562,692 research outputs found

    The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration.

    Get PDF
    Metabolic reprogramming is an active regulator of stem cell fate choices, and successful stem cell differentiation in different compartments requires the induction of oxidative phosphorylation. However, the mechanisms that promote mitochondrial respiration during stem cell differentiation are poorly understood. Here we demonstrate that Stat3 promotes muscle stem cell myogenic lineage progression by stimulating mitochondrial respiration in mice. We identify Fam3a, a cytokine-like protein, as a major Stat3 downstream effector in muscle stem cells. We demonstrate that Fam3a is required for muscle stem cell commitment and skeletal muscle development. We show that myogenic cells secrete Fam3a, and exposure of Stat3-ablated muscle stem cells to recombinant Fam3a in vitro and in vivo rescues their defects in mitochondrial respiration and myogenic commitment. Together, these findings indicate that Fam3a is a Stat3-regulated secreted factor that promotes muscle stem cell oxidative metabolism and differentiation, and suggests that Fam3a is a potential tool to modulate cell fate choices

    Hypoxia Signaling Pathway in Stem Cell Regulation: Good and Evil

    Get PDF
    Purpose of Review: This review summarizes the role of hypoxia and hypoxia-inducible factors (HIFs) in the regulation of stem cell biology, specifically focusing on maintenance, differentiation, and stress responses in the context of several stem cell systems. Stem cells for different lineages/tissues reside in distinct niches, and are exposed to diverse oxygen concentrations. Recent studies have revealed the importance of the hypoxia signaling pathway for stem cell functions. Recent Findings: Hypoxia and HIFs contribute to maintenance of embryonic stem cells, generation of induced pluripotent stem cells, functionality of hematopoietic stem cells, and survival of leukemia stem cells. Harvest and collection of mouse bone marrow and human cord blood cells in ambient air results in fewer hematopoietic stem cells recovered due to the phenomenon of Extra PHysiologic Oxygen Shock/Stress (EPHOSS). Summary: Oxygen is an important factor in the stem cell microenvironment. Hypoxia signaling and HIFs play important roles in modeling cellular metabolism in both stem cells and niches to regulate stem cell biology, and represent an additional dimension that allows stem cells to maintain an undifferentiated status and multilineage differentiation potential

    Floral stem cell termination involves the direct regulation of AGAMOUS by PERIANTHIA

    Get PDF
    In Arabidopsis, the population of stem cells present in young flower buds is lost after the production of a fixed number of floral organs. The precisely timed repression of the stem cell identity gene WUSCHEL (WUS) by the floral homeotic protein AGAMOUS (AG) is a key part of this process. In this study, we report on the identification of a novel input into the process of floral stem cell regulation. We use genetics and chromatin immunoprecipitation assays to demonstrate that the bZIP transcription factor PERIANTHIA (PAN) plays a role in regulating stem cell fate by directly controlling AG expression and suggest that this activity is spatially restricted to the centermost region of the AG expression domain. These results suggest that the termination of floral stem cell fate is a multiply redundant process involving loci with unrelated floral patterning functions

    Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities.

    Get PDF
    The mammary epithelium depends on specific lineages and their stem and progenitor function to accommodate hormone-triggered physiological demands in the adult female. Perturbations of these lineages underpin breast cancer risk, yet our understanding of normal mammary cell composition is incomplete. Here, we build a multimodal resource for the adult gland through comprehensive profiling of primary cell epigenomes, transcriptomes, and proteomes. We define systems-level relationships between chromatin-DNA-RNA-protein states, identify lineage-specific DNA methylation of transcription factor binding sites, and pinpoint proteins underlying progesterone responsiveness. Comparative proteomics of estrogen and progesterone receptor-positive and -negative cell populations, extensive target validation, and drug testing lead to discovery of stem and progenitor cell vulnerabilities. Top epigenetic drugs exert cytostatic effects; prevent adult mammary cell expansion, clonogenicity, and mammopoiesis; and deplete stem cell frequency. Select drugs also abrogate human breast progenitor cell activity in normal and high-risk patient samples. This integrative computational and functional study provides fundamental insight into mammary lineage and stem cell biology

    Physiological Plasticity of Neural-Crest-Derived Stem Cells in the Adult Mammalian Carotid Body

    Get PDF
    Adult stem cell plasticity, or the ability of somatic stem cells to cross boundaries and differentiate into unrelated cell types, has been amatter of debate in the last decade. Neural-crest-derived stem cells (NCSCs) display a remarkable plasticity during development. Whether adult populations of NCSCs retain this plasticity is largely unknown. Herein, we describe that neural-crest-derived adult carotid body stem cells (CBSCs) are able to undergo endothelial differentiation in addition to their reported role in neurogenesis, contributing to both neurogenic and angiogenic processes taking place in the organ during acclimatization to hypoxia. Moreover, CBSC conversion into vascular cell types is hypoxia inducible factor (HIF) dependent and sensitive to hypoxiareleased vascular cytokines such as erythropoietin. Our data highlight a remarkable physiological plasticity in an adult population of tissue-specific stem cells and could have impact on the use of these cells for cell therapy.ERC Starting Grant: CBSCsMinisterio de Economía y Competitividad SAF2013-48535-P and SAF2016-80412-

    Individual capacity for repair of DNA damage and potential uses of stem cell lines for clinical applications:a matter of (genomic) integrity

    Get PDF
    Public and private human stem cell banking institutions are currently hosting hundreds of thousands partially characterized cell populations, including a significant number of human pluripotentstem cell lines. To be considered for use in clinical applications, stem cell preparations must undergo rigorous testing in order to ensure safety for the recipient. With development of the methodologies for in vitro derivation, ex vivo maintenance and expansion of stem cells and targeted differentiation of multipotent and pluripotent stem cells, many novel issues were added to the list of safety concerns of cell and tissue preparations. These issues are related to the potential changes that may occur in the course of in vitro propagation of stem cells and cell-derived products, how these changes may affect the quality of the preparation; and the potential effects on the recipient. Only a limited number of studies about the role of subtle variations of individual capacity for repair of genotoxic damage in maintenance in vitro of human stem cells are currently available. Nevertheless, the assessment of individual repair capacity may play a crucial role in the safety of use of human stem cells, as it constitutes a major factor in the risk of occurrence of genomic alterations that may seriously compromise the quality of the product. This article reviews the available data about the role of individual capacity for DNA damage repair in different human stem cell types and the potential adverse effects that may occur with the use of cell preparations with inferior repair capacity

    The Histone 3'-Terminal Stem-Loop-Binding Protein Enhances Translation through a Functional and Physical Interaction with Eukaryotic Initiation Factor 4G (eIF4G) and eIF3

    Get PDF
    Metazoan cell cycle-regulated histone mRNAs are unique cellular mRNAs in that they terminate in a highly conserved stem-loop structure instead of a poly(A) tail. Not only is the stem-loop structure necessary for 3'-end formation but it regulates the stability and translational efficiency of histone mRNAs. The histone stem-loop structure is recognized by the stem-loop-binding protein (SLBP), which is required for the regulation of mRNA processing and turnover. In this study, we show that SLBP is required for the translation of mRNAs containing the histone stem-loop structure. Moreover, we show that the translation of mRNAs ending in the histone stem-loop is stimulated in Saccharomyces cerevisiae cells expressing mammalian SLBP. The translational function of SLBP genetically required eukaryotic initiation factor 4E (eIF4E), eIF4G, and eIF3, and expressed SLBP coisolated with S. cerevisiae initiation factor complexes that bound the 5' cap in a manner dependent on eIF4G and eIF3. Furthermore, eIF4G coimmunoprecipitated with endogenous SLBP in mammalian cell extracts and recombinant SLBP and eIF4G coisolated. These data indicate that SLBP stimulates the translation of histone mRNAs through a functional interaction with both the mRNA stem-loop and the 5' cap that is mediated by eIF4G and eIF3

    An integrated gene regulatory network controls stem cell proliferation in teeth.

    Get PDF
    Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species

    Polymorphism in TGFB1 is associated with worse non-relapse mortality and overall survival after stem cell transplantation with unrelated donors.

    Get PDF
    Transforming growth factor beta-1, encoded by the TGFB1 gene, is a cytokine that plays a central role in many physiological and pathogenic processes. We have sequenced TGFB1 regulatory region and assigned allelic genotypes in a large cohort of hematopoietic stem cell transplantation patients and donors. In this study, we analyzed 522 unrelated donor-patient pairs and examined the combined effect of all the common polymorphisms in this genomic region. In univariate analysis, we found that patients carrying a specific allele, 'p001', showed significantly reduced overall survival (5-year overall survival 30.7% for p001/ p001 patients vs. 41.6% others; P=0.032) and increased non-relapse mortality (1-year nonrelapse mortality: 39.0% vs. 25.4%; P=0.039) after transplantation. In multivariate analysis, the presence of a p001/ p001 genotype in patients was confirmed as an independent factor for reduced overall survival [hazard ratio=1.53 (1.04-2.24); P=0.031], and increased non-relapse mortality [hazard ratio=1.73 (1.06-2.83); P=0.030]. In functional experiments we found a trend towards a higher percentage of surface transforming growth factor beta-1-positive regulatory T cells after activation when the cells had a p001 allele (P=0.07). Higher or lower production of transforming growth factor beta-1 in the inflammatory context of hematopoietic stem cell transplantation may influence the development of complications in these patients. Findings indicate that TGFB1 genotype could potentially be of use as a prognostic factor in hematopoietic stem cell transplantation risk assessment algorithms
    corecore