9 research outputs found

    Modeling of Topologies of Interconnection Networks based on Multidimensional Multiplicity

    Get PDF
    Modern SoCs are becoming more complex with the integration of heterogeneous components (IPs). For this purpose, a high performance interconnection medium is required to handle the complexity. Hence NoCs come into play enabling the integration of more IPs into the SoC with increased performance. These NoCs are based on the concept of Interconnection networks used to connect parallel machines. In response to the MARTE RFP of the OMG, a notation of multidimensional multiplicity has been proposed which permits to model repetitive structures and topologies. This report presents a modeling methodology based on this notation that can be used to model a family of Interconnection Networks called Delta Networks which in turn can be used for the construction of NoCs

    Statistical simulation: Adding efficiency to the computer designer's toolbox

    Full text link

    Simulation of Multiprocessor System Scheduling

    Get PDF
    The speed and performance of computers have become a major concern today. Multiprocessor systems are introduced to share the work load between the processors. By sharing the work load among processors, the speed and efficiency of the system can be increased drastically. To share the workload properly between the processors in the multiprocessor system a proper scheduling algorithm is needed. Hence, one of the major factors that influence the speed and efficiency of the multiprocessor system is scheduling. In this thesis, the main focus is on the process scheduling for multiprocessor systems. The factors which influence scheduling and scheduling algorithms are discussed. Based on this idea of sharing the load among processors in the multiprocessor system, a simulation model for scheduling in a symmetric multiprocessor system is developed in the Department of Digital and Computer systems at Tampere University of Technology. This model treats all the processors in the system equally by allocating equal processor time for all the processes in the task and also evaluates the total execution time of the system for processing an input job. The scheduling algorithm in this simulation model is based on the input processes priority. The necessity of scheduling in multiprocessor systems is elaborated. The goal of this thesis is to analyse how process scheduling influences the speed of the multiprocessor system. Also, the difference in total execution time of the input jobs with different number of processors and capacity of the processors in the multiprocessor system is studied

    Fast simulation techniques for microprocessor design space exploration

    Get PDF
    Designing a microprocessor is extremely time-consuming. Computer architects heavily rely on architectural simulators, e.g., to drive high-level design decisions during early stage design space exploration. The benefit of architectural simulators is that they yield relatively accurate performance results, are highly parameterizable and are very flexible to use. The downside, however, is that they are at least three or four orders of magnitude slower than real hardware execution. The current trend towards multicore processors exacerbates the problem; as the number of cores on a multicore processor increases, simulation speed has become a major concern in computer architecture research and development. In this dissertation, we propose and evaluate two simulation techniques that reduce the simulation time significantly: statistical simulation and interval simulation. Statistical simulation speeds up the simulation by reducing the number of dynamically executed instructions. First, we collect a number of program execution characteristics into a statistical profile. From this profile we can generate a synthetic trace that exhibits the same execution behavior but which has a much shorter trace length as compared to the original trace. Simulating this synthetic trace then yields a performance estimate. Interval simulation raises the level of abstraction in architectural simulation; it replaces the core-level cycle-accurate simulation model by a mechanistic analytical model. The analytical model builds on insights from interval analysis: miss events divide the smooth streaming of instructions into so called intervals. The model drives the timing by analyzing the type of the miss events and their latencies, instead of tracking the individual instructions as they propagate through the pipeline stages

    Summarizing multiprocessor program execution with versatile, microarchitecture-independent snapshots

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 131-137).Computer architects rely heavily on software simulation to evaluate, refine, and validate new designs before they are implemented. However, simulation time continues to increase as computers become more complex and multicore designs become more common. This thesis investigates software structures and algorithms for quickly simulating modern cache-coherent multiprocessors by amortizing the time spent to simulate the memory system and branch predictors. The Memory Timestamp Record (MTR) summarizes the directory and cache state of a multiprocessor system in a compact data structure. A single MTR snapshot is versatile enough to reconstruct the microarchitectural state resulting from various coherence protocols and cache organizations. The MTR may be quickly updated by each simulated processor during a fast-forwarding phase and optionally stored off-line for reuse. To fill large branch prediction tables, we introduce Branch Predictor-based Compression (BPC) which compactly stores a branch trace so that it may be used to fill in any branch predictor structure. An entire BPC trace requires less space than single discrete predictor snapshots, and it may be decompressed 3-6x faster than performing functional simulation.by Kenneth C. Barr.Ph.D
    corecore