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ABSTRACT

Quasi-periodic oscillations (QPOs) observed in the giant flares of magnetars are of particular interest due to their
potential to open up a window into the neutron star interior via neutron star asteroseismology. However, only
three giant flares have been observed. We therefore make use of the much larger data set of shorter, less energetic
recurrent bursts. Here, we report on a search for QPOs in a large data set of bursts from the two most burst-active
magnetars, SGR 1806–20 and SGR 1900+14, observed with Rossi X-ray Timing Explorer. We find a single detection
in an averaged periodogram comprising 30 bursts from SGR 1806−20, with a frequency of 57 Hz and a width
of 5 Hz, remarkably similar to a giant flare QPO observed from SGR 1900+14. This QPO fits naturally within
the framework of global magneto-elastic torsional oscillations employed to explain giant flare QPOs. Additionally,
we uncover a limit on the applicability of Fourier analysis for light curves with low background count rates and
strong variability on short timescales. In this regime, standard Fourier methodology and more sophisticated Fourier
analyses fail in equal parts by yielding an unacceptably large number of false-positive detections. This problem is
not straightforward to solve in the Fourier domain. Instead, we show how simulations of light curves can offer a
viable solution for QPO searches in these light curves.

Key words: methods: statistical – pulsars: individual (SGR 1806−20, SGR 1900+14) – stars: magnetic field –
stars: neutron – X-rays: bursts
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1. INTRODUCTION

Neutron stars provide one of the best astrophysical laborato-
ries for the study of nuclear physics under extreme conditions
not accessible to standard laboratory experiments: dense, cold,
highly asymmetric (neutron-rich) matter up to several times the
nuclear saturation density ρ = 2.8 × 1014 g cm−3. Among the
zoo of observable neutron star phenomena, two classes stand
out for their peculiar observational properties: soft gamma re-
peaters (SGRs) and anomalous X-ray pulsars (both classes are
magnetars; for a general overview, see Woods & Thompson
2006; Mereghetti 2011). They are generally characterized by
long spin periods of 2–12 s, a large spin-down derivative, and an
inferred dipole magnetic field above the quantum-critical limit,
BQED = 4.4 × 1013 G (although in recent years, 3 sources—out
of a total of 26 sources comprising 21 confirmed magnetars and
5 candidates3—have been found where the lower limit on the
dipole field inferred from spin-down is below BQED, van der
Horst et al. 2010; Esposito et al. 2010; Rea et al. 2010, 2012;
Scholz et al. 2012; Rea et al. 2014).

Magnetars are of particular interest because of their exten-
sive bursting behavior across ∼5 orders of magnitude in du-
ration and nearly ∼9 orders of magnitude in total isotropic
energy. This is especially true for the brightest of their bursting
phenomena, giant flares. These vast but short (with durations
of >500s) outbursts of hard X-ray emission, with luminosities
up to 1047 erg s−1, are rare events believed to occur due to a
catastrophic re-structuring of the magnetic field (Thompson &
Duncan 1995; Lyutikov 2003). The resulting release of energy
creates an optically thick pair plasma that slowly radiates the
energy away. Analogous to earthquakes, a significant fraction

3 Details at http://www.physics.mcgill.ca/∼pulsar/magnetar/main.html.

of this energy may also be converted into global oscillations of
the star (Duncan 1998). These oscillations are of interest to both
astrophysicists and nuclear physicists because, if observed, they
would provide a unique view into a neutron star’s interior (both
crust and core).

The detection of quasi-periodic oscillations (QPOs) in the
tails of two giant flares sparked a very active debate about their
origin (Israel et al. 2005; Strohmayer & Watts 2005, 2006; Watts
& Strohmayer 2006). However, the problem requires complex
models (for a general discussion, see Watts 2012): for a full so-
lution, models require inclusion of magnetic fields, both dipole
and toroidal components, and a full general relativistic treat-
ment. Additionally, knowledge of the equations of state of both
crust and core, but especially the anisotropies in the lower crust,
is imperative, as well as inclusion of superfluid and supercon-
ducting components. Because we have little understanding of
any of these components, models have many degrees of free-
dom and are highly degenerate. At the same time, giant flares are
sufficiently rare that only two out of three observed giant flares
have sufficient data to even attempt searches for QPOs such that
the resulting frequencies do not strongly constrain parameter
space (for more in-depth discussions of the various models, re-
fer to Samuelsson & Andersson 2007; Andersson et al. 2009;
Sotani et al. 2007, 2008; van Hoven & Levin 2008, 2011, 2012;
Colaiuda & Kokkotas 2011, 2012; Gabler et al. 2011, 2012,
2013; Passamonti & Lander 2013, 2014; Lander et al. 2010;
Lander & Jones 2011; Glampedakis et al. 2006; Glampedakis
& Jones 2014).

It seems logical, then, to turn to the giant flares’ much
smaller cousins, magnetars. Magnetars are known to emit short
bursts with much less energy, up to ∼1041 erg. Unlike giant
flares, they are much more numerous. The data set for the
two best-studied magnetars, SGR 1806−20 and SGR 1900+14,
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spans thousands of such bursts (e.g., Göğüş et al. 1999, 2000;
Prieskorn & Kaaret 2012). It is unclear whether these bursts are
smaller manifestations of the underlying physical mechanism
that produces giant flares or a separate phenomenon. If the
former is the case, then in principle they might excite star
quakes and seismic waves at frequencies similar to those in
giant flares. In this case, they might provide a new avenue
for exploring magnetar seismology and constraining theoretical
models. Motivated by this hypothesis, Huppenkothen et al.
(2014; using a method developed in Huppenkothen et al. (2013)
studied a sample of 286 bursts from SGR J1550−5418 observed
with the Gamma-Ray Burst Monitor (GBM) on board the Fermi
Gamma-Ray Space Telescope and found QPOs at 93 Hz, which
is close to the strongest QPO in the giant flare observed from
SGR 1806−20, as well as a QPO at 127 Hz in periodograms
averaged over many bursts. A potential QPO was also found
in a single burst at a much higher frequency of 260 Hz. The
latter was a much broader feature unlike anything ever seen
before in a giant flare. An earlier search of 152 individual
bursts observed with the Burst and Transient Source Experiment
(BATSE) from several magnetars, using the Rayleigh statistic
instead of standard periodograms, found only a very marginal
detection (p = 0.01) in a single burst Kruger et al. (2002).
However, this search was restricted to high frequencies due to
the effect of the overall burst structure at low frequencies.

Here, we report a search of a similar kind in two bursting
episodes of the most burst-active magnetars, SGR 1900+14 and
SGR 1806−20. Both have shown giant flares, SGR 1900+14 in
1998 (Cline et al. 1998; Hurley et al. 1999; Feroci et al. 1999) and
SGR 1806−20 in 2004 (Palmer et al. 2005; Hurley et al. 2004,
2005; Mazets et al. 2005; Borkowski et al. 2004; Mereghetti
et al. 2005; Cameron et al. 2005). The latter was particularly
remarkable as the brightest γ -ray event ever recorded on Earth,
with measurable effects on the terrestrial magnetic field and
ionosphere (Mandea & Balasis 2006; Inan et al. 2007). Both
giant flares have shown QPOs at frequencies between 18 Hz and
1840 Hz at energies between 2 keV and 200 keV (Strohmayer &
Watts 2005; Israel et al. 2005; Strohmayer & Watts 2006; Watts
& Strohmayer 2006), and have a rich data set of short bursts.
Here, we focus on two burst episodes observed with the Rossi
X-ray Timing Explorer (RXTE) in 1996 (SGR 1806−20) (Göğüş
et al. 2000) and 1998 (SGR 1900+14) (Göğüş et al. 1999).4

In Section 2 of this paper, we briefly describe the data and data
processing procedures. In Section 3, we review the statistical
methodology of searching for QPOs in Fourier-transformed
light curves, which is used in the rest of this paper, and we
report on the results of its application both for individual bursts
as well as averaged periodograms from larger burst samples.
Subsequently, we show one limit where the applied method
unexpectedly failed and characterize that failure via extensive
simulations in Section 4 before describing an alternative way to
identify and characterize the significance of potential detection
in Section 4.2. We conclude with a discussion of the theoretical
implication of our results in Section 6.

2. DATA

We employed burst data collected from the two strongest-field
magnetars, SGR 1806−20 and SGR 1900+14, with the Propor-
tional Counter Array (PCA) on board RXTE. SGR 1806−20

4 Note that El-Mezeini & Ibrahim (2010) searched a subset of the SGR
1806−20 data set considered here for QPOs. However, flaws in the data
analysis procedure as described in the Appendix of Huppenkothen et al. (2013)
render the QPOs discovered in this analysis invalid.

was observed during an active period in 1996 (observation IDs
20165 and 10223) and SGR 1900+14 during an active period
in 1998 (observation ID 30410). These active periods, a subset
of the thousands of bursts observed from both magnetars, were
chosen both for the large number of bursts within a relatively
short time interval (such that we can easily average consecutive
bursts and search for long-lived as well as re-excited QPOs) and
for the quality of the observations; all five detector units (PCUs)
were in operation for most of the bursts, which allowed us to
detect even weak ones.

We include 558 bursts from SGR 1806−20 and 229 bursts
from SGR 1900+14, all investigated in Göğüş et al. (2001).
These bursts were bright enough to allow their T90 durations
(i.e., the time around the peak count rate in which 90% of all
photons arrive at the detector) to be measured (Göğüş et al.
2001). We accumulated burst data starting from the T90 start
times and lasting for the course of their T90 durations. PCA
data for these two magnetars were collected in GoodXenon and
Event modes. Events were extracted from channels covering the
2–60 keV energy range at the intrinsic bin size provided by the
observation mode, which is 1 μs for Good Xenon mode and
125 μs for the Event modes.

Because our analysis makes extensive use of Fourier methods
(see Section 3 below for details), instrumental effects that
change the distribution of arriving photons need to be taken into
account in the data analysis. Following Zhang et al. (1995) and
Jahoda et al. (2006), we correct the Fourier-transformed burst
periodograms for dead time effects. Dead time occurs when
the X-ray detector is momentarily unresponsive after a photon
impinges on it. In RXTE, there are two main types of dead time:
(1) dead time after arrival of a photon, where the channel in
which the photon arrived is paralyzed for 10 μs, and (2) dead
time after a very large event, a photon with an energy much
higher than the dynamic range of the detector, which saturates
the amplifier. The latter paralyzes the detector for 170 μs. While
both effects operate on very short timescales, much shorter than
the timescales of interest here, the resulting loss of photons
modifies the distribution of photon arrivals away from a Poisson
distribution and consequently also modifies the distribution of
powers in the periodogram. Note that dead time depends very
strongly on count rate: the brighter a source, the stronger the
effect on the periodogram. Thus, dead time corrections are
especially important for the brightest bursts; however, since
the effects become appreciable even at moderate count rates of
∼2000 counts s−1, virtually all bursts need to be corrected. We
use Equations (10) and (13) of Jahoda et al. (2006) to correct for
dead time. The corrections are defined per PCU, whereas we use
light curves combined from all active units in our analysis. Thus,
the given normalization constants are incorrect; we fit for these
constants using a maximum likelihood approach and correct
for the resulting deviation in both noise level and periodogram
shape.

3. PERIODOGRAM SEARCHES

Magnetar bursts require special care when performing Fourier
analysis on their light curves. Because they have, by their very
nature as bursts, a start and an end, they are non-stationary
processes. Note that stationarity does not imply a constant light
curve; it merely implies that the average properties of the mean
and variance in the light curve over any given time interval
must be the same as over any other interval of the same length
(as opposed to, for example, a light curve with an overall
trend). Non-stationarity leads to deviations in the statistical
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distributions and the shape of the power spectrum (defined as
the square of the Fourier amplitudes; for an Introduction see
van der Klis 1989), such that standard methods are not easily
applicable. Here, we use the Bayesian periodogram methods
described in Huppenkothen et al. (2013) to deal with the effects
of non-stationarity at low frequencies. In short, we compute the
periodogram of a light curve with a high time resolution, here
dt = 0.5/2048 = 2.44 × 10−4 s, which allows us to search up
to a Nyquist frequency of νNyquist = 2048 Hz. For light curves
that obey stationarity over the timescales of interest, standard
Fourier methodology applies, and the statistical distributions of
the resulting power spectra are well known. The bursty nature
of our light curves introduces high variance at long timescales;
correspondingly, the periodogram shows high power at low
frequencies. We model this power with an empirical function.
Experience has shown that simple or broken power laws can
model a large range of burst phenomena (Huppenkothen et al.
2013).

Consequently, we perform two tasks: (1) a model selection
task to ascertain whether the periodogram may be represented by
a simple power law or whether it requires a more complex model
and (2) a QPO search task where we compare the maximum
powers of a large number of simulations to the maximum
power after dividing out the best-fit broadband model in the
observed periodogram. For the model selection task, we fit the
periodogram with both a simple and a broken power law and
compute the likelihood ratio. We then sample from the posterior
distribution of the simpler model via Markov Chain Monte
Carlo (MCMC; using the freely available Python code emcee,
Foreman-Mackey et al. 2013) and simulate periodograms from
draws of that posterior distribution. These periodograms are
again fit with both models such that we can build a distribution
of likelihood ratios for realizations of the simpler model. This
allows us to compute a posterior p value such that we can accept
or reject the simple model.

In the second step, we draw from the posterior distribution
of the model chosen in the model selection step, again via
MCMC and create a large number of simulated periodograms
from these draws. We fit each periodogram with the preferred
model and find the highest data/model outlier. We can then
compare the distribution of data/model outliers as derived from
the simulations of broadband noise only with the highest data/
model outlier in the observed periodogram. If the observed value
is very unlikely given the p value derived from these simulations,
one may say with relative confidence that we have detected a
QPO at the frequency of the highest data/model outlier in the
data. Note that while this approach automatically corrects for
the fact that we have searched over a broad range of frequencies,
we still need to correct for the fact that we also have searched
over a large number of bursts: the more frequencies or bursts
one searches, the more likely it becomes to see an outlier purely
by chance.

The analysis presented above makes a strong assumption
about the data: our choice of a χ2-distributed likelihood around
the model power spectrum implies that the periodogram is the
result of a pure, stationary noise process. This is not strictly true,
but as shown in Huppenkothen et al. (2013), it is a conservative
assumption that holds for all but the lowest frequencies in the
periodogram. At high enough frequencies, where the shape of
the periodogram is effectively hidden by noise, the method
becomes equivalent to the standard tests against a χ2 distribution
with 2 dof for an unbinned periodogram, as described, for
example, in van der Klis (1989).

For details on the analysis procedure, including extensive
simulations on simulated bursts, as well as the limitations
of the method, see Huppenkothen et al. (2013) and Vaughan
(2010).

3.1. Individual Burst Search

We search a total of 558 bursts from SGR 1900+14 and 229
bursts observed with SGR 1806−20, excluding all bursts that
saturated the detector or showed drop-outs in the light curve.
Each periodogram was corrected for dead time as explained in
Section 2. For each burst, we first constructed a distribution of
the likelihood ratio for a power law versus a broken power-law
model from 1000 simulated periodograms using the simpler
model and chose the broken power law to model the burst
periodogram if the power-law model was rejected at the p <
0.05 level. This is fairly conservative by design; we prefer to
overfit a simple burst rather than underfit a periodogram with
complex structure, which may then be mis-attributed to a QPO
feature. We could have simply chosen the broken power law only
and avoided this step; however, in order to be consistent with
previous analyses (Huppenkothen et al. 2013, 2014) as well
as to preserve the capability of characterizing the broadband
variability properties, we kept this step as part of the analysis.
Subsequently, the selected broadband noise model was used
to simulate 1000 periodograms and build the distribution of
data/model outliers, which we used to test for significant QPOs
across the 50–2000 Hz frequency range. Frequencies below
50 Hz are discarded because on these timescales the overall
structure of the burst likely dominates the periodogram, and
the broadband noise model no longer provides an adequate
representation of the data. Any burst with a probability of
p < 5 × 10−3 (see below for a justification of this particular
limit) in at least two different frequency bins for observing the
recorded maximum power under the assumption of pure noise is
said to contain a candidate detection. For candidate QPOs with
frequencies >250 Hz, above which the distribution of powers
should converge to the classically expected χ2 distribution with
2 dof, we compute the classical p value (Groth 1975) and thus
avoid having to run large numbers of simulations, which would
quickly become prohibitively computationally expensive. We
search both the unbinned periodogram and binned periodograms
at 14 different frequency resolutions. The frequency resolutions
we choose are integer multiples of the native periodogram
frequency and thus the actual frequency resolution changes with
each periodogram as they are of different lengths. We space
bin frequencies logarithmically (between 3 and 300 times the
original frequency resolution), such that we achieve a reasonable
coverage of the entire frequency range. This ensures that we
are sensitive not only to QPO signals with widths smaller
or approximately equal to the unbinned frequency resolution,
but also broader signals without having to perform a model
selection for the presence of a QPO component in the model.
For each of the binned periodograms, we can then extract
the maximum data/model outlier in the same way as for the
unbinned periodogram. We bin the simulated periodograms in
the same way as the data such that we can construct posterior
distributions for the maximum data/model outlier at each bin
frequency and search for QPOs at each frequency resolution.

We refine the sample of candidate detections using this
classical p value for high-frequency candidates. Our initial p
value threshold of p < 5 × 10−3 is not very constraining
given that we search nearly 800 bursts and across 14 different
frequency resolutions. While the number of frequencies within
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Figure 1. Light curve (left) and binned periodogram (right) of a single burst observed from SGR 1900+14. The burst has very few photons (Nphotons = 162) and is
representative of the sample. The periodogram shows a strong, frequency-dependent modulation across the entire frequency range with the strongest signal at 1560 Hz
with a very high significance (p = 3.19 × 10−18, single trial). Because the periodogram deviates strongly from the distributions we test against, standard tests as well
as the method from Huppenkothen et al. (2013) potentially overestimate the significance. This will be explored in detail in Section 4.

(A color version of this figure is available in the online journal.)

a periodogram is automatically taken into account by the design
of the method, the number of individual bursts and frequency
resolutions searched is not. Thus, the p value needs to be
corrected in order to reflect the correct probability of observing a
given event by chance. We adjust the threshold for the classical p
value for all candidates with frequencies >250 Hz such that only
detections corresponding to a 4σ threshold (p < 5.7 × 10−9 for
a single trial or p < 6.33 × 10−5 taking into account all bursts
and frequency resolutions) remain as candidates. Note that this
latter procedure only concerns detections with frequencies above
>250 Hz, not detections with frequencies below.

We find 15 candidate QPO detections in SGR 1900+14 and
15 candidates in SGR 1806+20 that meet our criteria for a QPO
detection with frequencies between 160 Hz and 1900 Hz. While
our algorithm flagged these features as significant and QPO-
like, there is a clear flaw in the analysis method: an examination
of the burst periodograms reveals that the powers are not χ2

distributed even at high frequencies, a result confirmed by small
probabilities when comparing the distributions of powers above
250 Hz with the theoretically expected distribution through a
Kolmogorov–Smirnov test (see Figure 1 for an example for
how the powers deviate from the expected mean up to high
frequencies). This implies that the comparison we are making
between the data and the assumed probability model is not fair
or, in other words, standard tests as well as the method from
Huppenkothen et al. (2013) will potentially overestimate the
significance.

It is not immediately clear what causes these irregularities in
the periodogram at high frequencies. On the one hand, this is
the frequency range where the spectrum should be dominated
entirely by Poisson statistics, as was indeed the case for the
bursts from SGR J1550−5418 observed with Fermi/GBM. On
the other hand, these frequencies are still too low for dead
time effects, described in more detail in Section 2, to have
an appreciable effect on the shape of the periodogram. It thus
seems that there must be an intrinsic property of the bursts that
leads to the observed deviations from the expected shape. This
possibility will be further explored in Section 4; an alternative
QPO search on the bursts in question will be described in more
detail in Section 4.2.

3.2. Averaged Periodograms

We construct averaged periodograms from bursts that are
close together in time in order to test the hypothesis that a
QPO could persist for hundreds of seconds or else be re-excited
in consecutive bursts at a comparable frequency. Additionally,
averaging periodograms from different bursts can drastically
increase the signal-to-noise ratio if a signal persists across
bursts. We compute waiting times between burst start times,
i.e., the time interval between consecutive bursts. For bursts
separated by a gap in the data (this can be either the time
between consecutive observations or a detector drop-out), this
time interval is very long. All bursts with a waiting time of
less than 500 s between consecutive bursts are then grouped
together in clusters. This number is chosen such that we do
not create stretches that cross observations, while also creating
clusters of bursts large enough to allow for averaging. Within
each cluster, we pick the burst with the largest burst T90 duration
and construct light curves for all bursts in the cluster with that
duration. This allows us to create periodograms with the same
number of frequencies, which are easier to average. For the
following analysis, we choose all clusters with at least 30 bursts
for SGR 1900+14 and all clusters with at least 20 bursts for
SGR 1806−20 to account for the intrinsically lower number
of bursts in the latter sample while preserving a high signal-
to-noise ratio for both. All periodograms are Leahy-normalized
before averaging. This implies that at low frequencies, where
the burst variability introduces large Fourier amplitudes, there
will be a deviation from the expected statistical distributions at
each frequency if the bursts differ substantially in flux.

For SGR 1900+14, we create 15 clusters in this way, contain-
ing between 6 and 69 bursts each. These clusters have durations
(from the first burst in the cluster to the last) between 775 and
3257 s, longer than the instrument-imposed maximum duration
of a cluster of 330 s for our previous analysis of Fermi/GBM
data of SGR J1550−5418 (Huppenkothen et al. 2014). Eight of
these clusters have more than 30 bursts, which we subsequently
combine to produce eight periodograms, with the smallest sam-
ple averaged over 38 bursts and the largest averaged over 75
bursts. For SGR 1806−20, we create 19 clusters with between
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Figure 2. Periodogram of an example burst from SGR 1900+14. The powers
below 100 Hz clearly do not follow a χ2 distribution with 2 dof around the
underlying power spectrum, as is the assumption for our analysis method, nor
are neighboring frequencies independent. The shape of the periodogram at low
frequencies is the hallmark signature of a strong burst envelope—the overall
shape of the burst—dominating the periodogram. We exclude bursts such as
these from the averaged periodograms searched in Section 3.2, since aberrant
power spectral shapes like the strong feature at ∼60 Hz are not captured by our
model and can potentially dominate the averaged periodogram even when many
bursts are included in the average.

1 and 44 bursts and a total duration in each cluster of 17 and
3242 s. We extract five clusters with between 20 and 44 bursts
each. Note that the lower number of bursts averaged for SGR
1806−20 compared with SGR 1900+14 leads to a lower sensi-
tivity for QPO detections in the former data set, as the inclusion
of more bursts results in a higher signal-to-noise ratio in the
final averaged periodogram.

Our Bayesian QPO search algorithm finds candidate detec-
tions in six averaged periodograms from SGR 1900+14 and in
four averaged periodograms from SGR 1806−20 at frequencies
between 50 Hz, the lower boundary of our search, and 1900 Hz.
Two things may strongly affect the probability of detecting a
QPO in averaged periodograms.

First, because of the deviations from the expected χ2 distribu-
tion described in Section 3.1 as well as effects of the differences
in burst flux on the statistical distributions of powers in the
averaged periodogram, we need to test whether the averaged
periodograms could be dominated by power from a single burst,
which would lead us to draw wrong conclusions about the aver-
aged periodogram. For low-frequency candidate signals below
100 Hz, we screen the periodograms of all individual bursts used
to produce the averaged periodograms and exclude those that
are clearly dominated by the overall burst process below 100 Hz
(see Figure 2 for an example). For high-frequency detections,
we search the results of the single-burst QPO analysis for de-
tections at the relevant frequencies in the bursts that make up
the averaged periodograms and exclude those where detections
were found.

Second, even after exclusion of single bursts with strong fea-
tures that might affect the results of the averaged periodograms,
it is possible that the averaged periodograms are affected over-
all by the non-χ2-distributed features described in Section 3.1.
While some effects may cancel out when averaging many indi-
vidual bursts together, we cannot assume so a priori.

In order to test the robustness of the remaining signals, we
create averaged periodograms from random samples of bursts
from each magnetar. For each averaged periodogram, we create
1000 random samples of bursts from either SGR 1900+14 or
SGR 1806−20 with the same number of bursts averaged as
for the averaged periodogram in question. The simulations
created this way are not entirely statistically independent:
for 1000 simulations, and between 20 and 80 bursts per
averaged periodogram, individual bursts will be part of several
simulations. Using these simulated periodograms, we can only
test the hypothesis that a QPO could be long-lived, or re-excited
in bursts that are temporally close, but we cannot test against the
null hypothesis that there is no QPO; it is possible that a potential
QPO signal could be randomly excited at the same frequency in
many bursts, irrespective of whether they occur close together
in time or not. In this case, a signal would appear insignificant
with respect to the simulations, whereas it is simply present in
many bursts.

At the same time, these simulations also allow us to test
whether there could be problems with the underlying power
spectrum of averaging many bursts. For our key assumption, a
χ2-distributed random variable to hold the maximum powers
in each averaged periodogram derived from random samples
of bursts should be uniformly distributed across the entire
frequency regime. If this is not true, and if in fact, many
averaged periodograms cluster at specific frequencies, this could
indicate problems with the underlying assumption which might
be evidence against a QPO at a given frequency.

After testing both those periodograms with the most promi-
nent burst profiles taken out as well as testing against distri-
butions of randomly sampled bursts, we find only one signifi-
cant signal remains: in an average of 30 bursts observed from
SGR 1806−20, we find a significant detection (posterior p value
p < 10−4, from random samples of bursts p = 10−3, corrected
for the number of frequencies searched) at 57 Hz, with an es-
timated width of 4.4 Hz (see also Figure 3). This QPO is at a
frequency where many averaged periodograms from individu-
ally averaged bursts show their maximum power as well. While
this signal is not an outlier with respect to the frequency distri-
bution, it is an outlier in terms of its power, and is thus more
likely to be due to an actual QPO. There is no remaining sig-
nificant QPO in any of the averaged periodograms from SGR
1900+14.

We note that all other potential QPOs initially flagged as
significant by our Bayesian algorithm are not significant when
compared to randomly sampled bursts. We also note that the dis-
tribution of frequencies of maximum powers extracted from av-
eraged periodograms of randomly sampled bursts is highly non-
uniform (see Figure 4 for an example); there are well-defined
peaks in the frequency distribution. For SGR 1806−20, the three
highest peaks are at 50–90 Hz, 980–1020 Hz and 1550–1590 Hz;
for SGR 1900+14, the peaks are at 80–120 Hz, 1140–1180 Hz,
and 1400–1440 Hz. It is unclear what underlying process cre-
ates these non-uniform distributions. There could, of course, be
QPOs at these frequencies that are continuously excited and re-
excited. However, low-frequency features in particular are very
sensitive to the broadband noise model: at these frequencies,
the power spectrum of the burst itself often supplies significant
amounts of power, distorting both the shape and the statistical
distributions of the resulting periodogram. Similarly, we have
shown in Section 3.1 that the statistical distributions of pow-
ers are not statistically distributed following the expected χ2

distribution in the individual burst periodograms, even at high
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Figure 3. Average periodogram with candidate detection (left, black arrow) listed in Table 1 and without detection (right). We show the periodogram averaged to
4 Hz (black) together with the maximum a posteriori estimate of the broken power-law model (red). The number of averaged periodograms (m = 30 and m = 23) is
roughly comparable.

(A color version of this figure is available in the online journal.)

Figure 4. Distribution of frequencies of maximum powers for 1000 averaged
periodograms from randomly sampled sets of 30 bursts each for SGR 1806−20.
The averaged periodograms were fit with a broken power law and the maximum
power as well as the frequency of that power extracted from the data/model
residuals. It is clear that the distribution of frequencies is not uniform: there are
high peaks at frequencies where excess power preferentially occurs. Here, we
show an example where the frequency was averaged to ∼2 Hz, however, the
observed distributions are stable across a large range in frequency resolutions.

(A color version of this figure is available in the online journal.)

frequencies, and that neighboring frequencies are often corre-
lated. It is thus possible that the averaged periodograms show
an accumulated version of these irregularities. The frequency
distribution would then be reminiscent of relevant timescales in
the burst, which need not necessarily be related to periodic or
quasi-periodic processes. With current methods, it is impossible
to distinguish between those two alternatives.

In Conclusion, we find only one credible candidate QPO in
SGR 1806−20 that is an outlier both with respect to the the-
oretically expected distributions for an averaged periodogram

and with respect to randomly sampled bursts (see Table 1 and
Figure 3 for details).

4. BURST PERIODOGRAMS IN THE LOW-NOISE LIMIT

The observed deviations of the high-frequency powers in
individual bursts from the expected statistical distributions pose
an important problem for and a strong limitation on QPO
searches in magnetar bursts with RXTE. In order to perform
QPO searches with any degree of confidence, we need to
understand the underlying cause of the observed distributions
and find a way to mitigate its effects on the periodogram. In the
following, we explore the causes for the observed deviations
using simulations of magnetar bursts and characterize the
changes in the periodogram based on these simulations.

While observations of magnetar bursts with RXTE suffer from
less noise than those made with Fermi/GBM, the integrated
number of photon counts over a burst is a factor of 10 lower
than for GBM. This means we are searching for QPOs in the
limit of low photon counts, which can have an appreciable effect
on the overall statistics and lead to a deviation from the expected
statistical distributions even at high frequencies. Searching for
periodic and quasi-periodic signals in low count rate data is not
a new problem; at high energies, especially in γ -ray astronomy,
a number of statistical tests for detecting periodicities exist even
when the light curve consists of few photons (e.g., Buccheri
et al. 1983; de Jager et al. 1988). However, these methods
focus exclusively on the detection of periodic signals against
a constant or at the very least stationary background and are
thus biased when used on burst light curves such as those
considered here. Kruger et al. (2002) employed the Rayleigh
statistic, a commonly used test for periodicity in photon counting
data that requires no binning, to search for periodic signals in
a large number of both magnetar bursts and GRBs observed
with BATSE. They found no significant evidence of a QPO,
however, they worked in a regime with much higher count
rates and restricted themselves to signals above 400 Hz to avoid
contamination by low-frequency variability. To our knowledge,
there has been no systematic study of the effects of low count
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Table 1
QPO Detections in Averaged Periodograms

ObsID Nbursts t0 min T90 max T90 ν0 Δν posterior simulated
(MET) (s) (s) (Hz) (Hz) p-value p-value

10223-01-03-010 30 90907122.0225 0.064 4.84 57 4.4 <10−4 10−3

Note. This table summarizes the properties of the single credible QPO detection emerging from the averaged periodogram of SGR 1806−20.

rates and low background on the power spectrum of a non-
stationary light curve. We thus explore the regime where this
deviation becomes important via simulations of light curves
with low photon counts of both simple flat Poisson noise and
bursts. The overall simulation strategy is as follows:

(1) For a given total number of photons, we compute the
expected number of counts per time bin. (2) We simulate
nsim = 10,000 light curves from the computed count rate
either by picking from a Poisson distribution with a mean
equal to the count rate for each time bin, or by normalizing
a burst shape such that the integrated number of photons will
be distributed around the expected number of counts. For low
count rates, this will result in a large number of bins with
no photons. The integrated number of photons in each light
curve will not be Ntot exactly, but fall on a distribution around
that value. (3) For each simulated light curve, we create the
periodogram and pick the maximum of the resulting powers
above 1000 Hz. The high cutoff frequency ensures that we do
not accidentally include any of the low-frequency, power-law-
like variability in our estimates. We then bin the periodogram
at different bin factors representative of those chosen for the
SGR burst light curves (b = [5, 10, 20, 50]). Again, from
each periodogram, we pick the highest power above 1000 Hz.
(4) In order to compare the distribution of maximum powers
with theoretical predictions, we simulate the same number of
powers as in the unbinned and binned periodograms created
in Equation (3) from a χ2 distribution with 2 dof, P ∼ χ2

2 ,
as expected for periodograms of pure white noise (a flat,
Poisson-distributed light curve). For the binned periodograms,
the powers are still distributed as a χ2 distribution, now
with 2b dof and scaled by b: P ∼ χ2

2b/b. (5) Finally, we
compare the resulting distributions of maximum powers from
the theoretically expected distributions and the distributions
of maximum powers from the periodograms derived from
simulated light curves by computing the 99% upper quantile
of the distribution and comparing this to the 99% upper quantile
expected for a χ2 distribution. Ideally, the difference between
those two quantiles should be zero. For positive differences, the
distribution of maximum powers is shifted toward higher powers
for the simulations, resulting in likely spurious detections. For
negative values, the distribution of maximum powers from the
simulations of light curves is shifted toward lower powers
compared to a χ2 distribution, potentially resulting in missed
QPO detections.

4.1. Flat Light Curves

As a first step, we simulate simple constant light curves
with characteristics similar to the observed bursts: short du-
ration (T90 < 1 s), high time resolution (dt = 0.5/2048 s =
2.44 × 10−4 s), and low numbers of photons (between 100
and 10000 photons per burst). We produce a large num-
ber of simulated light curves for different values of the to-
tal number of photons per light curve in order to test how
a low photon count rate affects the periodogram. We space

the total photon count Ntot logarithmically, and simulate for
Ntot = [100, 200, 500, 1000, 2000, 5000, 10,000], keeping all
other parameters (e.g., burst duration and time resolution) the
same.

For flat light curves, the resulting distributions are close to
a χ2 distribution with 2 dof, and remain this way even for low
photon counts. The difference in 99% quantiles between the
simulated powers and the expected distribution range from −0.7
to +0.25, with the difference asymptotically approaching 0 when
averaging neighboring frequency bins. This indicates that a few
photons alone are not enough to make the resulting periodogram
deviate significantly from the expected distribution.

4.2. Simulated Burst Light Curves

Since a low number of photons alone does not explain the
observed deviations from the theoretically expected distribution,
we instead simulate simple, single-peaked bursts similar to those
observed from SGR 1806−20 and SGR 1900+14 with RXTE.
Simulating a burst adds additional parameters to the model. We
model a burst as a single spike of the form

φ(t) = A

{
exp(t/σ ) for t < tmax

exp −t/(σs) for t � tmax
, (1)

where A is the amplitude of a spike, σ the rise time, tmax
the location in time of the spike maximum, and s a skewness
parameter that sets how the decay time is stretched (s > 1) or
contracted (s < 1) compared to the rise time (see Figure 5 for
an example of the model). For our exploratory analysis here,
we restrict ourselves to testing the effect of three parameters
in a single-spiked burst: a sharp rise or drop in the light curve
(parameterized by varying the rise time of the burst), a change
in amplitude, and a change in background count rate. For each
combination of rise time, amplitude, and background count
rate, we simulate nsim = 10,000 light curves by picking from
a Poisson distribution, as in step (2) above, and repeat steps
(3)–(5) for these simulations as well.

We vary the rise time from 0.001 s to 0.03 s. This is generally
shorter than the rise times inferred for bursts in these two sources
based on the time between the start point of the T90 interval to
the time of maximum count rate. However, we note that here
we are not interested in the total rise time of a burst (which may
have multiple peaks), but in the rise time of each individual peak,
which may play a crucial role in determining the frequency up
to which power is observed in the periodogram and motivates
our choice for the range of rise timescales simulated.

We vary the background counts from 0.001 counts per bin
(corresponding to a background count rate of ≈5 counts s−1)
to 10 counts per bin (corresponding to a count rate of ≈5 ×
104 counts s−1). The background for the PCA detector on board
RXTE is approximately 20 counts s−1 per detector, thus well
within the range of simulated values.

We find that the deviations from the theoretically expected
statistical distribution of powers in many burst periodograms
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Figure 5. Example of a single component of our spike model, defined in
Equation 1. The defining parameters are the amplitude A in counts per bin,
the position t0 of the peak of the spike, the exponential rise timescale τ , and
the exponential fall timescale, parameterized by skewness parameters s, such
that the exponential fall timescale becomes sτ . We model magnetar bursts as a
linear combination of these shapes plus a global parameter accounting for the
(flat) background count rate.

arise from a combination of factors (see Figure 6 for an
illustration). The low background conspires with sharp rises
to create visible features even at high frequencies. This is
unsurprising; the sharper the rise, the shorter are the timescales
that the Fourier transform decomposes. Correspondingly, the
strongest effects are observed for a short rise time, trise =
10−3 s. The powers at high frequency become correlated and
one of the primary assumptions in our analysis—statistical
independence of neighboring frequencies—is broken. This leads

to broader distributions of powers, especially when binning
over neighboring frequencies. In a data stream with significant
background photon counts, the resulting deterministic structures
in the power spectrum are hidden underneath the noise. For
RXTE data, this is not true: even above 1000 Hz, the periodogram
is dominated by structures that arise from the burst itself even
when that burst is a simple, single-peaked structure without any
QPO-like features. The effect is strongest for bursts with the
weakest background and the sharpest rise times. Our simulations
indicate that an increase in amplitude exacerbates the effect: a
brighter burst, for the same rise time, automatically implies
a sharper rise, thus increasing the power at high frequencies.
The effect almost always shifts the distribution of powers to
a higher power and comparisons of observed powers with
the theoretically expected statistical distribution will be biased
toward overestimating the significance of the observed signal.
Using the method from Huppenkothen et al. (2013) is thus more
likely to make false-positive errors and claim significance for a
feature that is not, in fact, a QPO.

We note that our QPO search of bursts from magnetar SGR
J1550−5418 observed with the Fermi/GBM did not suffer from
these problems. In part, this is due to the generally higher
sensitivity of the instrument, leading to an increase of a factor
of 10 in count rates. Additionally, the background in the Fermi/
GBM is higher than for RXTE, with ∼320 counts s−1 per
detector in the 50–300 keV energy range (Meegan et al. 2009).
This ensures that the periodogram at high frequencies follows
the expected statistical distribution and makes QPO searches
using models of the periodogram feasible. Beyond that, it is
possible that there are intrinsic differences between the two burst
samples. Perhaps bursts from the two magnetars considered here
have intrinsically shorter rise times. It is also possible that this
is an energy-dependent effect: the Fermi/GBM observes at a
higher energy range than RXTE. Detailed modeling of rise times
as a function of energy would be necessary to determine whether
this effect is indeed energy-dependent, something that is beyond
the scope of this work.

Figure 6. Deviations of the distribution of powers >1000 Hz in simulated bursts as a function of frequency binning, burst rise time, and background count rate. For
three background count rates (5 counts s−1 (left), 50 counts s−1 (middle), and 500 counts s−1 (right)) we plot the difference in the 99% quantile from distributions
of simulated powers derived from 10,000 simulated burst periodograms for three different rise times, vs. the 99% quantile of the theoretically expected distribution
as a function of the binning frequency. This difference provides an estimate of how likely we are to over- or underestimate the significance of a given power when
compared to the theoretically expected distribution. For positive differences, the observed maximum power in a periodogram is derived from a distribution effectively
shifted to the right of the theoretically expected distribution; we are likely to overestimate the significance of that maximum power. Conversely, a negative difference
implies a shift of the distribution of powers to the left compared to the theoretically expected distribution, thus we are more likely to underestimate the significance
of the observed maximum power in a given burst periodogram. The deviation of the 99% quantile from the theoretical expectation depends strongly on both the rise
time, which effectively sets the smallest timescales with power in the periodogram, and the background count rate. Note that we varied the amplitude of the burst as
well, but we omit a comparison between amplitudes here. A higher amplitude exacerbates the effect for bursts with a low background and a sharp rise.

(A color version of this figure is available in the online journal.)
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5. BURST PERIODOGRAMS FROM
MODELS OF THE LIGHT CURVE: SIMULATING

CANDIDATE DETECTIONS

The results of Section 4.2 make it clear that for short transient
events observed with RXTE, the main assumption of the method
used in Huppenkothen et al. (2013) no longer holds. Even at
high frequencies, the powers in the periodogram do not follow a
χ2 distribution with 2 dof around the underlying power spectral
model. The simulations also show that we are far more likely to
overestimate the significance of a signal due to a sharp rise and
a low background than to underestimate the significance. This
is a problem that cannot easily be solved in the Fourier domain.
Instead, the most straightforward way would be to model the
burst light curves directly and compare the periodogram of the
observed data to the periodograms of realizations of the model.
This, however, presents us with a new set of problems: there is no
simple, straightforward way to model magnetar bursts. Indeed,
the variety of shapes in the temporal domain originally prompted
us in Huppenkothen et al. (2013) to consider power spectral
models instead. However, in order to understand whether any of
the candidate detections in Section 3.1 are real, simulations of
light curves are essential.

In order to simulate the light curves of bursts with candidate
detections, we require two ingredients: (1) a simple, yet flexible
model that can effectively encompass the large range of burst
shapes observed in the data and (2) an algorithm that can effi-
ciently traverse parameter space for the model we consider and
return samples from high-probability regions of that parameter
space without too much human intervention. Below, we give a
brief outline of a new method that satisfies both requirements,
which will be described in more detail in a forthcoming paper.

We model the light curve using the model defined in
Equation 1 as a superposition of individual spikes. We use a
Poisson likelihood and hierarchical priors on the parameters
to construct a Bayesian model of the light curve, where the
components in the superposition are of the type described in
Equation (1). The model explicitly includes the number of com-
ponents N as a parameter to be inferred with the model param-
eters themselves. Each model component has four parameters
(peak time, exponential rise timescale, skewness, and ampli-
tude). Another parameter models the background count rate
(assumed to be constant over the interval of the burst). Priors
are largely uninformative and either exponential (amplitude, rise
timescale; see also Skilling 1998), uniform (position of compo-
nent peak between start and end time of a burst; equal proba-
bility of skewness in either direction; number of components),
or log-uniform (hyperparameters for the exponential priors on
amplitude and rise timescale, background parameter).

We then use trans-dimensional MCMC sampling (in the form
of diffusive nested sampling; Brewer et al. 2011) to sample the
posterior distribution of parameters, including the number of
components. Overall, the algorithm reliably finds both positions
and shape parameters for the components modeling the brightest
spikes. There is a degree of ambiguity for weaker features on
whether there should be a component, but this ambiguity is
generally small. A different choice of prior for amplitude and
exponential rise time reveals some sensitivity to the prior for
the weakest features: a log-normal prior tends to include more
components with amplitudes close to the background. For our
purposes here, this is of little importance for two reasons. First,
because the background is so low in the RXTE data, there will
be little ambiguity over the presence of a spike in the data.
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Figure 7. Example of a burst periodogram (black) and periodograms of
simulated light curves, produced as described in the text. We show the mean
out of 105 simulations as the red line; the shaded area encloses the 1% and 99%
quantiles. At low frequencies, the irregular shape of the periodogram due to
the overall burst morphology is evident as are the deviations from the expected
(much wider) distribution. It is reproduced well by the simulations.

(A color version of this figure is available in the online journal.)

Additionally, the resulting light curve, be it composed of a
superposition of low-amplitude spikes and a flat background or
a simple flat background alone, will appear the same in Fourier
space. The details of the method as well as an application to
magnetar bursts will be reported in a forthcoming paper (D.
Huppenkothen et al., in preparation).

From draws of this distribution, we simulate light curves using
the appropriate Poisson statistics to account for the effects of
photon counting and then create periodograms out of these light
curves. These periodograms can then be directly compared to
the periodogram of the observed data such that we can create
posterior p values in much the same way as we have done for
the periodogram simulations in (Huppenkothen et al. 2013).

For each candidate burst, we create 106 artificial light curves
and, consequently, 106 simulated periodograms. We fit each ob-
served periodogram and simulated periodogram with a broken
power law and extract the maximum data/model outlier from
both unbinned and binned periodograms. We restrict ourselves
to the broken power-law model for both the data and simulations
because the full model selection procedure would be too com-
putationally expensive to run on each simulated periodogram.
Choosing the more complex model in this case ensures that
we are conservative; we are more likely to overfit the spectrum
and thus overfit a potential low-frequency, broad QPO feature
than to underfit a broadband noise feature that will subsequently
be falsely detected as a QPO. Since our initial search has not
unearthed any low-frequency features that could easily be mis-
taken for QPOs by the broadband noise model, this is a safe
choice.

An example periodogram is shown in Figure 7. We show
both the periodogram of the burst itself and contours of the
1% and 99% quantiles of the 106 simulated periodograms.
Particularly at low frequencies, the deviations from the expected
distributions are clearly visible; the shape of the periodogram
at these frequencies is complex with many features that could
be mistaken for QPOs and the distributions are very narrow,
indicating that a deterministic process dominates this part of
the spectrum. At high frequencies, the spectrum evens out
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on average, but individual realizations of the burst may still
have—and in fact do have—significant deviations from the
expected (flat) power spectrum.

We apply this method to all 30 candidate detections described
in Section 3.1 in order to confirm or reject the presence of any
QPOs in individual magnetar burst periodograms. We compute
distributions for the maximum data/model outlier for various
binning factors in order to be able to test whether an observed
power is an outlier compared to this distribution and compute the
posterior p value that this might be the case for each periodogram
and binning factor. We find four very marginal QPOs, three
in bursts from SGR 1806−20 and one in a burst from SGR
1900+14. However, none of these candidates have a p value of
p < 10−3. Given the number of bursts searched, we cannot
consider any of these candidates significant detections.

6. DISCUSSION

We searched for QPOs in a data set comprising magnetar
bursts from active periods of the two strongest-field magne-
tars, SGR 1806−20 and SGR 1900+14. These sources present
a particularly interesting case because giant flares with QPOs
present in the tails have been observed from both of them. We
find a candidate detection at 57 Hz in an averaged periodogram
of 30 consecutive bursts observed from SGR 1806−20, with
a significance of 10−3. The total energy in this stack of bursts
is ∼1039 erg (order of magnitude estimate with burst energies
taken from Göğüş et al. 2000). Interestingly, this QPO is close
in both frequency and width to a QPO observed in the 1998
giant flare from SGR 1900+14, which had a frequency of 53 Hz
and a width of 5 Hz, and is also similar in width and ampli-
tude, although not in frequency, to those seen in an analysis of
Fermi/GBM data of SGR J1550−5418 (Huppenkothen et al.
2014). Although it is somewhat surprising that it is this fre-
quency that appears in averaged bursts from SGR 1806−20
instead of the strongest giant flare QPO at 92 Hz that was also
detected in SGR J1550−5418, the signal’s frequency neverthe-
less fits naturally within the framework generally employed to
explain the QPOs in giant flares. The most plausible explana-
tion for the frequencies in the giant flares, which lie in the range
18–1840 Hz, is that they represent global seismic oscillations
of the star. Within the context of current models, a frequency
of 57 Hz would be a relatively low order harmonic of a global
magneto-elastic axial (torsional) oscillation, in which the crust
and core oscillate together, coupled with the strong magnetic
field (Glampedakis et al. 2006; Andersson et al. 2009; Steiner
& Watts 2009; van Hoven & Levin 2011, 2012; Colaiuda &
Kokkotas 2011, 2012; Gabler et al. 2012, 2013; Passamonti &
Lander 2014; Glampedakis & Jones 2014).

With two detections from two different data sets and two
different sources, there is now an acute need for theoretical
thought on whether small bursts could indeed excite QPOs
either via crust fractures or explosive reconnection in the
magnetosphere. At present, modeling work focuses largely
on the QPOs observed from giant flares and the associated
energetics. However, it is not clear whether the same processes
can excite the same crustal shear and core modes postulated for
giant flare QPOs in bursts that are of the order of 103 times
shorter and up to ∼109 times smaller in energy compared to the
giant flares.

There is no significant detection of a QPO in any of the
individual bursts. At the same time, the RXTE data set illustrates
a limiting case for the applicability of Fourier methodology:
the combination of a complex burst morphology with relevant

timescales that can exceed 1000 Hz, low source counts as well
as a low background count rate render the basic assumption
of many Fourier methods, including the methods presented
in Huppenkothen et al. (2013), invalid. Because there is little
background and a great amount of broadband source power even
at high frequencies, frequencies are no longer independent of
each other and no longer distributed following the standard χ2

2
distribution invoked for periodograms of photon counting data.
As we have shown, the distributions of powers are strongly
shifted toward higher powers and are much broader than the
expected distributions, leading to an increased probability of
false-positive detections. In this case, simulations of light curves
instead of periodograms, such as those introduced in Section 4.2,
offer a valid alternative that properly accounts for the changes
in the periodogram shape.

This problem is not necessarily limited to RXTE or to
magnetar bursts; any instrument with low source counts and
low background count rates (e.g., Swift) will lead to similar
effects in the periodograms of fast transient events with complex
morphology (e.g., gamma-ray bursts). Harnessing the power of
the light curve models described above for QPO searches, in
combination with high-quality data from instruments such as the
Fermi/GBM, enables us to search for weak QPOs in transient
events with an unprecedented sensitivity, be they magnetar
bursts, GRBs, or solar flares.

D.H. and A.L.W. acknowledge support from a Netherlands
Organization for Scientific Research (NWO) Vidi Fellowship
(PI: A. Watts).
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Göğüş, E., Woods, P. M., Kouveliotou, C., et al. 2000, ApJL, 532, L121
Groth, E. J. 1975, ApJS, 29, 285
Huppenkothen, D., D’Angelo, C., Watts, A. L., et al. 2014, ApJ, 787, 128
Huppenkothen, D., Watts, A. L., Uttley, P., et al. 2013, ApJ, 768, 87
Hurley, K., Boggs, S. E., Smith, D. M., et al. 2005, Natur, 434, 1098
Hurley, K., Cline, T., Mazets, E., et al. 1999, Natur, 397, 41
Hurley, K., Cline, T., Mitrofanov, I., et al. 2004, GCN, 2921, 1
Inan, U. S., Lehtinen, N. G., Moore, R. C., et al. 2007, GeoRL, 34, 8103
Israel, G. L., Belloni, T., Stella, L., et al. 2005, ApJL, 628, L53
Jahoda, K., Markwardt, C. B., Radeva, Y., et al. 2006, ApJS, 163, 401
Kruger, A. T., Loredo, T. J., & Wasserman, I. 2002, ApJ, 576, 932
Lander, S. K., & Jones, D. I. 2011, MNRAS, 412, 1730

10

http://dx.doi.org/10.1111/j.1365-2966.2009.14734.x
http://adsabs.harvard.edu/abs/2009MNRAS.396..894A
http://adsabs.harvard.edu/abs/2009MNRAS.396..894A
http://adsabs.harvard.edu/abs/2004GCN..2920....1B
http://adsabs.harvard.edu/abs/2004GCN..2920....1B
http://dx.doi.org/10.1007/s11222-010-9198-8
http://adsabs.harvard.edu/abs/1983A&A...128..245B
http://adsabs.harvard.edu/abs/1983A&A...128..245B
http://dx.doi.org/10.1038/nature03605
http://adsabs.harvard.edu/abs/2005Natur.434.1112C
http://adsabs.harvard.edu/abs/2005Natur.434.1112C
http://adsabs.harvard.edu/abs/1998IAUC.7002....1C
http://adsabs.harvard.edu/abs/1998IAUC.7002....1C
http://dx.doi.org/10.1111/j.1365-2966.2011.18602.x
http://adsabs.harvard.edu/abs/2011MNRAS.414.3014C
http://adsabs.harvard.edu/abs/2011MNRAS.414.3014C
http://dx.doi.org/10.1111/j.1365-2966.2012.20919.x
http://adsabs.harvard.edu/abs/2012MNRAS.423..811C
http://adsabs.harvard.edu/abs/2012MNRAS.423..811C
http://dx.doi.org/10.1086/166427
http://adsabs.harvard.edu/abs/1988ApJ...329..831D
http://adsabs.harvard.edu/abs/1988ApJ...329..831D
http://dx.doi.org/10.1086/311303
http://adsabs.harvard.edu/abs/1998ApJ...498L..45D
http://adsabs.harvard.edu/abs/1998ApJ...498L..45D
http://dx.doi.org/10.1088/2041-8205/721/2/L121
http://adsabs.harvard.edu/abs/2010ApJ...721L.121E
http://adsabs.harvard.edu/abs/2010ApJ...721L.121E
http://dx.doi.org/10.1111/j.1365-2966.2010.16551.x
http://adsabs.harvard.edu/abs/2010MNRAS.405.1787E
http://adsabs.harvard.edu/abs/2010MNRAS.405.1787E
http://dx.doi.org/10.1086/311964
http://adsabs.harvard.edu/abs/1999ApJ...515L...9F
http://adsabs.harvard.edu/abs/1999ApJ...515L...9F
http://dx.doi.org/10.1086/670067
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://adsabs.harvard.edu/abs/2013PASP..125..306F
http://dx.doi.org/10.1111/j.1745-3933.2010.00974.x
http://adsabs.harvard.edu/abs/2011MNRAS.410L..37G
http://adsabs.harvard.edu/abs/2011MNRAS.410L..37G
http://dx.doi.org/10.1093/mnras/sts721
http://adsabs.harvard.edu/abs/2013MNRAS.430.1811G
http://adsabs.harvard.edu/abs/2013MNRAS.430.1811G
http://dx.doi.org/10.1111/j.1365-2966.2012.20454.x
http://adsabs.harvard.edu/abs/2012MNRAS.421.2054G
http://adsabs.harvard.edu/abs/2012MNRAS.421.2054G
http://dx.doi.org/10.1093/mnras/stu017
http://adsabs.harvard.edu/abs/2014MNRAS.439..1522
http://adsabs.harvard.edu/abs/2014MNRAS.439..1522
http://dx.doi.org/10.1111/j.1745-3933.2006.00211.x
http://adsabs.harvard.edu/abs/2006MNRAS.371L..74G
http://adsabs.harvard.edu/abs/2006MNRAS.371L..74G
http://dx.doi.org/10.1086/322463
http://adsabs.harvard.edu/abs/2001ApJ...558..228G
http://adsabs.harvard.edu/abs/2001ApJ...558..228G
http://dx.doi.org/10.1086/312380
http://adsabs.harvard.edu/abs/1999ApJ...526L..93G
http://adsabs.harvard.edu/abs/1999ApJ...526L..93G
http://dx.doi.org/10.1086/312583
http://adsabs.harvard.edu/abs/2000ApJ...532L.121G
http://adsabs.harvard.edu/abs/2000ApJ...532L.121G
http://dx.doi.org/10.1086/190343
http://adsabs.harvard.edu/abs/1975ApJS...29..285G
http://adsabs.harvard.edu/abs/1975ApJS...29..285G
http://dx.doi.org/10.1088/0004-637X/787/2/128
http://adsabs.harvard.edu/abs/2014ApJ...787..128H
http://adsabs.harvard.edu/abs/2014ApJ...787..128H
http://dx.doi.org/10.1088/0004-637X/768/1/87
http://adsabs.harvard.edu/abs/2013ApJ...768...87H
http://adsabs.harvard.edu/abs/2013ApJ...768...87H
http://dx.doi.org/10.1038/nature03519
http://adsabs.harvard.edu/abs/2005Natur.434.1098H
http://adsabs.harvard.edu/abs/2005Natur.434.1098H
http://dx.doi.org/10.1038/16199
http://adsabs.harvard.edu/abs/1999Natur.397...41H
http://adsabs.harvard.edu/abs/1999Natur.397...41H
http://adsabs.harvard.edu/abs/2004GCN..2921....1H
http://adsabs.harvard.edu/abs/2004GCN..2921....1H
http://adsabs.harvard.edu/abs/2007GeoRL..34.8103I
http://adsabs.harvard.edu/abs/2007GeoRL..34.8103I
http://dx.doi.org/10.1086/432615
http://adsabs.harvard.edu/abs/2005ApJ...628L..53I
http://adsabs.harvard.edu/abs/2005ApJ...628L..53I
http://dx.doi.org/10.1086/500659
http://adsabs.harvard.edu/abs/2006ApJS..163..401J
http://adsabs.harvard.edu/abs/2006ApJS..163..401J
http://dx.doi.org/10.1086/341541
http://adsabs.harvard.edu/abs/2002ApJ...576..932K
http://adsabs.harvard.edu/abs/2002ApJ...576..932K
http://dx.doi.org/10.1111/j.1365-2966.2010.18009.x
http://adsabs.harvard.edu/abs/2011MNRAS.412.1730L
http://adsabs.harvard.edu/abs/2011MNRAS.412.1730L


The Astrophysical Journal, 795:114 (11pp), 2014 November 10 Huppenkothen et al.

Lander, S. K., Jones, D. I., & Passamonti, A. 2010, MNRAS, 405, 318
Lyutikov, M. 2003, MNRAS, 346, 540
Mandea, M., & Balasis, G. 2006, GeoJI, 167, 586
Mazets, E. P., Cline, T. L., Aptekar, R. L., et al. 2005, arXiv:astro-ph/0502541
Meegan, C., Lichti, G., Bhat, P. N., et al. 2009, ApJ, 702, 791
Mereghetti, S. 2011, AdSpR, 47, 1317
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