its spreading code. In this manner, transmit orthogonal waveforms can be matched filtered only with the intended receive signals. ^ Our proposed waveforms enable efficient SAR and GMTI processing concurrently without reconfiguring a radar system. Usually, SAR processing requires transmit waveforms with a low pulse repetition frequency (PRF) rate to reduce range ambigu- ity; on the other hand, GMTI processing requires a high PRF rate to avoid Doppler aliasing and ambiguity. These competing requirements can be tackled by employing some waveforms (with low PRF) for the SAR mission and other waveforms (with high PRF) for the GMTI mission. Since the proposed waveforms allow separation of individual waveforms at the receiver, we can accomplish both SAR and GMTI processing jointl

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations
    corecore