1,110 research outputs found

    Quasi-Periodic Oscillations in Short Recurring Bursts of the magnetars SGR 1806-20 and SGR 1900+14 Observed With RXTE

    Get PDF
    Quasi-periodic oscillations (QPOs) observed in the giant flares of magnetars are of particular interest due to their potential to open up a window into the neutron star interior via neutron star asteroseismology. However, only three giant flares have been observed. We therefore make use of the much larger data set of shorter, less energetic recurrent bursts. Here, we report on a search for QPOs in a large data set of bursts from the two most burst-active magnetars, SGR 1806-20 and SGR 1900+14, observed with the Rossi X-ray Timing Explorer (RXTE). We find a single detection in an averaged periodogram comprising 30 bursts from SGR 1806-20, with a frequency of 57 Hz and a width of 5 Hz, remarkably similar to a giant flare QPO observed from SGR 1900+14. This QPO fits naturally within the framework of global magneto-elastic torsional oscillations employed to explain the giant flare QPOs. Additionally, we uncover a limit on the applicability of Fourier analysis for light curves with low background count rates and strong variability on short timescales. In this regime, standard Fourier methodology and more sophisticated Fourier analyses fail in equal parts by yielding an unacceptably large number of false positive detections. This problem is not straightforward to solve in the Fourier domain. Instead, we show how simulations of light curves can offer a viable solution for QPO searches in these light curves.Comment: accepted for publication in ApJ; 12 pages, 7 figures; code + instructions at https://github.com/dhuppenkothen/MagnetarQPOSearchPaper ; associated data products at http://figshare.com/articles/SGR_1900_14_RXTE_Data/1184101 (SGR 1900+14) and http://figshare.com/articles/SGR_1806_20_Bursts_RXTE_data_set/1184427 (SGR 1806-20

    Characterization of random stress fields obtained from polycrystalline aggregate calculations using multi-scale stochastic finite elements

    Full text link
    The spatial variability of stress fields resulting from polycrystalline aggregate calculations involving random grain geometry and crystal orientations is investigated. A periodogram-based method is proposed to identify the properties of homogeneous Gaussian random fields (power spectral density and related covariance structure). Based on a set of finite element polycrystalline aggregate calculations the properties of the maximal principal stress field are identified. Two cases are considered, using either a fixed or random grain geometry. The stability of the method w.r.t the number of samples and the load level (up to 3.5 % macroscopic deformation) is investigated

    Single-trial multiwavelet coherence in application to neurophysiological time series

    Get PDF
    A method of single-trial coherence analysis is presented, through the application of continuous muldwavelets. Multiwavelets allow the construction of spectra and bivariate statistics such as coherence within single trials. Spectral estimates are made consistent through optimal time-frequency localization and smoothing. The use of multiwavelets is considered along with an alternative single-trial method prevalent in the literature, with the focus being on statistical, interpretive and computational aspects. The multiwavelet approach is shown to possess many desirable properties, including optimal conditioning, statistical descriptions and computational efficiency. The methods. are then applied to bivariate surrogate and neurophysiological data for calibration and comparative study. Neurophysiological data were recorded intracellularly from two spinal motoneurones innervating the posterior,biceps muscle during fictive locomotion in the decerebrated cat

    Punctuated vortex coalescence and discrete scale invariance in two-dimensional turbulence

    Full text link
    We present experimental evidence and theoretical arguments showing that the time-evolution of freely decaying 2-d turbulence is governed by a {\it discrete} time scale invariance rather than a continuous time scale invariance. Physically, this reflects that the time-evolution of the merging of vortices is not smooth but punctuated, leading to a prefered scale factor and as a consequence to log-periodic oscillations. From a thorough analysis of freely decaying 2-d turbulence experiments, we show that the number of vortices, their radius and separation display log-periodic oscillations as a function of time with an average log-frequency of ~ 4-5 corresponding to a prefered scaling ratio of ~ 1.2-1.3Comment: 22 pages and 38 figures. Submitted to Physica

    Non-Stationary Noise Power Spectral Density Estimation Based on Regional Statistics

    Get PDF
    International audienceEstimating the noise power spectral density (PSD) is essential for single channel speech enhancement algorithms. In this paper, we propose a noise PSD estimation approach based on regional statistics. The proposed regional statistics consist of four features representing the statistics of the past and present periodograms in a short-time period. We show that these features are efficient in characterizing the statistical difference between noise PSD and noisy speech PSD. We therefore propose to use these features for estimating the speech presence probability (SPP). The noise PSD is recursively estimated by averaging past spectral power values with a time-varying smoothing parameter controlled by the SPP. The proposed method exhibits good tracking capability for non-stationary noise, even for abruptly increasing noise level

    Kalman-filter control schemes for fringe tracking. Development and application to VLTI/GRAVITY

    Full text link
    The implementation of fringe tracking for optical interferometers is inevitable when optimal exploitation of the instrumental capacities is desired. Fringe tracking allows continuous fringe observation, considerably increasing the sensitivity of the interferometric system. In addition to the correction of atmospheric path-length differences, a decent control algorithm should correct for disturbances introduced by instrumental vibrations, and deal with other errors propagating in the optical trains. We attempt to construct control schemes based on Kalman filters. Kalman filtering is an optimal data processing algorithm for tracking and correcting a system on which observations are performed. As a direct application, control schemes are designed for GRAVITY, a future four-telescope near-infrared beam combiner for the Very Large Telescope Interferometer (VLTI). We base our study on recent work in adaptive-optics control. The technique is to describe perturbations of fringe phases in terms of an a priori model. The model allows us to optimize the tracking of fringes, in that it is adapted to the prevailing perturbations. Since the model is of a parametric nature, a parameter identification needs to be included. Different possibilities exist to generalize to the four-telescope fringe tracking that is useful for GRAVITY. On the basis of a two-telescope Kalman-filtering control algorithm, a set of two properly working control algorithms for four-telescope fringe tracking is constructed. The control schemes are designed to take into account flux problems and low-signal baselines. First simulations of the fringe-tracking process indicate that the defined schemes meet the requirements for GRAVITY and allow us to distinguish in performance. In a future paper, we will compare the performances of classical fringe tracking to our Kalman-filter control.Comment: 17 pages, 8 figures, accepted for publication in A&
    corecore