83 research outputs found

    Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch

    Get PDF
    International audienceSince the BOSS competition, in 2010, most steganalysis approaches use a learning methodology involving two steps: feature extraction, such as the Rich Models (RM), for the image representation, and use of the Ensemble Classifier (EC) for the learning step. In 2015, Qian et al. have shown that the use of a deep learning approach that jointly learns and computes the features, was very promising for the steganalysis.In this paper, we follow-up the study of Qian et al., and show that in the scenario where the steganograph always uses the same embedding key for embedding with the simulator in the different images, due to intrinsic joint minimization and the preservation of spatial information, the results obtained from a Convolutional Neural Network (CNN) or a Fully Connected Neural Network (FNN), if well parameterized, surpass the conventional use of a RM with an EC.First, numerous experiments were conducted in order to find the best "shape" of the CNN. Second, experiments were carried out in the clairvoyant scenario in order to compare the CNN and FNN to an RM with an EC. The results show more than 16% reduction in the classification error with our CNN or FNN. Third, experiments were also performed in a cover-source mismatch setting. The results show that the CNN and FNN are naturally robust to the mismatch problem.In Addition to the experiments, we provide discussions on the internal mechanisms of a CNN, and weave links with some previously stated ideas, in order to understand the results we obtained. We also have a discussion on the scenario "same embedding key"

    Selection of robust features for the Cover Source Mismatch problem in 3D steganalysis

    Get PDF
    This paper introduces a novel method for extracting sets of feature from 3D objects characterising a robust stegan- alyzer. Specifically, the proposed steganalyzer should mitigate the Cover Source Mismatch (CSM) paradigm. A steganalyzer is considered as a classifier aiming to identify separately cover and stego objects. A steganalyzer behaves as a classifier by considering a set of features extracted from cover stego pairs of 3D objects as inputs during the training stage. However, during the testing stage, the steganalyzer would have to identify whether specific information was hidden in a set of 3D objects which can be different from those used during the training. Addressing the CSM paradigm corresponds to testing the generalization ability of the steganalyzer when introducing distortions in the cover objects before hiding information through steganography. Our method aims to select those 3D features that model best the changes introduced in objects by steganography or information hiding and moreover they are able to generalize for different objects, not present in the training set. The proposed robust steganalysis approach is tested when considering changes in 3D objects such as those produced by mesh simplification and additive noise. The results obtained from this study show that the steganalyzers trained with the selected set of robust features achieve better detection accuracy of the changes embedded in the objects, when compared to other sets of features

    Hunting wild stego images, a domain adaptation problem in digital image forensics

    Get PDF
    Digital image forensics is a field encompassing camera identication, forgery detection and steganalysis. Statistical modeling and machine learning have been successfully applied in the academic community of this maturing field. Still, large gaps exist between academic results and applications used by practicing forensic analysts, especially when the target samples are drawn from a different population than the data in a reference database. This thesis contains four published papers aiming at narrowing this gap in three different fields: mobile stego app detection, digital image steganalysis and camera identification. It is the first work to explore a way of extending the academic methods to real world images created by apps. New ideas and methods are developed for target images with very rich flexibility in the embedding rates, embedding algorithms, exposure settings and camera sources. The experimental results proved that the proposed methods work very well, even for the devices which are not included in the reference database

    Using Set Covering to Generate Databases for Holistic Steganalysis

    Full text link
    Within an operational framework, covers used by a steganographer are likely to come from different sensors and different processing pipelines than the ones used by researchers for training their steganalysis models. Thus, a performance gap is unavoidable when it comes to out-of-distributions covers, an extremely frequent scenario called Cover Source Mismatch (CSM). Here, we explore a grid of processing pipelines to study the origins of CSM, to better understand it, and to better tackle it. A set-covering greedy algorithm is used to select representative pipelines minimizing the maximum regret between the representative and the pipelines within the set. Our main contribution is a methodology for generating relevant bases able to tackle operational CSM. Experimental validation highlights that, for a given number of training samples, our set covering selection is a better strategy than selecting random pipelines or using all the available pipelines. Our analysis also shows that parameters as denoising, sharpening, and downsampling are very important to foster diversity. Finally, different benchmarks for classical and wild databases show the good generalization property of the extracted databases. Additional resources are available at github.com/RonyAbecidan/HolisticSteganalysisWithSetCovering

    Convolutional Neural Networks for Image Steganalysis in the Spatial Domain

    Get PDF
    Esta tesis doctoral muestra los resultados obtenidos al aplicar Redes Neuronales Convolucionales (CNNs) para el estegoanálisis de imágenes digitales en el dominio espacial. La esteganografía consiste en ocultar mensajes dentro de un objeto conocido como portador para establecer un canal de comunicación encubierto para que el acto de comunicación pase desapercibido para los observadores que tienen acceso a ese canal. Steganalysis se dedica a detectar mensajes ocultos mediante esteganografía; estos mensajes pueden estar implícitos en diferentes tipos de medios, como imágenes digitales, archivos de video, archivos de audio o texto sin formato. Desde 2014, los investigadores se han interesado especialmente en aplicar técnicas de Deep Learning (DL) para lograr resultados que superen los métodos tradicionales de Machine Learning (ML).Is doctoral thesis shows the results obtained by applying Convolutional Neural Networks (CNNs) for the steganalysis of digital images in the spatial domain. Steganography consists of hiding messages inside an object known as a carrier to establish a covert communication channel so that the act of communication goes unnoticed by observers who have access to that channel. Steganalysis is dedicated to detecting hidden messages using steganography; these messages can be implicit in di.erent types of media, such as digital images, video €les, audio €les, or plain text. Since 2014 researchers have taken a particular interest in applying Deep Learning (DL) techniques to achieving results that surpass traditional Machine Learning (ML) methods
    • …
    corecore