19 research outputs found

    Information similarity metrics in information security and forensics

    Get PDF
    We study two information similarity measures, relative entropy and the similarity metric, and methods for estimating them. Relative entropy can be readily estimated with existing algorithms based on compression. The similarity metric, based on algorithmic complexity, proves to be more difficult to estimate due to the fact that algorithmic complexity itself is not computable. We again turn to compression for estimating the similarity metric. Previous studies rely on the compression ratio as an indicator for choosing compressors to estimate the similarity metric. This assumption, however, is fundamentally flawed. We propose a new method to benchmark compressors for estimating the similarity metric. To demonstrate its use, we propose to quantify the security of a stegosystem using the similarity metric. Unlike other measures of steganographic security, the similarity metric is not only a true distance metric, but it is also universal in the sense that it is asymptotically minimal among all computable metrics between two objects. Therefore, it accounts for all similarities between two objects. In contrast, relative entropy, a widely accepted steganographic security definition, only takes into consideration the statistical similarity between two random variables. As an application, we present a general method for benchmarking stegosystems. The method is general in the sense that it is not restricted to any covertext medium and therefore, can be applied to a wide range of stegosystems. For demonstration, we analyze several image stegosystems using the newly proposed similarity metric as the security metric. The results show the true security limits of stegosystems regardless of the chosen security metric or the existence of steganalysis detectors. In other words, this makes it possible to show that a stegosystem with a large similarity metric is inherently insecure, even if it has not yet been broken

    Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch

    Get PDF
    International audienceSince the BOSS competition, in 2010, most steganalysis approaches use a learning methodology involving two steps: feature extraction, such as the Rich Models (RM), for the image representation, and use of the Ensemble Classifier (EC) for the learning step. In 2015, Qian et al. have shown that the use of a deep learning approach that jointly learns and computes the features, was very promising for the steganalysis.In this paper, we follow-up the study of Qian et al., and show that in the scenario where the steganograph always uses the same embedding key for embedding with the simulator in the different images, due to intrinsic joint minimization and the preservation of spatial information, the results obtained from a Convolutional Neural Network (CNN) or a Fully Connected Neural Network (FNN), if well parameterized, surpass the conventional use of a RM with an EC.First, numerous experiments were conducted in order to find the best "shape" of the CNN. Second, experiments were carried out in the clairvoyant scenario in order to compare the CNN and FNN to an RM with an EC. The results show more than 16% reduction in the classification error with our CNN or FNN. Third, experiments were also performed in a cover-source mismatch setting. The results show that the CNN and FNN are naturally robust to the mismatch problem.In Addition to the experiments, we provide discussions on the internal mechanisms of a CNN, and weave links with some previously stated ideas, in order to understand the results we obtained. We also have a discussion on the scenario "same embedding key"

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography

    Advances in Syndrome Coding based on Stochastic and Deterministic Matrices for Steganography

    Get PDF
    Steganographie ist die Kunst der vertraulichen Kommunikation. Anders als in der Kryptographie, wo der Austausch vertraulicher Daten für Dritte offensichtlich ist, werden die vertraulichen Daten in einem steganographischen System in andere, unauffällige Coverdaten (z.B. Bilder) eingebettet und so an den Empfänger übertragen. Ziel eines steganographischen Algorithmus ist es, die Coverdaten nur geringfügig zu ändern, um deren statistische Merkmale zu erhalten, und möglichst in unauffälligen Teilen des Covers einzubetten. Um dieses Ziel zu erreichen, werden verschiedene Ansätze der so genannten minimum-embedding-impact Steganographie basierend auf Syndromkodierung vorgestellt. Es wird dabei zwischen Ansätzen basierend auf stochastischen und auf deterministischen Matrizen unterschieden. Anschließend werden die Algorithmen bewertet, um Vorteile der Anwendung von Syndromkodierung herauszustellen

    Conditional Entrench Spatial Domain Steganography

    Get PDF
    Steganography is a technique of concealing the secret information in a digital carrier media, so that only the authorized recipient can detect the presence of secret information. In this paper, we propose a spatial domain steganography method for embedding secret information on conditional basis using 1-Bit of Most Significant Bit (MSB). The cover image is decomposed into blocks of 8*8 matrix size. The first block of cover image is embedded with 8 bits of upper bound and lower bound values required for retrieving payload at the destination. The mean of median values and difference between consecutive pixels of each 8*8 block of cover image is determined to embed payload in 3 bits of Least Significant Bit (LSB) and 1 bit of MSB based on prefixed conditions. It is observed that the capacity and security is improved compared to the existing methods with reasonable PSNR

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    System Steganalysis: Implementation Vulnerabilities and Side-Channel Attacks Against Digital Steganography Systems

    Get PDF
    Steganography is the process of hiding information in plain sight, it is a technology that can be used to hide data and facilitate secret communications. Steganography is commonly seen in the digital domain where the pervasive nature of media content (image, audio, video) provides an ideal avenue for hiding secret information. In recent years, video steganography has shown to be a highly suitable alternative to image and audio steganography due to its potential advantages (capacity, flexibility, popularity). An increased interest towards research in video steganography has led to the development of video stego-systems that are now available to the public. Many of these stego-systems have not yet been subjected to analysis or evaluation, and their capabilities for performing secure, practical, and effective video steganography are unknown. This thesis presents a comprehensive analysis of the state-of-the-art in practical video steganography. Video-based stego-systems are identified and examined using steganalytic techniques (system steganalysis) to determine the security practices of relevant stego-systems. The research in this thesis is conducted through a series of case studies that aim to provide novel insights in the field of steganalysis and its capabilities towards practical video steganography. The results of this work demonstrate the impact of system attacks over the practical state-of-the-art in video steganography. Through this research, it is evident that video-based stego-systems are highly vulnerable and fail to follow many of the well-understood security practices in the field. Consequently, it is possible to confidently detect each stego-system with a high rate of accuracy. As a result of this research, it is clear that current work in practical video steganography demonstrates a failure to address key principles and best practices in the field. Continued efforts to address this will provide safe and secure steganographic technologies

    Steganography and steganalysis: data hiding in Vorbis audio streams

    Get PDF
    The goal of the current work is to introduce ourselves in the world of steganography and steganalysis, centering our efforts in acoustic signals, a branch of steganography and steganalysis which has received much less attention than steganography and steganalysis for images. With this purpose in mind, it’s essential to get first a basic level of understanding of signal theory and the properties of the Human Auditory System, and we will dedicate ourselves to that aim during the first part of this work. Once established those basis, in the second part, we will obtain a precise image of the state of the art in steganographic and steganalytic sciences, from which we will be able to establish or deduce some good practices guides. With both previous subjects in mind, we will be able to create, design and implement a stego-system over Vorbis audio codec and, finally, as conclusion, analyze it using the principles studied during the first and second parts
    corecore