17 research outputs found

    Efficient Coding Tree Unit (CTU) Decision Method for Scalable High-Efficiency Video Coding (SHVC) Encoder

    Get PDF
    High-efficiency video coding (HEVC or H.265) is the latest video compression standard developed by the joint collaborative team on video coding (JCT-VC), finalized in 2013. HEVC can achieve an average bit rate decrease of 50% in comparison with H.264/AVC while still maintaining video quality. To upgrade the HEVC used in heterogeneous access networks, the JVT-VC has been approved scalable extension of HEVC (SHVC) in July 2014. The SHVC can achieve the highest coding efficiency but requires a very high computational complexity such that its real-time application is limited. To reduce the encoding complexity of SHVC, in this chapter, we employ the temporal-spatial and inter-layer correlations between base layer (BL) and enhancement layer (EL) to predict the best quadtree of coding tree unit (CTU) for quality SHVC. Due to exist a high correlation between layers, we utilize the coded information from the CTU quadtree in BL, including inter-layer intra/residual prediction and inter-layer motion parameter prediction, to predict the CTU quadtree in EL. Therefore, we develop an efficient CTU decision method by combing temporal-spatial searching order algorithm (TSSOA) in BL and a fast inter-layer searching algorithm (FILSA) in EL to speed up the encoding process of SHVC. The simulation results show that the proposed efficient CTU decision method can achieve an average time improving ratio (TIR) about 52–78% and 47–69% for low delay (LD) and random access (RA) configurations, respectively. It is clear that the proposed method can efficiently reduce the computational complexity of SHVC encoder with negligible loss of coding efficiency with various types of video sequences

    Análise do HEVC escalável : desempenho e controlo de débito

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesEsta dissertação apresenta um estudo da norma de codificação de vídeo de alta eficiência (HEVC) e a sua extensão para vídeo escalável, SHVC. A norma de vídeo SHVC proporciona um melhor desempenho quando codifica várias camadas em simultâneo do que quando se usa o codificador HEVC numa configuração simulcast. Ambos os codificadores de referência, tanto para a camada base como para a camada superior usam o mesmo modelo de controlo de débito, modelo R-λ, que foi otimizado para o HEVC. Nenhuma otimização de alocação de débito entre camadas foi até ao momento proposto para o modelo de testes (SHM 8) para a escalabilidade do HEVC (SHVC). Derivamos um novo modelo R-λ apropriado para a camada superior e para o caso de escalabilidade espacial, que conduziu a um ganho de BD-débito de 1,81% e de BD-PSNR de 0,025 em relação ao modelo de débito-distorção existente no SHM do SHVC. Todavia, mostrou-se também nesta dissertação que o proposto modelo de R-λ não deve ser usado na camada inferior (camada base) no SHVC e por conseguinte no HEVC.This dissertation provides a study of the High Efficiency Video Coding standard (HEVC) and its scalable extension, SHVC. The SHVC provides a better performance when encoding several layers simultaneously than using an HEVC encoder in a simulcast configuration. Both reference encoders, in the base layer and in the enhancement layer use the same rate control model, R-λ model, which was optimized for HEVC. No optimal bitrate partitioning amongst layers is proposed in scalable HEVC (SHVC) test model (SHM 8). We derived a new R-λ model for the enhancement layer and for the spatial case which led to a DB-rate gain of 1.81% and DB-PSNR gain of 0.025 in relation to the rate-distortion model of SHM-SHVC. Nevertheless, we also show in this dissertation that the proposed model of R-λ should not be used neither in the base layer nor in HEVC

    Quality of Experience (QoE)-Aware Fast Coding Unit Size Selection for HEVC Intra-prediction

    Get PDF
    The exorbitant increase in the computational complexity of modern video coding standards, such as High Efficiency Video Coding (HEVC), is a compelling challenge for resource-constrained consumer electronic devices. For instance, the brute force evaluation of all possible combinations of available coding modes and quadtree-based coding structure in HEVC to determine the optimum set of coding parameters for a given content demand a substantial amount of computational and energy resources. Thus, the resource requirements for real time operation of HEVC has become a contributing factor towards the Quality of Experience (QoE) of the end users of emerging multimedia and future internet applications. In this context, this paper proposes a content-adaptive Coding Unit (CU) size selection algorithm for HEVC intra-prediction. The proposed algorithm builds content-specific weighted Support Vector Machine (SVM) models in real time during the encoding process, to provide an early estimate of CU size for a given content, avoiding the brute force evaluation of all possible coding mode combinations in HEVC. The experimental results demonstrate an average encoding time reduction of 52.38%, with an average Bjøntegaard Delta Bit Rate (BDBR) increase of 1.19% compared to the HM16.1 reference encoder. Furthermore, the perceptual visual quality assessments conducted through Video Quality Metric (VQM) show minimal visual quality impact on the reconstructed videos of the proposed algorithm compared to state-of-the-art approaches

    Analysis and Comparison of Modern Video Compression Standards for Random-access Light-field Compression

    Get PDF
    Light-field (LF) 3D displays are anticipated to be the next-generation 3D displays by providing smooth motion parallax, wide field of view (FOV), and higher depth range than the current autostereoscopic displays. The projection-based multi-view LF 3D displays bring the desired new functionalities through a set of projection engines creating light sources for the continuous light field to be created. Such displays require a high number of perspective views as an input to fully exploit the visualization capabilities and viewing angle provided by the LF technology. Delivering, processing and de/compressing this amount of views pose big technical challenges. However, when processing light fields in a distributed system, access patterns in ray space are quite regular, some processing nodes do not need all views, moreover the necessary views are used only partially. This trait could be exploited by partial decoding of pictures to help providing less complex and thus real-time operation. However, none of the recent video coding standards (e.g., Advanced Video Coding (AVC)/H.264 and High Efficiency Video Coding (HEVC)/H.265 standards) provides partial decoding of video pictures. Such feature can be achieved by partitioning video pictures into partitions that can be processed independently at the cost of lowering the compression efficiency. Examples of such partitioning features introduced by the modern video coding standards include slices and tiles, which enable random access into the video bitstreams with a specific granularity. In addition, some extra requirements have to be imposed on the standard partitioning tools in order to be applicable in the context of partial decoding. This leads to partitions called self-contained which refers to isolated or independently decodable regions in the video pictures. This work studies the problem of creating self-contained partitions in the conventional AVC/H.264 and HEVC/H.265 standards, and HEVC 3D extensions including multi-view (i.e., MV-HEVC) and 3D (i.e., 3D-HEVC) extensions using slices and tiles, respectively. The requirements that need to be fulfilled in order to build self-contained partitions are described, and an encoder-side solution is proposed. Further, the work examines how slicing/tiling can be used to facilitate random access into the video bitstreams, how the number of slices/tiles affects the compression ratio considering different prediction structures, and how much effect partial decoding has on decoding time. Overall, the experimental results indicate that the finer the partitioning is, the higher the compression loss occurs. The usage of self-contained partitions makes the decoding operation very efficient and less complex

    Light field image coding with flexible viewpoint scalability and random access

    Get PDF
    This paper proposes a novel light field image compression approach with viewpoint scalability and random access functionalities. Although current state-of-the-art image coding algorithms for light fields already achieve high compression ratios, there is a lack of support for such functionalities, which are important for ensuring compatibility with different displays/capturing devices, enhanced user interaction and low decoding delay. The proposed solution enables various encoding profiles with different flexible viewpoint scalability and random access capabilities, depending on the application scenario. When compared to other state-of-the-art methods, the proposed approach consistently presents higher bitrate savings (44% on average), namely when compared to pseudo-video sequence coding approach based on HEVC. Moreover, the proposed scalable codec also outperforms MuLE and WaSP verification models, achieving average bitrate saving gains of 37% and 47%, respectively. The various flexible encoding profiles proposed add fine control to the image prediction dependencies, which allow to exploit the tradeoff between coding efficiency and the viewpoint random access, consequently, decreasing the maximum random access penalties that range from 0.60 to 0.15, for lenslet and HDCA light fields.info:eu-repo/semantics/acceptedVersio

    Image and Video Coding Techniques for Ultra-low Latency

    Get PDF
    The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, connected industry, or autonomous driving. This survey gathers implementation aspects of different image and video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative approaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency constraints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame coding as limitations of current full-system and software-programmable implementations.publishedVersionPeer reviewe

    Clustering Arabic Tweets for Sentiment Analysis

    Get PDF
    The focus of this study is to evaluate the impact of linguistic preprocessing and similarity functions for clustering Arabic Twitter tweets. The experiments apply an optimized version of the standard K-Means algorithm to assign tweets into positive and negative categories. The results show that root-based stemming has a significant advantage over light stemming in all settings. The Averaged Kullback-Leibler Divergence similarity function clearly outperforms the Cosine, Pearson Correlation, Jaccard Coefficient and Euclidean functions. The combination of the Averaged Kullback-Leibler Divergence and root-based stemming achieved the highest purity of 0.764 while the second-best purity was 0.719. These results are of importance as it is contrary to normal-sized documents where, in many information retrieval applications, light stemming performs better than root-based stemming and the Cosine function is commonly used

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Clustering Arabic Tweets for Sentiment Analysis

    Get PDF
    The focus of this study is to evaluate the impact of linguistic preprocessing and similarity functions for clustering Arabic Twitter tweets. The experiments apply an optimized version of the standard K-Means algorithm to assign tweets into positive and negative categories. The results show that root-based stemming has a significant advantage over light stemming in all settings. The Averaged Kullback-Leibler Divergence similarity function clearly outperforms the Cosine, Pearson Correlation, Jaccard Coefficient and Euclidean functions. The combination of the Averaged Kullback-Leibler Divergence and root-based stemming achieved the highest purity of 0.764 while the second-best purity was 0.719. These results are of importance as it is contrary to normal-sized documents where, in many information retrieval applications, light stemming performs better than root-based stemming and the Cosine function is commonly used
    corecore