

ALIREZA ZARE

ANALYSIS AND COMPARISON OF MODERN VIDEO

COMPRESSION STANDARDS FOR RANDOM-ACCESS LIGHT-

FIELD COMPRESSION

Master of Science Thesis

Examiner: Prof. Atanas Gotchev
 Péter Tamás Kovács
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical
Engineering
on 7th June 2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250164264?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

ALIREZA ZARE: Analysis and Comparison of Modern Video Compression
Standards for Random-access Light-field Compression
Tampere University of Technology
Master of Science Thesis, 65 pages, 2 Appendix pages
June 2017
Master’s Degree Programme in Information Technology
Major: Signal Processing
Examiner: Professor Atanas Gotchev, and Péter Tamás Kovács

Keywords: video coding, AVC/H.264, HEVC/H.265, random access in video
coding, slice, tile, light-field compression

Light-field (LF) 3D displays are anticipated to be the next-generation 3D displays by

providing smooth motion parallax, wide field of view (FOV), and higher depth range than

the current autostereoscopic displays. The projection-based multi-view LF 3D displays

bring the desired new functionalities through a set of projection engines creating light

sources for the continuous light field to be created. Such displays require a high number

of perspective views as an input to fully exploit the visualization capabilities and viewing

angle provided by the LF technology. Delivering, processing and de/compressing this

amount of views pose big technical challenges. However, when processing light fields in

a distributed system, access patterns in ray space are quite regular, some processing nodes

do not need all views, moreover the necessary views are used only partially. This trait

could be exploited by partial decoding of pictures to help providing less complex and thus

real-time operation.

However, none of the recent video coding standards (e.g., Advanced Video Coding

(AVC)/H.264 and High Efficiency Video Coding (HEVC)/H.265 standards) provides

partial decoding of video pictures. Such feature can be achieved by partitioning video

pictures into partitions that can be processed independently at the cost of lowering the

compression efficiency. Examples of such partitioning features introduced by the modern

video coding standards include slices and tiles, which enable random access into the video

bitstreams with a specific granularity. In addition, some extra requirements have to be

imposed on the standard partitioning tools in order to be applicable in the context of

partial decoding. This leads to partitions called self-contained which refers to isolated or

independently decodable regions in the video pictures.

This work studies the problem of creating self-contained partitions in the conventional

AVC/H.264 and HEVC/H.265 standards, and HEVC 3D extensions including multi-view

(i.e., MV-HEVC) and 3D (i.e., 3D-HEVC) extensions using slices and tiles, respectively.

The requirements that need to be fulfilled in order to build self-contained partitions are

described, and an encoder-side solution is proposed. Further, the work examines how

slicing/tiling can be used to facilitate random access into the video bitstreams, how the

number of slices/tiles affects the compression ratio considering different prediction

structures, and how much effect partial decoding has on decoding time.

Overall, the experimental results indicate that the finer the partitioning is, the higher the

compression loss occurs. The usage of self-contained partitions makes the decoding

operation very efficient and less complex.

ii

PREFACE

This research work was carried out at the Department of Signal Processing at Tampere

University of Technology (TUT) during the year 2014-2015. The work is conducted in

3D Media Group at TUT in collaboration with Holografika’s research team in Budapest.

The work was further developed in Nokia Technologies in Tampere.

I would like to express my gratitude and appreciation to my supervisor Prof. Atanas

Gotchev not only for his supports and guidance but also for providing the strong

collaboration between TUT and industries. Through that, in my Master thesis, I had

chance to solve a real-world problem for industry. I would also like to express my deep

appreciation to Péter Tamás Kovács for his supervision and guidance. Throughout my

thesis, the significant factor was his ease of access for answering my questions and

helping me. I would like to extend special tanks to my colleagues at Nokia specially my

supervisors Miska Hannuksela and Alireza Aminlou for their support and precious

guidance.

I would be remiss if I did not thank my friends in Tampere specially Khazar Khorrami,

Farid Mehrabkhani, Reza Araghi, Gabriel Torres, Jakub Esner, Mojtaba Sarooghi, Amir

Shokouhi, Farshad Ahmadi, Sajjad Nouri, and Ramin Ghaznavi.

My acknowledgments would not be completed with heartfelt expression of gratitude to

my parents, Yousef and Zaman, and my sisters, Marzieh, Razieh, and Hanieh. Thank you

all for unwavering support.

Tampere, 25.8.2015

Alireza Zare

iii

To war children worldwide.

iv

CONTENTS

ABSTRACT ... I

PREFACE .. II

LIST OF FIGURES .. VI

LIST OF TABLES .. VII

LIST OF SYMBOLS AND ABBREVIATIONS .. VIII

1. INTRODUCTION .. 9

1.1 Case study: Light-field 3D displays ... 10

1.2 Related work .. 12

1.3 Contribution and publication .. 14

1.4 Thesis structure .. 15

2. BACKGROUND .. 16

2.1 Basis of video compression .. 16

2.2 Video compression standards ... 18

2.3 Selected aspect of AVC/H.264... 21

2.3.1 H.264 coding structure ... 21

2.3.2 H.264 intra and inter-picture prediction ... 22

2.3.3 H.264 frame partitioning feature .. 24

2.3.4 H.264 bitstream syntax .. 25

2.4 Selected aspect of HEVC/H.265 .. 26

2.4.1 HEVC coding structure .. 27

2.4.2 HEVC intra- and inter-picture prediction schemes 30

2.4.3 HEVC partitioning feature ... 31

2.4.4 MV and 3D extensions of HEVC .. 34

2.4.5 HEVC and its 3D extensions bitstream syntax 35

3. PROPOSED METHOD (PARTIAL DECODING) .. 38

3.1 Partial decoding implementation possibilities.. 38

3.2 Enabling the self-contained slices in the AVC standard 39

3.2.1 General case ... 39

3.2.2 Self-contained Slices .. 41

3.3 Enabling the self-contained tiles in the HEVC standard 42

3.3.1 General case ... 42

3.3.2 Self-contained tiles in conventional HEVC 44

3.3.3 Self-contained tiles in 3D extensions of HEVC............................. 46

3.4 Slice/tile-based extractor .. 46

4. RESULTS AND PERFORMANCE EVALUATION .. 50

4.1 Experimental setting ... 50

4.2 Test sequences .. 50

4.3 Partitioning arrangement .. 51

4.4 Results analysis .. 52

4.4.1 Compression performance ... 52

v

4.4.2 Complexity and latency reduction ... 55

5. CONCLUSIONS ... 57

6. REFERENCES .. 58

APPENDIX A: H.264 TRACING PATH OVERVIEW .. 63

APPENDIX B: DOWNLOAD LINKS ... 64

vi

LIST OF FIGURES

Figure 1. Holografika multi-view 3D display [3] ... 12

Figure 2. YUV 4:2:0 video data structure ... 16

Figure 3. Block diagram of a video encoder ... 18

Figure 4. Chronology of international video coding standards [25]...................... 19

Figure 5. Intra- and inter-prediction modes and motion vector concept 22

Figure 6. Hierarchical organization of the AVC/H.264 bitstream 26

Figure 7. HEVC coding tree: a) CTU partitioning, b) Corresponding tree 27

Figure 8. PU partitioning modes .. 28

Figure 9. CU types or coding schemes within a typical video frame [34] 28

Figure 10. Tile-based and raster scan order of CTUs within a frame 34

Figure 11. Overview of the system structure for 3D video transmission [32] 35

Figure 12. HEVC bitstream structure ... 36

Figure 13. 3D-HEVC access unit structure .. 36

Figure 14. Two different slice arrangements in H.264, drawn with [41] 39

Figure 15. Left: A correctly decoded frame, right: A decoded frame of a

bitstream in which every other slices were dropped 40

Figure 16. Standard slices in H.264 [34] ... 41

Figure 17. Tile partitioning, Balloons sequence with resolution 1024x768 [41] 43

Figure 18. Spatio-temporal positions of the merge and AMVP candidates [32] 45

Figure 19. Bottom-most PU within a tile .. 45

Figure 20. Delimiters in a typical bitstream ... 47

Figure 21. Frame partitioning and the extracted partitions 51

Figure 22. BD-rate over number of tiles ... 54

Figure 23. Decoding speed in AVC (frame per sec.) .. 56

Figure 24. Decoding speed in HEVC (frame per sec.) ... 56

vii

LIST OF TABLES

Table 1. A typical super-multi-view video data specification 18

Table 2. Configuration parameters for two different tiling configuration

approaches .. 42

Table 3. Configuration parameters to obtain the highest possible number of

tiles .. 43

Table 4. The required information for parsing tiles from bitstream 48

Table 5. Test sequences description .. 50

Table 6. Storage performance comparison between Intra profile and

Baseline, and Random Access Main profiles in AVC and HEVC,

respectively (delta-bitrate %) .. 52

Table 7. AVC slice overhead (BD-rate %) .. 52

Table 8. HEVC slice and tile overhead (BD-rate %) .. 53

Table 9. HEVC tile overhead for different vertical partitioning schemes

(BD-rate %) ... 54

Table 10. HEVC tile and slice overhead for different vertical partitioning

schemes (BD-rate %) ... 54

Table 11. HEVC tile overhead for different horizontal partitioning schemes

(BD-rate %) ... 54

Table 12. HEVC tile and slice overhead for different horizontal partitioning

schemes (BD-rate %) ... 55

Table 13. Decoding speed in AVC (frame per second) ... 55

Table 14. Decoding speed in HEVC (frame per second) .. 56

viii

LIST OF SYMBOLS AND ABBREVIATIONS

2D two-dimensional

3D three-dimensional

AMVP advanced motion vector prediction

ASO Arbitrary Slice Order

AVC Advanced Video Coding

BD-rate Bjøntegaard Delta-rate

CB coding block

CTB coding tree block

CTU coding tree unit

CU coding unit

DIBR depth-image-based rendering

FMO Flexible Macroblock Ordering

FOV field of view

FRExt Fidelity Range Extension

FTV free-viewpoint television

HEVC High Efficiency Video Coding

HTM HEVC Test Model

HVS human visual system

JM Joint Model

LF light-field

MB macroblock

MCP motion-compensated prediction

MPEG Moving Picture Experts Group

MTU maximum transmission unit

MV multi-view

MVC Multiview Video Coding

MVD motion vector difference

MVD Multiview Video plus Depth

MVP motion vector predictor

NAL Network Abstraction Layer

PB prediction block

PPS Picture Parameter Set

PSNR peak signal-to-noise ratio

PU prediction unit

RAP random access point

RDO rate-distortion optimized

RGB red, green, and blue

ROI Region-of-interest

SCC screen content coding

SEI Supplemental Enhancement Information

SPS Sequence Parameter Set

SVC Scalable Video Coding

TU transform unit

VCEG Video Coding Experts Group

VCL Video Coding Layer

VPS Video Parameter Set

WPP wavefront parallel processing

9

1. INTRODUCTION

In many video applications, an important feature for users is to be able to jump to specific parts

of the video (e.g., in personal video recorder: forward/backward playback function) and to

switch between different channels (e.g., in TV broadcasting: changing channels at any time)

with minimum delay. This feature is referred to as random access to bitstream (i.e., coded

video), where decoder is capable to start decoding a bitstream at a point other than the

beginning of the bitstream and reconstruct an exact or approximate representation of the source

video. This capability must be also supported at the encoder side, where at some points, known

as random access points (RAP), the video pictures (i.e., coded frames) are coded such that all

dependencies of the pictures following the RAPs, inclusive, to the pictures prior to RAPs are

removed.

In the abovementioned applications, random access to video pictures is required. However, in

some video applications random access to a portion of a picture is desired in addition to the

picture itself, for example, in partial decoding in which only parts of the video pictures are

presented in the decoder side. This is enabled by using picture partitioning tools which divide

a picture into multiple partitions. In fact, picture partitioning tools facilitate efficient random

access to a portion of a coded frame, which is necessary in partial decoding applications. In the

recently emerged Advanced Video Coding (AVC)/H.24 and High Efficiency Video Coding

(HEVC)/H.265 standards, the frame partitioning tools so-called slices (supported in both) and

tiles (introduced in HEVC) are utilized to divide a video picture into multiple partitions.

The most straightforward alternative to the partial decoding solution is to crop the desired

partitions from source videos, in the pixel domain, and encode them separately. This approach

requires an extra post-processing step and a large number of bitstreams to be handled

synchronously. Hence, the spatial approach is not desirable in this work.

In order to realize partial decoding of a video picture, the constructed partitions have to be self-

contained (i.e., independently decodable). This kind of partitions is coded/decoded in such way

that any kind of dependency on other partitions within the current picture and also non-co-

located partitions in the reference pictures is prohibited. This way, only necessary partitions

within a video picture can be decoded while skipping the remaining partitions. Despite of

support for picture partitioning tools, partial decoding of video pictures is missed from the

recent video coding standards.

In general, in a block-based hybrid video coding standard (e.g., AVC/H.264 and HEVC/H.265)

the independently decodable property is extended to all three coding components of such

standard including predictive, residual, and entropy coding [1]. In terms of residual and entropy

10

coding, the standard slices/tiles (i.e., what is introduced by the standards) are independent of

each other since entropy coding engine is reinitialize at the beginning of each slice/tile.

However, the standard slices/tiles may not be independently decodable in terms of predictive

coding. While standard slices/tiles restrict intra-picture prediction within slice/tile boundaries,

in inter-picture prediction slice/tile boundaries are disregarded in the motion compensation

process.

This means some extra requirements have to be imposed on the standard partitions in order to

be self-contained and thus applicable in the context of partial decoding. To fulfill these

requirements, the motion compensation process has been modified in order to restrict inter-

picture prediction to within co-located slices/tiles. In addition, regular partitioning as another

requirement for enabling partial decoding must be fulfilled. Regular partitioning refers to

partitioning the video pictures into the same number of partitions such that each partition

occupies the same spatial region over all frames. This is achieved by configuring partitioning

arguments appropriately.

The abovementioned requirements are related to the encoder side. The partial decoding must

be supported in the decoder side as well. Enabling partial decoding can be conducted either by

extracting and transmitting the coded elements corresponding to the necessary partitions, or

transmitting the whole bitstream as it is. In the latter case, a dedicated decoder which is capable

to skip decoding of the unnecessary partitions is needed. In contrast, in the former case partial

decoding can be achieved with a confirming decoder, however, some bitstream manipulations

are required in order to make the corrupt bitstream (i.e., containing only necessary partitions)

standard compliant. Moreover, the bandwidth required to transmit a bitstream that is disposed

of un-necessary partitions will be much lower. As the coded partitions may be interleaved with

other coded data in the bitstream and as parameter sets and headers (e.g., slice segment header)

are for the entire bitstream, a dedicated decoding process is defined for decoding particular

partitions, while dropping the decoding of other partitions.

The main contribution of this research is to enable partial decoding of video pictures in the

AVC/H.264 and HEVC/H.265 standards. In this study, the problem of creating self-contained

partitions are studied and requirements that need to be fulfilled are described. An encoder-side

solution is proposed in order to build self-contained partitions. An extractor is designed to

construct a full-picture-compliant bitstream corresponding to the desired partitions such that a

standard decoder can cope that. Further, the advantages of self-contained partitions in the

context of a light-field (LF) rendering application called projection-based LF 3D displays are

examined.

1.1 Case study: Light-field 3D displays

In this section, a big picture over 3D display technologies is provided. The projection-based

multi-view/LF 3D displays, especially the one introduced by Holografika [2], which is

considered as the case study in this work, are then described briefly. However, in-depth

11

discussions of these broad topics are beyond the scope of the present work. The reader is

referred to [3] for an overview of the state-of-the-art 3D display technologies. Finally, the

advantages of partial decoding in the projection-based LF 3D displays are discussed.

The 3D display technologies are categorized into two fundamentally different categories,

namely, binocular stereo and autostereoscopic technologies. The first one relies upon special

eyeglasses worn by viewers, while the second type of 3D displays is glasses free, in which

viewers can preserve a 3D sensation via their naked eyes. The autostereoscopic 3D display

technologies are classified into three broad categories: 1) multi-view 3D display, 2) volumetric

3D display, and 3) digital hologram display. In each category there exist several 3D display

mechanisms. The projection-based multi-view 3D displays fall in the multi-view 3D display

category, which is based on an approximation of light field of the captured scene.

Nowadays, we observe emerging trends and utilizations of LF technology in a wide range of

unconventional applications such as vision-correcting displays [4] and 3D displays [5] [6]. LF

displays are expected to be the future of 3D displays. In contrast to typical auto/stereoscopic

3D displays, the new technology is believed to successfully convince the consumers who have

not widely adopted 3D television. The LF 3D displays provide very high 3D quality experience

through: offering significantly higher resolution and brightness, providing smoother motion

parallax, wider field of view (FOV), and larger depth range [5], when compared with typical

auto/stereoscopic 3D displays. There are, however, several inherent problems thus 3D image

resolution and quality still are not comparable with that of high-end 2D displays.

Holografika introduces an approach to the 3D displaying based on the LF technology, known

as HoloVizio technology described in [6]. The HoloVizio technology, see Figure 1, uses a

specially arranged array of optical modules/projectors and a holographic screen. Each point of

the holographic screen emits light beams of different color and intensity to the various

directions. The light beams generated in the optical modules hit the screen points in various

angles and the holographic screen makes the necessary optical transformation to compose these

beams into a perfectly continuous 3D view. With proper software control, light beams leaving

the pixels propagate in multiple directions, as if they were emitted from the points of 3D objects

at fixed spatial locations. Contribution of the projections are proportional to their FOVs with

respect to the display screen. This means the projections towards the edges of the setup

contribute with a smaller number of rays due to the finite size of the screen [7].

In the projection-based multi-view/LF 3D displays, the abovementioned achievements require

employing a high number of parallel views (i.e., a collection of video sequences showing a 3D

scene from slightly different perspectives). The number of views can be up to hundreds in order

to fully exploit the visualization capabilities and viewing angle offered by such displays.

Delivering, processing and de/compressing this amount of views pose big technical challenges.

Need of handling such large amount of data prevents this kind of 3D displays to operate in real-

time. Hence, any technique which leads to processing of such amount of data effectively and

efficiently is desired, without scarifying the promised realistic representing of 3D scenes.

12

Figure 1. Holografika multi-view 3D display [3]

Even light-field 3D displays which are driven by a distributed computing system cannot be

served by a single computer, because of the high pixel count. In addition, due to the nature of

light-field rendering, different computing elements require access to separate parts of the

encoded views, therefore random access into the bitstream is desirable. It is shown in [8] that

when processing light fields in a distributed system, access patterns in ray space are quite

regular. This means some processing nodes do not need all views. Moreover, the necessary

views are used only partially. As a conventional approach, decoding the bitstreams entirely

might be prohibitive due to high number of video streams and / or high resolution.

The above trait can be exploited to save decoding time and reduce display bandwidth, thus

enabling real-time operation. While skipping the decoding of whole views is straightforward,

partial decoding of video pictures is not supported by the recently emerged video coding

standards. Enabling this functionality is instrumental for feeding LF displays with live imagery.

In view of this need, this work is motivated with enabling partial decoding of video pictures to

enable real-time operation.

1.2 Related work

In the modern video coding standards, different types of predictions are employed to exploit

redundancies among video frames and thus to improve compression efficiency. However,

predictive coding together with introduction of multiple reference frames brings complexity to

other aspects of video coding, for example, in applications where random access to bitstream

is necessary. Some tools which limit the aforementioned dependencies are video segmenting

(e.g., slices and tiles), control over reference frames list selection, and restriction on the value

of motion vectors. Some applications in which eliminating or removing the prediction

dependency is advantageous include: parallel coding, error resilience coding, and partial

decoding. This work aims at realizing partial decoding using independently decodable

partitions in the video pictures.

13

In video coding community, independently decodable partitions within a video frame are often

referred as isolated [9] [10], self-contained [11] [12], motion-constrained [13] [14], or simply

independent [15] [16] partitions. The earliest independently decodable partition concept in

video coding standards was introduced by independent segment decoding mode of H.263 in

Annex R. When the mode is enabled, slice boundaries are treated as frame boundaries, where

both intra-picture and inter-picture predictions are restricted within slice boundaries [9].

Self-contained partitions have been utilized for different applications and served various

purposes in the literature. A review of some of these applications is provided as follows.

 Region-of-interest (ROI) applications, where only ROI needs to be decoded, for

example for enabling stream-reassembling in video conferencing [14] [17].

 Real-time content editing in compressed domain, where video content needs to be

modified partially [15].

 Scalable distribution of viewports on the same video sequence to a large amount of

devices with different specifications and physical properties [11].

 Viewport-adaptive video streaming in virtual reality applications, where the viewer’s

current viewport is transmitted at higher quality at a time [13].

 Providing interactive on-demand service, for example, dynamic pan/high-quality zoom

into a portion of the video (e.g., ClassX e-learning system of Stanford University [18]).

 Smart surveillance, security and inspection applications, for example, in drone video

communication partial decoding helps in providing a faster data transmission.

A naïve alternative solution to the self-contained partitions is presented in [19], which is based

on segmenting the video frames in the pixel domain and encoding each segment as a separate

sequence. In the end-user device, all transmitted segments are decoded and stitched in order to

generate the final viewport. In this approach, a large number of bitstreams should be

synchronously transmitted. In contrast, using the proposed self-contained slices/tiles, a single

bitstream can be send for each viewport, which requires a single decoder instance in the end-

user device.

In [11] and [15] the authors utilize AVC/H.264 slice partitioning feature to avoid decoding and

re-encoding of transmitted video sequence in the end-user device, in order to enable real-time

operation. Decoding and re-encoding of video sequences, which refers to as transcoding, can

be a complex task and also introduces some quality degradation, especially in case of high-

resolution video sequences. In [15], the authors focused on real-time editing of videos, where

region replacement is performed in the compressed domain. The proposed approach splits each

video frame into several slice groups using Flexible Macroblock Ordering (FMO) tool which

enables flexible slices (i.e., slices that can contain any predefined block locations). Slices

within a slice group are made independent of other slice groups. The presented results indicate

that editing video content by means of independent slices outperforms transcoding in terms of

compression efficiency and complexity reduction. The proposed encoder restrictions to build

14

H.264 self-contained slices are similar to those described in [15]. Contrary to [15], in this work

only slice is used and no slice header re-encoding is performed.

The authors in [11] benefit from self-contained slices to distribute viewports on the same video

sequence to a number of devices with different specifications (e.g., processing power and

bandwidth capacity) and physical properties (e.g., display size). In this approach, the desired

slices relative to each user are cropped out from the segmented video bitstream. Afterwards,

the bitstream is re-structured by replacing the dropped slices with artificially generated slices

of minimal size. The resultant bitstream is standard compliant with lower bitrate, when

compared with the original bitstream. In contrast, in the H.264 part of this work, no bitstream

manipulation is performed. The unnecessary slices are dropped from the original full-picture

bitstream using a designed extractor and the necessary slices are arranged in a sub-bitstream

which can be coped using the FFmpeg x264 decoder [20]. This means the FFmpeg decoder

allows decoding specific self-contained slices, regardless of the fact that other slices in the

frame have been dropped.

The works presented in [10] and [16] use AVC slices and HEVC tiles, respectively, to enable

ROI coding, where only ROI regions are restricted. In this work, the restriction is imposed to

all slices/tiles within a frame. This provides a full degree of flexibility in the decoder side by

selectively decoding any slice/tile of interest. However, it drops compression efficiency

compared to the case where the restriction is imposed only to the necessary partitions.

Another study in [14] utilizes HEVC tiles in order to enable bitstream reassembling operation

in video conferencing. In This work, similar encoder restrictions as proposed in [14] and [21]

are used. The proposed method in this work uses the standard HEVC decoding, unlike [14],

which requires modifications to the candidate list derivation for HEVC motion vector

prediction.

The work presented in [13] uses HEVC motion-constrained tiles to enable adaptive streaming

of panoramic videos for virtual reality applications. Authors in [21] and [17] use motion-

constrained tiles to stich multiple video streams in the compressed domain in video

conferencing and video surveillance applications. This work aims to benefit from self-

contained slices/tiles in LF 3D displays.

To my knowledge this is the first research involving enabling partial decoding in MV and 3D

extensions of HEVC.

1.3 Contribution and publication

The contributions of this work can be summarized as follows:

o A full instruction on enabling slicing and tiling in the AVC and HEVC standards,

respectively, with any arbitrary arrangement is presented.

15

o The requirements for building self-contained partitions that are needed to enable partial

decoding of video pictures are formulated.

o JM AVC/H.264 reference software version 18.6 was modified to enable partial

decoding using slices.

o HEVC HTM reference software version 14.0 was modified to enable partial decoding

in conventional HEVC/H.265 and its multi-view and 3D extensions using tiles.

o The effect of the introduced self-contained partitions on compression efficiency and

decoding complexity is evaluated in terms of rate-distortion curve and decoding speed,

respectively.

The following publications resulted from the work conducted during this thesis:

o Péter Tamás Kovács, Alireza Zare, Tibor Balogh, Robert Bregović, and Atanas

Gotchev, “Architectures and codecs for real-time light field streaming,” Journal of

Imaging Science and Technology (JIST), Dec. 2016.

o Alireza Zare, Péter Tamás Kovács, Alireza Aminlou, Miska M. Hannuksela, and

Atanas Gotchev, “Decoding complexity reduction in projection-based light-field 3D

displays using self-contained HEVC tiles,” 3DTV-Conference 2016, July, 2016,

Hamburg, Germany.

o Alireza Zare, P.T. Kovacs, and Atanas Gotchev, “Self-contained slices in H.264 for

partial video decoding targeting 3D light-field displays,” 3DTV-conference 2015, July,

2015, Lisbon, Portugal.

o P.T. Kovacs, A. Fekete, K. Lackner, V.K. Adhikarla, A. Zare, T. Balogh, “Big Buck

Bunny light-field test sequences,” provided by Holografika for MPEG FTV AHG, (c)

copyright 2008, Blender Foundation / www.bigbuckbunny.org, Feb., 2015, Geneva,

Switzerland.

1.4 Thesis structure

The rest of the thesis is organized as follows. In Section 2, the related background concepts are

explained. In this section, an introductory part of video coding is followed by a definition of

the emerging video coding standards. Further, an overview of the related aspects of the H.264

and H.265 standards are presented. The proposed method for building self-contained partitions

in both standards is explained in Section 3. The experimental condition and test video

sequences are described in Section 4. The section continuous with evaluation of the proposed

method and analyzing the results. Finally, the thesis is concluded in Sections 5.

16

2. BACKGROUND

This section presents the related background information. An introduction to the video coding

topic is followed by a brief definition of the emerging video coding standards. Further, an

overview over the relevant aspects of the AVC/H.264 and HEVC/H.265 standards is provided.

2.1 Basis of video compression

Video compression is the process of squeezing or compacting video data into a format suitable

for transmission or storage. Compression system composes of a complementary pair of

components so-called encoder and decoder. Encoder converts video data into a compressed

form (i.e., bitstream) and decoder reconstructs a representation of the source video data from

the encoder output with a specific fidelity. The encoder/decoder pair is often referred as codec.

Video compression relies on two main strategies: removing irrelevant information (i.e.,

information that not perceived by human visual system) and redundant information (i.e.,

information that is repeated) from source video data. Irrelevancy reduction can be achieved by

introducing a model for representing video data, which is compatible with human visual system

(HVS) characteristics. The HVS is more sensitive to brightness (luminance) than color

(chrominance). In order to benefit from this fact, the luminance information can be separated

from the color information which can be then represented with a lower resolution [22]. For this

purpose, video data in the RGB color space is generally converted to the YUV space.

Therefore, the source video data is generally given in YUV with 4:2:0 color subsampling

format, in which chrominance components have half resolution vertically and horizontally

relative to luminance. Note that this is already a simple compression. Furthermore, this allows

encoder to process luminance and chrominance components separately. The structure of video

data in YUV 4:2:0 format is shown in Figure 2. For example, a video frame with 1280x768

resolution and 8 bits pixel depth in the RGB requires 3 ∗ (1280 ∗ 768) bytes, ≈ 2.949 MB

space while the same frame in YUV 4:2:0 space is stored by (1280 ∗ 768) + 0.25 ∗

(1280 ∗ 768) + 0.25 ∗ (1280 ∗ 768) bytes ≈ 1.475 MB which is half as much space as

occupied in the former case.

Figure 2. YUV 4:2:0 video data structure

17

Redundancy reduction aims to remove information that is repeated in the source video data and

not necessary for faithful reproduction of the data. The modern video compression standards

exploit four different kinds of redundancies called spatial, temporal, statistical, and frequency

to achieve compression. In the spatial domain (i.e., within a video frame) the neighboring pixels

are correlated (i.e., similar to each other). There is usually a high correlation among successive

video frames in time order, which is referred as to temporal redundancy. The statistical

redundancy is exploited by so-called entropy encoder which takes advantage of patterns in the

data and represents more frequently occurring data more efficiently.

Transferring video data (e.g., a frame) into frequency domain reveals that many of the

coefficients in the higher frequencies, which correspond to details within the frame, are close

to zero. It is possible to achieve compression by removing these insignificant coefficients. This

is referred as to removing frequency redundancy which benefits from HVS behavior as it is

more sensitive to lower frequencies.

These redundancies are exploited by means of coding techniques such as intra prediction (i.e.,

exploiting spatial redundancy), motion-compensated prediction (i.e., exploiting temporal

redundancy), entropy coding (i.e., exploiting statistical redundancy), de-correlating linear

transform and scalar quantization (i.e., exploiting frequency redundancy) [22].

The modern video compression standards operate based on block-based hybrid video coding

principle. Following this principle, each video frame is partitioned into blocks of samples. Each

block is then coded by means of a coding technique which consists of a combination of

prediction techniques, transformation of the prediction error and entropy coding. This is known

as hybrid video coding technique. In the following the main functional units of a hybrid video

encoder are described.

A general video encoder block diagram is shown in Figure 3. The prediction model receives

uncompressed video data as input and attempts to reduce spatial and temporal redundancies by

predicting the current block video data from neighboring video frames and/or neighboring

samples within the same frame. It means the prediction is constructed by intra-picture and inter-

picture predictions. The prediction model outputs a residual frame which is created by

subtracting the prediction from the actual current block. The spatial model receives the residual

frame and aims to de-correlate the residual samples further. This is typically carried out by

applying a transform to the residual samples and quantizing the transform coefficients. As a

result of this process, the residual samples in the transform domain can be represented with a

small number of significant coefficients. The prediction model and spatial model parameters

are represented in a more compact form by removing statistical redundancy using entropy

encoder. The output bitstream consists of coded prediction parameters, coded residual

coefficients and header information.

At the end of the section, the essence of video coding for both storage and transmission of a

typical super-multi-view video data utilized in a 3D projection-based LF display is described.

18

Figure 3. Block diagram of a video encoder

Table 1. A typical super-multi-view video data specification

Number of views 91

Number of frames 123

Frame rate 25 fps

Resolution 1280x768

Pixel depth 8 bits/component

Consider a multi-view sequence with the specifications described in Table 1. The required

bandwidth for transmitting each view equals:

((1280 ∗ 768 ∗ 8) + 2 ∗ (640 ∗ 384 ∗ 8)) ∗ 25 ≈ 281 Mb/s

Based on Akamai 2015 ranking, average connection speed in Finland is 16.6 Mb/s. It means

transmitting 1 sec of each original video takes ≈ 17 seconds. The required memory space for

storing one minute of each view equals:

60 ∗ 25 ∗ ((1280 ∗ 768 ∗ 8) + 2 ∗ (640 ∗ 38 ∗ 8)) ≈ 17.7 Gb

It is clearly understandable the incredible demand on network and storage infrastructures

without compressing, especially for real-time applications.

2.2 Video compression standards

A video compression standard defines the compressed format (i.e., bitstream syntax) and

decoding process. The encoding process is not included in the standard in order to allow

everyone/every manufacture having its own implementation. The only requirement is that the

bitstream must be decodable with a standard confirming decoder.

19

For the compression standards, there are two main international organizations namely ITU-T

and ISO/IEC. From ITU-T, the Video Coding Experts Group (VCEG) of Question 6 (Visual

coding) of Working Party 3 (Media Coding) of Study Group 16 (Multimedia Coding, Systems

and Applications) and from ISO/IEC, Moving Picture Experts Group (MPEG) of Joint

Technical Committee Number 1 of Subcommittee 29 of Working Group 11 have dominated

video compression standardization [23]. Figure 4 illustrates chronology of international video

coding standards and contribution of these two organizations in developing them.

The H.264 or MPEG-4 Part 10, Advanced Video Coding (MPEG-4 AVC) standard and its

successor H.265 or High Efficiency Video Coding (HEVC) are currently the most commonly

used standards in video compression. The goals of these standardization efforts were improving

compression efficiency up to 50% and providing more network-friendly design compared to

its previous standards, without sacrificing quality. The latest collaboration between the two

standard bodies has resulted the HEVC/ H.265 standard. HEVC aims to support high resolution

video contents up to 8K (8192x4320) and to improve parallel processing architecture. In

addition, the new standard is intended to be applicable over a wide range of applications with

respect to the need for interoperability of products built by different manufactures and

potentially customized by different vendors [24]. HEVC is built on the concepts of the AVC

standard. It inherits a number of features from AVC. Some features that exist in AVC were

not included in HEVC and a number of new features are introduced in HEVC, which are not

available to that of older standard. Both HEVC and AVC standards are designed based on

block-based hybrid video coding principle.

Over the time, the capabilities of the original standard are extended by adding new coding

features to support broader range of applications. While the high level syntax designs of AVC

extensions are not fully aligned, HEVC extensions are designed as a high-level syntax only

Figure 4. Chronology of international video coding standards [25]

20

extension to allow reuse of existing components. The extensions can be classified into two

categories, based on the generated bitstream, as follows: single-layer extensions and multi-

layer extensions. In the single-layer extensions, like in the original standards, the generated

bitstream exhibits a single representation of the coded video. In contrast, the generated

bitstream in the multi-layer extensions contains different representations of the coded video in

terms of spatial resolution, temporal frame rate, quality, and view angle. In addition, a layer

may correspond to the property of being texture or depth data in 3D video coding. In a multi-

layer bitstream, a layer known as base/independent layer is followed with one or more

enhancement/dependent layers. Regarding the abovementioned classification, there is an

exception in case of HEVC, wherein temporal sub-layers corresponding to different temporal

frame rates are embedded within a single layer. The development of the HEVC extensions can

be traced from [26]. In the following, the existent extensions of both standards are briefly

introduced. The irrelevant extensions to this work are also introduced for the sake of

completeness.

Scalability extension (support for variety of video transmission systems with different

capabilities: AVC Scalable Video Coding (SVC) and HEVC Scalability (SHVC) extensions):

Scalable video coding aims to deliver multiple coded version of a video using a lower overall

bitrate relative to simulcast coding (i.e., independent coding of each version). The term

scalability refers to the removal of parts of the bitstream in order to adopt it to the various needs

(e.g., network conditions and end user capabilities) in the application under consideration. An

overview of the scalability extensions of AVC and HEVC are provided in [27] and [28],

respectively.

Fidelity/format range extension (support for higher-fidelity video materials: AVC Fidelity

Range Extension (FRExt) and HEVC Format Range Extension (RExt)): These extensions

provide tools for color format and bit depth enhancement. They make a preferable choice for

high-quality applications by introducing tools to support sample bit depths beyond 10

bits/sample and different chroma sampling structures, 4:0:0, 4:2:2 and 4:0:0, in addition to the

common 4:2:0 chroma sampling format. In addition to support for extended sample bit depth

and chroma format, these extensions contain other important tools to address the higher-quality

demands. The reader is referred to [29] and [30] for detailed description of the FRExt and RExt,

respectively.

3D extension (support for 3D video applications: AVC Multiview Video Coding (MVC), MV-

HEVC and 3D-HEVC extensions): These extensions provide tools to improve coding of multi-

view video and 3D (i.e., multi-view video plus depth) data captured by multiple cameras from

the same scene. Examples of applications where this type of video data is employed include

3D displays (e.g., stereoscopic, auto-stereoscopic and LF displays) and free-viewpoint

televisions (FTVs) in order to enable depth perception and interactive selection viewpoint and

direction, respectively. A typical multi-view video contains a large amount of inter-view

similarities in addition to the previously introduced correlations among frames of a single video

data. These extensions provide support for exploiting such correlation among the views. In

these extensions, one of the views is known as independent/base view, which is coded

independently from other views called independent view. This means only the dependent views

21

use additional coding features introduced in these extensions of the conventional standards.

This further means the base view is fully compatible with the conventional codecs. This

property provides compatibility with existing 2D video applications.

Both multi-view extensions in the AVC and HEVC use the same design principles. For detailed

description of these extensions the reader is referred to [31] and [30], respectively. In contrast

to MV-HEVC, 3D-HEVC uses depth information for coding of video views. However, it is not

restricted to use depth information; it can also be used for a multi-view video data without

depth maps. Furthermore, 3D-HEVC includes some new coding tools for efficiently coding of

depth maps. In [30] and [32], the 3D and MV extensions of HEVC are described in detail.

These two extensions of HEVC are discussed later in this section.

Screen content coding (SCC) extension (support for efficient screen content coding) [26]:

This extension includes tools to improve compression capability for video data that contains a

mix of camera-captured natural video, computer-generated graphics and text. Example

applications of this type of video data include wireless displays, control room video wall

displays, screen desktop sharing and factory automation display.

2.3 Selected aspect of AVC/H.264

In this sub-section, a short introduction to H.264 coding structure and features that are relevant

for this work is provided. In particular, frame partitioning tool, intra- and inter-picture

predictions on the basis of block-based operation are discussed.

2.3.1 H.264 coding structure

The H.264 standard, similar to that of earlier standards, is known as a block-based video coding

standard. Coding process is performed on the basis of 16x16-sample square regions within the

source frame, called macroblocks (MB). A MB is considered the processing unit of H.264. A

MB consists of one luminance 16x16-sample block and two chrominance 8x8-sample blocks,

which are processed separately. This block-based partitioning allows applying different

prediction models to different regions of a frame. Each block is coded by using either intra-

picture or inter-picture prediction technique. The prediction techniques are described in the

following sub-section.

A MB is named based on its coding type. MB types defined by H.264 include I, P, B, SI and

SP. The two last types are skipped as they are not relevant to this topic. They facilitate efficient

switching between video streams. An I MB is predicted using intra prediction from spatially

neighbouring samples within a frame. P and B MBs are predicted by referring to samples in a

past or future (in display order), previously coded frame(s). The only substantial difference

between P and B MBs is that P MBs use exactly one reference picture but B MBs can be

predicted from one or two reference picture (s). In other words, the predictor (i.e., prediction

block) may be constructed from a single prediction region in a reference picture, for a P or B

22

MB, or from two prediction regions in reference pictures, for a B MB. In addition to the

aforementioned MB coding types, there are two more coding modes, namely skip and direct

modes which are special forms of the inter-coding mode. In the skip mode, no data about the

MB (i.e., neither motion data nor residual) is coded, only a signalling bit (skip_bit) is sent to

the decoder. The MB is decoded based on previously-coded data. For a direct-coded block,

residual data is coded while motion data is derived from previously-coded neighbouring blocks.

The direct mode is available for B MB only.

Supporting multiple block sizes helps to improve prediction efficiency. In H.264, a MB may

be further partitioned to smaller blocks so-called MB partitions for the purpose of providing

more effective prediction, since samples from two smaller blocks are more likely to be similar

compared to the larger ones. Therefore, smaller prediction blocks are well suited for coding of

parts of a frame with significant details. However they lead to increases in complexity, where

more search operation and more signalling information to the decoder is required. Hence, there

is always a trade-off between prediction efficiency and coding complexity.

2.3.2 H.264 intra and inter-picture prediction

The goal of the prediction techniques is to construct a prediction of the data and subtracting

this prediction from the source data to lead to redundancy reduction. Intra prediction utilizes

the fact that neighbouring samples within a frame are likely to be correlated. In contrast, inter

prediction, also referred to as temporal prediction and motion-compensated prediction, tends

to exploit temporal correlation. Hence, intra prediction is conducted without referring to

neighbouring video frames, whereas in inter prediction the sources of prediction are prior

decoded frames. The intra-prediction mode improves error resiliency and random access

facility at the cost of lowering compression efficiency compared to the inter-prediction

mode. Figure 5 illustrates concept of intra- and inter-prediction modes with respect to the MB

types.

Figure 5. Intra- and inter-prediction modes and motion vector concept

23

In intra prediction, a block is predicted from previously-coded samples in the left and/or above

adjacent blocks, as shown in Figure 5. Those samples are available at the encoding time of the

current block by considering the fact that MBs are processed in raster scan order (i.e., from left

to right and top to bottom) within a frame. The possible intra prediction block sizes for

luminance samples are 4x4, 8x8 and 16x16, while the chroma 8x8-sample blocks are predicted

whit no more splitting. Each block size is associated with some prediction modes which define

how and in which direction the prediction is performed. A detailed description of prediction

modes are presented in [22].

Inter prediction aims to compensate for motion among video frames. A practical and widely

used technique is block-based motion compensation which intends to compensate for

movement of rectangular blocks of the current frame. The technique is typically a two-stage

process. First, a search is carried out within an area centred on the current block location in the

reference frame to find a similar block to the current block. The search can be performed over

all of the possible blocks or some of them within the search area. For each candidate block in

the search area, a residual is formed by subtracting the candidate block from the current block.

A candidate block with the minimal energy in the residual gives the best match. This process

of finding the best match is known as motion estimation. As the second stage, so-called motion

compensation, the candidate block that has been chosen to be as the best match is subtracted

from the current block to from a residual. A translation vector (i.e., motion vector) is also

associated to each candidate block. The motion vector is the spatial offset between the location

of the current block and the predictor in the reference picture. To a block of type B two motion

vectors may be assigned. The motion vector concept is depicted in Figure 5. The residual

relative to the best block together with corresponding motion vector (s) is encoded and

transmitted to decoder.

In inter prediction, each luminance 16x16-sample block may be split to two 8x16 partitions or

two 16x8 partitions or four 8x8 partitions. An 8x8-sample block of luminance and chrominance

components may further be broken to two 4x8, two 8x4 or four 4x4. Each partition can be

predicted from an area of the same size from different reference picture (s) [8]. However, in

the real world objects often move by a fractional number of pixel positions among frames,

where the block-based motion compensation model is not efficient enough. In this case, the

reference picture is interpolated to the sub-pixel position before searching for the best block

match.

The H.264 standard utilizes a rate-distortion optimized (RDO) mode selection framework to

find the best coding mode (e.g., prediction mode and MB mode) of a MB. It is relatively a

sophisticated process for encoder to find an optimal coding mode for a MB in a rate-distortion

sense. The reason is that an encoder has a huge potential space of coding options, including

hundreds of possible combinations of prediction modes, partition sizes, reference pictures and

motion vectors. This enforces the encoder to utilize a lower complex process relative to

exhaustive mode selection process in which all possible coding modes are tested. The most

24

popular formulation of rate-distortion optimized mode selection algorithm is Lagrangian cost

function that linearly combines bitrate cost and distortion cost as in equation (1).

J=D+ λR (1)

Where, J is joint cost, D is distortion within a MB, R denotes bitrate, and λ is Lagrange

multiplier which controls the trade-off between rate and distortion costs. For example, a larger

λ value tends to minimize bitrate cost at the expense of a higher distortion cost. The mode

selection of each MB is such that the joint cost is minimized.

2.3.3 H.264 frame partitioning feature

In video coding, the frame partitioning feature typically serves the following purposes:

 Error robustness: The frame is partitioned into smaller entities in order to enable

decoder to re-synchronize the decoding process at the beginning of each partition,

instead of each frame. This typically implies that coded partitions are self-contained in

the sense that they contain all data which is required at the decoding time.

 Parallel processing: The partitions within a frame can be encoded and decoded in

parallel, where the coding process is specified in multiple independent units. This

enables real-time operation of a video codec in highly computationally demanding

applications.

 Efficient packetization: The frame partitioning supports adaptation to the network

constraint in video transmission applications by providing differently sized network

packets with respect to the prevailing network throughput.

 Low delay video transmission: One use case of the frame partitioning is reduction in

the end-to-end delay in low delay applications such as streaming, broadcasting and

remote video, where partitions of video frames can be used as entry points for

transmission and coding process.

 Bandwidth/bitrate and/or decoding time reduction: The frame partitioning can also

enable partial decoding of video frames in order to reduce bitrate and/or decoding time

of the coded video.

Similar to earlier standards, H.264 has ability to partition a video frame into regions so-called

slices. Multiple MBs within a frame are aggregated to form a slice. The slice feature improves

bitstream access with specific granularity by providing random access to the lower level than

coded frames. Generally, coded frames are referred to as access units and slices as subsets of

access units.

In the H.264 standard, a video frame can be constructed from several slices. An encoder can

be configured to use only one slice per frame, in which case all MBs of the frame constitute a

slice, or to divide the frame into an arbitrary number of slices, with various possible

arrangements. Slices within a frame are processed in raster scan order. Similarly, MBs within

25

a slice are processed in raster scan order or some other scanning pattern such as interleaved

and checker-board slices when Flexible Macroblocks Ordering (FMO) is enabled [22]. Slices

are named according to the coding type (i.e., intra- and/or inter-picture predictions), namely, I

slice, P slice, B slice, SP slice, and SI slice. The slice coding types are described as follows:

• I slice: all MBs of I slice are I MBs which are coded using intra-prediction

mode.

• P slice: MBs of P slice can be either I MBs or P MBs which are coded using

inter-prediction mode with at most one motion vector per block

• B slice: in addition to P MBs, B slice also may contain some MBs predicted

using inter-prediction mode with two motion vectors. The two vectors may

have the same temporal direction or may not.

• SP slice: facilitates efficient switching between different streams encoded at

different bitrates

• SI slice: allows switching between different streams with no correlation using

only intra prediction

In addition to the bitstream access improvement which facilitates partial decoding, slices add

robustness to the bitstream in the presence of transmission errors. This is actually the main

purpose of introducing slices. Slice structure coding improves transport efficiency and error

resilience by means of providing small decodable chunks for transmission, supporting

Arbitrary Slice Order (ASO), FMO, and redundant slice tools. Smaller network packets and

fixed-size network packets are achieved by keeping the number of bytes per slice low and

roughly constant. As mentioned above, this can be achieved by the second slice configuration

approach.

Besides the advantages of slicing tool mentioned above, the increased number of slices reduces

peak signal-to-noise ratio (PSNR) to bitrate ratio. This mainly occurs because of reduction in

spatial correlation since intra-picture prediction is restricted within the slice boundaries. In

addition, header information is appended to each coded slice, which arises some extra bitrate

overhead. This overhead of slice header also contributes to the reduced rate-distortion

performance.

2.3.4 H.264 bitstream syntax

The bitstream format in H.264 is represented in a clearly defined syntax. The bitstream is a

sequence of access units divided into Network Abstraction Layer (NAL) units (i.e., packets

containing coded H.264 data). The bitstream is arranged in a hierarchical structure with three

NAL, slice and MB layers, as shown in Figure 6.

In the highest level, the sequence level, H.264 bitstream is seen as a series of NAL units. There

are two conceptual types of NAL unit so-called Video Coding Layer (VCL) and non-VCL

NAL unit. VCL NAL units contain coded video data and non-VCL NAL units include metadata

26

Figure 6. Hierarchical organization of the AVC/H.264 bitstream

such as Parameter Sets, Supplemental Enhancement Information (SEI) parameters, and

delimiters. The bitstream starts with parameter sets which contain two NAL units, namely,

Sequence Parameter Set (SPS) and Picture Parameter Set (PPS). The SPS and PPS contain

common control parameters which are necessary for the decoder to correctly decode the

bitstream. In the next layer, the slice layer, there are coded slices which are described as VCL

NAL units. A VCL NAL unit consists of a slice header and slice data. The slice header section

holds common information applicable to the all MBs in the slice such as the number of first

MB in the slice, the slice type, and frame number that slice belongs to. For example, slice type

“110” determines that each MB in the slice can be either of type I or P. The slice data consists

of a series of coded MBs. The size of each encoded slice tends to vary depending on the number

of MBs, the amount of motion and the details included in the slice spatial area. I slices are

typically coded with higher number of bits because of the fact that intra-picture prediction tends

to be less efficient than inter-picture prediction, followed by P slices and then B slices. In the

lowest level of the hierarchical structure, a coded MB is represented, which contains all

elements such as MB type and prediction mode necessary to decode a single MB which makes

up a spatial block of a frame.

2.4 Selected aspect of HEVC/H.265

This section presents an overview of the HEVC coding structure. The newly introduced coding

tree units (CTU), coding units (CU), prediction units (PU), and transform units (TU) block

partitioning concepts are described. The coding features of HEVC and its 3D extensions

relevant to this work are discussed, particularly prediction and frame partitioning tools. This is

followed by a full instruction on enabling tiling with any arbitrary arrangement. Further, the

multi-view and 3D extensions of HEVC are introduced. A description of HEVC and its 3D

extensions bitstream structure is provided. The section further explains how tiles can be utilized

to facilitate partial decoding of video frames.

27

2.4.1 HEVC coding structure

The HEVC standard adheres to block-based hybrid video coding paradigm. Along with this

adherence, a number of innovative features are introduced and most parts known from previous

standards are improved and generalized. Particularly, in HEVC frame partitioning and block

partitioning concepts are considerably improved in comparison with of those in AVC/H.264.

These improvements enable HEVC to be broadly flexible and optimized for various contents,

applications and devices.

In the new standard, similar to the earlier standard, a video frame is coded using three separate

color planes. Further, each plane is partitioned into squared-shaped regions. Each region is

called coding tree unit (CTU) which represents the basis of coding process. This is analogous

term to the macroblocks in AVC. A CTU consists of three components so-called coding tree

blocks (CTB): one luma CTB and two associated chroma CTBs. In the YUV 4:2:0 format,

each luma CTB covers a square area of 2𝑁 ∗ 2𝑁 luma samples and each of the two

corresponding chroma CTBs covers the area of 2𝑁−1 ∗ 2𝑁−1 chroma samples. This results in

the same number of CTBs in both luma and chroma components. The parameter N is chosen

by the encoder among the values N=4, 5, and 6.

The CTU is further partitioned into multiple coding units (CU) based on a tree partitioning

structure, namely quad-tree. This quad-tree is also referred to as coding tree. In the proposed

coding tree structure, an internal node (i.e., a region) can be recursively divided exactly into

four smaller regions of equal sizes. An example of the CTU partitioning is illustrated in Figure

7. In this example, a CTU of size 64x64 is split into 16 CUs with different sizes from 32x32 to

8x8. The same splitting is used for both chroma and luma CTBs. The numbers in Figure 7 (a)

indicate the coding order of the CUs, which is a depth-first traversing in the tree structure

drawn in Figure 7 (b). The CU composes three CBs, where a similar relation exists as for CTU

and CTBs. The introduced quad-tree structure allows for splitting a CTB into wide range of

differently sized sub-blocks. This is suitable for capturing versatile characteristics of a typical

video. In a typical encoder setting, the maximum size of CU is equal to 64x64 (i.e., the CTU

can be a single CU) and the minimum size of CU is equal to 8x8 (e.g., partition number 3 in

Figure 7. HEVC coding tree: a) CTU partitioning, b) Corresponding tree

28

Figure 7 (a)), and the minimum size of CTU is equal to 16x16. In this case, the splitting can be

started from depth 0 to depth 3.

For further partitioning, instead of splitting one depth more, prediction unit (PU) concept is

introduced. The CU can be seen as the root for the PU splitting. The PU concept enables CU

partitioning but differently from a general quad-tree structure. Unlike the CU partitioning, the

PU may only be split once. The CU can be divided into one or two or four PUs according to

the PU partitioning modes, as illustrated in Figure 8. HEVC supports two PU splitting modes

for the intra coded CU: PART_2Nx2N, where a single PU is specified for each CU, and

PART_NxN, where each CU is divided into 4 smaller PUs. For inter coded CU, in addition to

the similar partitioning modes introduced in the intra coding, 6 more PU splitting modes are

supported as shown in the second and third rows of Figure 8.

It is worth mentioning that the modes shown in Figure 8 are not supported for all CU sizes. For

example, intra PART_NxN mode is only allowed when the CU size is equal to the minimum

allowed CU size. More detailed information in regards to the PU concepts and partitioning

modes can be found in the chapter 3 of [33].

Figure 8. PU partitioning modes

Figure 9. CU types or coding schemes within a typical video frame [34]

29

HEVC, similar to AVC, supports skip and direct modes coding. In HEVC, these two modes

are improved and considered as special forms of newly introduced inter-prediction block

merging technique. The technique is described in the following sub-section. The skip mode is

well suited to code static regions in video data, where residual block tends to be close to zero.

While in the skip mode no residual data is presented in bitstream, in the direct mode residual

data is included in bitstream. In both modes, motion data for the current block is derived from

motion data of spatial and temporal neighboring blocks. Figure 9 depicts CU types within a

typical video frame. The Green, light blue and red colors indicate intra coded, skipped coded

and inter coded CUs, respectively.

The AVC standard utilizes macroblock to specify prediction scheme (i.e., all macroblock

partitions are coded with the same prediction scheme), whereas HEVC allows adaptation of

prediction schemes for CUs within a CTU. This means that for each CU a prediction scheme

(i.e., intra or inter) is specified by the encoder. Within a CU, a single set of motion parameters

is signaled for each PU, which is used for motion-compensated prediction of the luma and

chroma prediction blocks (PB). The PUs can further share motion information through a merge

mechanism. The motion information is signaled after the final coding structure is formed.

To be more precise, a nested quad-tree partitioning mechanism is used in HEVC. This nested

quad-tree structure exists since another quad-tree is rooted from the leaf nodes (i.e., from the

CU regardless of the PU partitioning) of the aforementioned coding tree. The new quad-tree is

called transform tree which recursively splits residual blocks into multiple units. The leaf nodes

in the transform tree (i.e., transform units (TU)) form the basis of transform and quantization

operations. An illustration of this nested quad-tree scheme is presented in Fig 3.7 from [33].

More detailed description of transform tree and associated concepts can be seen in [33].

The introduced block partitioning mechanism is one of the main sources of the coding

efficiency improvements and the adaptability seen with HEVC. This provides a highly flexible

and efficient block partitioning structure for supporting a wide range of applications from low

resolution to high resolution and low motion to high motion contents. The size of CTU and

maximum hierarchical depth can be configured in order to be optimized to the targeted content.

For example, for contents that contain only slow motions, a CTU size of 64 and depth of 1 may

be an appropriate choice. For more general contents which may also contain complex motions,

a CTU size of 64 and maximum depth of 3 would be preferable. The usage of large block sizes

together with small block sizes leads to a significant coding efficiency improvement. Larger

block sizes lead to capturing the increased spatial correlation presented in a higher resolution

video content. On the other hand, smaller block sizes provide adaptation of the block

partitioning to the local properties of a video data. In consequence, encoder’s freedom is

increased by supporting a high number of possibilities for coding a video frame. However, it

has to come along with increase in computational complexity, memory requirement and coding

delay. Various aspects of the HEVC block partitioning were studied in [35].

30

2.4.2 HEVC intra- and inter-picture prediction schemes

The intra- and inter-prediction schemes have been demonstrated as the primary tools employed

in current video coding standards. In HEVC, these schemes follow the basic ideas as in AVC

but they are made far more elaborated and flexible such that the trade-off between coding

efficiency and computational requirements is improved.

In HEVC, the AVC intra-prediction principle is further extended such that it is able to

accurately model a wide range of textural and structural information in various types of content.

HEVC supports 35 intra-prediction modes which can be classified in two groups. The first

group is called angular intra-prediction mode containing 33 distinct modes numbered from 2

to 34 as illustrated in Fig.6 of [36]. These modes are intended to efficiently explore different

structures with directional edges. In contrast, the modes in the second group, namely planar

and DC modes numbered 0 and 1 respectively, provide predictors suitable for smooth regions.

For detailed description of the intra-prediction modes, the reader is refereed to chapter 4 from

[33]. The Intra-prediction scheme, depending on the block size and prediction mode, may

utilize pre-filtering of reference samples, prior to prediction process, and/or post-filtering of

predicted samples in order to remove blocking and contouring artifacts. Contribution of

individual intra prediction tools to the overall coding efficiency is discussed in detail in [37].

The enhancements of HEVC intra-prediction compared with that of AVC are described as

follows:

o Large amount of different block sizes and wide range of prediction modes: The HEVC

35 distinct intra-prediction modes, compared with 9 modes in AVC, can be performed

in different block sizes ranging from 4x4 to 64x64.

o The whole 35 prediction modes are available for both luma and chroma blocks,

compared with limited number of intra-prediction modes for chroma blocks in AVC,

where only 4 modes are allowed.

o Availability of the whole intra-prediction modes regardless of missing of the

neighboring reference samples, using a reference sample substitution process. Under

such a situation in AVC only DC mode is used.

o The abovementioned post-filtering stage is newly introduced by HEVC, which is not

employed in AVC.

HEVC follows the general principles of the AVC inter-prediction scheme to drive a motion-

compensated prediction (MCP) for a block of samples based on a translational motion model.

Whereas the new inter-prediction scheme is not a revolutionary whole new design, all

components are steady enhanced and additionally some new tools are introduced, when

compared with that of AVC. Specifically, for exploiting correlation among motion data of

neighboring blocks, HEVC introduces two new techniques so-called advanced motion vector

prediction (AMVP) and inter-prediction block merging.

31

The AMVP technique is one of the most important tools introduced in HEVC, which

significantly improves coding efficiency in terms of bitrate. It is based on the fact that motion

vectors of spatial and temporal neighboring blocks are often correlated, since they are likely to

belong to the same moving object with similar motion. In consequent, instead of directly

encoding the motion vectors of the current block, a list of motion vector predictors (MVP) are

constructed using the motion vectors of spatial and temporal neighboring blocks. Afterwards,

a component wise motion vector difference (MVD) between the motion vector of the current

block and the best MVP, in terms of rate-distortion optimization, from the list is formed. The

best MVP is chosen from the list by a technique known as motion vector competition [38]

which explicitly signals the index of the selected MVP for motion vector derivation. At the

end, the MVD together with the best candidate index is signaled. In this way, the size of the

signaled motion vector is reduced. Although the MVD concept is not new, already known from

AVC, this kind of motion vector signaling is newly introduced by HEVC. In AVC, instead of

having such list of candidate MVPs and explicitly signaling the best candidate index, MVPs

are implicitly derived from already decoded motion vectors of neighboring blocks [24].

The HEVC inter-prediction block merging technique is initially proposed in [39]. The

technique is introduced to address the inherent disadvantage of over-partitioning caused by the

HEVC block partitioning structure, which leads to redundant signaling of motion parameters

and consequently increase in bitrate. For example, if a given block is divided into 4 sub-blocks,

all sub-blocks are separately coded even though they share the same motion parameters. This

scheme forms a merged region sharing all motion information, where ineffective segmentation

(i.e., dividing regions of equal motion parameters) is removed. Following this concept, a block

reuses the exact same motion information of the neighboring blocks. Like AMVP, a list of

candidate motion parameters is constructed from spatial and temporal neighboring blocks

which are selected as merge candidates. Afterward, index of the candidate to be used for

inferring the motion parameters of the current block is signaled. In contrast to AMVP list,

which contains candidate motion vectors, the merge candidate list contains candidates of all

motion information.

Consequently, there are two different ways for signaling of motion data in HEVC: it can be

done using either the merge mode or explicitly encoded using the AMVP technique. In both

AMVP and merge techniques, the filling of candidate lists are standardized and candidate order

is fixed such that the signaled index would refer to the same candidate to the list at the encoding

and decoding time. Chapter 5 from [24] describes in detail how the merge candidate and AMVP

lists are constructed.

2.4.3 HEVC partitioning feature

Besides the slice partitioning feature, as already known from the previous video coding

standard, HEVC improves frame partitioning concepts by introducing three new frame

partitioning schemes. The novelties brought with HEVC are dependent slices, tiles, and

32

wavefront parallel processing (WPP). The novel tools mainly aim at facilitating bitstream

access for error robustness, parallel processing, efficient packetization, and ultra-low delay

(i.e., sub-frame delay) processing purposes. The introduced frame partitioning tools play a

major role in the substantial performance gains which promised by the emerging standard. In

the following, these partitioning tools are briefly introduced and their contributions for

achieving the aforementioned goals are described. Meanwhile, the applicability of each tool

for enabling partial decoding is discussed.

An integer number of CTUs is aggregated into a slice to form frame partitioning. The HEVC

slice concept is conceptually equivalent to what we know as slice from the AVC standard.

Additionally, in HEVC, the practical weaknesses of the traditional slices (i.e., low flexibility

to the partitioning, bitrate overhead caused by slice headers, and strict break of intra-picture

prediction) are addressed by adding novel functionalities to them. Similar to the AVC slices,

the HEVC standard slices can be also utilized for enabling partial decoding. However, the same

requirements to achieve self-contained slices in AVC must be fulfilled for constructing self-

contained slices based on the HEVC standard slices.

Optionally, each slice can be fragmented into one or more slice segments at the CTU

boundaries. The first slice segment of a slice, in raster scan order, is called independent slice

segment. The subsequent slice segments, if any, are known as dependent slice segments. The

independent and dependent slice segments differ by their headers. The dependent slice segment

includes shorter segment header since it reuses information from the independent slice

segment’s header within the same slice. As another difference, in intra-picture prediction,

dependent slice segment boundaries are disregarded. This prevents the usage of slice segments

in partial decoding applications. However, the slice segment is an appropriate support for low

delay applications (e.g., streaming, broadcasting, and remote video), adaptation of NAL unit

sizes to the network constrains of maximum transmission unit (MTU) and parallelization,

where slice segments may be used as entry points. In addition, slice segments improve error

resiliency by limiting propagation of an error on the whole video frame, at least from a spatial

perspective, without incurring substantial coding efficiency losses [24].

Each coded slice segment in turn can be divided into multiple subsets of coded CTUs, which

are referred to as slice segment subsets or sub-streams. The idea of sub-stream concept is to

divide coded slice data into several coded fragments, without the use of header data, instead of

including each spatial partition in an individual NAL unit. This allows a high number of frame

partitions/coded fragments such that they can be concurrently encoded/decoded (i.e.,

paralization) without incurring extra header data. By using only slice segment subsets, it is not

possible to associate each coded fragment to the related spatial region in the video frame.

Hence, they are not practical in the partial decoding context. Slice segment subsets are used

together with other partitioning tools (e.g., tile or WPP) as entry points for paralization purpose

only [24].

33

In order to make the video coding process able to be efficiently parallelized, both predictive

and entropy coding steps have to be parallelized accordingly. The predictive coding can be

parallelized since a block can be predicted as soon as some of its top-left, top, top-right and left

blocks are available. However, entropy coding prevents the coding process from being

completely parallelized. This is because, entropy coding of one block needs entropy coding

state of its precedent block. Hence, entropy coding of one block can only be started after

entropy coding of its preceding block has finished. The WPP mechanism is brought up to

address this problem by making entropy coding able to be parallelized. The WPP divides a

video frame into CTU rows such that they can be concurrently processed. The WPP approach

is based on preserving the above mentioned dependency, in entropy coding, to a large extent.

In this approach, each CTU row is processed relative to its preceding CTU row with a delay of

two consecutive CTUs. When WPP is enabled, the partitions (i.e., CTU rows) break any

dependencies except for entropy coding. These dependencies between partitions along with the

rigid row-wise partitioning make WPP useless in the partial decoding context. It is a purely

parallel processing approach [24].

The last frame partitioning option is tiles. An overview of tiles in HEVC is provided in [16].The

afforded partitions are primarily designated as entry points for effective parallelism and

packetization purposes. In addition, this kind of partitioning has been demonstrated to facilitate

region of interest (ROI) based applications [16]. The tiling approach is similar to the situation

where AVC slice group tool with map type 2 is enabled together with flexible macroblock

ordering (FMO) tool, but with considerably lower complexity. Unlike slices, tiles are always

rectangular and do not contain any headers.

Figure 10 illustrates a typical tiling of a video frame using vertical and horizontal tile

boundaries aligned with CTU boundaries, where a frame containing 192 CTUs is divided into

15 tiles. The tile boundaries are marked with bold lines. When tiles are enabled, the regular

raster scan order of CTUs changes to a tile-based raster scan order. In Figure 10, the green line

shows the order of tile processing, and the red line shows the order of CTU processing within

a tile.

As discussed, slice and tile are two alternative options that can be utilized for enabling video

frame partial decoding. They are at the same level in hierarchical structure of bitstream. When

these tools are enabled, a video frame is divided into partitions such that each constructed

partition is independently decodable from other partitions within the same frame, where

decoding refers to entropy, residual, and intra-picture prediction decoding. Due to this breaking

of intra-picture prediction and entropy dependencies, which requires re-initialization of entropy

coding state at the beginning of each partition, both standard tile and slice come along with

cost of increase in bitrate.

Tiles appear to be more efficient than slices on a number of aspects. Tiles provide more

flexibility to the partitioning, which brings any arbitrary partitioning arrangement. In contrast

to slices, tiles incur fewer penalties of header data. Furthermore, tiles can be arranged in a more

34

Figure 10. Tile-based and raster scan order of CTUs within a frame

compact shape compared to the slices [16]. This leads to less reduction of correlation between

pixels within a tile, when compared to slice partitioning. As a result, among the possible frame

partitioning tools, tiles are well suited for partial decoding purpose. Hence, in this work tiles

are chosen for enabling partial decoding.

2.4.4 MV and 3D extensions of HEVC

The 3D video data provides a visual experience with depth perception, which composes of

multiple videos, potentially with associated depth data, showing the same scene from multiple

angles. This kind of representing video materials is called Multiview Video (MV) or Multiview

Video plus Depth (MVD) format when presented without or with depth data, respectively. The

3D HEVC extensions MV-HEVC and 3D-HEVC are emerged to provide efficient coding of

the 3D video content, supporting MV and MV/MVD data, respectively. The fundamental

implementation principle of the MV extension is to re-use the coding tools of the HEVC

standard while introducing only high-level changes. On the contrary, 3D-HEVC introduces

new block-level dedicated 3D coding tools with the aim of improving compression efficiency

compared to the MV extension. Hence, MV-HEVC is inferior in terms of R-D performance,

however, it has easier implementation and provides more flexibility data format and scalability

[40].

Figure 11 illustrates an overview of an exemplary system for transmission of the 3D video data

format. In the encoder side, a small number of captured views as well as corresponding depth

maps are encoded and transmitted. In the decoder side, the received 3D video bitstream is

decoded and then necessary intermediate/virtual views suitable for any 3D display are

generated using view synthesis technique as a decoder-side post-processing step, for example

by means of depth-image-based rendering (DIBR) techniques. The camera parameters are also

included in the bitstream for the purpose of view synthesis.

One of the views is referred to as base/independent view which is coded independently of the

other views and the depth data by using a conventional 2D HEVC codec. The other views are

35

Figure 11. Overview of the system structure for 3D video transmission [32]

referred to as the dependent views which are coded using the new coding tools introduced in

the 3D-HEVC extension. The base view is coded using an unmodified HEVC codec. For the

dependent views, additional coding tools have been integrated into the HEVC codec, which

exploit correlation among the video views. The proposed framework provides random access

to a sub-bitstream representing subset of the video views. Thus, a 3D video bitstream can be

partially decoded without to decoding the entire bitstream. It is possible to extract the sub-

bitstream representing the base view from a 3D video bitstream and decode it using a

conventional HEVC decoder in order to display on a conventional 2D display. Alternatively,

a sub-bitstream representing two views can be extracted and decoded as well for feeding stereo

display.

2.4.5 HEVC and its 3D extensions bitstream syntax

HEVC inherits hierarchical NAL unit based bitstream structure from AVC and uses parameter

set concepts similarly to AVC. NAL units are byte aligned and each NAL unit consists of a

NAL unit payload and a NAL unit two-byte header identifying the kind of payload, VCL or

non-VCL NAL unit. The HEVC bitstream structure is shown in Figure 12, in the case where

each frame is coded as a single slice. In addition to the parameter sets known from AVC (i.e.,

SPS and PPS), in HEVC parameter sets include a novel concept so-called Video Parameter Set

36

Figure 12. HEVC bitstream structure

(VPS). The bitstream starts with the new VPS which applies to all layers in layered extensions

such as MV- and 3D-HEVC. Each coded frame together with the associated non-VCL NAL

units is called an HEVC access unit. From this perspective, an HEVC bitstream can be seen as

a series of access units. In the case of 3D video coding, an access unit refers to all video pictures

and depth maps, if present, that correspond to the same time instance. Figure 13 shows access

unit structure and coding order of view components in the MVD representation format for

encoding of a typical MVD data comprises n views with each view having k frames.

In Figure 13, the video pictures and depth maps related to a particular view are indicated by a

view order index, which does not necessarily represent the arrangement of the camera array.

All video pictures and depth maps that belong to the same view have the same value of view

index. In general, the coding order of access units is not necessarily identical to the capture or

display order. For the base view, the video pictures are always coded before the associated

depth maps. However for predicted views, depth map may be also coded before the associated

video picture. Within an access unit, first the video picture and depth map with viewId 0 are

coded, followed by the video picture and depth map with viewId 1, etc. A video picture and

depth map with viewId equal to x are transmitted after all video pictures and depth maps with

viewId less than x. The 3D video bitstream is then formed by multiplexing resulting NAL units.

Figure 13. 3D-HEVC access unit structure

37

The parameter sets (i.e., VPS, SPS, and PPS) were defined with a slight extension to that of

conventional HEVC in order to support signalling of the new parameters, for example, the view

order index and depth flag. All of the video and depth sequences are associated with a VPS.

Each video sequence and depth sequence is associated with a SPS and PPS.

In 3D-HEVC, the base view and depth data are coded using new block-level video coding tools

that exploit statistical dependencies between video picture and depth map. For example, the

new inter-component prediction techniques employ already coded data within an access unit

to exploit such dependencies. The inter-component prediction can be configured such that

video pictures can be decoded independently of the depth data [32]. This feature is useful in

the context of this work since only the video pictures are intended to be partially decode. In

order to provide full-picture depth data, depth data is decoded fully.

38

3. PROPOSED METHOD (PARTIAL DECODING)

This section includes the discussion of implementation of the video picture partial decoding.

The proposed method and modifications to build self-contained partitions in the JM

AVC/H.264 and HEVC/H.265 HTM reference software packages are described.

3.1 Partial decoding implementation possibilities

It is a responsibility of the encoder to build self-contained regions which prohibit any kind of

dependency on other partitions within the current picture and also non-co-located partitions in

the reference pictures. After that, partial decoding can be performed either using a conforming

or non-conforming decoder. In the case of using a conforming decoder, the encoder must ensure

that all conditions for bitstream conformance are fulfilled, otherwise, a dedicated decoder has

to be designed.

The decoder may be provided with a full-picture bitstream containing all partitions or a sub-

bitstream containing only the necessary partitions. In the former case, the decoder must be

capable of skipping decoding of unnecessary partitions. This capability is generally

accomplished by providing the decoder with the knowledge of necessary partitions’ indices

using signalling information techniques (e.g., SEI messages). In the case of conforming

decoder, however, the decoder behaves naturally, provided that the sub-bitstream is standard

compliant. This allows the use of the off-the shelf hardware decoders (e.g., those included in

GPUs), without need to changing the decoder. Thus, partial decoding may require signalling

information to decoder or may not.

An alternative to the partial decoding solution is to crop out pixel data corresponding to

necessary regions in the pixel domain. It results a region-rearranged video data in which some

regions are removed and the remaining regions append together. The region-rearranged video

is then encoded with a standard encoder (i.e., with no restriction on the partitions). The resulted

bitstream can be decoded with a conforming decoder. The advantage of this approach is that

no encoder change is required. The extra pre-processing stage is required for cropping out the

necessary partitions, which may not be efficient for any partitioning arrangement. This leads

this approach not to be applicable in our study case.

In this work, the source video is encoded using an encoder which is capable of creating self-

contained partitions. Using an intermediate extractor, the coded elements related to

unnecessary partitions are dropped from the bitstream to form a sub-bitstream containing only

coded elements related to necessary partitions. The extractor can be placed either in the

encoder/server side or display side prior to decoding. The former case results in

streaming/display bandwidth reduction. Consequently, in the display side any partition of

interest can be selectively decoded since all partitions are independent of each other.

39

3.2 Enabling the self-contained slices in the AVC standard

3.2.1 General case

The first step toward enabling the self-contained slices is to enable the slicing tool provided by

the standard. The slices can be either configured based upon number of MBs in the slice or

number of bytes in the coded slice. In the first case slices are constructed with a fixed number

of MBs. In contrast, in the second case slices may contain varying number of MBs. While the

latter one is useful for transmission application by providing fixed-size network packet, the

first case is much more practical in the context of partial decoding, since it provides regular

spatial partitioning of a video frame. Regular partitioning means each slice occupies the same

spatial region over all frames. Moreover, it forces all frames of a video sequence to have the

same partitioning scheme. This is not the case in the second slice configuration approach where

the number of slices per frame might change among frames. In addition, regular partitioning

allows to instantly determine the spatial region in the frame that a specific slice occupies. This

information is required in constructing self-contained slices. In Figure 14 two different slice

arrangements are illustrated. The left picture is split into 6 slices with larger slice sizes

compared to the right picture which is constructed from 52 slices.

Two configuration parameters are designed for slice configuration called SliceMode and

SliceArgument parameters. Assigning 0 to the SliceMode parameter disables the slicing tool.

SliceMode equals to 1 and 2 refers to the abovementioned slice configuration approaches. If

sliceMode set to 1, the value assigning to the sliceArgument determines the largest possible

number of MBs in a slice. For sliceMode equals 2, the value assigning to the sliceArgument

determines the largest possible number of bytes in a coded slice. A regular rectangular slicing

achieved by partitioning frames with the same number of slices and defining sliceAgument to

a fix number of MBs. The sliceArgument is calculated according to the equation (2).

Figure 14. Two different slice arrangements in H.264, drawn with [41]

40

𝑆𝑙𝑖𝑐𝑒𝐴𝑟𝑔𝑢𝑚𝑒𝑛𝑡 = ceil ((frame width ∗ frame height)/(162 ∗ 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑆𝑙𝑖𝑐𝑒𝑠)) (2)

Standard slices are self-contained in the sense that their syntax elements can be parsed from

the bitstream and they contain all data which is required on the decoder side. This is true by

considering the fact that correctly decoding of slices requires sequence parameter set (SPS) and

picture parameter set (PPS) to be received in the decoder side. Nevertheless, in the context of

partial decoding, standard slices cannot be called self-contained (i.e., independently

decodable). This is due to the fact that correct decoding of a slice depends on previous pictures

(i.e., reference pictures).

The usage of the standard slices (i.e., what is introduced by the standard) restricts intra-picture

prediction. In addition, the standard slices are independent in terms of entropy coding since

entropy coding engine is re-initialized at the beginning of each slice. Therefore, each slice can

be decoded independently from other slices within the same frame. In inter-picture prediction,

however, slice boundaries are disregarded, where motion compensation can cross slice

boundaries. This further means decoding of each slice of a frame can depend on non-co-located

slices in the other frames. Hence, the usage of standard slices is limited in partial decoding

applications because of this dependency. Some extra requirements must be imposed to the

standard slices in order to be applicable in partial decoding applications. In the following, those

requirements are introduced and the resulting slicing is discussed in more details.

The correct decoding of one slice depends on decoding of previous frames so that they must

be entirely available. For example, losing one slice affects the decoding of all following slices

in which case their motion vectors point to some regions of the lost slice. Furthermore, losing

of an entire slice makes the first coded MB number, defined by the first_mb_in_slice field,

unavailable. As a result, the synchronization between the encoder and the decoder gets lost and

the errors propagate in the subsequent decoded bitstream because of the H.264 variable length

coding property.

Figure 15. Left: A correctly decoded frame, right: A decoded frame of a bitstream

in which every other slices were dropped

41

Figure 16. Standard slices in H.264 [34]

Figure 15 illustrates this dependency among slices. It shows the decoding result of a confirming

bitstream and a bitstream in which some coded slices are dropped from. The error propagation

is growing as higher number of frames is being decoded.

3.2.2 Self-contained Slices

It is the responsibility of the encoder to make slices self-contained and to ensure that each slice

can be decoded regardless of the fact that other slices, in other spatial regions than what is

covered by the slice, may have been lost. We formulate three requirements which have to be

fulfilled in the encoder side.

1) Restrict intra-picture prediction to within current slice boundaries. As discussed above,

the usage of standard slices already restricts intra-picture prediction.

2) Ensure regular slice partitioning. This means each slice occupies the same spatial region

over all frames which have the same number of slices. This is realized by defining the

sliceArgument parameter to a fix number of MBs. The goal of specifying independently

decodable slices can be achieved by meeting these two requirements provided all

frames are selected as I-frames at the expense of considerable increase in bitrate.

3) Limit the inter-picture prediction to within slice boundaries in order to provide both

spatially and temporally independently decodable slices. This guarantees that motion

vectors only point to the same spatial area as the current slice in the reference pictures.

In Figure 16, some troublesome motion vectors that cross slice boundaries are shown inside

yellow circle, for example. In contrast to the standard slices, self-contained slices can be coded

independently. Hence, losing/skipping one or more slices leaves the other areas of a frame

unaffected such that the remaining slices can still be decoded. Thus, self-contained slices

facilitate partial decoding.

The main contribution of this thesis in the H.264 part is to prevent motion vectors from

referring to non-co-located slices, with respect to the current slice, in the reference picture (s)

using encoder restrictions. The JM H.264 reference encoder is modified to fulfill the third

42

requirement. For restricting motion vectors within slice boundaries, the search range is initially

constrained to lie within the co-located slice by considering interpolation filter tap size, in case

of sub-sample prediction, and the current block size. Each time that a predictor is estimated, its

associated motion vector is examined to be within the restricted range. The examination is

made based on the location of the current macroblock and the geometry of partitions within the

frame. In case a motion vector breaks slice boundaries, the associated predictor is ignored.

3.3 Enabling the self-contained tiles in the HEVC standard

3.3.1 General case

This section defines the tile-related configuration parameters and describes how to enable tile

partitioning in HEVC based on the HTM reference software version 14.0. Further, the

implementation of the HEVC self-contained tiles is explained. The tiling is enabled by defining

at least one of the related configuration parameters, namely, NumTileColumnsMinus1 and

NumTileRowsMinus1 as non-zero values. The parameters determine number of tile columns

and rows, respectively. The number of tiles within a frame is then determined using equation

(3).

 number of tiles = (𝑁𝑢𝑚𝑇𝑖𝑙𝑒𝐶𝑜𝑙𝑢𝑚𝑛𝑠𝑀𝑖𝑛𝑢𝑠1 + 1) ∗ (𝑁𝑢𝑚𝑇𝑖𝑙𝑒𝑅𝑜𝑤𝑠𝑀𝑖𝑛𝑢𝑠1 + 1) (3)

The tile size can be defined in two ways which are specified by TileUniformSpacing

configuration parameter. When TileUniformSpacing is set to 0, tiles are uniformly spaced

based on the NumTileColumnsMinus1 and NumTileRowsMinus1 parameters. If

TileUniformSpacing is set to 1, tile sizes are defined by two separate arrays, namely,

TileColumnWidthArray and TileRowHeightArray which define a space or comma separated

list of widths and heights, respectively, of each tile column or tile row. An example of the two

tiling configuration approaches is described in Table 2, where both configurations result in the

same tile arrangement shown in Figure 17 (c).

Table 2. Configuration parameters for two different tiling configuration approaches

Configuration

parameter

Uniformly spaced

tile configuration

Defining tile sizes using

width and height arrays

TileUniformSpacing 1 0

NumTileColumnsMinus1 4 4

TileColumnWidthArray - 3 3 3 3

NumTileRowsMinus1 2 2

TileRowHeightArray - 4 4

43

Table 3. Configuration parameters to obtain the highest possible number of tiles

Figure 17. Tile partitioning, Balloons sequence with resolution 1024x768 [41]

a) Vertical partitioning b) Horizontal partitioning

c) Vertical and horizontal partitioning d) partitioning into maximum number of tile

Configuration parameter Value Description

MaxCUWidth 16 Defines maximum coding unit width in pixel

MaxCUHeight 16 Defines maximum coding unit height in pixel

MaxPartitionDepth 2 The depth of CU tree

QuadtreeTULog2MaxSize 4 Defines maximum TU size in log2

QuadtreeTULog2MinSize 2 Define minimum TU size in log2

UniformSpacingIdc 1 Defines the mode used to determine tile sizes

NumTileColumnsMinus1 Width/16 -1 number of tile columns

NumTileRowsMinus1 Height/16 -1 number of tile rows

(d) (c)

(b) (a)

44

Tiles provide horizontally and/or vertically partitioning of a video frame. Four different tile

partitioning schemes are shown in Figure 17. A frame/slice may be partitioned into only one

tile or multiple tiles. In the former case, we would have the tile with the biggest possible size

as the frame/slice size, which is considered as slice rather than tile. This is obtained by defining

the NumTileColumnsMinus1 and NumTileRowsMinus1 configuration parameters as zero.

The highest possible number of tiles within a video frame is achieved in the situation where

each tile has the same size as the minimum CTU size (16x16). 0 shows the related configuration

parameters’ values for obtaining the highest possible number of tiles in a typical video frame.

The concluded tiling is shown in Figure 17 (d) for a sequence at resolution 1024x768, where

the frame is maximally partitioned into (
1024

16
) ∗ (

768

16
) = 3072 tiles. Figure 17 (a) and (b)

show partitioning of the same frame into maximum vertical and horizontal number of tiles for

maximum CTU size of 64x64 using Main profile of HEVC, respectively.

3.3.2 Self-contained tiles in conventional HEVC

As one of the requirements for enabling partial decoding, regular tile partitioning (i.e., each tile

occupies the same spatial region over all frames) is facile because of the provided partitioning

flexibility by tiles.

Similar to the AVC standard slices, the usage of the HEVC standard tiles restricts intra-picture

prediction and entropy coding within tile boundaries [16]. These two independencies among

the standard tiles play a big role in facilitating tile-based partial decoding. However, the

standard tiles suffer from inter-picture prediction, in the partial decoding context [13]. This

issue prevents tiles from being independently decodable and further applicable in partial

decoding applications. To remedy the drawback of the inter-prediction scheme, some

restrictions in the encoder side has to be imposed. In this work, the HTM reference software is

modified in order to provide self-contained tiles.

In order to construct self-contained tiles based on the introduced standard tiles, the same

requirements as we had for creating self-contained slices in AVC have to be fulfilled in HEVC.

This means restricting inter-picture prediction to within co-located tiles in the reference frames,

with respect to the current tile. Compared to the AVC case, restriction of inter-picture

prediction in HEVC is a more effort demanding task and requires more considerations to be

dealt with. For that, the merge and AMVP lists described in Sub-section 2.4.2 are prevented to

be filled with candidates in which motion vector points outside the current tile boundary.

Figure 18 depicts the most suitable spatio-temporal candidates for the merge and AMVP

techniques [32]. The current and co-located PUs belong to the current and the reference

pictures, respectively. In the derivation of spatial candidates, a candidate is considered as not

available if the associated PU belongs to another tile, or is intra coded. As a consequence, in

both motion data signalling methods, spatial candidates are selected such that they belong to

45

the current tile. The temporal candidate is selected between 𝐶0 and 𝐶1 positions. If PU at

position 𝐶0 is not available, beyond the current CTU row, or intra coded, position 𝐶1 is selected

[32]. This way of constructing the temporal candidates has to be restricted for the rightmost

PUs within the current tile, in which 𝐶0 falls in the next CTU column leading to breaking of

the tile boundaries. Furthermore, both tile and slice partitioning tools suffer from the fact that

motion vectors can freely point to any predictor beyond the current and co-located slice in the

reference pictures, which may lead to breaking tile boundaries. The above description can be

extended to the HEVC slice concept as well.

According to the HEVC standard, for the bottom-right-most PUs within the current tile the

temporal merge and AMVP candidates are restricted to the co-located candidate (i.e., 𝐶1 in

Figure 18. Spatio-temporal positions of the merge and AMVP candidates [32]

Figure 19. Bottom-most PU within a tile

Figure 18) in the reference pictures. In the exemplary tiling illustrated in Figure 19, this means

for the prediction block PU_A in tile 1, its bottom-right neighbour (PU_B in tile 2) is set

unavailable. Accordingly, PU_A is prevented to choose motion vector of PU_B as its temporal

motion vector prediction (TMVP) candidate. However, the motion vectors of the remaining

right-most PUs in the tile 1 maybe predicted from their bottom-right candidates, which fall in

46

the tile 2. Therefore, the encoder restriction is imposed only on the right-most PUs in which

their TMVP candidate may fall in the tile 2.

3.3.3 Self-contained tiles in 3D extensions of HEVC

Since the MV-HEVC block-level coding tools are the same as those of conventional HEVC,

no additional restrictions are required in order to enable partial decoding, with respect to the

restriction introduced in the case of HEVC. However, in 3D-HEVC, there is one more

restriction to be fulfilled for enabling partial decoding of video pictures. In the HEVC motion

compensation process, the merge candidate list reconstruction does not involve motion

information correlation between views, while the motion information of two associated blocks

in base view and predicted view is likely to be the same. This is because they represent two

different projections of the same scene. Therefore, in 3D-HEVC additional candidates for the

reconstruction of merge list are derived, which are related to the temporal motion information

and disparity motion information of already coded blocks in the base view. Therefore, the

maximum number of candidates in the final merge list is increased to 6. In order to guarantee

that motion vectors do not across tile boundaries, the selection process of the additional

candidate has to be restricted as well as the other five candidates which are selected the same

as in HEVC [32].

3.4 Slice/tile-based extractor

In partial decoding applications, reduction in bandwidth is achieved by dropping coded

elements related to unnecessary partitions from the bitstream. In this case, decoder receives a

smaller bitstream containing only coded elements related to necessary partitions (e.g., ROI

regions). As the coded slices/tiles are interleaved with other coded data in the bitstream and as

parameter sets and headers (e.g., slice segment header) are for the entire bitstream, a dedicated

decoding process is defined for decoding particular slices/tiles, while omitting the decoding of

other slices/tiles. In case of self-contained slices/tiles, the decoder does not need the coded

elements related to the unnecessary slices/tiles for correctly decoding of necessary slices/tiles.

Nevertheless, they cannot be simply dropped from the bitstream because this results in a corrupt

bitstream which cannot be copped with using a standard decoder. For that, prior to

transmission/decoding, a slice/tile-based extractor is designed to construct a full-picture-

compliant bitstream corresponding to the desired slices/tiles such that a standard decoder can

cope with that. The extractor is designed based on the knowledge of bitstream syntax (e.g.,

NAL units’ arrangements, slice header syntax, and slice/picture delimiters) as described in the

Sub-sections 2.3.4 and 2.4.5 for AVC and HEVC, respectively.

Each NAL unit in the bitstream is separated by some specific start codes or delimiters that

define boundaries between coded sections. The delimiters facilitate accessing coded units in

level of frame or slice. In both AVC and HEVC, the delimiters are unique sequences of four

47

Figure 20. Delimiters in a typical bitstream

bytes equal to 0x00000001 and three bytes equal to 0x000001 in level of frame and slice,

respectivelly. A low level of a typical bitstream with delimiters is shown in Figure 20.

In case of tile partitioning, the entry points of tiles are signaled in PPS. In contrast to slices, no

delimiters designated for tiles. Accessing each tile requires to read its entry point from the slice

header in which the tile belongs. Since the tile signaling is included in PPS, it is possible to

construct frames of a video sequence with different tiling arrangements (i.e., tile partitioning

on a per frame basis).

The first coded tile immediately follows the slice header to which it belongs. The locations of

the subsequent tiles, if any, are explicitly signaled in the slice header along with the tile index

values ranging from 0 to the number of tiles in the video frame minus 1. The locations of first

and last bytes of the k-th tile in the bitstream are calculated using equations (4) to (6) as follows:

𝑓𝑖𝑟𝑠𝑡𝐵𝑦𝑡𝑒[𝑘] = start𝐿𝑜𝑐 + ∑(𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑖𝑛𝑡_𝑜𝑓𝑓𝑠𝑒𝑡_𝑚𝑖𝑛𝑢𝑠1[𝑛 − 1] +

𝑘

𝑛=1

1) (4)

 𝑙𝑎𝑠𝑡𝐵𝑦𝑡𝑒[𝑘] = 𝑓𝑖𝑟𝑠𝑡𝐵𝑦𝑡𝑒[𝑘] + 𝑒𝑛𝑡𝑟𝑦_𝑝𝑜𝑖𝑛𝑡_𝑜𝑓𝑓𝑠𝑒𝑡_𝑚𝑖𝑛𝑢𝑠1[𝑘] (5)

Where entry_point_offset_minus1[i] + 1 specifies (𝑖 + 1)𝑡ℎ tile entry point offset in bytes

and startLoc is the entry point of the slice data, which is preceded by the associated slice header:

 𝑠𝑡𝑎𝑟𝑡𝐿𝑜𝑐 = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑙𝑎𝑠𝑡 𝑏𝑦𝑡𝑒 𝑜𝑓 𝑠𝑙𝑖𝑐𝑒 ℎ𝑒𝑎𝑑𝑒𝑟 𝑖𝑛 𝑏𝑖𝑡𝑠𝑡𝑟𝑒𝑎𝑚 + 1 (6)

For example, consider a bitstream containing one coded frame which is split into three

horizontal tiles. We can specify the location of each tile and extract it from the bitstream by

using the information provided in Table 4. According to the equations (4) to (6) we have:

𝑠𝑡𝑎𝑟𝑡𝐿𝑜𝑐 = (𝑒𝑛𝑡𝑟𝑦 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑠𝑙𝑖𝑐𝑒 𝑁𝐴𝐿 𝑢𝑛𝑖𝑡 + 𝑁𝐴𝐿 𝑢𝑛𝑖𝑡 𝑠𝑡𝑎𝑟𝑡 𝑐𝑜𝑑𝑒 𝑠𝑖𝑧𝑒

+ 𝑁𝐴𝐿 𝑢𝑛𝑖𝑡 ℎ𝑒𝑎𝑑𝑒𝑟 𝑠𝑖𝑧𝑒 + 𝑠𝑙𝑖𝑐𝑒 ℎ𝑒𝑎𝑑𝑒𝑟 𝑠𝑖𝑧𝑒)

= 0𝑥00000066 + 0𝑥00000003 + 0𝑥00000002 + 0𝑥00000007

= 0𝑥00000072

48

Table 4. The required information for parsing tiles from bitstream

Parameter name Value

num_entry_point_offsets 2

entry_point_offset_minus1[0] 0x00000ce1

entry_point_offset_minus1[1] 0x00001898

Entry point of slice NAL unit 0x00000066

NAL unit start code (0x000001) size 3 bytes

NAL unit header size 2 bytes

Slice header size 7 bytes

The entry and last byte locations of the three tiles in the bitstream are calculated as below:

firstByte_location_0= startLoc,

lastByte_location_0= startLoc + 0x00000ce1= 0x00000d53

firstByte_location_1= 0x00000d54,

lastByte_location_1= 0x00000d54 + 0x00001898 = 0x000025ec

firstByte_location_2= 0x000025ed,

lastByte_location_2= The byte before the next slice NAL unit start code.

The designed slice-based extractor in the AVC part, simply drops the NAL units of unnecessary

partitions from the bitstream. While it results in a corrupt bitstream which is not decodable

using a standard decoder, an FFmpeg decoder can cope with that. The FFmpeg decoder [20]

supports multiple standards and AVC is used as default. In this work, the FFmpeg codec is

used to decode the AVC sub-bitstream only containing the desired slices. In this case, decoding

time of the sub-bitstream is not reduced compared to decoding of the entire bitstream if the

decoder performs the error concealment algorithm in case of the dropped slices. In order to

improve decoding time, the FFmpeg error concealment algorithm is disabled while dealing

with the dropped slices.

In case of HEVC, the tile-based extractor was implemented on high syntax level. The NAL

units related to desired tiles are extracted from the bitstream containing the whole video and

copied to the output sub-bitstream. In order to provide an HEVC conforming bitstream altering

some parameters in the parameter sets are required. These parameters include slice segment

address, dimension of the output video sequence, number of tile rows and columns, and tile

enabled flag. The latter is disabled in case the output sub-bitstream contains only one tile. The

operation results in a smaller bitstream which can be decoded using a standard decoder.

A sub-optimal alternative to the extractor is also presented in [11]. The proposed method in

[11] replaces each unnecessary slice with a slice of minimal size containing spans of

macroblocks in which the coding mode is set to skip mode. The standard decoder can decode

49

the resulted bitstream at the cost of higher bitrate compared to the case of using the proposed

extractor in this thesis, which fully drops the unnecessary coded elements. The proposed

solution in [11] not only provides a bitstream that can be handled by the standard decoder but

also may cause reduction in decoding time. This is because of defining the coding mode of

replacement regions as skip mode. Note that decoding time is not decreased if the decoder

performs an error concealment algorithm with less complexity than the skip mode.

50

4. RESULTS AND PERFORMANCE EVALUATION

This section describes the experimental condition and provides some insights into the

performance of the proposed partial decoding approach. The performance of the proposed self-

contained slices/tiles is evaluated in terms of storage and decoding complexity, in the context

of light-field 3D displays.

4.1 Experimental setting

The proposed encoder modifications were implemented in the AVC reference JM encoder

version 18.6 [42] and HEVC reference software HM version 16.7 [26]. The designed slice-

based and tile-based extractors were used to build the sub-bitstream containing desired slices

and tiles for AVC and HEVC bitstreams, respectively. For AVC part the FFmpeg decoder and

in the case of HEVC the standard decoder was used. The in-loop filtering across slices and tiles

were disabled in AVC and HEVC, respectively. The simulation were performed using HEVC

random access Main profile and AVC Baseline profile with 89 frames per sequence. The

quantization parameters (QPs) are selected in the range of 22-34 with delta QP equal to 4. The

decoding refresh type was set to Instantaneous Decoding Refresh (IDR) and Clean Random

Access (CRA) pictures in AVC and HEVC, respectively, with period of 32. The reported

results include compression efficiency in terms of Bjøntegaard Delta-rate (BD-rate) criterion

[43]. Positive/negative values indicate how much the bitrate is increased/reduced for the same

peak signal-to-noise ratio (PSNR). The decoding speed is reported in unit of frame per second.

4.2 Test sequences

The reported experiments were conducted on test sequences with different contents varying

from low motion to high motion. The test sequences include five monoscopic video sequences,

namely, Balloons, Pantomime, Kimono, BBB-flower, and Shark. While the first three

sequences were captured in real world, the last two sequences are computer-animated

sequences. The resolution of sequences along with a short description is provided in Table 5.

Table 5. Test sequences description

Sequence Resolution (wxh) Description

Balloons 1024x720 complex object motion, moving camera

Pantomime 1280x960 medium complex object motion, no camera motion

Kimono 1920x1280 Low object motion, no camera motion

BBB-flower 1280x768 Big Buck Bunny light field sequences [18], the Flowers

scene, fast object motion, no camera motion

Shark 1920x1088 fast large object motion, no camera motion

51

4.3 Partitioning arrangement

In this experiment, the video frames are divided into four vertical partitions in a regular manner,

such that each partition occupies the same spatial region over all frames. This kind of vertical

partitioning is practical in the LF conversion process employed in the LF displays. Each

partition covers about 25% of the whole frame. Figure 21 (a) illustrates the described

partitioning arrangement for the Balloons video sequence. In AVC, slices are arranged in raster

scan order in a video frame. In order to provide vertical slicing, the video frames need to be

rotated 90° before encoding.

In case of HEVC, each tile contains exactly one slice which its boundaries match the tile’s

boundaries. The above-described partitioning could be also achieved by utilizing only tiles.

The reasons for using a combination of tile and slice are to allow partitioning of video frames

to vertical stripes, and low-complexity implementation of partial decoding operation.

According to the HEVC standard, the end of a slice is indicated using the end_of_slice_flag

which is the last encoded element for each CTU. It is set to one if the current CTU is the last

CTU in the slice. In case of using tile alone as partitioning tool, only for the last CTU of the

last tile (i.e., most bottom right tile) within a frame the flag is set. Assume that in a LF rendering

node, only the pixel samples corresponding to the first tile is requested. Therefore, the extractor

generates a sub-bitstream containing the first tile of each frame, in which the end_of_slice_flag

equals to 0. The generated sub-bitstream is not decodable by a standard HEVC decoder, as the

decoder does not meet end of slice condition while decoding the last CTU within the frame in

the output sub-bitstream. The flag is entropy coded and cannot be modified without entropy

decoding the slice data. The proposed partitioning helps to avoid such situation since the last

CTU within overlapped slices and tiles are the same. Hence, the flag is set for each tile.

However, it comes along with a cost of increase in bitrate. The results (see Table 8) show that

the bitrate increment caused by slice header is less than 1% for the experimented video

sequences. The amount of overhead is such small that can be negligible.

Figure 21. Frame partitioning and the extracted partitions

a) Partitioning arrangement b) One tile extraction c) Two tiles extraction

52

4.4 Results analysis

4.4.1 Compression performance

The standard slices/tiles can be considered self-contained when all pictures are intra coded at

the expense of considerable increase in bitrate. Table 6 shows the storage performance of only

intra coding scheme with respect to Baseline and Random Access Main encoding profiles in

AVC and HEVC, respectively. The intra coding scheme increases bitrate about 142% and 363

% in AVC and HEVC, respectively, on average over the test sequences. Hence, it is not

practical to achieve self-contained slices/tiles using intra coded pictures.

As discussed in Sub-section 2.4.3, the usage of tiles and slices comes along with compression

efficiency penalty. Table 7 represents the compression loss caused by standard slices and the

proposed self-contained slices in AVC for the described partitioning in previous section. The

usage of the standard slices introduces 2% reduction in the compression performance relative

to the case where no slicing is performed. The proposed self-contained slices introduce 33%

compression loss which is high when compared with that of the standard slices. The low

compression loss of self-contained tiles in HEVC, explained in the following, indicates that the

proposed method in AVC is further capable of providing better storage performance by

optimizing the proposed method.

Table 6. Storage performance comparison between Intra profile and Baseline, and Random

Access Main profiles in AVC and HEVC, respectively (delta-bitrate %)

Sequences AVC HEVC

Balloons 297.24 669.42

Pantomime 70.02 129.39

Shark 7.05 83.94

BBB-flower 287.16 665.12

Kimono 52.26 267.46

Avg. 142.75 363.07

Table 7. AVC slice overhead (BD-rate %)

Sequences Normal slices Self-contained slices

Balloons 1.75 33.43

Pantomime 0.46 45.31

Shark 6.21 42.15

BBB-flower 1.28 34.38

Kimono 0.37 9.93

Avg. 2.01 33.04

53

Table 8. HEVC slice and tile overhead (BD-rate %)

Sequences Tiles Normal

tiles &

slices

Self-contained

tiles & slices

Balloons 1.46 2.39 6.16

Pantomime 0.79 1.17 4.02

Shark 3.09 3.78 10.11

BBB-flower 2.00 2.78 2.09

Kimono 0.14 0.40 10.26

Avg. 1.50 2.10 6.53

In case of HEVC, Table 8 represents the compression loss for cases in which video frames are

partitioned using only tiles, a combination of standard tiles and slices, and a combination of

self-contained tiles and slices, for the partitioning scheme described in Sub-section 4.3. The

BD-rate results shows that breaking of intra prediction and re-initialization of entropy coding

engine (i.e., only tiles used) cause 1.5% reduction in compression efficiency in average, when

compared with no partitioning case. Additionally, the usage of slice arises with 0.6% (= 2.10%

– 1.5%, in Table 8) higher compression loss caused by slice header overhead. Moreover, the

results indicate that the proposed modifications into the encoder, in order to provide self-

contained tiles, drop compression efficiency by 4.43% (= 6.53% – 2.10%, in Table 8). The

latter loss caused by restricting motion vectors within co-located tile boundaries in the

reference pictures, which results in temporal correlation reduction in inter-prediction scheme.

Overall, the proposed approach introduces 6.53% loss in compression efficiency for the

employed partitioning scheme over the test videos.

Figure 22 shows the average BD-rate over number of slices/tiles corresponding to Table 9

and Table 10 for two vertical partitioning cases. In the first case only tile and in the second case

a combination of overlapped tile and slice is employed. As can be seen, the finer the partitioning

is, the higher the compression loss occurs. As the number of partitions increase, the difference

between two curves is higher since the slice overhead becomes more visible. Moreover, it can

be seen that tiles are more efficient than slices in terms of compression performance, when

comparing the red (only tiling) and blue (tiling and slicing) curves. The drawn conclusion

above can be observed for each test sequence represented in Table 9 and Table 10.

The compression loss introduced by slices/tiles also depends on the partitioning direction. 0

and 0 show BD-rate overhead for different tiling schemes with the same number of tiles as the

first three columns in Table 9 and Table 10, respectively, but with horizontal tiling. Further

horizontal tiling is not possible in some of the sequences, since the tile width in the HEVC

standard is limited to 256 luma samples. Comparing Table 9 and Table 10 with 0 and 0,

respectively, shows that horizontal tiling, performed in this work, incurs lower compression

penalty on average over the test sequences.

54

Table 9. HEVC tile overhead for different vertical partitioning schemes (BD-rate %)

Table 10. HEVC tile and slice overhead for different vertical partitioning schemes (BD-rate %)

Sequences 1x2 1x3 1x4 1x5 1x6 1x7 1x8

Balloons 1.50 2.55 3.96 5.10 6.34 7.34 8.65

BBB_flower 1.36 2.43 3.60 5.01 5.99 7.12 8.05

Kimono 0.48 1.06 1.48 1.90 2.32 2.76 3.30

Pantomim 0.83 1.53 2.20 2.91 3.59 4.32 4.75

Shark 2.57 3.67 5.80 6.91 8.46 10.40 11.50

Avg. 1.35 2.25 3.41 4.37 5.34 6.39 7.25

Figure 22. BD-rate over number of tiles

Table 11. HEVC tile overhead for different horizontal partitioning schemes (BD-rate %)

Sequences 2x1 3x1 4x1

Balloons 0.70 0.93 1.46

BBB_flower 0.92 1.35 2.00

Kimono -0.14 0.22 0.14

Pantomim 0.35 1.12 0.79

Shark 1.23 2.23 3.09

Avg. 0.61 1.17 1.50

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

2 4 6 8 10

B
D

-r
at

e
(%

)

Number of partitions

tiling and slicing

tiling

Sequences 1x2 1x3 1x4 1x5 1x6 1x7 1x8

Balloons 1.18 1.77 2.71 3.44 4.23 4.90 5.68

BBB_flower 1.06 1.81 2.64 3.71 4.37 5.15 5.74

Kimono 0.35 0.72 1.03 1.28 1.63 1.82 2.18

Pantomim 0.74 1.28 1.80 2.34 2.89 3.52 3.76

Shark 2.23 3.06 4.92 5.50 6.76 8.02 9.23

Avg. 1.11 1.73 2.62 3.25 3.98 4.68 5.32

55

Table 12. HEVC tile and slice overhead for different horizontal partitioning schemes (BD-rate

%)

Sequences 2x1 3x1 4x1

Balloons 0.94 1.82 2.39

BBB_flower 1.18 1.98 2.78

Kimono -0.02 0.52 0.40

Pantomim 0.49 1.33 1.17

Shark 1.55 3.00 3.78

Avg. 0.83 1.73 2.10

4.4.2 Complexity and latency reduction

In order to provide some insight in the decoder speed increment, four different scenarios were

tested. They include the cases where a LF rendering node requests the area corresponding to:

one tile, two tiles, three tiles, and four tiles (i.e., the whole frame). In the display side, only the

requested tile(s) are received and decoded. Figure 21 (b) and Figure 21 (c) illustrate the cases

where one tile and two tiles are decoded, respectively.

In Table 13 and Table 14, decoding speed related to the above test scenarios is represented in

AVC and HEVC, respectively. The tables show average decoding speed over the test sequences

for different QPs. In both AVC and HEVC, a significant increase in decoding speed is achieved

by decoding only the desired region. Compared to AVC, in case of HEVC higher decoding

speed is observed.

In AVC, the decoding speed increases 3.8, 2.1, and 1.4 times when decoding one, two and three

tiles, respectively, compared to decoding the whole frame area. In HEVC, the decoding speed

increases 4.6, 2.3, and 1.5 times when decoding one, two and three tiles, respectively. In Figure

24 and Figure 24, it can be seen that the decoding speed increment has almost a linear behavior

in both AVC and HEVC, respectively.

Table 13. Decoding speed in AVC (frame per second)

QP 1 slice 2 slices 3 slices Whole frame

22 41.26 20.51 12.53 9.33

26 45.01 24.41 17.98 11.09

30 48.00 27.89 18.05 13.84

34 49.32 29.64 21.34 14.22

Avg. 45.90 25.61 17.48 12.12

56

Figure 23. Decoding speed in AVC (frame per sec.)

Table 14. Decoding speed in HEVC (frame per second)

QP 1 tile 2 tiles 3 tiles Whole frame

22 64.04 30.04 19.81 13.18

26 77.44 37.98 25.09 16.77

30 84.73 42.06 28.20 18.61

34 87.34 44.59 29.34 19.75

Avg. 78.39 38.67 25.61 17.08

Figure 24. Decoding speed in HEVC (frame per sec.)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 2 3 4

D
ec

.
sp

ee
d

 (
fr

am
e

p
er

 s
ec

.)

Number of decoded slices

0

10

20

30

40

50

60

70

80

90

1 2 3 4

D
ec

.
sp

ee
d

 (
fr

am
e

p
er

 s
ec

.)

Number of decoded tiles

57

5. CONCLUSIONS

This thesis has provided an elegant solution for enabling partial decoding in both AVC and

HEVC standards in applications where only a region of the video pictures is decoded. It has

elaborated the creation of independently decodable partitions, so-called self-contained

partitions, in the AVC and HEVC bitstreams using slices and tiles, respectively. The thesis has

formulated the requirements that have to be imposed on the AVC standard JM and HEVC

standard HTM encoders in order to enable self-contained partitions. More emphasis was given

to the HEVC part since HEVC decoders are already widely available in a variety of devices.

The performance of the proposed self-contained slices/tiles was evaluated in the context of

light-field 3D displays, in which partial decoding helps in enabling real-time operation.

Naturally, the proposed approach is not limited to the light-field 3D displays. It can be utilized

in any applications (e.g. ROI applications) where video frames can be reasonably split into

separate partitions and only a sequence of the partitions need to be decoded.

The creation of self-contained tiles in the 3D extensions of HEVC (i.e., MV-HEVC and 3D-

HEVC) was also described. Since the MV-HEVC block-level coding tools are the same as

those of conventional HEVC, no additional restrictions are required in order to enable partial

decoding than those described in the case of HEVC. However, in 3D-HEVC, there is one more

restriction to be fulfilled for enabling partial decoding of video pictures. The implementation

of self-contained tiles in 3D-HEVC is left for future work.

The results indicate that the usage of partitioning tools and the proposed encoder modifications

yield a small negligible compression penalty. However, the proposed approach makes the

decoding operation very efficient and low complex by reducing computational burden of

decoding. It significantly increases decoding speed and thus helps enabling real-time

processing. This allows to realize the proposed approach in real-world applications using

hardware decoders available today in the market.

58

6. REFERENCES

[1] H. Schwarz, T. Schierl and D. Marpe, "Block structures and parallelism features in

HEVC," in High Efficiency Video Coding (HEVC): Algorithms and Architectures,

Springer, 2014, pp. 49-90.

[2] "Holografika, Holographic display technology," Holografika, [Online]. Available:

http://www.holografika.com/. [Accessed 2016].

[3] G. Jason, "Three-dimensional display technologies," Advances in optics and

photonics, vol. 5, no. 4, pp. 456-535, 2013.

[4] F.-C. Huang, G. Wetzstein, B. A. Barsky and R. Raskar, "Eyeglasses-free display:

towards correcting visual aberrations with computational light field displays," ACM

Transaction on Graphics, 2014.

[5] G. Wetzstein, D. Lanman, M. Hirsch, W. Heidrich and R. Raskar, "Compressive

light field displays," IEEE Computer Graphics and Applications, vol. 32, no. 5, pp.

6-11, 2012.

[6] T. Balogh, P. T. Kovacs and A. Barsi, "Holovizio 3D display system," in proc.

IMMERSCOM 2007, 2007.

[7] R. Bregovic, P. T. Kovács, T. Balogh and A. Gotchev, "Display-specific light-field

analysis," Proc. SPIE-DSS: Three-Dimensional Imaging, Visualization, and

Display, 2014.

[8] P. T. Kovacs, Z. Nagy, A. Barsi, V. K. Adhikarla and R. Bregovic, "Overview of

the applicability of H.264/MVC for real-time light-field applications," in proc.

3DTV-CON 2014, Budapest, Hungary, 2014.

[9] H. M. M., Y.-K. Wang and M. Gabbouj, "Isolated regions in video coding," IEEE

Transactions on Multimedia, vol. 6, p. 259–267, 2004.

59

[10] P. Lambert, D. D. Schrijver, D. V. Deursen and W. D. Neve, "A real-time content

adaptation framework for exploiting ROI scalability in H.264/AVC," in ACIVS'06

Proceedings of the 8th international conference on Advanced Concepts For

Intelligent Vision Systems, Springer-Verlag Berlin, 2006.

[11] P. Quax, F. D. Fiore, P. Issaris, W. Lamotte and F. V. Reeth, "Practical and scalable

transmission of segmented video sequences to multiple players using H.264," in

Motion in Games 2009 (MIG09), Lecture Notes in Computer Science LNC, LNCS

5884, 2009, pp. 256-267.

[12] A. Zare, P. T. Kovács and G. Atanas, "Self-contained slices in H.264 for partial

video decoding targeting 3D light-field displays," in Proc. 3DTV Conference 2015,

Lisbon, 2015.

[13] A. Zare, A. Aminlou, M. M. Hannuksela and M. Gabbouj, "HEVC-compliant tile-

based streaming of panoramic video for virtual reality applications," in proceedings

of ACM MM 2016, Amsterdam, 2016.

[14] C. Feldmann, C. Bulla and B. Cellarius, "Efficient stream-reassembling for video

conferencing applications using tiles in HEVC," in MMEDIA 2013, The Fifth

International Conferences on Advances in Multimedia, Venice, Italy, 2013.

[15] J. Vehkapera and S. Tomperi , "Replacing picture regions in H.264/AVC bitstream

by utilizing independent slices," in IEEE 17th International Conference on Image

Processing, Hong Kong, 2010.

[16] K. M. Misra, C. A. Segall, M. Horowitz, S. Xu, A. Fuldseth and M. Zhou, "An

overview of tiles," IEEE Journal of Selected Topics in Sig-nal Processing, vol. 7 ,

no. 6, pp. 969-977, Dec. 2013.

[17] P. Amon, M. Sapre and A. Hutter, "Compressed domain stitching of HEVC streams

for video conferencing applications," in Proc. of 2012 IEEE 19th International

Packet Video Workshop, Munich, 2012.

[18] "An interactive region-of-interest video streaming system for online lecture

viewing," in 2010 18th IEEE International Packet Video Workshop, Hong Kong,

2010.

60

[19] P. Quax, P. Issaris, W. Vanmontfort and W. Lamotte, "Evaluation of distribution of

panoramic video sequences in the eXplorative television project," in in Proc. 22nd

International Workshop on Network and Operating System Support for Digital

Audio and Video, Toronto, 2012.

[20] "FFmpeg Codecs Documentation," FFmpeg, [Online]. Available:

https://ffmpeg.org/ffmpeg-codecs.html. [Accessed 2016].

[21] Y. Sanchez, R. Globisch, T. Schierl and T. Wiegand, "Low Complexity Cloud-

video-Mixing Using HEVC," in IEEE CCNC - Multimedia Networking, Services

and Applications, Las Vegas, NV, USA, 2014.

[22] I. E. G. Richardson, H.264 and MPEG-4 video compression, video coding for next-

generation multimedia, Chichester, UK: John Wiley & Sons Ltd, 2003.

[23] "Committed to connecting the world," ITU-T, [Online]. Available:

http://www.itu.int/en/ITU-T/studygroups/com16/video/Pages/jvt.aspx. [Accessed

26 August 2015].

[24] M. Wien, High Efficiency Video Coding-coding tools and specification, Springer-

Verlag Berlin Heidelberg, 2015.

[25] "ITU-T SG16: Multimedia," ITU-T, [Online]. Available:

http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/default.aspx.

[Accessed 29 9 2015].

[26] F. H. H. Institute, "High Efficiency Video Coding (HEVC)," [Online]. Available:

https://hevc.hhi.fraunhofer.de/. [Accessed 29 9 2015].

[27] H. Schwarz, D. Marpe and T. Wiegand, "Overview of the scalable video coding

extension of the H.264/AVC standard," IEEE TRANSACTIONS ON CIRCUITS

AND SYSTEMS FOR VIDEO TECHNOLOGY, vol. 17, no. 9, pp. 1103-1120, 2007.

[28] J. a. Y. Y. a. C. J. a. R. A. Boyce, "Overview of SHVC: scalable extensions of the

High Efficiency Video Coding (HEVC) standard," IEEE Transactions on Circuits

and Systems for Video Technology, vol. PP, no. 99, pp. 1-14, 2015.

61

[29] D. Marpe, T. Wiegand and S. Gordon, "H.264/MPEG4-AVC fidelity range

extensions: tools, profiles, performance, and application areas," in IEEE

International Conference on Image Processing, ICIP, 2005.

[30] G. J. Sullivan, J. M. Boyce, Y. Chen, J.-R. Ohm, C. A. Segall and A. Vetro,

"Standardized extensions of High Efficiency Video Coding (HEVC)," IEEE

JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, vol. 7, no. 6, pp.

1001-1016, 2013.

[31] P. Merkle, A. Smolic´, K. Müller and T. Wiegand, "Efficient prediction structures

for multiview video coding," IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS FOR VIDEO TECHNOLOGY, vol. 17, no. 11, pp. 1461-1473, 2007.

[32] Y. Chen, G. Tech, K. Wegner and S. Yea, "Test Model 11 of 3D-HEVC and MV-

HEVC," JCT-3V and Video Subgroup, Geneva, Switzerland, February, 2015.

[33] V. Sze, M. Budagavi and G. J. Sullivan, High Efficiency Video Coding (HEVC)-

algorithms and architectures, Springer International Publishing, 2014.

[34] "Solveig multimedia-zond 265 3.0-HEVC video analyzer," 2003. [Online].

Available: http://www.solveigmm.com. [Accessed 2015].

[35] I.-K. Kim, J. Min, T. Lee, W.-J. Han and J. Park, "Block partitioning structure in

the HEVC standard," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR

VIDEO TECHNOLOGY, vol. 22, no. 12, pp. 1697-1706, 2012.

[36] G. J. Sullivan, J.-R. Ohm, W.-J. Han and T. Wiegand, "Overview of the High

Efficiency Video Coding (HEVC) standard," IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol. 22, no. 12, pp. 1649-

1667, 2012.

[37] J. Lainema, F. Bossen, W.-J. Han, J. Min and K. Ugur, "Intra coding of the HEVC

standard," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, vol. 22, no. 12, p. 1792–1801, 2012.

[38] G. Laroche, J. Jung and B. Pesquet-Popescu, "RD optimized coding for motion

vector predictor selection," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY, vol. 18, no. 9, pp. 1247-1257, 2008.

62

[39] P. Helle, S. Oudin, B. Bross, D. Marpe, M. O. Bici, K. Ugur, J. Jung, G. Clare and

T. Wiegand, "Block merging for quadtree-based partitioning in HEVC," IEEE

TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY,

vol. 22, no. 12, pp. 1720-1731, 2012.

[40] M. M. Hannuksela, Y. Yan, X. Huang and H. Li, "Overview of the multiview high

efficiency video coding (MV-hevc) standard," in 2015 IEEE International

Conference on Image Processing (ICIP), Quebec City, 2015.

[41] "Codecian Co. Ltd - CodecVisa analyzer 4.32," 2015. [Online]. Available:

http://www.codecian.com.

[42] "H.264/AVC Reference Software," [Online]. Available:

http://iphome.hhi.de/suehring/tml/download/. [Accessed 2016].

[43] G. Bjøntegard, "Calculation of average psnr differences between rd-curves," in

document VCEG-M33, Austin, 2001.

[44] T. Wiegand, G. J. Sullivan, G. Bjøntegaard and A. Luthra, "Overview of the

H.264/AVC video coding standard," IEEE TRANSACTIONS ON CIRCUITS AND

SYSTEMS FOR VIDEO TECHNOLOGY, vol. 13, no. 7, pp. 560-576, July 2003.

[45] M. Wien, High Efficiency Video Coding-coding tools and specification, Springer-

Verlag Berlin Heidelberg, 2015.

63

APPENDIX A: H.264 TRACING PATH OVERVIEW

64

APPENDIX B: DOWNLOAD LINKS

Software repository:

The latest version of the reference software for AVC (called JM, Joint Model) can be

downloaded from the link below:

http://iphome.hhi.de/suehring/tml/download/

The reference software for HEVC (called HM, HEVC Test Model) is available in the

following SVN repository:

https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/

The third version of the HEVC reference software (called HTM, HEVC Test Model)

including the MV and 3D extensions can be downloaded from the following SVN

repository:

https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/

For full understanding of the capabilities and features of the H.264/ AVC and H.265/

HEVC standards, a copy of the ITU/ ISO recommendations can be obtained from ITU

web site for free from the links below:

http://www.itu.int/rec/T-REC-H.264

http://www.itu.int/rec/T-REC-H.265

Software compilation:

The H.264 and H.265 software can be built under linux using make. For Windows,

solutions for different versions of Microsoft Visual Studio are provided. The user should

select the appropriate solution according to his/her .NET package.

Meeting documents for JCT-VC and JCT-3V can be achieved from ITU web site:

http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/default.aspx

Software structure:

The H.264 solution contains the following four projects []:

lencod H.264/AVC: reference encoder

http://iphome.hhi.de/suehring/tml/download/
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/
https://hevc.hhi.fraunhofer.de/svn/svn_3DVCSoftware/
http://www.itu.int/rec/T-REC-H.264
http://www.itu.int/rec/T-REC-H.265
http://www.itu.int/en/ITU-T/studygroups/2013-2016/16/Pages/default.aspx

65

ldecod H.264/AVC: reference decoder

rtpdump: a tool for analyzing contents of RTP packets

rtp_loss: a tool for simulating RTP packet losses

The 3D-HEVC Test Model Software includes several applications and libraries for

coding and view synthesis []:

Applications:

TAppEncoder: executable for bit stream generation

TAppDecoder: executable for reconstruction.

TAppRenderer: executable view synthesis

TAppExtractor: executable for bitstream extraction

Libraries:

TAppCommon: library for handling encoder, decoder and renderer options

and camera parameters

TLibEncoder: encoding functionalities

TLibDecoder: decoding functionalities

TLibRenderer: renderer functionalities

TLibExtractor: bitstream extraction functionalities

TLibCommon: common functionalities

TLibVideoIO: video input/output functionalities

All the source codes and configuration files related to this work can be downloaded

from the link below:

