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Samenvatting

Het ontwerpen van een nieuwe microprocessor is enorm tijdrovend:
het kan tot zeven jaar duren alvorens een processor op de markt komt.
Processorontwerpers maken gebruik van cyclusgetrouwe simulatoren
tijdens de verschillende stadia van het ontwerpproces, bijvoorbeeld bij
het nemen van hoog-niveaubeslissingen tijdens de initiële verkenning
van de ontwerpruimte. Architecturale simulatoren modelleren de mi-
croarchitectuur in software. Deze simulatoren zijn zeer nauwkeurig
en zeer flexibel in gebruik, maar hebben als nadeel dat ze drie tot vier
grootteordes trager zijn dan de hardware die ze modelleren. Bovendien
vraagt het veel tijd om ze te ontwikkelen.

De huidige trendverschuiving naar chip-multiprocessors maakt
deze laatstgenoemde problemen erger. Chip-multiprocessors combi-
neren meerdere kernen op één enkele chip, en delen een aantal sys-
teemhulpbronnen zoals caches, geheugenbussen, hoofdgeheugen, enz.
Draden die gelijktijdig worden uitgevoerd kunnen elkaars prestatie
beı̈nvloeden via deze gedeelde componenten. Bijvoorbeeld, een draad
kan trager vooruitgang boeken dan een andere draad ten gevolge
van bijkomend conflictgedrag. Bovendien kan een verandering in de
microarchitectuur ervoor zorgen dat andere delen van de draden op
hetzelfde moment in uitvoering zijn, wat op zijn beurt leidt tot een ver-
schillend conflictgedrag en dus een verschillende relatieve vooruitgang
van de draden. Deze verstrengeling van prestatie tussen de draden in
uitvoering maakt het moeilijk om de prestatie van chip-multiprocessors
te modelleren. Naarmate het aantal kernen op een processor toeneemt,
neemt de simulatiesnelheid aan belang toe.

Onderzoekers en computerarchitecten zijn zich bewust van het si-
mulatieprobleem en hebben reeds tal van technieken voorgesteld om
de simulatie te versnellen. In dit proefschrift stellen we twee technie-
ken voor die de simulatiesnelheid aanzienlijk verbeteren, namelijk, sta-
tistische simulatie en intervalsimulatie.



viii SAMENVATTING

Statistische simulatie versnelt de simulatie door het aantal gesi-
muleerde instructies te verminderen. Dit gebeurt in drie stappen. Eerst
meten we een aantal programmakarakteristieken op in een zogenaamd
statistisch profiel door middel van functionele simulatie of andere pro-
fileringshulpmiddelen. Op basis van dit profiel wordt dan een synthe-
tische trace gegenereerd met dezelfde eigenschappen, maar bestaande
uit veel minder instructies – in de orde van enkele miljoenen instruc-
ties. Door de synthetische trace te simuleren verkrijgen we snel een
schatting van de prestatie.

We leveren twee belangrijke bijdragen aan het statistische simulatie-
paradigma. Ten eerste verbeteren we de nauwkeurigheid door een be-
tere modellering van de geheugendatastromen; dit houdt onder ande-
re in dat we geheugenparallellisme, secundaire cachemissers, en load-
store data-afhankelijkheden modelleren. Ten tweede breiden we het
statistische simulatieparadigma uit om het conflictgedrag in gedeelde
systeemhulpbronnen van chip-multiprocessors die meerdere program-
ma’s uitvoeren te kunnen vatten. Dit vereist dat we toegangen tot het
geheugensubsysteem onafhankelijk van de microarchitectuur model-
leren; hiervoor gebruiken we metrieken zoals hergebruiksafstand en
stapeldiepte. Een bijkomend voordeel van een microarchitecturaalon-
afhankelijke modellering is dat er meerdere ontwerppunten kunnen
geëvalueerd worden met eenzelfde statistisch profiel, wat de bruik-
baarheid van statistische simulatie ten goede komt. In het geval van
chip-multiprocessorsimulatie is het belangrijk om het fasegedrag van
programma’s nauwkeurig te vatten, aangezien dit een niet onbelang-
rijke invloed op totale prestatie heeft.

Deze bijdragen maken van statistische simulatie een snelle en
nauwkeurige oplossing voor het simulatieprobleem van chip-multi-
processoren, en is in het bijzonder goed geschikt om de microarchitec-
turale ontwerpruimte te verkennen.

De gemiddelde fout op de prestatieschatting voor een chip-multi-
processor met één, twee, vier en acht kernen bedraagt respectievelijk
2.1%, 5.6% , 6.3% en 7.3%, terwijl de simulatie gemiddeld één tot vier
grootteordes versneld wordt. Ondanks deze absolute fouten observe-
ren we dezelfde prestatietrends met statistische simulatie als met cy-
clusgetrouwe simulatie. Bijvoorbeeld, statistische simulatie leidt tot
dezelfde conclusie wanneer we de afweging maken tussen het aantal
kernen enerzijds en de grootte van de gedeelde cache anderzijds. Bo-
vendien identificeert het duidelijk welke benchmarks onderhevig zijn
aan het delen van de cache tussen de verschillende processorkernen.
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Intervalsimulatie is een nieuw, snel, nauwkeurig en eenvoudig te
implementeren simulatieparadigma dat het abstractieniveau in archi-
tecturale simulatie verhoogt; het vervangt het cyclusgetrouwe model
voor de processorkern door een mechanistisch analytisch model.

In het cyclusgetrouwe model worden de individuele instructies
stap voor stap gevolgd doorheen de pijplijn van de superscalaire out-
of-order processor, terwijl de intervalsimulator de eigenlijke stroom
van instructies doorheen de pijplijn beschouwt. Intervalsimulatie pakt
het simulatieprobleem op twee fronten aan: het doel is om de simula-
tiesnelheid te verbeteren én het ontwerp van een simulator te vereen-
voudigen, zonder al te veel aan nauwkeurigheid in te boeten.

De inzichten verkregen uit intervalanalyse laten ons toe om nauw-
keurig de timing van instructies te modelleren. De basis voor dit me-
chanistisch analytisch model is dat in een superscalaire out-of-order
processor de instructies vlot doorheen de pijplijn stromen in afwezig-
heid van missers. Missers (cachemisser, foutief voorspelde sprong, etc.)
delen de instructiestroom op in geı̈soleerde intervallen; dit is het best
waarneembaar in de dispatch-trap van de pijplijn. De analytische mo-
dellen voor de individuele kernen raadplegen de sprongvoorspelling-
en de geheugenhiërarchiesimulatoren om de missers en de bijhorende
latenties te bepalen – de lengte van een interval is afhankelijk van het
type en de latentie van de misser. Zowel de prestatie op niveau van
de processorkern als op niveau van het gehele systeem wordt bepaald
door de lengte van deze intervallen, wat op zijn beurt de timing van
toekomstige missers zal bepalen.

Onze experimentele resultaten tonen aan dat intervalsimulatie
nauwkeurig is; we melden een gemiddelde schattingsfout van 4.6%
voor de full-system simulatie van de meerdradige PARSEC bench-
marks. Bovendien leidt intervalsimulatie tot correcte beslissingen in
praktische studies, terwijl de simulatie een grootteorde sneller is dan
de cyclusgetrouwe simulatie. Tevens is intervalsimulatie makkelijk te
implementeren; ons model telt niet meer dan duizend regels code, in
plaats van tienduizenden regels code in cyclusgetrouwe simulatoren.
Aldus kunnen we besluiten dat intervalsimulatie een goede afweging
maakt tussen ontwikkelingstijd, simulatietijd en nauwkeurigheid.
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Summary

Designing a microprocessor is extremely time-consuming: it can take
up to seven years before a next-generation processor hits the market.
Computer architects heavily rely on cycle-level (and in many cases
truly cycle-accurate) simulators in various stages of the design of a
new processor, e.g., to drive high-level design decisions during early
stage design space exploration. Architectural simulators model the
microarchitecture in software, at some level of abstraction. The benefit
of architectural simulators is that they yield relatively accurate perfor-
mance results, are highly parameterizable and are very flexible to use.
The downside, however, is that they are at least three or four orders of
magnitude slower than real hardware execution.

While this is true for single-core superscalar out-of-order processor
simulation, the current trend towards chip-multiprocessors or multi-
core processors, only exacerbates the problem. A multicore processor
combines several cores on a single chip, sharing some resources such as
last-level caches, off-chip bandwidth, main memory, etc. Co-executing
threads affect each other’s performance through the shared resources,
e.g., conflict misses due to cache sharing may cause some threads to
make slower progress than others. Moreover, changes in the microar-
chitecture may change which parts of the threads execute together,
which in turn may lead to different conflict behavior and thus different
relative progress rates for the co-executing threads. This tight perfor-
mance entanglement between co-executing threads makes it hard to
model performance of a multicore processor. As the number of cores
on a multicore processor increases, simulation speed has become a
major concern in computer architecture research and development.

Researchers and computer designers are well aware of the (multi-
core) simulation problem and have been proposing various methods
for coping with it. In this dissertation, we propose and evaluate two
simulation techniques, namely statistical simulation and interval simu-
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lation, which both reduce the simulation time significantly.

Statistical simulation. The basic idea behind statistical simulation is
to speedup the simulation by reducing the dynamic instruction count.
Essentially, statistical simulation is performed in three steps. First, we
measure a statistical profile of a program execution through functional
simulation or through profiling; a statistical profile collects a number
of program execution characteristics, such as instruction mix, inter-
instruction dependence distributions, branch behavior information and
memory behavior information. These statistics are then used to build
a synthetic trace; this synthetic trace exhibits the same execution char-
acteristics as the original program trace by construction, but it is much
smaller in terms of its dynamic instruction count. Simulating this syn-
thetic trace then yields a performance estimate. Given its short length
(on the order of a couple millions of instructions), simulating a syn-
thetic trace is done very quickly.

We make two contributions to the statistical simulation paradigm.
First, we improve statistical simulation for single-core processors by ac-
curately modeling the memory data flow in order to capture memory-
level parallelism, secondary miss events, and load/store aliasing and
bypassing. Second, we extend the statistical simulation paradigm to
chip-multiprocessors running multiprogram workloads in order to
capture the conflict behavior in shared resources. This requires that
we model accesses to the memory hierarchy in a microarchitecture-
independent way, using metrics as memory location reuse distance
and stack distance. Moreover, microarchitecture-independent memory
data flow modeling allows to evaluate more microarchitectural design
points based on a single statistical profile, and thus improves the appli-
cability of statistical simulation. Furthermore, we show that in case of
multicore simulation it is important to accurately model time-varying
program execution behavior, i.e., overall performance is affected by the
phase behavior of the co-executing programs.

Both contributions make statistical simulation a fast and accurate
solution to the multicore simulation problem, and make it a viable sim-
ulation approach to chip-multiprocessor design space exploration. For
our baseline superscalar out-of-order architecture, we obtain an aver-
age overall performance estimation error of 2.1% for a single-core, 5.6%
for a two-core, 6.3% for a four-core, and 7.3% for an eight-core pro-
cessor, while achieving a simulation speedup of one order of magni-
tude. Despite these absolute errors, the same design space performance
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trends are observed with statistical simulation as with cycle-accurate
simulation. For example, statistical simulation leads to the same con-
clusion when making a trade-off between the number of cores on a chip
and the size of the shared last-level cache. In addition, it clearly identi-
fies which benchmarks are susceptible to cache sharing.

Interval simulation. Interval simulation is a novel, fast, accurate and
easy-to-implement multicore simulation paradigm that raises the level
of abstraction in architectural multicore simulation, i.e., it replaces the
core-level cycle-accurate simulation model by a mechanistic analytical
model. The core-level model of a truly cycle-accurate simulator tracks
the individual instructions as they propagate through the pipeline. On
the other hand, an interval simulator considers the stream of instruc-
tions through the dispatch stage of the pipeline. Interval simulation
tackles the multicore simulation problem on two fronts: it reduces both
the development and evaluation time, while not compromising accu-
racy too much.

Insights from interval analysis enable us to accurately model the
timing of the instructions. The basis for this mechanistic analytical
model is that a superscalar out-of-order core can smoothly stream in-
structions through its pipeline in the absence of miss events. Miss
events however divide the smooth streaming of instructions into so
called intervals; this is most clearly observed in the dispatch behav-
ior of a program. The analytical timing models for the individual cores
consult branch predictor, memory hierarchy and interconnection net-
work simulators to derive miss events and their latencies. By analyz-
ing the types of miss events and their latencies, we can derive the length
of each interval, which determines core-level and system-level perfor-
mance. The estimated core-level performance, in turn, drives the tim-
ing of (future) miss events.

Our experimental results show that interval simulation is fairly ac-
curate; we report an average error of 4.6% for the multithreaded PAR-
SEC benchmarks running in full-system simulation mode. Moreover,
interval simulation leads to correct design decisions in practical design
studies, while being one order of magnitude faster compared to cycle-
accurate simulation. In addition, interval simulation is easy to imple-
ment; our model requires no more than one thousand lines of code,
whereas a fully detailed simulator can easily consist of tens of thou-
sand lines of code. Therefore, interval simulation makes a good balance
between development time, simulation speed and accuracy.
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Chapter 1

Introduction

Anyone who has never made a mistake has never tried anything new.
Albert Einstein

Designing a microprocessor is extremely time-consuming: it can take
up to seven years before a next-generation processor hits the mar-
ket [56]. A long time-to-market is undesirable, not only from an eco-
nomical point of view, but also from a technical perspective. Processor
architects make most of the high-level design decisions during the early
stages of the design process, using benchmarks and compilers that are
available at the time. If too much time elapses before the final processor
becomes available then it could very well be that the processor deliv-
ers suboptimal performance for emerging workloads that are different
from the benchmarks that were used during the design process [80].

1.1 Microprocessor design challenges

In the following subsections, we will explain what causes this ex-
tremely long development time, and we will discuss why future tech-
nology trends worsen the problem. We will start with a brief overview
of the history of a single-core processor, followed by a short intro-
duction to chip-multiprocessors. We will then discuss the impact of
processor technology and workload composition on architectural sim-
ulation and how it impacts development time.
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1.1.1 Trends in single-core processor technology

According to Moore’s law, transistor density on integrated CMOS cir-
cuits doubles about every two years. This pace has kept up for over
forty years. Throughout the years, computer architects have intro-
duced several techniques to improve processor performance by putting
more and more components on the chip.

In its simplest form, the CPU executes one instruction at a time in
a sequential way. However, the execution of an instruction can be bro-
ken into five more or less independent stages: (IF) fetch the instruction
from memory, (ID) decode the instruction and generate the appropri-
ate control signals, (EX) feed the control signals into the ALU and pro-
duce a result, (MEM) read from memory, (WB) write the result back
to the register file or to memory. The instruction throughput can be
improved by overlapping the execution of multiple instructions each
in a different stage of their execution, e.g., while one instruction is be-
ing decoded, one can already fetch the next instruction from memory.
This concept has led to pipelined architectures. The benefit is that the
processor now consists of multiple stages with reduced complexity, al-
lowing for higher clock rates. The classical pipeline has five stages,
however, architectures with over ten pipeline stages are common for
modern high-end processors.

The switch to pipelined architectures led to another concept, namely
branch prediction and speculative execution. After a branch instruc-
tion is fetched, the CPU does not yet know which instruction address
to fetch from in the next cycle, i.e., the direction and target of the branch
are unknown before the branch gets to the writeback stage. However,
we can try to predict what the next instruction address will be using a
branch predictor. The CPU speculatively fetches instructions starting
from the predicted address. If the target is predicted correctly then
no time is wasted; if on the other hand, the target is mispredicted, the
pipeline needs to be flushed and the execution restarts at the correct
path.

In order to hide the access latency to main memory, processors
now have a memory hierarchy. Multiple levels of on-chip and off-
chip caches reside in between the execution core and main memory.
Modern architectures typically have two or three levels of cache. The
ones closer to the execution core tend to be smaller and thus faster
than the ones further away. Caches are typically implemented as static
RAM (or SRAM), which is much faster but more costly than the DRAM
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Figure 1.1: Diagram of a generic pipelined superscalar out-of-order processor.

technology used in main memory.
Superscalar out-of-order architectures boost performance by ex-

ploiting instruction level-parallelism (ILP). The processor can execute
multiple independent instructions simultaneously and out of the origi-
nal program order. Figure 1.1 shows a diagram of a typical contempo-
rary high-performance out-of-order processor; in the next paragraph,
we will give a short overview of the most important features.

The fetch unit fetches the instructions from the level-one (L1)
instruction-cache (I-cache), and in case of a branch, it accesses the
branch predictor to determine the next instruction address to fetch
from. Subsequently, the instructions move into the fetch buffer before
being decoded. The register rename unit removes all write-after-write
(WAW) and write-after-read (WAR) dependences by dynamically map-
ping the instruction operands to real physical registers. Each stage can
handle as many instructions per cycle as the bandwidth allows for, e.g.,
a fetch width of eight allows for eight instructions to be fetched per
cycle. An instruction is dispatched into the reservation station (also
called the issue queue) as long as the maximum dispatch width has
not been exceeded, and provided that a reservation station entry is
available. The reservation station entry keeps track of the read-after-
write (RAW) dependences and issues the instruction to an available
functional unit as soon as all input data dependences are resolved. It
then becomes available for holding a newly dispatched instruction.
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Figure 1.2: Diagram of a generic (two-core) chip-multiprocessor, sharing the
L2 cache, off-chip bus, etc. between all cores.

The functional unit executes the instruction and writes the result back
to the physical register file, or in case of a load/store unit, it accesses
the L1 data-cache (D-cache). The reorder buffer (ROB) keeps track of
the status of all in-flight instructions, i.e., instructions in the back-end
pipeline which have not yet completed. The reservation station and the
ROB can be two separate structures or can be merged into one so called
instruction window. Either way, they allow for ILP to be exploited. In
addition, memory-level parallelism (MLP) is exploited, i.e., multiple
reads and/or writes access the main memory simultaneously. Non-
blocking caches allow for multiple outstanding misses, hereto miss
status holding registers (MSHRs) are used to administer each miss and
subsequent delayed hits to the same cache line.

Superscalar out-of-order processors are available on the high-
performance processor market for over a decade. Some examples
are: DEC Alpha 21264, MIPS R10000, Intel P6 family (Pentium Pro,
Pentium III, Core, Core2, Core i7), Intel Pentium 4, AMD K5 through
K8 and K10, IBM Power 1 through 5.

1.1.2 The shift towards chip-multiprocessors

Many of the enhancements mentioned in the previous subsection relate
to instruction-level parallelism being exploited in order to increase per-
formance. Thread-level parallelism is another type of parallelism that
can be exploited by recently introduced chip-multiprocessors (CMP);
also called multicore processors, see Figure 1.2 for a diagram of a typi-
cal CMP with two cores. A multicore processor combines several cores
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on a single chip, sharing some resources such as last-level caches, on-
chip interconnection network, off-chip bandwidth and main memory.
Today’s microprocessors come with two to eight cores and it is to be
expected that the number of cores will continue to increase. In fact,
Intel has built a prototype with eighty cores during their (ongoing)
‘tera-scale’ computing research activities. Some examples of commer-
cial CMPs are: Intel Core Duo, Core 2 Duo and Core i7, AMD K8 and
K10, IBM Power 4 to 6 and Cell, Sun Niagara T1 and T2.

1.1.3 Architectural simulation

Computer architects use architectural simulation to drive design de-
cisions early in the design cycle. At this stage it is infeasible and too
costly to build hardware prototypes for performance evaluation stud-
ies. Architectural simulators model the microarchitecture in software,
at some level of abstraction. The benefit of architectural simulators is
that they yield relatively accurate performance results, are highly pa-
rameterizable and are very flexible to use.

The downside, however, is that they are at least three or four or-
ders of magnitude slower than real hardware execution. Architectural
simulators typically model the microprocessor in great detail, and very
often, in a cycle-accurate manner. As more and more components of
high complexity are modeled, more instructions need to be executed
for each simulated instruction. As a result, culling a large design space
through cycle-accurate simulation has become infeasible. While this
is true for single-core processor simulation, the current trend towards
chip-multiprocessors only exacerbates the problem. Several cores need
to be simulated sequentially. In addition to single-core processor sim-
ulation, the simulator must also model the conflict misses and the con-
tention for shared resources. Hence, simulation speed has become a
major concern in computer architecture research and development as
the number of cores on a multicore processor increases.

In addition, developing an architectural simulator at a high level of
detail is tedious, costly and very time-consuming. Thus, one could or
even should pose the question whether this level of detail is needed or
called for during every stage in the design cycle.
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1.1.4 Workload composition

When designing a new processor, one starts with defining the target
domain: what kind of applications will typically be run on the proces-
sor? A representative workload, i.e., a set of benchmarks with their
data input sets, is composed accordingly. The remainder of the de-
sign process is based on this workload. Past and recent trends in the
software world have led to long-running benchmarks combined with
large input sets [1, 35]—today’s benchmarks execute several hundreds
of billions or even trillions of instructions. This, in turn, has a nega-
tive impact on simulation time, i.e., more instructions need to be sim-
ulated, which prolongs the development time of new processors. Sim-
ulating an industry-standard benchmark to completion for a single mi-
croprocessor design point easily takes weeks to months, even on to-
day’s fastest machines and simulators.

1.2 Focus and contributions in this dissertation

In this dissertation we focus on the early stage design space exploration
of contemporary high-performance processors. In this context, we pro-
pose and evaluate two simulation techniques, namely statistical simu-
lation and interval simulation, which both reduce the simulation time
significantly.

Before doing so, we would like to state that we do not envision these
techniques as a replacement for cycle-accurate architectural simulation.
Instead, we view both simulation paradigms as useful complements
to the other tools a computer designer has at his/her disposal when
designing a microprocessor. Moreover, statistical simulation as well as
interval simulation are orthogonal to and can be used in conjunction
with other existing simulation speedup approaches such as sampled
simulation and FPGA-accelerated simulation.

1.2.1 Statistical simulation

Statistical simulation is a recently introduced approach for efficiently
culling the microprocessor design space [19, 20, 23, 58, 59, 61]. The ba-
sic idea behind statistical simulation is to capture the essence of a real
workload in a much shorter running synthetic trace. This is done in
three steps. First, we measure a statistical profile of a program execu-
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tion through (specialized) functional simulation or profiling; a statisti-
cal profile collects a number of program execution characteristics, such
as instruction mix, inter-instruction dependence distributions, branch
behavior information and memory behavior information. These statis-
tics are then used to build a synthetic trace; this synthetic trace ex-
hibits the same execution characteristics as the original program trace
by construction, but is much smaller in terms of its dynamic instruc-
tion count. Simulating this synthetic trace then yields a performance
estimate. Given its short length (on the order of a couple millions of
instructions), simulating a synthetic trace is done very quickly.

1.2.2 Contribution #1: Accurate memory data flow modeling
in statistical simulation

The memory subsystem has a significant impact on the overall perfor-
mance of contemporary microprocessors. Poor modeling of the mem-
ory data flow may yield large performance prediction errors. The state-
of-the-art in statistical simulation prior to this dissertation considers
simple memory data flow modeling, showing three major shortcom-
ings.

First, none of the prior work accurately models cache miss patterns,
or the number of instructions in the dynamic instruction stream be-
tween misses. However, cache miss patterns have an important impact
on the available memory-level parallelism. Independent long-latency
misses that are close enough to each other in the dynamic instruction
stream to make it into the reorder buffer together, (potentially) overlap
their execution, thereby exposing memory-level parallelism. We accu-
rately model cache miss patterns by collecting the cache characteristics
dependent on a history of cache hit/miss outcomes.

Second, statistical simulation typically assigns hits and misses to
loads and stores, and does not model delayed hits. A delayed hit, i.e.,
a hit to an outstanding cache line, is modeled as a cache hit although
it should see the remaining latency of the outstanding cache line. We
model delayed hits through cache line reuse distance distributions.

Third, none of the previously proposed statistical simulation ap-
proaches adequately model load bypassing and load forwarding, i.e.,
it is assumed that loads never alias with preceding stores. We model
aliasing through read-after-write memory dependence distributions.

Accurately modeling the memory data flow reduces the average
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prediction error in statistical simulation from 10.9% to 2.1%, while be-
ing 2 to 4 orders of magnitude faster than detailed cycle-accurate simu-
lation. A discussion on the improved memory data flow modeling has
been published in:

Davy Genbrugge, Lieven Eeckhout and Koen De Bosschere, ”Ac-
curate Memory Data Flow Modeling in Statistical Simulation”,
ICS ’06: Proceedings of the 20th Annual International Conference on
Supercomputing, pp.87-96, Jun. 2006, [31].

Davy Genbrugge and Lieven Eeckhout, ”Memory Data Flow
Modeling in Statistical Simulation for the Efficient Exploration of
Microprocessor Design Spaces”, IEEE Transactions on Computers,
Vol.57, No.1, pp.41-54, Jan. 2008, [29].

1.2.3 Contribution #2: Multicore statistical simulation

Previous work has explored the statistical simulation paradigm exten-
sively for single-core out-of-order processor simulation; and one ear-
lier study [60] and one more recent study [38] applied statistical simu-
lation to multithreaded workloads running on shared-memory multi-
processor systems. None of this prior work addresses the modeling of
shared resources in chip-multiprocessors though. Co-executing threads
affect each other’s performance through inter-thread synchronization
and communication, as well as through the shared resources. Resource
sharing may cause some threads to run slower than others. Changes in
the microarchitecture may change which parts of the threads execute
together. This change, in turn, may lead to different conflict behavior
in the shared resources, which may lead to different relative progress
rates for the co-executing threads.

We extend the statistical simulation technique to chip-multiproces-
sors running multiprogram workloads. In order to capture the conflict
behavior in shared resources, we model accesses to the memory hierar-
chy in a microarchitecture-independent way. Hereto, we use the notion
of stack depth inspired by the least-recently-used (LRU) cache replace-
ment policy. In addition, we show that it is important to accurately
model time-varying program execution behavior, in order to accurately
capture conflict behavior in shared resources.

Our results show that statistical simulation with the aforemen-
tioned enhancements is accurate and capable of tracking the trends in
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a CMP design space. We report average performance prediction errors
of less than 7.3%. A discussion on the modeling of conflict behavior in
shared resources of a chip-multiprocessor has been published in:

Davy Genbrugge and Lieven Eeckhout, ”Statistical Simulation of
Chip-Multiprocessors Running Multiprogram Workloads”, ICCD
’07: Proceedings of the 25th International Conference on Computer De-
sign, pp.464-471, Oct. 2007, [28].

Davy Genbrugge and Lieven Eeckhout, ”Chip Multiprocessor
Design Space Exploration through Statistical Simulation”, IEEE
Transactions on Computers, Vol.58, No.12, pp.1668-1681, Dec. 2009,
[30].

Lieven Eeckhout and Davy Genbrugge, Invited Chapter ”Statis-
tical Simulation”, in ”Processor, Multicore and System-on-Chip
Simulation”, Olivier Temam and Rainer Leupers (Eds.), Springer,
2010, [22].

1.2.4 Contribution #3: Interval simulation

Interval simulation is a novel, fast, accurate and easy-to-implement
multicore simulation paradigm. Whereas other simulation techniques,
including statistical simulation, increase simulation speed and have
their place in the architect’s toolbox, they model a multicore processor
at a high level of detail which impacts development time and which
may not be needed for many practical research and development stud-
ies. For example, when studying trade-offs in the memory hierarchy,
cache coherence protocol or interconnection network of a multicore
processor, cycle-accurate core-level simulation may not be needed. In-
terval simulation raises the level of abstraction in architectural multi-
core simulation to a level that makes multicore simulator development
tractable and speeds up multicore simulation substantially, while not
compromising accuracy too much.

Interval simulation replaces the core-level cycle-accurate simulation
model in a multicore simulator by a mechanistic analytical model. The
mechanistic analytical model drives the timing simulation of the in-
dividual cores without the detailed tracking of individual instructions
through the cores’ pipeline stages. The basis for the mechanistic analyt-
ical model is that a superscalar out-of-order core can smoothly stream
instructions through its pipeline in the absence of miss events. Miss
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events however divide the smooth streaming of instructions through
the core’s pipeline into so called intervals. The analytical timing mod-
els for the individual cores consult branch predictor, memory hierarchy
and interconnection network simulators to derive miss events and their
latencies. By analyzing the types of miss events and their latencies, we
can derive the timing for each interval, which determines core-level
and system-level performance.

The cooperation between the mechanistic analytical model and the
miss event simulators enables the modeling of the tight performance
entanglement between co-executing threads on multicore processors.
We report average prediction errors below 6% while being one order
of magnitude faster for multithreaded benchmarks running on a full-
system simulator. Our core-level mechanistic analytical model is no
more than one thousand lines of code versus twenty eight thousand
lines for our detailed core-level model. An extensive discussion of this
new simulation paradigm is presented in:

Davy Genbrugge, Stijn Eyerman and Lieven Eeckhout, ”Interval
Simulation: Raising the Level of Abstraction in Architectural Sim-
ulation”, Accepted for publication in HPCA ’10: Proceedings of the
16th International IEEE Symposium on High-Performance Computer
Architecture, Jan. 2010, [32].

1.3 Thesis outline

This dissertation is organized as follows. In Chapter 2 we discuss ar-
chitectural simulation and give an overview of other existing fast simu-
lation techniques. Chapter 3 describes the basics of the statistical simu-
lation paradigm as we envision it, followed by a detailed discussion in
Chapter 4 on how to accurately model memory data flow (Contribution
#1). Chapter 5 discusses the enhancements to the statistical simulation
paradigm for the purpose of CMP design space exploration running
multiprogram workloads (Contribution #2). In Chapter 6 we discuss
interval simulation and we show how raising the level of abstraction in
architectural simulation addresses the two problems of simulator de-
velopment time and simulation speed (Contribution #3). Finally, we
conclude in Chapter 7 and we give some suggestions for future work.
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Architectural Simulation

A good simulation, be it a religious myth or scientific theory, gives us a sense
of mastery over experience. To represent something symbolically, as we do

when we speak or write, is somehow to capture it, thus making it one’s own.
But with this appropriation comes the realization that we have denied the

immediacy of reality and that in creating a substitute we have but spun
another thread in the web of our grand illusion.

Heinz Rudolf Pagels

Computer architects in industry and academia heavily rely on cycle-
level (and in some cases truly cycle-accurate) simulators, i.e., architec-
tural simulators are used at various stages during the design of a new
processor. However, architectural cycle-level simulation is very costly
in terms of simulation time as well as development time at the earliest
stages of the design.

Architectural simulators model the microarchitecture at some level
of abstraction, i.e., they provide detailed software models of proces-
sor features such as caches, branch predictors, instruction windows,
reorder buffers, load/store queues, etc. Typically, individual instruc-
tions are tracked as they propagate through the processor’s pipeline.
Industrial single-core simulators typically simulate one thousand to ten
thousand (target) cycles per second (1 KHz to 10 KHz); academic sim-
ulators typically run ten to a few hundred kilo instructions per second
(KIPS) [14]. The input for these simulators are entire benchmarks, ex-
ecuting hundreds of billions of instructions. Multicore processor sim-
ulators exacerbate the problem because they have to simulate multi-
ple cores, and have to model inter-core communication (e.g., coherence
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Figure 2.1: Trade-offs in architectural simulation and modeling.

traffic) as well as resource contention in shared resources such as shared
caches, interconnection network, chip I/O, etc.

Researchers and computer designers are well aware of the (multi-
core) simulation problem and have proposed various methods for cop-
ing with it. Figure 2.1 illustrates the trade-offs between accuracy, sim-
ulation speed and simulator development time one has to make de-
pending on the objective of a simulation technique. For example, when
making system-level design decisions early in the design process, too
much detail only gets in the way. One can then choose to trade accu-
racy for simulation speed and development time, in order to define the
high-level microarchitecture more quickly. On the other hand, when
studying a particular low-level microarchitectural feature in detail, e.g.,
memory dependence prediction, one needs a more accurate but slower
simulator, which is more costly to build.

Computer architects have a set of evaluation tools in their toolbox,
often used in combination, i.e., many of the techniques are orthogonal.
These tools include: functional simulation and full-system simulation,
specialized cache and branch predictor simulation, trace-driven and
execution-driven detailed cycle-accurate simulation, and many tech-
niques to speedup the simulation such as sampling, parallelization,
hardware acceleration, statistical and analytical modeling.

2.1 Functional simulation and full-system simula-
tion

Basically, a functional simulator implements an instruction set archi-
tecture (ISA), i.e., it emulates how the output operand of an instruction
is computed from its input operands. Functional simulation is most
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useful for determining whether the design implements an instruction
set correctly and whether a software program, including the operating
system (OS), behaves as expected. It mimics the behavior of a micro-
processor or the entire computer system. In other words, for a given
program and its input, the emulator produces the same result as a real
hardware execution. Functional simulation does not model any timing
aspects, nor does it model the microarchitectural components. Conse-
quently, functional simulation has poor accuracy with respect to perfor-
mance evaluation, but on the other hand it is very fast. Moreover, the
development cost is small because functional simulators have a long
lifetime; a new implementation is needed only when the instruction set
architecture changes.

For many programs, including the SPEC CPU benchmark suite, it is
sufficient to emulate the system calls, without actually executing the
kernel-space code. However, some applications such as webservers
and databases require that the complete software stack from a real sys-
tem runs on the simulator without modification. Moreover, the recent
shift towards multicore processors running multithreaded applications
drives the need for the simulation of the entire computer system, in-
cluding the OS, device drivers, etc. (In particular, OS thread scheduling
can affect program behavior.) Basically, a full-system simulator imple-
ments an instruction set emulator and a virtual hardware layer capa-
ble of booting an operating system. Examples of simulators with full-
system support are SimOS [66], Simics [53], M5 [6] and PTLSim [81].

2.2 Specialized cache and branch predictor simula-
tion

When studying caches or branch predictors in isolation, one can use a
specialized simulator. A functional simulator generates an instruction
or address stream which is fed into the specialized simulator. The spe-
cialized simulator models the cache hierarchy or the branch predictor
in detail, but no other processor features are implemented.

Specialized simulation yields accurate cache miss rates or branch
misprediction rates. However, overall performance accuracy is poor
due to the lack of modeling other microarchitectural features which
may have impact on the performance as well. The main benefit of these
types of simulators lies in the low development cost and the high sim-
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ulation speed. SimpleScalar [9] and M5 [6] are two example simulation
tool sets which provide specialized simulation models. Sugumar and
Abraham [70] show how multiple caches under optimal replacement
can be simulated simultaneously. Other well-known cache simulators
are DineroIV [18] and cachesim [10].

2.3 Trace-driven and execution-driven cycle-accu-
rate simulation

Highly accurate simulation models most of the microarchitectural fea-
tures in a cycle-accurate manner. Cycle-accurate simulation comes in
two variants: trace-driven simulation and execution-driven simulation.

Trace-driven simulation separates the functional simulation from
the timing simulation. A benchmark trace is generated with a func-
tional simulator. This trace is fed into the detailed architectural timing
simulator. The benefit of this approach is that a benchmark needs to
be functionally simulated only once. A drawback is that these traces
can be very large, requiring a lot of disk space. In addition, the traces
do not incorporate instructions along mispredicted paths. Hence, it is
impossible to model the effects these off-path instructions may have on
performance.

Execution-driven simulation combines functional simulation and
detailed architectural timing simulation, e.g., SimpleScalar [9], M5 [6],
PTLSim [81], etc. The simulator takes the original binary program as
input and executes it as it would be done on the real hardware. In such
way, off-path instructions are simulated as well and the timing simula-
tion captures the possible interference off-path instructions have on the
overall performance.

Cycle-accurate simulation is very slow because it simulates all the
processor features in detail. For the same reason it requires a long time
to develop. Fortunately, the development time can be improved by
providing a modular simulation infrastructure, such as Asim [24], Lib-
erty [72] and Unisim [2].
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2.4 Accelerating simulation

As mentioned before, architectural simulation is very time-consuming.
Throughout the years, researchers have proposed various techniques
to speed up simulation. We will discuss some of these techniques in
the following subsections.

2.4.1 Sampled simulation

The idea of sampled simulation is to simulate a limited number of sam-
pling units instead of the entire dynamic instruction stream. A sam-
pling unit is a (small) fragment of consecutive instructions that is run
on a detailed cycle-accurate simulator. One can use functional simula-
tion in order to fast-forward between sampling units or use architec-
tural checkpoints per sampling unit.

The major difficulty of sampled simulation is to select representa-
tive sampling units, either one big sample or multiple small samples. A
more general problem is that the execution of a program consists of sev-
eral program phases. Therefore, sampling units must be chosen such
that they represent each major program phase. The sampling units are
selected either randomly (Conte et al. [17]), or periodically (SMARTS by
Wunderlich et al. [79]), or based on phase analysis (SimPoint by Sher-
wood et al. [67]).

Sampled simulation is fast and yields accurate performance esti-
mates. Recent advances in architecture and microarchitecture state
(re-)construction prior to each sampling unit enable the simulation of
single-threaded benchmarks in the order of minutes with an error of
around a few percent [73, 78].

2.4.2 Statistical simulation

The main objective of statistical simulation is similar to sampled simu-
lation, i.e., the goal is to reduce the number of instructions that need to
be simulated. Statistical simulation first records the distributions of im-
portant program characteristics into a statistical profile. The statistical
profile serves as input for a synthetic trace generator, which generates
a much smaller trace compared to the original full program trace. This
synthetic trace statistically resembles the original trace by construction.
Simulating this synthetic trace on a cycle-accurate simulator yields per-
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formance estimates.
Although statistical simulation is (slightly) less accurate compared

to cycle-accurate simulation of the full program trace, it is still capable
of accurately tracking performance trends throughout the design space.
Moreover, simulating a synthetic trace is done very quickly because it
is many orders of magnitude smaller than the full program trace.

Chapter 3 elaborates on the statistical simulation paradigm, which
forms the basis for the work presented in Chapters 4 and 5.

2.4.3 Analytical modeling

There are basically three approaches to analytical performance mod-
eling: empirical modeling, mechanistic modeling and hybrid empiri-
cal/mechanistic modeling.

Empirical modeling, also called black-box modeling, learns a per-
formance model through training and does not assume specific knowl-
edge about the target processor. Ipek et al. [39] learn a model through
neural networks, and Lee and Brooks [50] build a model through re-
gression modeling. Lee et al. [51] leverage regression modeling to pre-
dict multiprocessor performance running multiprogram workloads.

Mechanistic modeling [26, 46, 47, 54, 69, 71] constructs a model by
looking into the mechanisms in the target processor that affect the per-
formance. Michaud et al. [54], Karkhanis and Smith [46], Taha and
Wills [71] estimate performance through interval-based models which
focus on the processor’s issue rate. By modeling the performance in
terms of the processor’s dispatch behavior, Eyerman et al. [26] signifi-
cantly simplify these interval models. These first-order core-level per-
formance models serve as the basis for interval simulation which we
describe in Chapter 6.

Hybrid mechanistic/empirical modeling proposes a mechanistic
performance formula in which the parameters are derived through
empirical modeling, see for example the pipeline model by Hartstein
and Puzak [34].

2.4.4 Parallelized and/or hardware-accelerated simulation

Architectural simulation is intrinsically highly parallelizable because
it models hardware that has much inherent parallelism. By exploit-
ing the coarse-grained parallelism in the simulator, one can signifi-
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cantly speedup the simulation. For example, the parallel Wisconsin
Wind Tunnel II [57] achieves a speedup of factor five when simulating
a thirty-two core target machine on an eight-core host processor ver-
sus a single-core host processor. A disadvantage, is that a parallelized
architectural simulator is tedious to develop. Penry et al. [63] build a
structural model of a CMP that enables them to automatically paral-
lelize the simulator. The individual components in the structural CMP
model are designed to execute concurrently in hardware and are thus
candidates to run in parallel in simulation.

In the recent years researchers have looked at field-programmable
gate-arrays (FPGA) to speed up simulation, see for example RAMP by
Wawrzynek et al. [77], FAST by Chiou et al. [15], Pellauer et al. [62] and
Penry et al. [63]. FPGA-accelerated simulation speeds up simulation
by mapping cycle-accurate timing models onto FPGAs. The simula-
tion speedup comes from exploiting fine-grain parallelism in the FPGA.
FPGA-integrated simulators typically run at a speed of a few million
instructions per second (MIPS).

2.4.5 Interval simulation

As mentioned before, we propose a new simulation paradigm in this
dissertation, namely, interval simulation. Interval simulation bridges
the gap between detailed cycle-accurate simulation and mechanistic
analytical performance modeling; it combines an interval-based core-
level model [26] with specialized memory hierarchy, inter-connection
network and branch predictor simulation. In other words, the analyt-
ical core-level model replaces the detailed core-level model in a truly
cycle-accurate simulator. In such way, it raises the level of abstraction.

Unlike all other techniques mentioned in this section, interval sim-
ulation tackles the CMP simulation problem on two fronts, i.e., be-
sides achieving a substantial simulation speedup, it significantly sim-
plifies the simulator reducing development time and cost. In addi-
tion, interval simulation does not compromise accuracy too much, i.e.,
it yields accurate performance estimates, and allows to make accurate
high-level microarchitecture design decisions.

Chapter 6 describes interval simulation in more detail.
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Technique Development Evaluation Accuracy Multicore
time time

Functional simulation excellent good poor yes
Specialized simulation
(cache & branch predictor) very good good poor yes
Cycle-accurate simulation poor poor excellent yes

Sampled simulation poor good good yes
Analytical modeling excellent excellent good no
Parallelized and hardware-
accelerated simulation very poor good excellent yes

Statistical simulation poor to good very good good yes
Interval simulation very good good good yes

Table 2.1: Comparing simulation and modeling techniques in terms of devel-
opment time, evaluation time, accuracy, and ability to model multicore pro-
cessors.

2.5 Overview and Discussion

Table 2.1 gives an overview of the simulation and modeling techniques
in the toolbox of a computer architect. It summarizes the trade-offs
of different techniques in terms of development time, evaluation time,
and accuracy, and the ability to model multicore processors. It clearly
illustrates the role of statistical simulation and interval simulation.
Both techniques cope with the simulation speed problem, however,
they tackle the problem on different sides: statistical simulation re-
duces the number of instructions that need to be simulated, whereas
interval simulation reduces the number of instructions that need to be
executed on the host in order to simulate one instruction. In addition,
interval simulation also tackles the development time problem.



Chapter 3

Statistical Simulation:
State-of-the-Art

Statistics are like bikinis.
What they reveal is suggestive, but what they conceal is vital.

Aaron Levenstein

Statistical performance modeling has gained a lot of interest over the
past few years. This chapter describes the state-of-the-art in statistical
simulation prior to this dissertation [19].

3.1 Single-core statistical simulation

Statistical simulation consists of three steps as shown in Figure 3.1. We
first compute a statistical profile (i) through specialized functional sim-
ulation and/or through profiling, using (dynamic) binary instrumen-
tation. This profile contains a number of important program execu-
tion characteristics such as control flow behavior, instruction mix, inter-
instruction dependences, branch miss behavior, cache miss behavior,
and TLB miss behavior. Subsequently, we use this statistical profile
to generate a synthetic trace (ii) that is much smaller than the original
program trace from which the profile was generated. In Chapter 4, we
show that the synthetic trace can be up to 4 orders of magnitude smaller
than the original program trace. The synthetic trace exhibits the same
execution characteristics as the original program trace by construction.
In the final step we simulate this synthetic trace (iii) on a statistical sim-
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Figure 3.1: Statistical simulation: general framework.

ulator yielding performance metrics such as IPC. Given its short length,
the synthetic trace rapidly runs to completion.

3.1.1 Statistical profiling

In statistical profiling we make a distinction between microarchi-
tecture-independent characteristics and microarchitecture-dependent
characteristics. The microarchitecture-independent characteristics can
be used across microarchitectures during design space exploration.
The microarchitecture-dependent characteristics on the other hand are
particular to a specific microarchitecture component configuration.
Ideally, the profile should contain only microarchitecture-independent
characteristics, such that it applies to many microarchitectures and
thus needs to be determined only once. Figure 3.2 illustrates what a
statistical profile looks like; we now discuss each component in more
detail.
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Figure 3.2: Illustration of the statistical profile. The notation ‘A|ABB’ repre-
sents basic block A with its history of three preceding basic blocks ABB.

Microarchitecture-independent characteristics

The key structure in the statistical profile is the statistical flow graph
(SFG) [19] which represents a program’s control flow behavior in a sta-
tistical manner. In an SFG, the nodes are the basic blocks along with
their basic block history, i.e., the basic blocks being executed prior to
the given basic block. The order of the SFG is defined as the length of
the basic block history, i.e., the number of predecessors to a basic block
in each node of the SFG. The order of an SFG will be denoted with
the symbol k throughout this dissertation—throughout this chapter we
consider third-order SFGs unless stated otherwise. For example, con-
sider the following basic block sequence ‘ABBAABAABBA’. The third-
order SFG then makes a distinction between basic block ‘A’ given its
basic block history ‘ABB’, ‘BBA’, ‘AAB’, ‘ABA’; the SFG will thus con-
tain the following nodes: ‘A|ABB’, ‘A|BBA’, ‘A|AAB’ and ‘A|ABA’. The
edges in the SFG interconnecting the nodes represent transition proba-
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bilities between the nodes. Figure 3.2 gives an example third-order SFG
for the aforementioned basic block sequence.

The idea behind the SFG is to model all the other program char-
acteristics along the nodes of the SFG. This allows for modeling pro-
gram characteristics that are correlated with (or dependent on) execu-
tion path behavior. This means that for a given basic block, different
statistics are computed for different basic block histories, i.e., we collect
different statistics for basic block ‘A’ given its history ‘AAB’ and ‘ABB’.
For example, the probability for a cache miss for a given load in basic
block ‘A’ might be different depending on its basic block history. On
the other hand, in case the correlation between program characteristics
spans a number of basic blocks that is larger than the SFG’s order, it
will be impossible to model such correlations within the SFG, unless
the order of the SFG is increased. However, in the next chapter we will
show that it is possible to decouple cache miss correlation from the or-
der of the SFG, i.e., we capture correlation that spans a number of basic
blocks larger than the SFG’s order.

The second microarchitecture-independent characteristic is the in-
struction mix. We classify the instruction types into 16 classes accord-
ing to their semantics: nop, trap, load, store, software prefetch, write
hint, integer conditional branch, floating-point conditional branch, in-
direct branch, integer arithmetic and logical operation, integer mul-
tiply, integer divide, floating-point arithmetic and logical operation,
floating-point multiply, floating-point divide and floating-point square
root. This distinction is made based on the instruction’s semantics and
its execution latencies. For each instruction we also record the num-
ber of input registers or source operands. Note that some instruction
types, although classified within the same instruction class, may have
a different number of source operands.

For each operand we also record the dependence distance which is
the number of dynamically executed instructions between the produc-
tion of a register value (register write) and its consumption (register
read). We only consider read-after-write (RAW) dependences since
our focus is on out-of-order architectures in which write-after-write
(WAW) and write-after-read (WAR) dependences are dynamically re-
moved through register renaming as long as enough physical registers
are available. Note that recording the dependence distance requires
storing a distribution since multiple dynamic versions of the same static
instruction could result in multiple dependence distances. Although



3.1 Single-core statistical simulation 23

very large dependence distances can occur in real program traces, for
our purposes we can limit the dependence distances in the distribution
to the maximum reorder buffer size we want to consider during statis-
tical simulation. In our study, we limit the dependence distance to 512
which allows for modeling a wide range of microprocessors.

Microarchitecture-dependent characteristics

In addition to the microarchitecture-independent characteristics men-
tioned above, we also measure a number of microarchitecture-de-
pendent characteristics that are related to locality events. The reason
for choosing to model these events in a microarchitecture-dependent
way is that locality events are hard to model using microarchitecture-
independent metrics. We therefore take a pragmatic approach and
collect cache miss and branch miss information for particular cache
configurations and branch predictors.

For the branch statistics we consider (i) the probability of a taken
branch, (ii) the probability of a fetch redirection (target misprediction in
conjunction with a correct taken/not-taken prediction for conditional
branches), and (iii) the probability of a branch misprediction. When
measuring the branch statistics we consider a FIFO buffer as described
in [19] in order to model delayed branch predictor update.

The cache statistics consist of the following six probabilities: (i) the L1
I-cache miss rate, (ii) the L2 cache miss rate due to instructions only1,
(iii) the L1 D-cache miss rate, (iv) the L2 cache miss rate due to data
accesses only, (v) the I-TLB miss rate and (vi) the D-TLB miss rate.

3.1.2 Synthetic trace generation

The second step in the statistical simulation technique is to generate a
synthetic trace from the statistical profile. The synthetic trace generator
takes as input the statistical profile and outputs a synthetic trace that
is fed into the statistical simulator. Synthetic trace generation uses ran-
dom number generation for generating a number in the interval [0, 1];
this random number is then used with the inverse cumulative distribu-
tion function to determine the particular value for the program charac-
teristic, see Figure 3.3.

1We assume a unified last-level L2 cache. However, we make a distinction between
L2 cache misses due to instructions and due to data.
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Figure 3.3: Illustrating synthetic trace generation using random number gen-
eration and the cumulative dependence distance distribution.

In particular, synthetic trace generation walks the SFG in a statisti-
cal way, i.e., for each node in the SFG, it determines the next node based
on the inter-node transition probabilities. For each node, it outputs
the instructions. The synthetic trace is the resulting linear sequence
of the synthetic instructions. Synthetic trace generation determines the
dependence distance for each input register for each instruction. In
other words, it determines on which prior instruction this instruction
depends through a RAW register dependence. Furthermore it labels
the I-cache miss information, i.e., it describes whether the instruction
fetch results in an L1 hit, L2 hit or L2 miss and whether the memory
access generates a TLB miss. In case of a branch, the generator labels it
as taken or not taken. Additionally, the generator determines whether
it is a fetch redirected, a mispredicted or a correctly predicted branch.
Loads and stores are assigned with D-cache miss information similar to
the I-cache miss labels.

3.1.3 Synthetic trace simulation

Simulating the synthetic trace is fairly straightforward. In fact, the syn-
thetic trace simulator itself is very simple as it does not need to model
branch predictors nor cache hierarchies; also, all the ISA’s instruction
types are collapsed in a limited number of instruction types.

Instruction scheduling and execution is done in a way similar to
conventional cycle-accurate architectural simulation. Instructions are
scheduled for execution on a functional unit when their dependences
have been resolved, and they are steered towards a specific functional
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unit based on their instruction type. The instruction gets assigned a
latency corresponding to the functional unit’s operation latency, except
for load instructions, for which the latency depends on their D-cache
label and D-TLB label.

A load instruction’s memory access latency is the maximum of the
D-cache latency and the D-TLB latency. If the D-cache label is an L1
hit, an L2 hit or an L2 miss, then the D-cache latency equals the L1
access latency, the L2 access latency or the main memory access latency,
respectively. If the load instruction incurs a D-TLB miss then the D-TLB
latency equals the D-TLB miss latency. In the case of an I-cache miss,
the fetch engine stops fetching for a number of cycles equal to the miss
penalty.

Branches are labeled in the synthetic trace. The label states whether
the branch is taken, fetch redirected or mispredicted. It determines
the action the statistical simulator should take, similar to conventional
architectural simulation. In particular, depending on the aggressive-
ness of the instruction cache fetch policy, fetch may stop upon a taken
branch, or fetch may be redirected. On a branch misprediction, syn-
thetic instructions are fed into the pipeline as if they were from the cor-
rect path. When the branch is resolved, the pipeline is flushed and re-
filled with synthetic instructions from the correct path. This is to model
resource contention in case of a branch misprediction. Note that the sta-
tistical profile mentioned above does not consider off-path instructions;
the statistics only concern on-path instructions.

The important benefit of statistical simulation is that the synthetic
traces are very short. The performance metrics such as IPC quickly con-
verge to a steady-state value when simulating a synthetic trace. Syn-
thetic traces containing a few million instructions are sufficient for ob-
taining both stable and accurate performance estimations.

3.2 Discussion on applicability

The use of microarchitecture-dependent characteristics in the statistical
profile limits the applicability of statistical simulation for design space
exploration. For example, whenever a new branch predictor or a new
cache hierarchy is to be considered, we need to collect a new statistical
profile. To address this issue in the context of caches, techniques can
be used for measuring cache profiles for multiple caches simultane-
ously in a single profiling run [36, 70]. However, a better solution to
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recompute profile microarchitecture structure and/or configuration

yes

cache hierarchy (number of cache levels, size,
associativity, line size, replacement policy,
line updating policy)

branch predictor (type and size)

no

processor width (fetch, decode, dispatch, is-
sue and commit width)

pipeline depth (front-end pipeline depth)

ROB size

LSQ size

fetch buffer size

number and types of the functional units

instruction execution latencies

memory hierarchy (L1, L2 and DRAM) access
latencies

Table 3.1: Example microarchitectural parameters that do or do not require
that a new statistical profile is computed.

improve the applicability of statistical simulation would be to replace
the microarchitecture-dependent characteristics by microarchitecture-
independent characteristics, because the same profile could then be
used across the entire design space, i.e., the profile is independent
of the microarchitectural configuration. In this dissertation we will
replace the microarchitecture-dependent cache statistics by (almost)
microarchitecture-independent cache statistics, see Chapter 5 on statis-
tical simulation for CMP design space explorations.

Since a statistical profile already contains a number of microarchi-
tecture-independent characteristics, a very large number of microar-
chitectural parameters can still be varied during design space explo-
ration without having to recompute the statistical profile, for example
pipeline depth, processor width, and ROB/LSQ size, see Table 3.1. This
allows statistical simulation to yield substantial speedups during de-
sign space exploration.

A second note that we would like to make is that this approach is or-
thogonal to sampled simulation approaches such as SimPoint [64, 67].
SimPoint, as an example sampling approach, selects a number of repre-
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sentative simulation points over the entire program execution. Statisti-
cal simulation can then be applied to the individual simulation points.
The important advantage of statistical simulation is that the number of
simulated instructions is smaller than for SimPoint. In addition, sta-
tistical simulation simulates the branch predictor and the cache hierar-
chy in a statistical manner which is faster than the detailed simulation
as required by SimPoint. However, statistical simulation needs to re-
compute the statistical profile when the cache or branch predictor is
changed during design space exploration; this is not the case for Sim-
Point. Nevertheless, collecting a statistical profile is faster than running
a detailed processor simulation. So, in summary, statistical simulation
is faster than SimPoint and both techniques are orthogonal.

3.3 Other work in statistical modeling

Noonburg and Shen [58] have proposed to model program execution
as a Markov chain in which the states are determined by the microar-
chitecture and the transition probabilities by the program. They have
done so for a simple superscalar processor. However, extending their
approach to large-resource out-of-order architectures is infeasible be-
cause of the exploding complexity of the Markov chain.

Iyengar et al. [40, 41] have taken a different approach in SMART.
They use a statistical control flow graph to identify representative trace
fragments; these trace fragments are extracted from the real program
trace and are coalesced to form a reduced program trace. The statisti-
cal control flow graph uses the notion of a fully qualified instruction.
A fully qualified instruction is an instruction along with its context.
The context of a fully qualified instruction consists of its n preced-
ing singly qualified instructions. A singly qualified instruction is an
instruction along with its instruction type, I-cache behavior, TLB be-
havior, and if applicable, its branching behavior and D-cache behavior.
SMART makes a distinction between two fully qualified instructions
that have the same history of preceding instructions, however, they dif-
fer in a singly qualified instruction; that singly qualified instruction can
be a cache miss in one case while being a hit in another case. Model-
ing a program execution using fully qualified instructions requires a
lot of memory space to collect the statistical profile: the authors have
reported that for some benchmarks, information needed to be erased
from the statistical profile in order not to exceed the amount of mem-
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ory available in the machine they have done their experiments on.
More recently, a number of papers have been published on the sta-

tistical simulation framework as we envision it in this dissertation. The
idea is to collect a number of program characteristics and to generate
a synthetic trace from them. This trace is then simulated on a simple
trace-driven statistical simulator. The initial models proposed along
this approach [11, 20, 21] are fairly simple in the sense that mostly
aggregate statistics are used to model the program execution; these
approaches do not model characteristics at the basic block level. Os-
kin et al. [61] have proposed the notion of a graph with transition
probabilities between the basic blocks while still using aggregate statis-
tics. Follow-on work has introduced a more fine-grained program
characterization. Nussbaum and Smith [59] have correlated various
program characteristics to the basic block size in order to improve ac-
curacy. Eeckhout et al. [19] have proposed the statistical flow graph
(SFG) which models a program’s control flow in a statistical manner
and which captures path-dependent program characteristics, i.e., cor-
related to the SFG.

A few papers have extended the single-processor statistical simula-
tion paradigm to multithreaded programs. Nussbaum and Smith [60]
have adapted statistical simulation for shared-memory multiproces-
sor (SMP) systems. To do so, they have extended statistical simula-
tion to model synchronization and accesses to shared memory. Hughes
and Li [38] more recently have introduced synchronized statistical flow
graphs that incorporate inter-thread synchronization. Cache behavior
is still modeled based on cache miss rates though; consequently, these
proposals are unable to model shared caches as observed in modern
CMPs.

Petoumenos et al. [65] have proposed StatShare, a statistical model
for shared caches, which is derived from StatCache [4]. StatCache uses
sparse data samples collected during a single run to estimate the cache
miss rate assuming a fully-associative cache with random replacement.
Chandra et al. [12] have proposed performance models to predict the
impact of cache sharing on co-scheduled programs. The output pro-
vided by the performance model is an estimate of the number of extra
cache misses for each thread due to cache sharing. These performance
models are limited to predicting cache sharing effects, and they do not
predict overall performance. Moreover, the performance models as-
sume that co-scheduled programs make fixed progress, i.e., the models
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ignore the effect cache sharing may have on how programs affect each
other’s performance.

Recent work also has focused on generating synthetic benchmarks
rather than synthetic traces. Hsieh and Pedram [37] have gener-
ated a fully functional program from a statistical profile. However,
all the characteristics in the statistical profile are microarchitecture-
dependent, which makes this technique useless for microprocessor
design space explorations. Bell and John [3] have generated short syn-
thetic benchmarks using a collection of microarchitecture-independent
and microarchitecture-dependent characteristics similar to what is
done in statistical simulation. This work is further improved by Joshi et
al. [44]: they use only microarchitecture-independent workload char-
acteristics, allowing them to use the synthetic benchmark across a wide
range of microarchitectures. Their goal is performance model vali-
dation using small but representative synthetic benchmarks, which
cannot be reverse-engineered.
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Chapter 4

Accurate Memory Data Flow
Modeling in Statistical

Simulation

The obstacle is the path.
Zen Buddhist Proverb

As mentioned in the introduction, previously proposed statistical sim-
ulation approaches assume relatively simple memory data flow statis-
tics. In this chapter we propose three additional memory data flow
modeling features: (i) cache miss correlation, (ii) through-memory
read-after-write dependence distributions, and (iii) cache line reuse
distributions.

4.1 Three shortcomings

The performance of a processor is determined to a great extent by the
performance of the memory subsystem. Therefore, poor modeling of
the memory data flow results in an inaccurate performance model for
the entire processor system. The state-of-the-art in statistical simulation
as described in Chapter 3 considers simple memory data flow model-
ing, which has three major shortcomings.

First, statistical simulation does not capture the possible correlation
between cache misses. Cache misses often occur in certain patterns that
have an important impact on the available memory-level parallelism.
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Independent long-latency misses that are close enough to each other
in the dynamic instruction stream to make it into the reorder buffer
together, overlap their execution, thereby exposing memory-level par-
allelism (MLP).

Second, statistical simulation assumes that load addresses never
alias with preceding store addresses. Under this assumption, loads can
always bypass any store earlier in the load/store queue, which is not
the case in real systems. More accurate modeling would be that a load
does not bypass an aliasing store. However, it may retrieve its data di-
rectly from the store in the load/store queue without having to access
the memory subsystem (load forwarding).

Third, loads and stores are profiled through a specialized cache sim-
ulator which does not take timing into account. Hence, a load is either
a hit or a miss, and in contrast to real systems delayed hits do not occur.
A delayed hit, i.e., a hit to an outstanding cache line, is modeled as a
cache hit although it should see the latency of the outstanding cache
line.

In the following sections we will discuss how we overcome these
shortcomings, which leads to more accurate memory data flow model-
ing in statistical simulation.

4.2 Cache miss correlation modeling

Cache miss correlation refers to the fact that the cache miss behavior
of a particular memory operation (load or store) is highly correlated
with the cache miss behavior of (a) preceding memory operation(s).
Consider for example a loop that walks over an array. Each element
in the array is 8 bytes long and a cache line is 32 bytes long. As a re-
sult, a cache miss will occur every four iterations of the loop assuming
the array is not residing in the cache. This is not accurately modeled
in existing statistical simulation frameworks. The cache statistics for
all iterations of this loop will collapse in a single number, namely the
cache miss rate, which is 25%. During synthetic trace generation, this
single cache miss rate number will result in a cache miss every four
loop iterations on average—there is a variable number of cache hits be-
tween two misses because of the use of random numbers during syn-
thetic trace generation. Through cache miss correlation modeling on
the other hand, the synthetic trace will show one cache miss followed
by exactly three cache hits, i.e., the number of cache hits between two
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Figure 4.1: Illustrating the importance of the accurate modeling of overlap-
ping long-latency loads. A trace of load instructions is shown as well as a
window (ROB) sliding over it; a ROB size of four is assumed in this example.

misses is constant.
Accurately modeling the distance between misses is important be-

cause it has an immediate impact on the amount of memory-level par-
allelism (MLP) that can be exploited, which is illustrated in Figure 4.1.
In both cases, see Figure 4.1 (a) and (b), there are 2 independent long-
latency cache misses out of the 8 loads, i.e., the cache miss rate equals
25% in both cases. In case (a), the long-latency loads are closer to each
other in the dynamic instruction stream than the number of entries in
the ROB, and both long-latency loads will overlap in time provided
that enough miss status holding registers (MSHRs) are available, i.e.,
memory-level parallelism is exposed [16, 45]. However, in case (b),
the penalties for both long-latency loads will serialize, i.e., main mem-
ory access latency will be exposed twice. The reason is that both long-
latency loads are further apart in the dynamic instruction stream than
the ROB size, i.e., the second long-latency load does not reside in the
ROB concurrently with the first long-latency load. We conclude from
this illustration that in order to accurately model memory-level paral-
lelism, it is important to accurately model the distance between long-
latency cache misses. This is achieved in our memory data flow model
through cache miss correlation modeling.

For modeling cache miss correlation, we collect cache miss rate
statistics per static memory operation—per load/store in an SFG-
node—dependent on its global cache miss history, not the local per-
load/store cache miss history. The global cache miss history is a con-
catenation of the most recent cache hit/miss outcomes of all the pre-
ceding memory references. In the above example where a loop walks
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over an array, cache miss correlation allows for making a distinction
between the load operation that results in a cache miss and the other
load operations that result in cache hits. The global cache miss history
for the load miss looks like ‘0111’ where a ‘0’ denotes a cache miss
and a ‘1’ denotes a cache hit. The probability for a cache miss given
the global cache miss history ‘0111’ equals 100%. The probability for a
cache miss equals 0% for the other cache miss histories, ‘1011’, ‘1101’
and ‘1110’. By doing so, a cache miss will be generated every four
loop iterations in the synthetic trace; this matches the original program
execution exactly, and captures the MLP in an accurate manner.

An important choice that needs to be made for modeling cache
miss correlation is how deep the global cache miss history should be.
We consider two implementations. In our first implementation we
choose the global cache miss history as deep as the number of pre-
ceding loads/stores in the basic block history as determined by the
order of the SFG. We will refer to this approach as the coupled cache miss
correlation approach. This means that in a k-th-order SFG, the hit/miss
outcomes for all preceding loads and stores in the k-deep basic block
history serve as a history for the current memory operation’s hit/miss
probability. By doing so, we correlate the current load/store hit/miss
outcome with the preceding hit/miss outcomes from the k-deep ba-
sic block history; we assume k = 10 for the coupled approach unless
mentioned otherwise. In our second implementation, the decoupled
cache miss correlation approach, we decouple the global cache miss his-
tory from the statistical flow graph by computing the current memory
operation’s hit/miss probability dependent on the hit/miss history of
the n preceding loads and stores, and independent of the basic block
history. As will be shown in the evaluation section of this chapter, the
decoupled cache miss correlation implementation is slightly less accu-
rate than the coupled approach, but, it needs significantly less memory
when collecting the statistical profile and requires less disk space for
storing the statistical profile.

We use the cache miss correlation statistics for driving the gener-
ation of cache misses when we generate the synthetic trace. When a
hit/miss outcome needs to be determined, the global hit/miss outcome
generated so far is used to search the cache miss correlation statistic for
the given memory operation. The hit/miss probability corresponding
to the best matching hit/miss history for the given memory operation
is then used for determining whether the memory operation will cause
a hit or a miss.
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Implementing cache miss correlation in an efficient manner is a
challenging task. Our method as detailed above is fairly efficient in
terms of additional storage needed in the statistical profile. By imple-
menting the global cache miss history as an array of bits, we only need
a few extra bytes per load. Previous work done in SMART by Iyengar
et al. [40, 41], however, correlates load misses with fully qualified in-
structions, as discussed in the previous chapter. In other words (and
in terms of SFG terminology), they build cache miss correlation inside
the structure of the SFG—they do not simply annotate the SFG with
cache miss correlation information as we do; they actually restructure
the SFG such that cache miss correlation is embedded in the SFG. As
a result of that, they have separate nodes in the SFG in case one of the
basic blocks in the basic block history has an instruction that has a dif-
ferent cache miss behavior. This makes the SFG explode—the authors
of [40, 41] admit that for some benchmarks they were unable to build a
fully qualified SFG in memory. In our work on the other hand, we use
the SFG for keeping track of the control flow and use a global cache
miss history per load for dealing with cache miss correlation. This
leads to a more space-efficient solution in terms of memory usage and
storage requirements.

4.3 Read-after-write memory dependences

Out-of-order execution of memory operations is an important source
of performance gain in out-of-order microprocessors. The goal is to ex-
ecute load instructions as soon as possible (as soon as their source
operands are ready) provided that read-after-write (RAW) depen-
dences through memory are respected. This allows load instructions to
be executed before independent preceding store instructions.

Early execution of loads is achieved in out-of-order microproces-
sors through two techniques, load bypassing and load forwarding [43].
Load bypassing refers to executing a load earlier than preceding stores;
this is possible provided that the load address does not alias with those
store addresses. On the other hand, load forwarding allows the load to
retrieve its data directly from the store without accessing the memory
hierarchy if the load address aliases with a preceding store address—
there is a RAW dependence.

Modeling load bypassing and load forwarding can be done in statis-
tical simulation by measuring the RAW memory dependence distribution.
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This distribution quantifies the probability that a load address aliases
with one of the preceding store addresses, and is measured on a per-
instruction basis in the context of the SFG. In the synthetic trace, RAW
dependences through memory are then marked between the memory
operations. During synthetic trace simulation, this information is used
to determine the scheduling of memory operations, i.e., to determine
whether or not load bypassing or load forwarding is possible.

4.4 Delayed hits

Contemporary microprocessors typically use non-blocking caches [27,
49]. Non-blocking caches allow for overlapping cache misses by
putting aside load misses in MSHRs while servicing other load instruc-
tions. These overlapped load instructions can also be cache misses,
thereby exposing MLP in case these loads access different cache lines,
or, exposing so called delayed hits in case these loads access the same
cache line. Section 4.2 on cache miss correlation addressed the former;
this section concerns the latter.

Prior to this dissertation, statistical simulation frameworks only
considered cache hits and misses and they did not model delayed hits,
i.e., the modeled latencies are the L1, L2 and main memory access
latencies. In a processor with non-blocking caches however, load in-
structions can see latencies that are different from the L1 access latency,
L2 access latency and main memory access latency. Consider for exam-
ple the case where a load accesses cache line A at time t100 and this is a
cache miss in L2. If the L2 access latency is twenty cycles, the load fin-
ishes execution at time t120. If another load accesses the same cache line
at time t107 it will then see a load execution latency of thirteen cycles.
The latter load then is a delayed hit or a secondary miss. Current statistical
simulation frameworks will consider the delayed hit as a hit and will
assign the L1 access latency to this load which is an underestimation of
the load’s execution latency.

In order to model delayed hits within statistical simulation, we com-
pute the missed cache line reuse distance. This is the number of memory
references between two memory references accessing the same cache
line, of which the first memory reference in the dynamic instruction
stream is a cache miss. This is measured per instruction depending
on the basic block history (through the SFG). Since an instruction may
have multiple missed cache line reuse distances depending on the in-
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Figure 4.2: Modeling delayed hits in the synthetic trace simulator.

struction’s basic block history, we in fact measure a distribution of the
missed cache line reuse distance.

We measure the missed cache line reuse distance for both load and
store operations; this allows for modeling delayed hits for various
cache write policies (write-back and write-through) and cache allo-
cation policies (write-allocate and write non-allocate). An additional
optimization that we explore, is to measure the missed cache line reuse
distance distribution dependent on the cache miss correlation informa-
tion. In such way, we are able to more accurately model delayed hits
based on global cache miss history information. This was beneficial for
the accurate modeling of several benchmarks as will be shown in the
evaluation, see Section 4.6.

In order to model delayed hits in the statistical simulation frame-
work, slight modifications need to be made to the synthetic trace sim-
ulator. This is illustrated in Figure 4.2. Consider the program trace
shown on the left; we have a load miss x to cache line A followed by a
load hit y to the same cache line. There are three possible scenarios that
need to be modeled in the synthetic trace simulator:

(1) load x has finished its execution when load y is issued. Load y
then gets assigned the L1 access latency. This scenario is accu-
rately modeled in existing statistical simulation frameworks.

(2) load x is still executing when load y is issued. Load y then gets
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assigned the remaining execution latency for load x.

(3) load x is not yet executing when load y is issued—this is possible
because of out-of-order execution. Load y is then turned into a
cache miss and thus gets assigned the next cache level’s access
latency. Load x which is issued later on, then gets assigned the
remaining execution latency of the resolving load y.

The latter two scenarios need special support in the synthetic trace sim-
ulator for accurate memory data flow modeling.

4.5 Experimental setup

We use SimpleScalar/Alpha v3.0 [9] in our experiments; we have en-
hanced the out-of-order simulator in the SimpleScalar Tool Set with a
more realistic memory subsystem including MSHRs and store buffers.
We use Wattch [8] for estimating energy consumption, which will be
used to search for the most energy-efficient microarchitectural configu-
ration in a large design space.

The benchmarks along with their reference inputs used in this study
are the SPEC CPU 2000 benchmarks, see Table 4.1. The binaries of these
benchmarks are taken from the SimpleScalar website1. We consider sin-
gle (and early) simulation points of one hundred million instructions as
determined by SimPoint [64, 67] in all of our experiments. Note that our
goal is not to compare against SimPoint. We are just using SimPoint to
reduce the simulation time when evaluating the statistical simulation
framework: we compare statistical simulation against detailed simula-
tion, and running the detailed simulations is very time-consuming—
this is the main motivation for statistical simulation in the first place.
We also consider ten-billion-instruction sequences in order to evaluate
statistical simulation for longer instruction sequences.

Table 4.2 shows the processor models that we use in this chapter. It
shows the baseline configuration along with eight other configurations.
These configurations vary in their processor core, branch predictor and
memory hierarchy. The reason for considering multiple configurations
is to evaluate the accuracy of statistical simulation over multiple points
in the design space.

1http://www.simplescalar.com
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benchmark input simpoint

ammp ref 2,130
applu ref 18
apsi ref 46
art ref-110 67
bzip2 program 9
crafty ref 0
eon rushmeier 18
equake ref 194
facerec ref 136
fma3d ref 298
galgel ref 3,150
gap ref 2,094
gcc 166 99
gzip graphic 9
lucas ref 35
mcf ref 316
mesa ref 89
mgrid ref 6
parser ref 16
perlbmk makerand 1
sixtrack ref 82
swim ref 5
twolf ref 31
vortex ref2 57
vpr route 71
wupwise ref 584

Table 4.1: The SPEC CPU2000 benchmarks, their reference inputs and the
single 100 M-instruction simulation points being used.
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baseline config 1 config 2

ROB/LSQ 128/32 32/16 32/16
processor width 8 4 4
I-cache 8 KB 8 KB 8 KB
D-cache 16 KB 16 KB 16 KB
L2 cache 1 MB 1 MB 1 MB
latencies (L1/L2/MEM) 2/20/150 2/20/300 2/20/300
entries in I-/D-TLB 32/32 32/64 32/64
hybrid branch predictor 8 K-entry 2 K-entry 8 K-entry

config 3 config 4 config 5

ROB/LSQ 32/16 32/16 128/64
processor width 4 4 8
I-cache 32 KB 32 KB 8 KB
D-cache 64 KB 64 KB 16 KB
L2 cache 4 MB 4 MB 1 MB
latencies (L1/L2/MEM) 4/30/300 4/30/300 2/20/300
entries in I-/D-TLB 64/128 64/128 32/64
hybrid branch predictor 2 K-entry 8 K-entry 2 K-entry

config 6 config 7 config 8

ROB/LSQ 128/64 128/64 128/64
processor width 8 8 8
I-cache 8 KB 32 KB 32 KB
D-cache 16 KB 64 KB 64 KB
L2 cache 1 MB 4 MB 4 MB
latencies (L1/L2/MEM) 2/20/300 4/30/300 4/30/300
entries in I-/D-TLB 32/64 64/128 64/128
hybrid branch predictor 8 K-entry 2 K-entry 8 K-entry

Table 4.2: Simulated processor models used for studying the memory data
flow modeling.
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Figure 4.3: Minimum, maximum and average IPC estimates over twenty dif-
ferent runs per SPEC CPU2000 benchmark normalized against the IPC result
obtained through detailed simulation; the error bars denote the minimum and
maximum IPC value.

4.6 Evaluation

We first quantify the simulation speed of our improved statistical sim-
ulation framework. We then quantify the performance prediction accu-
racy and how it improves through accurate memory data flow model-
ing. We subsequently measure how well the improved statistical sim-
ulation approach can predict performance trends, i.e., we evaluate the
relative accuracy and its ability for driving design space explorations.
Finally, we also quantify the storage requirements of the statistical pro-
files and the amount of memory used during statistical profiling. In all
experiments we use tenth-order SFGs, unless stated otherwise.

4.6.1 Simulation speed

As stated before, an important feature of statistical simulation is its sim-
ulation speed; we speedup the simulation by reducing the dynamic
instruction count. Performance characteristics quickly converge to a
steady-state value due to the statistical nature of the approach; in the
following experiment we show that synthetic traces of one million in-
structions are sufficient.

For each SPEC CPU2000 benchmark, we have generated twenty
synthetic traces of one million instructions. Each of these synthetic
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traces was generated from a single statistical profile using differ-
ent random seeds in the synthetic trace generator. Figure 4.3 shows
the minimum, the maximum, and the average IPC value obtained
through synthetic simulation, normalized against the IPC value ob-
tained through detailed simulation. A normalized IPC larger or smaller
than one reflects an overestimation or underestimation, respectively.
From this graph, we observe small gaps between the minimum and
maximum normalized IPC values—the minimum and maximum val-
ues are shown using error bars in Figure 4.3. In addition, we compute
the coefficient of variation (CoV) which is defined as the standard de-
viation divided by the mean IPC value over those twenty synthetic
traces. The CoV we observe is less than 1% for all benchmarks. A
CoV < 1% was also reported in the prior work by Eeckhout et al. [19]
which assumed a simple memory data flow model. From this we can
conclude that accurate memory data flow modeling has no additional
effect on the simulation speed.

4.6.2 Performance prediction accuracy

We now evaluate the performance prediction accuracy for statistical
simulation enhanced with memory data flow modeling.

Baseline configuration

Figure 4.4 shows the performance prediction error for the baseline pro-
cessor configuration for (a) the integer and (b) the floating-point bench-
marks, respectively. The IPC prediction error is computed as

IPC prediction error =
IPCstat sim − IPCdet sim

IPCdet sim
,

with IPCstat sim and IPCdet sim the IPC obtained through statistical
simulation and detailed simulation, respectively. A positive error re-
flects an overestimation whereas a negative error reflects an underesti-
mation. Figure 4.4 shows six bars per benchmark:

• The prior work bar corresponds to previously proposed state-
of-the-art statistical simulation approaches—this is the statistical
simulation framework including the SFG as described in Chap-
ter 3 and in [19];
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Figure 4.4: IPC prediction error for (a) SPECint2000 and (b) SPECfp2000; eval-
uating the accuracy of the proposed memory data flow modeling for the base-
line processor configuration; these results assume k = 10, see discussion on
the impact of the order of the SFG k later in this chapter.
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• The second bar corresponds to the SFG enhanced with RAW
memory dependence modeling;

• The third bar shows the SFG enhanced with cache miss correla-
tion;

• The fourth bar shows the SFG enhanced with delayed hit model-
ing;

• The fifth bar shows the SFG enhanced with all three enhance-
ments: delayed hit modeling, RAW memory dependence mod-
eling and cache miss correlation, however, the missed cache line
reuse distance distribution is not measured dependent on the
cache miss correlation information;

• The final bar shows the SFG enhanced with memory data flow
modeling. This includes delayed hits, RAW memory dependence
modeling and cache miss correlation; in addition, the missed
cache line reuse distance distribution is measured dependent on
the cache miss correlation information.

Modeling cache miss correlation greatly improves the performance
prediction accuracy for a number of benchmarks, see for example gcc,
applu, galgel and wupwise. It is interesting to observe that gcc which is
known to exhibit complex and irregular memory access patterns, ben-
efits from cache miss correlation. Clearly, cache miss correlation not
only enables the accurate modeling of regular cache miss patterns, it is
also capable of modeling irregular cache miss patterns. In addition, we
do not model the MLP along a speculative path correctly. We send in-
structions from the correct path in the pipeline as if they were from the
speculative path; the amount of MLP along the speculative path may
be different from that of the correct path. This may potentially lead to
additional inaccuracies.

Modeling delayed hits also decreases the prediction error. The
benchmarks that benefit the most from delayed hit modeling are mcf,
twolf, ammp, equake, facerec and swim. Additionally, several bench-
marks benefit from modeling the cache line reuse distribution depen-
dent on the cache miss correlation information; examples are twolf,
applu, and lucas.

The impact of modeling load forwarding and bypassing is rather
small. Previous work in statistical simulation, as mentioned before, as-
sumes that a load never aliases with a preceding store. A load can thus
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execute as soon as its source operands are available, provided that the
addresses of all preceding stores are resolved, which is what the simu-
lation model assumes. Through RAW memory dependence modeling,
loads can alias with preceding stores and the IPC prediction through
statistical simulation can either increase or decrease. The IPC predic-
tion increases when load instructions only see a one-cycle execution la-
tency getting the store’s data from the store buffer or load/store queue;
going to the L1 cache takes two cycles in our setup. The IPC prediction
decreases when a load has to wait for the data of the aliasing store to
be produced. This explains the small changes in IPC prediction error
due to RAW memory dependence modeling. Note that our simula-
tion setup does not account for a performance penalty in case the store-
load dependence is violated and instructions need to be re-issued—a
store-load dependence is never violated because loads have to wait for
the addresses of all preceding stores to be resolved. In case a perfor-
mance penalty is accounted for upon a store-load dependence viola-
tion, the importance of RAW memory dependence modeling is likely
to increase.

When putting it all together, see the rightmost bars in Figure 4.4, the
end result is a highly accurate statistical simulation framework. The av-
erage prediction error goes down from 10.9% for prior work2 to 2.1%
in this work—the average errors are computed from absolute errors.
The maximum error is observed for gap (5.8%) which is substantially
lower than the high errors observed for prior statistical simulation ap-
proaches, see for example mcf (69.1%). Note that even without the out-
lier mcf the average IPC prediction error goes down from 8.7% to 2.0%.

Other processor configurations

The IPC prediction errors discussed above are for the baseline proces-
sor configuration given in Table 4.2. We now show results for the other
configurations mentioned in Table 4.2. Figure 4.5 on the top shows the
average IPC prediction errors for the other eight processor configura-
tions, and compares prior work against statistical simulation enhanced
with memory data flow modeling as described in this chapter. We ob-
serve that the errors drastically reduce through accurate memory data
flow modeling. The average IPC prediction error for previous work
varies between 7% and 16% depending on the processor configuration;

2Note that this average error is higher than the error reported in [19]; this is be-
cause [19] only considered a subset of the SPEC CPU2000 benchmarks.



46 Accurate Memory Data Flow Modeling in Statistical Simulation
















































































































































































































Figure 4.5: (a) Average IPC prediction errors, and (b) standard deviation of
IPC prediction errors, for the eight processor configurations from Table 4.2 as
obtained through prior work [19] and through enhanced memory data flow
modeling.
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without mcf, the average error varies between 5% and 13%. With accu-
rate memory data flow modeling, the average error across the SPECint
and SPECfp benchmarks is smaller than 4%.

Another interesting observation to be made from Figure 4.5 is that
higher errors are observed for wider-resource machines, i.e., the ma-
chine configurations with a large 128-entry ROB and a processor width
of 8 seem to result in higher prediction errors than the machines with
a 32-entry ROB and a processor width of 4 (compare configurations 4
to 8 versus configurations 1 to 4). This can be understood intuitively
since the observed parallelism is limited more by program parallelism
(instruction-level parallelism and memory-level parallelism) than ma-
chine parallelism for wider-resource machines. In such way, modeling
inaccuracies becomes more apparent.

Figure 4.5 at the bottom shows the standard deviation of the IPC
prediction errors per processor configuration of Table 4.2. A small stan-
dard deviation means that the IPC prediction errors for each of the
benchmarks are close to the average IPC prediction error for a given
processor configuration. With accurate memory data flow modeling
the standard deviation across the SPECint and SPECfp benchmarks is
much smaller as compared to prior work. Therefore, statistical simu-
lation enhanced with accurate memory data flow modeling not only
improves the average error, but it also shows less variation in the pre-
diction errors across the benchmarks. In other words, accurate memory
data flow modeling resolves the issues with the outliers in prior work.

Comparing coupled and decoupled cache miss correlation approach

Recall there are two approaches to modeling cache miss correlation,
namely a coupled and a decoupled approach. The coupled approach
takes a global hit/miss history that is as long as the number of all loads
and stores for all k most recent basic blocks with k being the order of the
SFG. The decoupled approach takes a global hit/miss history of n loads
and stores. Figure 4.6 compares the coupled approach with k = 10
versus the decoupled approach with k = 1 and n = 50 3. The decou-
pled approach is only slightly less accurate than the coupled approach;

3On average, the SPEC CPU2000 benchmarks contain 4.4 memory references per
basic block. Thus, the history of memory references in a tenth-order SFG corresponds
to a history of n = 4.4 × 10 memory references on average. Therefore, the decoupled
approach with a history of length n = 50 closely approximates the coupled approach
with a tenth-order SFG. Another workload may require to adjust the parameter n.
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Figure 4.6: Comparing coupled versus decoupled cache miss correlation mod-
eling in terms of accuracy for the baseline configuration.

the average IPC prediction error increases from 2.1% to 2.5%. As will
become clear later on in this chapter, the benefit of the decoupled ap-
proach is the reduced memory needs and the reduced disk space re-
quirements as compared to the coupled approach.

Impact of global hit/miss history length

We now evaluate the impact on accuracy of the length of the hit/miss
history as used for modeling cache miss correlation for both the cou-
pled and the decoupled approach.

Figure 4.7 quantifies the impact on IPC prediction error of the SFG’s
order k for the coupled approach. This graph shows the average IPC
prediction error for different values of k. We observe that, as expected,
the IPC prediction error decreases with increasing k. The error stabi-
lizes between 2.3% and 2.1% past k = 8 and k = 10, respectively.

Figure 4.8 shows the sensitivity of the decoupled approach to the
hit/miss history length. For both the first-order and third-order SFGs,
the performance prediction error stabilizes around 2.6% and 2.1%, re-
spectively, as soon as the hit/miss history length n is larger than 40.
The prediction error for the third-order SFG is only marginally smaller
than the prediction error for the first-order SFG.

There are basically two reasons why the accuracy improves with
increasing k in the case of the coupled approach. For one, as stated
in [19], a higher-order SFG incorporates path information into the sta-
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Figure 4.7: Average IPC prediction error as a function of the SFG’s order k for
the coupled cache miss correlation approach.















    



















 



Figure 4.8: Average IPC prediction error as a function of the global cache
hit/miss history length for the decoupled cache miss correlation approach;
the SFG’s order remains unchanged while varying the history length.
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tistical profile. Benchmarks for which program characteristics correlate
well with this path information benefit from this. However, this effect
is rather limited as discussed in [19]. The second and more important
reason is that a higher-order SFG also implies that a longer global cache
miss history is taken into account for modeling the cache miss correla-
tion as explained in Section 4.2.

CPI breakdown

Figure 4.9 shows the CPI breakdown as obtained through detailed sim-
ulation (DS) and statistical simulation (SS) for (a) the integer and (b)
the floating-point benchmarks, respectively. The CPI stack can be bro-
ken up into its base CPI, branch mispredict CPI, I-cache miss CPI and
D-cache miss CPI. The base CPI component is obtained through sim-
ulation assuming perfect branch prediction and perfect caches, i.e., no
misses occur. The branch predictor CPI component is obtained assum-
ing perfect caches and a realistic branch predictor. The I-cache and D-
cache CPI components consider realistic I-cache and D-cache, respec-
tively, and both components assume everything else as perfect. We
clearly observe that statistical simulation is indeed able to accurately
track the various CPI components. In other words, the accurate perfor-
mance modeling is not a result of compensating modeling errors in the
various CPI components.

Long instruction sequences

All of the above results were done on relatively short one-hundred-
million-instruction sequences selected using SimPoint. Figure 4.10
shows the IPC prediction error for the baseline configuration on ten-
billion-instruction sequences (after skipping the first one billion in-
structions which is mostly initialization code). These results show
that statistical simulation with enhanced memory data flow modeling
is also very accurate for long instruction sequences with errors vary-
ing between -2.4% and 3.8%, and an average (absolute) error of 1.6%.
Moreover, the synthetic trace counts one million instructions whereas
the original trace consists of ten billion instructions. This is a four-order
of magnitude reduction in simulation time.
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Figure 4.9: CPI breakdown for detailed simulation (DS) and statistical simu-
lation (SS) for both (a) SPECint2000 and (b) SPECfp2000 benchmarks.
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Figure 4.10: IPC prediction errors for ten-billion-instruction sequences.

4.6.3 Sensitivity to cache hierarchy parameters

We now evaluate the ability of the proposed statistical memory data
flow model to track performance differences across a wide variety of
cache hierarchy designs. For each experiment we present the average
performance over all benchmarks, and in addition, we show three indi-
vidual benchmarks—we retrieved similar results for other benchmarks.
Each graph shows the IPC for both detailed simulation and statistical
simulation enhanced with memory data flow modeling. We assume
processor configuration 7 in all of these experiments.

In our first experiment we vary the cache line size. The graphs in
Figure 4.11 show the IPC as a function of four cache line sizes: 32 B,
64 B, 128 B and 256 B.

The second experiment studies the accuracy of statistical simulation
when changing the cache line updating policy. We consider two cache
write policies: write-back (WB) and write-through (WT), and two cache
allocation policies: write-allocate (WA) and write non-allocate (WNA),
see Figure 4.12.

Figure 4.13 shows IPC as a function of the MSHR configuration. Both
the number of MSHR entries and the number of targets per entry are
varied.

Finally, we study the impact of the size of the store buffer. Figure 4.14
shows IPC as a function of the number of entries in the store buffer. The
store buffer holds completed stores that still need to be retired, i.e., the
value still needs to be written to the memory hierarchy although the
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Figure 4.11: Estimating IPC as a function of cache line size.




















































































































































































Figure 4.12: Estimating IPC under four cache line updating policies.
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Figure 4.13: Varying the MSHR configuration.














   



















   



















   















   







Figure 4.14: Varying the number of store buffer entries.
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store already is architecturally completed.
We conclude that in spite of the (small) absolute IPC prediction

error, statistical simulation accurately tracks the small relative perfor-
mance differences.

4.6.4 Trend prediction

For microprocessor design studies, the ability to predict performance
trends is very important. A computer designer typically wants to find
the knee of the performance curve, i.e., the point where the performance
curve starts to flatten. Note that this is particularly true during the
early stages of the design cycle. To quantify this we compute the IPC as
obtained from detailed simulation runs and compare that against the
IPC as obtained from statistical simulation. We vary a number of mi-
croarchitectural parameters and compute how well statistical simula-
tion tracks the real simulation data. The microarchitectural parameters
that we consider here in this section are specifically targeted towards
the memory hierarchy, namely the L1 D-cache access latency, the L2
cache access latency and the load/store queue size. Note that these per-
formance trends can be estimated through statistical simulation from a
single statistical profile. We vary the L1 D-cache access latency from 2
to 6 cycles, the L2 access latency from 10 to 30 cycles and the load/store
queue size from 16 to 256 entries.

Our metric here is the relative speedup prediction error which is
defined as follows:

RE =
IPCB,SS/IPCA,SS − IPCB,DS/IPCA,DS

IPCB,DS/IPCA,DS
,

with SS and DS standing for statistical simulation versus detailed sim-
ulation, respectively, and A and B being two processor configurations.
Figure 4.15 shows the maximum relative error that we observe along
the three above mentioned microarchitectural parameters for the SPEC
CPU2000 benchmarks. We observe that statistical simulation without
memory data flow is fairly accurate. However, when memory data
flow is enabled even smaller relative prediction errors are observed.
We conclude that accurate memory data flow allows for more faithful
performance trend predictions.
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Figure 4.15: Maximum relative error is shown while varying the L1 D-cache
access latency (on the top), the L2 access latency (in the middle), and the
load/store queue size (at the bottom). This is for processor configuration 7,
see Table 4.2.
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Figure 4.16: Maximum variation in IPC prediction error observed across the
eight processor configurations from Table 4.2.

4.6.5 Error distribution across the design space

As observed from Figure 4.5 where the IPC prediction error was shown
for eight processor configurations, the IPC prediction error varies over
the design space. Figure 4.16 quantifies the maximum variation ob-
served in IPC prediction errors across these eight processor configura-
tions. This maximum variation is defined as the maximum IPC predic-
tion error difference between two configurations:

variationmax =| max(IPCerror,i)−min(IPCerror,i) |,

over all configurations i.
Prior work in statistical simulation seems to be susceptible to large

variations in IPC prediction error across the design space, see for exam-
ple gcc (39%), mcf (47%), equake (42%) and lucas (65%). For statistical
simulation with enhanced memory data flow modeling this maximum
variation in IPC prediction error drops substantially below 10% for all
benchmarks. This maximum variation across processor configurations
is an important metric for design space explorations because it quanti-
fies the variation in IPC prediction error across the design space. Too
large variations can lead to suboptimal design decisions when statis-
tical simulation is used for exploring the design space. Clearly, accu-
rate memory data flow modeling helps statistical simulation to yield a
smaller variation in IPC prediction errors across the design space.
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4.6.6 Design space exploration

We now evaluate the ability of statistical simulation to identify the opti-
mal design point in a given design space. We define the optimal design
point as the design point with the minimum energy-delay-square prod-
uct (ED2P), i.e., ED

2
P = CPI

2 × EPI , which is an appropriate metric
for quantifying energy-efficiency in high-end server processors [7]. The
design space is built up by varying the ROB size from 8 to 256 entries;
the LSQ is varied from 4 to 256 entries (with the additional constraint
that the LSQ is never larger than the ROB); and the processor width
(decode, dispatch, issue and commit) is varied from 2 to 8. Note that
all of these statistical simulations are run from a single statistical pro-
file using one million instruction synthetic traces; this is more than a
factor one hundred faster than the detailed simulation using one hun-
dred million simulation points in our experimental setup. The optimal
design points identified through statistical simulation with enhanced
memory data flow modeling exactly matched the optimal design points
identified through detailed simulation for 20 out of the 26 benchmarks;
for the other 6 benchmarks, the optimal design point identified through
statistical simulation was within 3% of the optimum identified through
detailed simulation. This is far more accurate than what is obtained
through statistical simulation without the enhanced memory data flow
modeling, as used in prior work. Prior work gets off the optimal de-
sign point for eleven benchmarks and the deficiency is even fairly large
for four of these benchmarks: art (4.5%), mcf (5.3%), bzip2 (5.7%) and
equake (14.6%). We conclude that statistical simulation enhanced with
accurate data flow modeling is highly accurate (and significantly more
accurate than prior work) in identifying a region of (near-)optimal de-
sign points in a large design space.

4.6.7 Storage requirements

Figure 4.17 on the left shows the average size of the (compressed) sta-
tistical profiles in MB as a function of the order k of the SFG for the
coupled cache miss correlation approach; these are average numbers
over all the benchmarks. For k = 8 and k = 10, the average statisti-
cal profile requires 4.6 MB and 5.8 MB of disk space, respectively. The
storage requirements for the decoupled approach are smaller, see Fig-
ure 4.17 on the right. For n = 40 and k = 3 (which achieves similar
accuracy as k = 10 for the coupled approach), the average statistical
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Figure 4.17: Average disk space requirements (in MB) for storing the com-
pressed statistical profiles for both the coupled and the decoupled cache miss
correlation approach; the coupled approach graph shows the disk space re-
quirements as a function of the order k of the SFG, the decoupled approach
graph shows the disk space requirements as a function of the hit/miss history
length n.

profile size equals 3.3 MB. These results are obtained using the one-
hundred-million-instruction simulation points considered in this dis-
sertation. For the ten-billion-instruction sequence, the statistical pro-
file is only 17 MB on average per benchmark. We thus conclude that
the storage requirements for accurate memory data flow modeling are
fairly small.

4.6.8 Memory usage

Memory usage during the statistical profiling step is another important
issue. We already referred to the work done by Iyengar et al. [40, 41]
in which it was impossible to build the SFG in memory for particular
programs during statistical profiling. Figure 4.18 shows the average
memory usage during statistical profiling for both the coupled and
the decoupled approach. For the coupled cache miss correlation ap-
proach with k = 10 and the one-hundred-million-instruction simu-
lation points, the average amount of memory used on a 64-bit AMD
machine was 897 MB; some benchmarks use even more memory, up
to 7.9 GB (equake), 3.5 GB (ammp) and 3.1 GB (crafty). The decou-
pled cache miss correlation approach with n = 40 and k = 3 on the
other hand, uses significantly less memory, on average 380 MB which
is a 2.4× reduction; the extremes were also substantially smaller—the
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Figure 4.18: Average memory usage (in MB) while computing the statistical
profiles for both the coupled and the decoupled cache miss correlation ap-
proach; the coupled approach graph shows the memory usage as a function
of the order k of the SFG, the decoupled approach graph shows the memory
usage as a function of the hit/miss history length n.

maximum was observed for ammp with 1.0 GB. For the ten-billion-
instruction sequences, we were able to run the statistical profiling step
using the decoupled cache miss correlation approach on our 64-bit
AMD machine with 8 GB of physical memory. However, we were un-
able to run the statistical profiling step using the coupled cache miss
correlation approach.

4.7 Summary

In this chapter we have introduced accurate memory data flow mod-
eling in statistical simulation. Accurate memory data flow modeling
involves the modeling of: (i) cache miss correlation, making all mem-
ory characteristics dependent on a global cache miss history, (ii) load
bypassing and load forwarding through RAW memory dependences,
and (iii) delayed hits through missed cache line reuse distances.

Our experimental results using the SPEC CPU2000 benchmarks
show that significant reductions in IPC prediction errors are obtained
by more accurately modeling memory data flow characteristics. For
our baseline configuration we reported a reduction in average IPC
prediction error from 10.9% down to 2.1%. We also showed that the
variation in IPC prediction errors across different microarchitectures is
significantly smaller when memory data flow is modeled. In addition,
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performance trends are predicted more accurately which is extremely
important for design space exploration purposes.

Furthermore, we showed that accurate memory data flow model-
ing has little or no impact on simulation speed. Synthetic traces of one
million instructions are still sufficient for obtaining converged perfor-
mance estimates, while obtaining a simulation speedup of up to four
orders of magnitude. A possible disadvantage are the memory require-
ments during the profiling phase, however, we have shown a technique
to address this issue, i.e., decoupling the cache miss correlation from
the SFG drastically reduces the memory space requirements without
sacrificing accuracy too much.
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Chapter 5

Chip-Multiprocessor Design
Space Exploration through

Statistical Simulation

We used to think that if we knew one, we knew two, because one and one are
two. We are finding that we must learn a great deal more about ”and”.

Arthur Stanley Eddington

As mentioned in the introduction, the cores of a chip-multiprocessor
share resources such as last-level caches, off-chip bandwidth, intercon-
nection network and main memory, resulting in resource contention be-
tween co-executing threads. The conflict behavior in shared resources
strongly depends on the microarchitectural configuration: conflicts in
the shared resources may cause some threads to run slower than others,
leading to different relative progress rates for the co-executing threads.
Changing which phases of the threads that run together in turn affects
the conflict behavior in the shared resources. This tight performance
entanglement between co-executing threads and the microarchitecture,
makes it hard to model performance in multicore simulation.

In this chapter we enhance the statistical simulation framework
from Chapters 3 and 4 such that it can deal with the tight performance
entanglement between co-executing threads. We will focus on chip-
multiprocessors running multiprogram workloads; Nussbaum and
Smith [60] and Hughes and Li [38] show how inter-thread synchro-
nization can be modeled in the case of multithreaded workloads.

Because the number of conflicts cannot be determined at profile



64
Chip-Multiprocessor Design Space Exploration through

Statistical Simulation

time, we must model a shared cache access independently of the cache
associativity parameter and then infer the conflict behavior when sim-
ulating the synthetic traces. Our approach models cache accesses in-
dependently of the associativity, and moreover, independently of the
number of sets in the cache. An additional benefit of microarchitecture-
independent cache modeling is that more cache design points can be
studied from a single statistical profile, which improves the applicabil-
ity of statistical simulation for design space explorations.

Furthermore, we model DRAM behavior more realistically. Prior
work assumes a simple DRAM model, returning a fixed amount of cy-
cles as its access latency, which differs from real main memory systems.
Modern DRAM modules typically implement an open page policy, al-
lowing for shorter access latencies upon a row hit. In addition, DRAM
modules are composed of a number of independent banks, allowing
accesses to overlap providing bank-level parallelism and thus better
performance. As a result a main memory access has a variable latency,
depending on a bank/row hit/miss. Therefore, statistical simulation
requires enhancements in memory access modeling as well.

5.1 Shared resource modeling

Chapter 3 describes how statistical simulation models the memory ad-
dress stream through microarchitecture-dependent cache miss statis-
tics; the statistical profile captures the cache miss rates of the various
levels in the cache hierarchy. The synthetic instructions are labeled with
cache miss information, indicating whether the memory access results
in an L1 hit, L2 hit or L2 miss. Although this is sufficient for the statis-
tical simulation of single-core processors, it is inadequate for modeling
chip-multiprocessors with shared resources in the memory hierarchy.
As mentioned before, the level of interaction between co-executing pro-
grams is greatly affected by the microarchitecture and by which specific
program phases that run together. Therefore, cache miss rates profiled
from single-threaded execution are unable to capture conflict behavior
in shared resources of a chip-multiprocessor when co-executing mul-
tiple programs. Our aim is to model memory access behavior in the
synthetic traces independently of the memory hierarchy, such that con-
flict behavior among co-executing programs can be derived during the
simulation of the synthetic traces.

Another issue we face when modeling resource sharing in statistical
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simulation is the relative progress of co-executing threads. For exam-
ple, the number of conflict misses in a shared last-level cache may vary
depending on which phases of the threads run together. Therefore,
statistical simulation should not only accurately predict the per-thread
performance, but it must also exhibit the same phase behavior as the
original thread. In other words, statistical simulation must accurately
capture the time-varying execution behavior.

5.1.1 Profiling memory address stream characteristics

Modeling memory address stream locality behavior requires that we
model the correlation between individual memory accesses. In the
discussion on cache miss correlation in Chapter 4 we found that
inter-memory reference correlation is necessary for accurately modeling
memory-level parallelism as well as delayed hits in statistical simula-
tion. The previous chapter models inter-memory reference correlation
through correlating hit/miss histories, which depends on the cache
configuration considered when recording the statistical profile. Instead,
we now use the notion of memory location reuse distance, which is a
cache hierarchy independent program characteristic. The reuse distance
is defined as the number of memory references between two references
to the same (cache-line-sized) memory location, see Table 5.1. The reuse
distance differs from the (LRU) stack depth in that the former counts
all memory references, whereas the latter only counts unique memory
references.

We compute a distribution of the reuse distance for each memory
access in the SFG. We do this for the instruction addresses, as well as for
the load’s and store’s effective addresses. The reuse distance distribu-
tion thus captures the temporal locality in the memory address stream.
We measure this distribution dependent on the reuse distances of the
50 prior memory references1 to model memory reference locality in a
decoupled way. We measure the history of reuse distances in buckets
(of size power of 2) to limit the size of the history of reuse distance dis-
tributions that need to be stored as part of the statistical profile. For the
same reason we also limit the maximum reuse distance to 4096 memory

1See Figure 4.8 and the discussion on the coupled versus the decoupled approach
in Chapter 4.
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memory reference A B C D E A A C C E B D
referenced cache set 0 0 1 1 0 0 0 1 1 0 0 1
reuse distance – – – – – 4 0 4 0 4 8 7
per-set stack depth – – – – – 2 0 1 0 1 2 1
row stack depth – – – – – 4 0 3 0 2 4 4

Table 5.1: Illustrating the reuse distance and the stack depth for a short mem-
ory trace; assuming a two-way set associative cache with two sets {A,C,E,. . . }
and {B,D,. . . }. A reference hits in a two-way set-associative cache if the per-set
stack depth is smaller than two.

references2.
Furthermore, we keep track of the virtual memory addresses that each

memory access (instruction pointer and load/store address) touches
and how frequently it is touched. Measuring the virtual memory ad-
dress distribution dependent on the aforementioned reuse distance his-
tory models correlation among memory references. Dependent on the
virtual memory address, we record three additional memory address
stream characteristics, namely the distributions of the stack depth for
the L1 cache, L2 cache3 and main memory.

The stack depth for main memory is computed as the number of
unique DRAM row accesses made since the last reference to that same
DRAM row, assuming a single-bank DRAM design—we will consider
multibank DRAM configurations later in this chapter. Similarly, the
stack depths for the L1 and L2 caches are computed as the number
of unique cache block accesses (per set) since the last reference to that
same cache block. Table 5.1 shows the per-set stack depth assuming a
set associative cache (with two sets), and the row stack depth assuming
a single-bank DRAM design.

For computing the stack depths for the L1 and L2 caches, we as-
sume the largest L1 and L2 cache one may be potentially interested in
during design space exploration. The maximum stack depth kept track
of during profiling is a, which is the associativity of the largest cache of

2The reuse distance between a load miss and a delayed load hit is not larger than
the number of ROB entries. On the other hand, the reuse distance between a store miss
and a later load access to the same cache line may be larger than the ROB size, because
a store does not wait for the miss to be resolved before committing. We measured
that the probability of a delayed hit per reuse distance is negligible for reuse distances
larger than 4096.

3Throughout this chapter we refer to the shared cache as the L2 cache; extending
our framework to model shared L3 caches is straightforward.
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Figure 5.1: Modeling time-varying behavior by dividing the original program
trace into intervals.

interest. Accessing the stack at depth a means that a miss occurred in
the largest cache of interest, i.e., there are a unique references between
the current and the previous access to the given cache line. The stack
depth profile can be used to estimate cache miss rates for caches that
are smaller than the largest cache of interest, i.e. the cache statistics are
modeled independently on the microarchitecture. In particular, all ac-
cesses to a stack depth equal to or larger than a will be cache misses in
an a-way set-associative cache.

Generating the synthetic traces is done as described in Chapter 3,
except that for loads and stores as well as for all instruction addresses,
we also determine the reuse distance of the memory location being ac-
cessed, their virtual memory address, and their stack depths for the L1
and L2 caches as well as for main memory.

5.1.2 Modeling time-varying execution behavior

A critical issue to the accuracy of statistical simulation for modeling
CMP performance is that the synthetic trace has to capture its time-
varying execution behavior. The reason is that overall performance is
affected by the phase behavior of the co-executing programs. More-
over, the relative progress of a program is affected by the conflict behav-
ior in the shared resources. For example, extra cache misses induced by
cache sharing may slow down a program’s execution. A program run-
ning relatively slow because of cache sharing may result in different
program phases co-executing with the other program(s), which in turn
may result in different cache sharing behavior, and thus faster or slower
relative progress.

Figure 5.1 illustrates how we model time-varying behavior in sta-
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tistical simulation. We divide the entire program trace into a number
of instruction intervals; an instruction interval is a sequence of consec-
utive instructions in the dynamic instruction stream. We then collect a
statistical profile per instruction interval and generate a synthetic mini-
trace. Coalescing these mini-traces yields the overall synthetic trace.
Figure 5.2 shows that the synthetic trace exhibits the same phase behav-
ior as the original program trace; this is for equake, we have obtained
similar results for the other benchmarks.

The importance of modeling a program’s time-varying behav-
ior is further illustrated in Figure 5.3. The six graphs show relative
progress graphs for two programs co-executing on a multicore processor:
equake-wupwise, fma3d-bzip2, gcc-parser, equake-sixtrack, mcf-lucas
and galgel-mgrid. A point (x, y) on a relative progress curve denotes
that the first program has executed x instructions and the second pro-
gram has executed y instructions. In other words, a gentle slope de-
notes that the first program makes fast relative progress compared to
the second program, a steep slope denotes that the first program makes
slow relative progress compared to the second program. All graphs in
Figure 5.3 demonstrate the importance of modeling a program’s time-
varying behavior. Without time-varying behavior modeling, statistical
simulation is unable to track relative progress rates, which leads to
inaccurate multicore processor performance predictions, see also Fig-
ure 5.4. The reason for this inaccuracy is that very different phases are
co-executed under statistical simulation compared to detailed simula-
tion. If a program’s time-varying execution behavior is modeled on the
other hand, statistical simulation is capable of accurately tracking rela-
tive progress rates, which yields substantially more accurate multicore
performance predictions. The important insight here is that modeling
the large-scale time-varying behavior (at the granularity of millions of
instructions) in statistical simulation does not attribute to the accuracy
for single-core processor performance estimation, but it does have a
substantial impact on the accuracy when co-executing programs on a
multicore processor.

Other simulation speedup techniques which target multicore pro-
cessors with shared resources must also model the time-varying execu-
tion behavior, i.e., determine which program phases that run together.
For example, Van Biesbrouck et al. [74, 75, 76] propose the co-phase ma-
trix for guiding sampled simultaneous multithreading (SMT) processor
simulation running multiprogram workloads. The idea of the co-phase
matrix is to keep track of the relative progress of the programs on a per-



5.1 Shared resource modeling 69

















   






















   






















   












Figure 5.2: Dividing the original program trace into intervals captures the
program phases; these graphs are for equake.
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Figure 5.3: Relative progress graphs illustrating the importance of time-
varying modeling for six two-program mixes.
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Figure 5.4: Prediction error through statistical simulation with and without
modeling a program’s time-varying behavior.

phase basis when executed together. By doing so, co-phases need to be
simulated only once; the performance of recurring co-phase executions
can then simply be read from the co-phase matrix, which speeds up
simulation.

5.1.3 Virtual address to physical address translation during
synthetic trace simulation

The virtual addresses that appear in the synthetic traces need to be
translated into physical addresses during statistical simulation in or-
der to accurately model conflict behavior in physically indexed caches
and main memory—the L2/L3 caches are typically physically indexed,
whereas the L1 is often virtually indexed to speedup the L1 access time.
A naive solution would simply employ the first-come-first-served strat-
egy in statistical simulation as done under detailed simulation, i.e., the
next available physical memory page is allocated when a new virtual
address page is touched (bump pointer allocation). However, this leads
to inaccurate modeling. The reason is that the synthetic trace is a minia-
ture version of the original program trace and does not touch all mem-
ory pages as does the real program trace—this is exactly where the sim-
ulation speedup comes from through statistical simulation—and there-
fore the virtual to physical address mapping is very different for the
synthetic trace than for the original trace. This changes the conflict be-
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Figure 5.5: Illustrating virtual to physical address translation during statistical
simulation.

havior in the memory hierarchy during statistical simulation compared
to detailed simulation, yielding very different performance pictures. To
solve this problem, we propose a simple but effective strategy, as illus-
trated in Figure 5.5. Say the last virtual memory page touched by a
program is page x, and the next memory access (for the same program)
touches virtual memory page y, see program A in Figure 5.5. Then, the
virtual to physical address mapper will allocate virtual memory pages
x + 1 up to y in the next available physical memory, i.e., the bump
pointer is advanced by y−x memory pages. This assumes that the orig-
inal program accesses memory pages x+1 up to y−1 prior to accessing
memory page y; we found this simple heuristic to be a reasonable ap-
proximation because of spatial locality—(virtual) memory pages that
are next to each other are most likely to be allocated close in time.

5.1.4 Multibank DRAM modeling

When we are interested in design space exploration of more realistic
DRAM with multiple banks, we could collect the microarchitecture-
dependent bank/row miss probabilities per memory reference in the
SFG. However, this would limit the applicability of statistical simu-
lation. In an attempt to model the DRAM characteristics indepen-
dently of the microarchitecture, we have observed that using bank
reuse and row reuse information derived from the synthetic address
stream, did not yield accurate results for a synthetic traces of ten mil-
lion instructions (for example the absolute IPC error for equake and
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facerec is 44% and 25%, respectively). However, we believe that us-
ing longer traces would solve this—synthetic addresses were used in
SMART [40, 41]—but this would dramatically increase simulation time
and would jeopardize the usefulness of statistical simulation. We there-
fore take a different approach in order to reduce the overhead of the
microarchitecture-dependent DRAM modeling.

As mentioned in Section 5.1.1, we collect main memory row stack
depth distributions dependent on the virtual address assuming a
single-bank DRAM design. In addition, we collect the following
conditional probabilities: (i) P ( Hb | B = b ) represents the prob-
ability of a bank hit (Hb) given an access to bank B = b, and (ii)
P ( Hr | (B = b ∧ D = d) ) represents the probability of a row hit (Hr)
given an access to bank B = b and given a single-bank-DRAM row
stack depth D = d. Both probabilities depend on the number of banks
and their organization (interleaved or linear) as well as row size. How-
ever, we compute these probabilities for different DRAM organizations
simultaneously in one profiling run. We also collect aggregate proba-
bilities per profile interval, i.e., they are computed independently from
the context of the SFG. We found that using these aggregate statistics
yields good accuracy as we will show in the evaluation, see Section 5.3.

The bank hit conditional probability is computed as:

P ( Hb | B = b ) =
P ( B0 = b ∧B1 = b )

P ( B1 = b )
,

with B0 and B1 two consecutively accessed banks. The access corre-
sponding with B1 results in a bank hit if both B0 and B1 equal the
same bank b.

The row hit conditional probability is computed as:

P ( Hr | (B = b ∧D = d) ) =
P (

�d
i=1(Bi �= b) ∧ (Bd+1 = b) | D = d )

P ( Bd+1 = b | D = d )
,

with B0 . . . Bd+1 d + 2 consecutively accessed banks, and d the (single-
bank) DRAM row stack depth. The access corresponding with B0

touches the same row as the access corresponding with Bd+1 and thus
B0 = Bd+1 = b. The access corresponding with Bd+1 will result in a
row hit in a multibank DRAM configuration if all the intermediately
accessed banks B1, . . . , Bd differ from b.
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5.1.5 Simulating load and store instructions

As mentioned before, we generate virtual address and L1/L2/DRAM
stack depths for each memory reference. Simulating the synthetic trace
on a CMP then requires that we effectively simulate the entire memory
hierarchy. In statistical simulation for a single-core processor system on
the other hand, the memory hierarchy does not need to be simulated
since cache misses are simply flagged as such in the synthetic trace; ap-
propriate latencies are assigned based on these cache miss flags, see
Chapters 3 and 4, and [19, 59, 61]. Statistical simulation of a CMP
with shared memory hierarchy resources, on the other hand, requires
the simulation of caches, DRAM and their interconnections in order to
model conflict behavior. In the following two subsections, we will ex-
plain how we effectively simulate the caches and the main memory,
respectively.

Simulating synthetic caches

Every cache line in each cache contains the following information:

• The ID of the program that most recently accessed the cache line;
we will refer to this ID as the program ID. This enables the sta-
tistical simulator to keep track of the program owning the cache
line.

• The set index of the set in the largest cache of interest that corre-
sponds to the given cache line; we will refer to this set index as
the stored set index. In case the simulated cache has as many sets
as the largest cache of interest, the stored set index is the set in-
dex of the simulated cache. The stored set index will enable the
statistical simulator to model cache lines conflicting for a given
set in case the number of sets is reduced for the simulated cache
compared to the largest cache of interest.

• A valid bit stating whether the cache line is valid.

• A cold bit stating whether the cache line has been accessed. The
cold bit will be used for driving cache warm-up as will be dis-
cussed later.

• In case of a write-back cache, we also maintain a dirty bit stating
whether the cache line has been written by a store operation.
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• And finally, we also keep track of which instruction in the syn-
thetic trace accessed the given cache line; this is done by storing
the position of the instruction in the synthetic trace which we call
the instruction ID.

Simulating a cache then proceeds as follows, assuming that all
memory references are annotated with virtual address va, memory lo-
cation reuse distance rd, and stack depth information sd for the largest
cache of interest. The virtual address is translated into the physical
address pa upon a memory access, as explained in Section 5.1.3. The
pseudo code for a cache access is given in Figure 5.6.

Upon a cache access (line 1), we search in the MSHRs whether a de-
layed hit—secondary miss—occurred (lines 3–4). If not, we determine
the set s being accessed in the simulated cache from the physical ad-
dress (line 6)—assuming a physically indexed cache. This is done by
selecting the appropriate log2(S) bits from the address pa, with S being
the number of sets in the simulated cache. Moreover, we compute the
largest cache set index s

�—stored set index—from pa by selecting the
appropriate log2(S�) bits (line 7), with S

� being the number of sets in
the original largest cache considered during the profiling step. There-
after, we walk over all cache lines in set s to determine whether a hit or
miss occurred (lines 10–26).

The cache access is a cache hit (lines 20–24) in case there are more
than sd valid cache lines in set s (line 12) for which (i) the stored set
indices equal s

� (line 13) and (ii) the stored program IDs equal the ID of
the program being simulated (line 14). Upon a cache hit, we update the
LRU state in set s (line 21). In case the above conditions do not hold, the
cache access is considered a cache miss, and we allocate a free MSHR
(lines 28–29)—we update the LRU state when the miss is resolved.

An appropriate warm-up approach is required for the large caches,
such as the unified L2 caches. Without appropriate warm-up, the large
caches would suffer from a large number of cold misses. Making the
synthetic trace longer could solve this problem, but this would defi-
nitely affect the usefulness of statistical simulation which is to provide
performance estimates from very fast simulation runs. For this reason
we take a different approach and use a warm-up strategy for warming
the L2 cache. The warm-up technique that we use first initializes all
cache lines as being cold by setting the cold bit in all cache lines. The
warm-up approach then applies a hit-on-cold strategy [73], i.e., upon the
first access to a given cache line we assume it is a hit and the cold bit
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1: access( prog_ID, insn_ID, phys_addr, cache_line_reuse_distance, cache_line_stack_depth) {
2: |
3: | if ( find_MSHR( prog_ID, insn_ID, phys_addr, cache_line_reuse_distance)
4: | return secondary_miss;
5: |
6: | s = extract_set(phys_addr);
7: | s’ = extract_stored_set_idx(phys_addr);
8: | cache_line_count = 0;
9: |

10: | for (all cache lines in set s) {
11: | |
12: | | if ( ( cache_line.status == Valid &&
13: | | | cache_line.stored_set_idx == s’ &&
14: | | | cache_line.prog_ID == prog_ID
15: | | | )
16: | | | || cache_line.status == Cold ) {
17: | | |
18: | | | cache_line_count++;
19: | | |
20: | | | if (cache_line_count > cache_line_stack_depth) {
21: | | | update LRU state;
22: | | | cache_line.reset_cold_bit();
23: | | | return hit;
24: | | | }
25: | | }
26: | }
27: |
28: | allocate new MSHR;
29: | return miss;
30: }

Figure 5.6: High-level pseudocode for simulating caches with LRU replace-
ment policy during synthetic trace simulation.

is set to zero (line 22). In other words, if the cold bit is set (line 16),
we assume it is a valid cache line for which the stored set index equals
s

� and the stored program ID equals the ID of the program issuing the
access. This hit-on-cold warm-up strategy is simple to implement, and
is fairly accurate [73].

During this work, we also found that it is important to model L1
D-cache write-backs during synthetic trace simulation; write-backs can
have a significant impact on the conflict behavior in the shared L2
cache. This is done by simulating the L1 D-cache similarly to what is
described above; L1 D-cache write-backs then access the L2 cache. We
use a simple heuristic to determine the outcome (in terms of hit/miss)
of a write-back accessing the L2 cache. The L2 cache access is assumed
to be a miss if all instruction IDs in the given set (with the same pro-
gram ID) are larger than the instruction ID of the cache line written in
the L2. In other words, a miss is assumed if all of these instructions
are executed later than the last store to the cache line, which causes
a write-back when the (dirty) cache line is evicted. Otherwise, it is
assumed to be a hit.
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1: access( models, prog_ID, phys_addr, row_stack_depth) {
2: |
3: | b = extract_bank(phys_addr);
4: |
5: | if (prog_ID == active_bank_prog_ID[b]) {
6: | bank_hit = (rand < models.prob_bank_hit( num_banks, b)) ? 1 : 0;
7: | row_hit = (rand < models.prob_row_hit( num_banks, b, row_stack_depth)) ? 1 : 0;
8: | }
9: | else {

10: | bank_hit = (b == active_bank) ? 1 : 0;
11: | row_hit = 0;
12: | }
13: |
14: | return access_latency( bank_hit, row_hit);
15: }

Figure 5.7: High-level pseudocode for simulating DRAM during synthetic
trace simulation.

Simulating synthetic DRAM

As mentioned in Section 5.1.4, the synthetic trace also contains DRAM
probability models for all main memory organizations of interest.
These models are used when a synthetic instruction accesses main
memory (see line 1 in the pseudo-code of Figure 5.7). A memory re-
quest in synthetic trace simulation is annotated with a physical address
pa and DRAM row stack depth information sd; note that the latter
expresses the temporal locality of a memory location in the address
stream assuming a single-bank DRAM design. When the request ac-
cesses main memory, we first determine the bank address b from the
physical address pa (line 3).

In case the program ID of the thread doing the access equals the pro-
gram ID of the thread that owns the active bank (lines 5–8) we look up
the probability of a bank hit for the given bank b in the DRAM model—
P ( Hb | B = b )—and use it with a random number in the interval [0, 1]
to determine whether a bank hit/miss occurred (line 6). (We do this the
same way as described in Figure 3.3: we use a random number with
the inverse cumulative distribution function to determine the partic-
ular value for a program characteristic when generating the synthetic
trace.) Similarly, we determine a row hit/miss (line 7) using a random
number with the probability of a row hit given the bank b and the row
stack depth sd—P ( Hr | (B = b∧D = sd) ). On the other hand, in case the
active bank is owned by another thread (lines 9–12) the access results in
a bank hit if the active bank equals b (line 10), and it always results in a
row miss (line 11)—virtual memory pages from different co-executing
programs are mapped to different rows. Finally, we return the access
latency according to the bank/row hit/miss outcome (line 14).
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recompute profile

microarchitectural single-core multicore
parameter (Chapter 4) (Chapter 5)

number of cache levels yes yes
cache size yes no
line size yes yes
associativity yes no
replacement policy yes yes
line updating policy yes no
access latencies no no

off-chip memory bandwidth no no

number of DRAM banks yes yes
(in DRAM profile)

interleaved vs. linear memory yes yes
access control (in DRAM profile)
DRAM row size yes yes
DRAM access latencies no no

Table 5.2: Comparing which memory hierarchy parameters that do or do not
require that a new statistical profile is computed for single-core statistical sim-
ulation versus multicore statistical simulation.

5.1.6 Design space exploration using statistical simulation

In Chapter 3 we have shown that a statistical profile contains both
microarchitecture-dependent and microarchitecture-independent char-
acteristics. This has an important implication in practice: the use of
a single statistical profile is limited by the set of microarchitecture-
dependent characteristics. In this chapter we proposed new cache
statistics to model the conflict behavior in shared caches. An additional
advantage over single-core statistical simulation, as described in Chap-
ters 3 and 4, is that the cache statistics are largely microarchitecture-
independent. In such way, we can explore most of the memory hierar-
chy design space from a single statistical profile. The only parameter
that requires a new statistical profile to be computed is the number
of cache levels and their line sizes. The number of cache sets, cache
associativity, bandwidth and latencies can be changed without recol-
lection of the statistical profile. Table 5.2 summarizes the difference
in microarchitecture-dependent memory statistics between single-core
and multicore statistical simulation. The DRAM statistics on the other
hand are microarchitecture-dependent. However, we decoupled these
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statistics from the SFG. Furthermore, we can collect the DRAM bank ac-
cess sequence probabilities for various kinds of DRAM configurations
simultaneously in one profiling run. In such way, we can still explore a
DRAM design space with only one SFG profile. When simulating, we
only need to use the proper DRAM bank access sequence probabilities
corresponding with the DRAM configuration.

5.2 Experimental setup

We use the SPEC CPU2000 benchmarks with the reference inputs in
our experimental setup, see Table 5.3; this table also displays the global
L2 cache miss rates for the various benchmarks in our baseline 16 MB
16-way set-associative cache. The binary programs of the CPU2000
benchmarks are taken from the SimpleScalar website. We consider one-
hundred-million-instruction single (and early) simulation points as de-
termined by SimPoint [64, 67] in all of our experiments. The synthetic
traces are ten million instructions long, unless mentioned otherwise—
we evaluate the impact of the synthetic trace length on accuracy and
simulation speedup in Section 5.3.2. For measuring the statistical pro-
files capturing time-varying behavior, we measure a statistical profile
per interval of ten million instructions. From these ten statistical pro-
files, we then generate ten mini-traces of one million instructions each.
Subsequently, we coalesce these mini-traces to form a synthetic trace of
ten million instructions.

We use the M5 simulator [6] in all of our experiments. Our baseline
per-core microarchitecture is a 4-wide superscalar out-of-order core, see
Table 5.4. When simulating a CMP, we assume that all cores share the
L2 cache as well as the off-chip bandwidth for accessing main memory.
Simulation stops as soon as one of the co-executing programs termi-
nates, i.e., as soon as one of the programs has executed one hundred
million instructions in case of detailed simulation, or ten million in-
structions in case of statistical simulation. We then record how many
instructions were executed so far for each co-executing program, and
we compute single-threaded IPC for executing that many instructions.

Having obtained IPC numbers under both multicore execution
and single-threaded execution, we can compute system throughput
(STP) proposed by Eyerman and Eeckhout [25], also called weighted
speedup [68], and average normalized job turnaround time (ANTT),
which is the reciprocal of the harmonic mean proposed by Luo et
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benchmark input simpoint L2 miss rate

bzip2 program 9 1.4%
crafty ref 0 0.7%
eon rushmeier 18 0.0%
gap ref 2,094 0.7%
gcc 166 99 0.8%
gzip graphic 9 2.3%
mcf ref 316 24.8%
parser ref 16 2.3%
perlbmk makerand 1 0.2%
twolf ref 31 5.3%
vortex ref2 57 0.5%
vpr route 71 2.9%
ammp ref 2,130 4.8%
applu ref 18 4.6%
apsi ref 46 2.5%
art ref-110 67 32.8%
equake ref 194 8.3%
facerec ref 136 2.7%
fma3d ref 298 2.2%
galgel ref 3,150 3.2%
lucas ref 35 8.9%
mesa ref 89 0.1%
mgrid ref 6 3.3%
sixtrack ref 82 0.2%
swim ref 5 7.5%
wupwise ref 584 1.3%

Table 5.3: The SPEC CPU2000 benchmarks, their reference inputs, the sin-
gle one hundred million simulation points used in this dissertation and their
global miss rates for a 16 MB 16-way set-associative L2 cache.
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Processor core

ROB 80 entries
LSQ 64 entries
store buffer 32 entries
processor width decode, dispatch, issue and commit 4 wide

fetch 8 wide
latencies load (2), mul (3), div (20)
L1 I-cache 32 KB 4-way set-assoc 64 B line size
L1 D-cache 32 KB 4-way set-assoc 64 B line size, 8 MSHRs,

16 MSHR targets, 16-entry write buffer
branch predictor 10 Kbit local predictor,

8-way set-assoc 2 K-entry BTB, 32-entry RAS
Shared unified L2 cache

cache size 16 MB
cache associativity 16-way set-assoc
line size 64 B
access latency 12 CPU cycles
MSHRs 8
MSHR targets 16
write buffer 16 entries

Bus

bus frequency 666 MHz
bus width 16 B

SDRAM

banks 4
row size 4 KB
RAS active time 125 CPU cycles
RAS to CAS delay 25 CPU cycles
CAS latency 5 CPU cycles
RAS precharge time 10 CPU cycles
RAS cycle time 70 CPU cycles

Table 5.4: Baseline processor core model assumed in our experimental setup;
simulated CMP architectures share the L2 cache.
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al. [52]. System throughput is a system-oriented performance metric,
and is defined as:

STP =
n�

i=1

IPCi,multicore

IPCi,single threaded
,

with n the number of co-executing programs—this is a bigger-is-better
metric. Average normalized job turnaround time is a user-oriented per-
formance metric, and is defined as:

ANTT =
1
n

n�

i=1

IPCi,single threaded

IPCi,multicore
,

Ideally the turnaround time is not affected and ANTT = 1— bigger
than one is worse. We will report both metrics in experiments in the
evaluation section where it is appropriate .

5.3 Evaluation

We now evaluate the statistical simulation technique proposed in this
chapter along three dimensions: (i) accuracy for a single design point as
well as for a wide design space, (ii) simulation speed, and (iii) storage
requirements for storing the statistical profiles on disk.

5.3.1 Accuracy

Homogeneous workloads

The top graph in Figure 5.8 evaluates the accuracy of statistical sim-
ulation for a single program running on a single-core processor. The
average IPC prediction error is 2.4%; this is in line with previously re-
ported results in Chapter 4. The other three graphs in Figure 5.8 eval-
uate the accuracy when running homogeneous multiprogram work-
loads, i.e., multiple copies of the same program are executed simul-
taneously on different cores. The average IPC prediction errors for
the two-core, four-core and eight-core machines are 5.6%, 6.3% and
7.3%, respectively—the increasing error for a higher number of cores
can be intuitively understood because of the increasing contention for
the shared resources.
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Figure 5.8: Evaluating the accuracy of statistical simulation for single-
program and homogeneous multiprogram workloads.
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Statistical simulation is capable of accurately tracking the impact of
the shared L2 cache on overall application performance. For some pro-
grams, cache sharing has almost no impact, see for example mesa: the
IPC for mesa remains unaffected by L2 cache sharing as we increase the
number of co-executing copies. For other programs on the other hand,
cache sharing has a large impact, see for example art, mgrid and swim,
for which performance degrades as more copies co-execute. Statistical
simulation is accurate enough for identifying which programs are sus-
ceptible to L2 cache sharing; moreover, statistical simulation yields an
accurate prediction of the extent to which cache sharing affects overall
performance.

Heterogeneous workloads

Figure 5.9 evaluates the accuracy of statistical simulation for heteroge-
neous workloads. The four sets of graphs, labeled (a), (b), (c) and (d)
represent different sets of workloads. The left column shows results
through detailed simulation; the right column shows results through
statistical simulation. In each graph, there are four bars for each bench-
mark. The one-core bars represent per-benchmark IPC when run alone.
The two-core bars represent per-benchmark IPC when co-run with an-
other benchmark; the four-core bars represent per-benchmark IPC when
co-run with three other benchmarks, etc. The co-run workloads are de-
termined as such, see for example the top-left graph: we co-run art with
applu, and mcf with lucas, etc. on a two-core configuration; for the four-
core configuration, we co-run art, applu, mcf and lucas, and we co-run
equake, wupwise, swim and facerec; for the eight-core configuration
we co-run all benchmarks in the workload.

Not surprisingly, per-benchmark IPC decreases with increasing
multicore processing. This is due to resource conflicts in the shared
memory hierarchy, i.e., the more conflicts, the more the co-executing
programs interact and affect each other’s performance. The degree to
which co-executing benchmarks affect each other’s performance heav-
ily depends on the benchmarks’ characteristics, i.e., the more memory-
intensive the benchmarks are, the more they affect each other’s perfor-
mance. For example, the co-executing benchmarks affect each other’s
performance very heavily in the workload (a)—these benchmarks are
all memory-intensive; on the contrary, the benchmarks in workload (c)
barely affect each other’s performance because none of the benchmarks
are memory-intensive. The important observation from these graphs
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Figure 5.9: Evaluating the per-core accuracy of statistical simulation for four
heterogeneous workload mixes. The two-core configuration results show per-
benchmark IPC when co-run with another benchmark; e.g., in the top-left
graph, we co-run art with applu, mcf with lucas, etc. For the four-core config-
uration, we co-run art, applu, mcf and lucas, and we co-run equake, wupwise,
swim and facerec; for the eight-core configuration we co-run all benchmarks
in the workload.
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Figure 5.10: Evaluating the accuracy of statistical simulation for heteroge-
neous workload mixes in terms of STP (a) and ANTT (b).
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is that statistical simulation accurately tracks the performance trends
observed through detailed simulation. Figure 5.10 shows the system
throughput (a) and the average normalized job turnaround time (b); the
average STP error and ANTT error equals 4.9% and 5.6%, respectively.

Design space exploration

We now demonstrate the accuracy of statistical simulation for driving
design space exploration, which is the ultimate goal of the statistical
simulation technique. To do so, we consider a design space of 60 de-
sign points with varying L2 cache configurations and a varying number
of cores. We vary the L2 cache size from 128 KB to 16 MB with vary-
ing associativity from 2- to 16-way set-associative; the cache line size
is kept constant at 64 bytes. And we vary the number of cores from
2, 4 up to 8. This design space consisting of 60 design points is very
small compared to a realistic design space, however, the reason is that
we are validating the accuracy of statistical simulation against detailed
simulation. The detailed simulation for all those 60 design points was
very time-consuming, which is the motivation for statistical simulation
in the first place.

Figures 5.11 and 5.12 show a scatter plot with system through-
put through detailed simulation on the horizontal axis versus system
throughput through statistical simulation on the vertical axis. The
four graphs in Figure 5.11 and 5.12 show four different heterogeneous
eight-program mixes. The average system throughput prediction er-
ror equals 3.5%. We observe that the prediction error increases slightly
with an increasing number of cores: an average prediction error of 1.9%
for a two-core processor, 3.7% for a four-core processor, and 5% for an
eight-core processor. Overall, we conclude that for all four workload
mixes, the system throughput estimates through statistical simulation
correlate very closely with the system throughput numbers obtained
from detailed simulation.

Cache design space exploration

Figure 5.13 illustrates the accuracy of statistical simulation for explor-
ing the shared L2 cache design space. In these graphs, we consider the
IPC for the benchmarks, twolf and ammp, that we found to be sensitive
to both the cache configuration parameters and the amount of paral-
lel processing. In these experiments, we co-execute multiple copies of
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Figure 5.11: Evaluating the accuracy of statistical simulation for exploring
CMP design spaces: measured system throughput through detailed simula-
tion versus estimated system throughput through statistical simulation.
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Figure 5.12: Evaluating the accuracy of statistical simulation for exploring
CMP design spaces: measured system throughput through detailed simula-
tion versus estimated system throughput through statistical simulation.
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the same program on a multicore processor. Again, the overall con-
clusion is that statistical simulation accurately tracks performance dif-
ferences across cache configurations and across a different number of
cores. Note that these results were obtained from a single statistical
profile, namely a statistical profile for the largest cache of interest, a
16 MB 16-way set-associative cache. In other words, a single statistical
profile is sufficient to drive a cache design space exploration.

DRAM design space exploration

In this experiment we validate the multibank DRAM modeling of Sec-
tion 5.1.4. Figure 5.14 shows the accuracy of statistical simulation when
varying the DRAM organization in terms of the number of banks and
their organization (interleaved or linear). In these graphs, we con-
sider the STP for the four heterogeneous eight-program mixes. We
observe that statistical simulation accurately tracks performance differ-
ences across these DRAM configurations. These results were obtained
from a single statistical profile that assumes a single-bank design.

3D stacking case study

For demonstrating the value of statistical simulation for exploring new
architecture paradigms, we now consider a case study in which we
evaluate performance of a multicore processor in combination with 3D
stacking [48]. In this case study, we compare the performance of a 4-
core processor with a 16 MB L2 cache connected to external DRAM
memory through a 16-byte wide memory bus against an 8-core proces-
sor with integrated on-chip DRAM memory (through 3D stacking) and
no L2 cache and a 128-byte wide memory bus. We assume a 150-cycle
access time for external memory and a 125-cycle access time for 3D-
stacked memory. Figure 5.15 quantifies system throughput for these
two design points for four eight-benchmark mixes. The 8-core pro-
cessor with 3D stacked memory achieves substantially higher system
throughput than the 4-core processor with the on-chip L2 cache. This
increase in system throughput is offset by a decrease in job turnaround
time. The improvement in system throughput and the reduction in
turnaround time varies across workload mixes, and statistical simu-
lation accurately tracks performance differences between both design
alternatives: the maximum error in predicting the system throughput
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Figure 5.13: Evaluating the accuracy of statistical simulation for tracking
shared cache performance as a function of the cache configuration (number
of sets and associativity) and the number of cores on the CMPs; the example
benchmarks are twolf and ammp.
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Figure 5.14: Evaluating the accuracy of statistical simulation in terms of sys-
tem throughput for various DRAM configurations.
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Figure 5.15: 3D stacking case study: comparing system throughput for a 4-
core CMP with L2 cache and external DRAM memory versus an 8-core CMP
with on-chip DRAM memory (through 3D stacking) and without an L2 cache.
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Figure 5.16: Average IPC prediction error as a function of synthetic trace
length for single-program and multiprogram homogeneous workloads.

delta between the 4-core with on-chip L2 versus the 8-core with 3D-
stacked DRAM is 12%.

5.3.2 Simulation speed

Having shown the accuracy of statistical simulation for CMP design
space exploration, we now evaluate the simulation speed. Figure 5.16
shows the average IPC prediction error as a function of the synthetic
trace length. For a single-program workload, the prediction error curve
stays almost flat, i.e., increasing the size of the synthetic trace beyond
one million instructions does not increase prediction accuracy. For mul-
tiprogram workloads on the other hand, the prediction accuracy is sen-
sitive to the synthetic trace length, and sensitivity increases with the
number of programs in the multiprogram workload. This can be un-
derstood intuitively: the more programs there are in the multiprogram
workloads, the longer it takes before the shared caches are warmed
up and the longer it takes before the conflict behavior is appropriately
modeled between the co-executing programs. The results in Figure 5.16
demonstrate that ten million instruction synthetic traces yield accurate
performance predictions, even for eight-core processors. In our exper-
iments we therefore went from one hundred million instruction real
program traces to ten million instruction synthetic traces. This is a fac-
tor ten decrease in the dynamic instruction count which yields an ap-
proximate factor ten reduction in the overall simulation time.
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5.3.3 Storage requirements

As a final note, the storage requirements are modest for multicore sta-
tistical simulation. The statistical profiles when compressed on disk are
87 MB on average per benchmark. However, the (compressed) profile
sizes of single-core statistical simulation are on average twenty times
smaller than those of multicore statistical simulation, see Chapter 4.
This increase is mainly due to the virtual address distributions that are
part of the statistical profile.

5.4 Summary

In this chapter we have enhanced statistical simulation as a fast sim-
ulation technique for chip-multiprocessors running multiprogram
workloads. In order to do so, we extended the statistical simulation
paradigm in two ways: (i) we collect cache set access and per-set stack
depth statistics and (ii) we model time-varying behavior in the syn-
thetic traces. These two enhancements enable the accurate modeling
of conflict behavior observed in shared caches. Furthermore, we have
extended statistical simulation to model more realistic DRAM memory
organizations.

Our experimental results using the SPEC CPU2000 benchmarks
show that statistical simulation is accurate with average IPC prediction
errors of less than 7.3% over a broad range of CMP design points, while
being one order of magnitude faster than detailed simulation. Statisti-
cal simulation is capable of tracking performance trends across a CMP
design space, i.e., in our experiments we vary the number of cores, the
cache configuration, and the DRAM configuration. This makes statisti-
cal simulation a viable fast simulation approach to CMP design space
exploration.

Furthermore, the statistical profile developed in this chapter is less
dependent on the microarchitecture. In the previous chapter we had to
recompute the statistical profile when the cache configuration changed,
e.g., cache size and associativity. With multicore statistical simulation
the same profile can be used to model any cache configuration smaller
than the (largest) cache configuration used during the profiling step.
This improves the applicability of statistical simulation, i.e., a statisti-
cal profile covers a much larger design space compared to single-core
statistical simulation.
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A possible disadvantage of multicore statistical simulation is that
accurately modeling conflict behavior in shared resources requires the
synthetic traces to be longer. However, we showed that ten million
instructions are sufficient for obtaining converged performance esti-
mates.



Chapter 6

Interval Simulation

The obscure we see eventually.
The completely obvious, it seems, takes longer.

Edward R. Murrow

In this chapter we present a new simulation paradigm, i.e., interval
simulation. Interval simulation reduces both simulation time and sim-
ulator development complexity by raising the level of abstraction in the
core-level models. It determines the progress of the running threads
through analytical interval-based models instead of through tracking
the propagation of individual instructions through the pipeline stages.
The analytical timing models for the individual cores consult branch
predictor simulators and memory hierarchy simulators to derive the
miss events and their latencies.

As mentioned in the previous chapter, there is a tight performance
entanglement between co-executing threads on multicore processors.
The cooperation between the mechanistic analytical model and the
miss event simulators enables the modeling of this complex perfor-
mance entanglement.

6.1 Interval analysis

Interval simulation builds on a recently developed mechanistic analyt-
ical performance model, i.e., interval analysis [26], which we briefly
revisit here.

With interval analysis, execution time is partitioned into discrete
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Figure 6.1: Interval analysis analyzes performance on an interval basis deter-
mined by disruptive miss events.

intervals by disruptive miss events such as cache misses, TLB misses,
branch mispredictions and serializing instructions. The basis for the
model is that an out-of-order processor is designed to smoothly stream
instructions through its various pipelines and functional units. Un-
der optimal conditions (no miss events), a well-balanced design sus-
tains a level of performance more-or-less equal to its pipeline front-end
dispatch width—we refer to dispatch as the point of entering the in-
structions from the front-end pipeline into the reorder buffer and issue
queues.

The interval behavior is illustrated in Figure 6.1 which shows the
number of dispatched instructions on the vertical axis versus time on
the horizontal axis. By dividing execution time into intervals, one can
analyze the performance behavior of the individual intervals. In partic-
ular, one can describe and determine the performance penalty per miss
event based on the type of interval (the miss event that terminates it):

• For an I-cache miss (or I-TLB miss), the penalty equals the miss de-
lay, i.e., the time to access the next level in the memory hierarchy.

• For a branch misprediction, the penalty equals the time between
the mispredicted branch being dispatched and new instructions
along the correct control flow path being dispatched. This penalty
includes the branch resolution time plus the front-end pipeline
depth.

• Upon a long-latency load miss, i.e., a last-level L2 D-cache load miss
or a D-TLB load miss, the processor back-end will stall because of
the reorder buffer (ROB), issue queue, or rename registers get-
ting exhausted. As a result, dispatch will stall. When the miss
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returns from memory, instructions at the ROB head will be com-
mitted, and new instructions will enter the ROB. The penalty for a
long-latency D-cache miss thus equals the time between dispatch
stalling upon a full ROB and the miss returning from memory.
This penalty can be approximated by the memory access latency.
In case multiple independent long-latency load misses make it
into the ROB simultaneously, both will overlap their execution,
thereby exposing memory-level parallelism (MLP) [16], provided
that a sufficient number of outstanding long-latency loads are
supported by the hardware. The penalty of multiple overlap-
ping long-latency loads thus equals the penalty for an isolated
long-latency load. In case of dependent long-latency loads, their
penalties serialize.

• Chains of dependent instructions, possibly with L1 data cache
misses and long-latency functional unit instructions (divide, mul-
tiply, etc.), may cause a resource (e.g., reorder buffer, issue queue,
physical register file, write buffer, etc.) to fill up, resulting in a
resource stall. Consequently, dispatch may (eventually) be stalled.
The penalty or the number of cycles where dispatch stalls due
to a resource stall are attributed to the instruction at the ROB
head, i.e., the instruction blocking commit and thereby stalling
dispatch.

• Before a serializing instruction enters the ROB, the processor will
stall dispatch until the ROB is empty. The penalty thus equals the
time needed to drain the ROB.

Interval analysis also provides good insight in how miss events
overlap with each other. For example, the penalty due to an I-cache
miss that follows a long-latency load miss is hidden underneath the
long-latency load penalty. Similarly, the penalty for a mispredicted
branch that follows a long-latency load in the dynamic instruction
stream on which it does not depend, is completely hidden underneath
the long-latency load. If on the other hand, the mispredicted branch
depends on the long-latency load, then both penalties serialize.
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6.2 Multicore interval simulation

In the following sections we will discuss the interval simulation par-
adigm for chip-multiprocessors1. First, we will clarify the basic idea
and explain the general framework. Second, we will elaborate on the
algorithm, which models the streaming of the instructions through the
pipeline at a high level of abstraction. Finally, we will discuss the limi-
tations of interval simulation.

6.2.1 Framework overview

The multicore interval simulation paradigm that we present in this
chapter is drawn schematically in Figure 6.2. A functional simulator
supplies instructions to the interval simulator which uses interval anal-
ysis for driving the timing of the individual cores. The miss events
are handled by branch predictor and memory hierarchy simulators.
The branch predictor simulator models the branch predictors in the
individual cores and is invoked by the mechanistic multicore simula-
tor upon the execution of a branch instruction. The branch predictor
simulator returns whether or not a branch is correctly predicted. The
memory hierarchy simulator models the entire memory hierarchy. This
includes cache coherence, private (per-core) caches and TLBs as well as
the shared last-level caches, interconnection network, off-chip band-
width and main memory. The memory hierarchy simulator is invoked
for each I-cache/TLB or D-cache/TLB access by the mechanistic multi-
core simulator, and returns the (miss) latency.

The interval simulator models the timing for the individual cores.
The simulator maintains a pre-execution window of instructions for each
simulated core, see Figure 6.2. This window of instructions corre-
sponds to the reorder buffer of a superscalar out-of-order processor,
and is used to determine miss events that are overlapped by long-
latency load misses. The functional simulator feeds instructions into
the pre-execution window.

Core-level progress (i.e., timing simulation) is derived by consid-
ering the instruction at the pre-execution window head, see also Fig-
ure 6.2. In case of an I-cache miss, we increase the core simulated time
by the miss latency. In case of a branch misprediction, we increase the

1We believe that interval simulation can deal with shared-memory multiprocessors
as well, but we do not evaluate this in this dissertation.
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Figure 6.2: Schematic view of the interval simulation framework.
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core simulated time by the branch resolution time and the front-end
pipeline depth. In case of a long latency load (i.e., a last-level cache
miss or cache coherence miss), we add the miss latency to the core
simulated time, and we scan the pre-execution window for indepen-
dent miss events (cache/TLB misses and branch mispredictions) that
are overlapped by the long-latency load. For a serializing instruction,
we add the window drain time to the simulated core time. If none of the
above cases applies, we dispatch instructions at the effective dispatch
rate.

Having determined the impact of the instruction at the pre-exe-
cution window head on the core’s progress, we remove the instruc-
tion from the pre-execution window and feed it into the so called post-
execution window. The post-execution window is used to derive the de-
pendence chains of instructions and their impact on the branch resolu-
tion time and the effective dispatch rate in the absence of miss events,
as we explain in detail in the following sections.

6.2.2 Interval simulation: detailed algorithm

We refer to the high-level pseudocode given in Figure 6.3 for a more
detailed description of interval simulation. The interval simulator it-
erates across all cores in the multicore processor (line 2), and proceeds
with the simulation as long as there are instructions to be simulated
(line 3); if not, the simulator quits (line 69).

Multicore simulated time versus per-core simulated time

The interval simulator simulates cycle per cycle, and keeps track of the
multicore simulated time as well as the per-core simulated time. The
multicore simulated time is incremented every cycle (line 71). The per-
core simulated time is adjusted depending on the progress of the indi-
vidual core, e.g., in case of a miss event, the per-core simulated time is
augmented by the appropriate penalty. Only in case the per-core sim-
ulated time equals the multicore simulated time, we need to simulate
the cycle for the given core (line 6). In case the per-core simulated time
is larger than the multicore simulated time (which can happen because
of miss events as we will describe next), we do not need to simulate the
cycle for the given core. This could be viewed as event-driven simula-
tion at the core level.
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1: while (1) {
2: | for (i = 0; i < num_cores; i++) {
3: | | if (there are more insns to be simulated) {
4: | | |
5: | | | insns_dispatched = 0;
6: | | | while ( (core_sim_time [i] == multi_core_sim_time) &&
7: | | | | (insns_dispatched < eff_dispatch_rate(i) ) {
8: | | | |
9: | | | | consider insn at pre-execution window head;

10: | | | |
11: | | | | /* handle I-cache and I-TLB */
12: | | | | if (!I_overlapped) {
13: | | | | | miss_latency = Icache_and_ITLB_access();
14: | | | | | if (Icache_or_ITLB_miss) {
15: | | | | | core_sim_time [i] += miss_latency;
16: | | | | | empty_post-execution_window();
17: | | | | | }
18: | | | | }
19: | | | |
20: | | | | /* handle branch prediction */
21: | | | | if (branch && !br_overlapped) {
22: | | | | | branch_predictor_access();
23: | | | | | if (branch_misprediction) {
24: | | | | | core_sim_time [i] += branch_resolution_time() +
25: | | | | | frontend_pipeline_depth;
26: | | | | | empty_post-execution_window();
27: | | | | | }
28: | | | | }
29: | | | |
30: | | | | /* handle loads and stores */
31: | | | | if (store || (load && !D_overlapped)) {
32: | | | | | miss_latency = Dcache_and_DTLB_access();
33: | | | | | if (long_latency_load) {
34: | | | | | |
35: | | | | | | for (all insns in pre-execution window from head to tail) {
36: | | | | | | |
37: | | | | | | | I_overlapped = 1; I_cache_and_ITLB_access();
38: | | | | | | |
39: | | | | | | | if (branch && independent of long-latency load) {
40: | | | | | | | br_overlapped = 1; branch_predictor_access();
41: | | | | | | | if (branch_misprediction) break;
42: | | | | | | | }
43: | | | | | | |
44: | | | | | | | if (load && independent of long-latency load) {
45: | | | | | | | D_overlapped = 1; Dcache_and_DTLB_access();
46: | | | | | | | }
47: | | | | | | |
48: | | | | | | | if (serializing insn) break;
49: | | | | | | }
50: | | | | | |
51: | | | | | | core_sim_time [i] += miss_latency;
52: | | | | | | empty_post-execution_window();
53: | | | | | }
54: | | | | }
55: | | | | /* handle serializing insns */
56: | | | | if (serializing insn) {
57: | | | | | core_sim_time [i] += empty_window_latency();
58: | | | | | empty_post-execution_window();
59: | | | | }
60: | | | | /* dispatch insn */
61: | | | | insns_dispatched++;
62: | | | | insert_dispatched_insn_in_post-execution_window();
63: | | | | enter_new_insn_in_pre-execution_window();
64: | | | }
65: | | | if (core_sim_time [i] == multi_core_sim_time)
66: | | | core_sim_time [i]++;
67: | | }
68: | | else
69: | | finish_simulation();
70: | }
71: | multi_core_sim_time++;
72: }

Figure 6.3: High-level pseudocode for multicore interval simulation.
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Instruction dispatch

As long as no miss events have occurred in the given cycle (line 6) and
the core has dispatched fewer instructions than the effective dispatch rate
(line 7), we continue to simulate instructions. If we have exceeded the
given effective dispatch bandwidth and no misses have occurred, we
increment the per-core simulated time (lines 65–66). We will describe
how we compute the effective dispatch rate further in this chapter.

The core-level simulation considers the instruction at the pre-
execution window head (line 9) and determines its (potential) miss
penalty (lines 11–59). Once we have computed the instruction’s ex-
ecution latency, we increment the number of dispatched instructions
(line 61), and we move the instruction from the pre-execution window
to the post-execution window (line 62). We subsequently insert a new
instruction (supplied by the functional simulator) in the pre-execution
window at the entry pointed to by the tail pointer (line 63).

Miss events

For each non-overlapped instruction we access the I-cache/TLB access
(line 13). If this instruction is an I-cache miss or an I-TLB miss, we
add the miss latency to the per-core simulated time (line 15). We will
explain the purpose of lines 12 and 16 further in this chapter.

For non-overlapped branches we also access the branch predictor
(line 22). The timing impact of a branch misprediction is fairly sim-
ilar to an I-cache/TLB miss. If the branch is mispredicted (line 23),
we add the branch penalty to the per-core simulated time. The branch
penalty is computed as the sum of the branch resolution time and front-
end pipeline depth (lines 24–25). We will explain how we estimate the
branch resolution time later; the front-end pipeline depth is a known
microarchitecture parameter.

For stores and non-overlapped loads (line 31), we access the mem-
ory hierarchy (i.e., caches including the cache coherence protocol, TLBs,
interconnection network, and main memory) (line 32). In case of a long-
latency load, we incur a miss penalty (i.e., the miss latency) which is
added to the per-core simulated time (line 51).

Serializing instructions cause the core to drain the instruction win-
dow prior to their execution. Therefore, upon a serializing instruction,
we increase the per-core simulated time with the latency for emptying
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the post-execution instruction window (lines 56–59).

Overlapping miss events: second-order effects

A long-latency load, as mentioned in the previous section, may hide
latencies by other subsequent independent miss events. Upon a long-
latency load, we walk over the instructions in the pre-execution win-
dow from head to tail (line 35) and consider four cases (lines 35–49).

First, we access the I-cache and I-TLB (line 37). We mark the in-
struction as overlapped meaning that the I-cache/TLB access (a poten-
tial I-cache/TLB miss) is hidden by the long-latency load—this is done
through the I overlapped variable. This means that the I-cache/TLB ac-
cess has occurred and should not incur any additional penalty when it
appears at the pre-execution window head (line 12). In other words, the
I-cache/TLB access/miss is hidden underneath the long-latency load—
a second-order effect.

Second, for a branch that is independent of the long-latency load,
we access the branch predictor and mark the branch as overlapped.
When this branch appears at the pre-execution window head, we do
not account for the potential misprediction penalty. Moreover, if this
branch is mispredicted it will cause subsequent loads to serialize with
the blocking miss at the pre-execution window head. We then break out
of the loop and stop scanning the pre-execution window (lines 39–42).

Third, we access the memory hierarchy in case of an independent
load, and mark the load as overlapped. We consider a load as indepen-
dent if there are no data dependences between this load and the long-
latency load at the pre-execution window head, and if there appears
no memory barrier between the two loads in the dynamic instruction
stream—a memory barrier between two loads will serialize their la-
tencies. If the overlapped memory access results in a long-latency D-
cache/TLB miss, we do not incur the miss penalty (lines 44–46). More-
over, this overlapped load miss is the head of a chain of dependent in-
structions, which will serialize with the load and thus serialize with the
long-latency load at the pre-execution window head. Figure 6.4 gives
a scenario where an independent load serializes with the long-latency
load at the head of the ROB. The long-latency load (4) is independent
of the long-latency load at the head of the ROB, but it serializes with
the blocking miss because it depends on another long-latency load (2)
that is overlapped by the load at the ROB head. Chen and Aamodt [13]
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Figure 6.4: Independent long-latency loads that will (not) overlap with a
blocking miss at the head of the ROB. All loads in this figure are long-latency
loads. Load 2 is independent of the blocking load 1 at the head of the ROB,
hence it is overlapped by load 1. Load 3 depends on load 1, thus it serializes
with the blocking miss. Load 4 is independent on load 1, however, it depends
on load 2, therefore, it serializes with the blocking miss.

describe a similar scenario where independent loads serialize with the
blocking miss at the ROB head.

Fourth, in case we reach a serializing instruction, we break out of
the loop and stop scanning the pre-execution window (line 48). The
serializing instruction causes the window to be drained.

Branch resolution time, window drain time, and effective dispatch
rate

An important component in interval simulation is to estimate the criti-
cal path length (including the latencies) in the post-execution window.
The critical path length is used for computing (i) the branch resolution
time (line 24), (ii) the window drain time upon a serializing instruction
(line 57), and (iii) the effective dispatch rate (line 7). For computing the
critical path length, we consider a very simple data flow model that
computes the earliest possible finish time for each instruction in the
post-execution window given its dependences and execution latency.
The finish time is the cycle in which an instruction finishes its execu-
tion on a functional unit or the cycle when the result is retrieved from
memory in case of a load; a dependent instruction can then execute in
the next cycle.

Figure 6.5 shows a sequence of instructions with their dependences
and execution latencies; the real critical path in the ROB is shown by
bold arrows. We compute the critical path length as the post-execution
window slides over the instruction sequence as follows.

For each instruction that is inserted at the post-execution window
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Figure 6.5: Illustrating critical path length computation during interval simu-
lation.

tail, we compute its finish time as the maximum finish time of the in-
structions that it depends upon plus its execution latency. The exe-
cution latency equals the L2 cache hit latency in case of a short-latency
load miss, and the functional unit latency for all other instruction types.
For each instruction in the post-execution window we keep track of its
input register dependences, and in case of a load we track its RAW
memory dependence, i.e., the store instruction that accesses the same
memory address. Furthermore, we also keep track of the cache line
reuse dependences for memory references. This is to model the effect
that delayed hits have on the critical path, i.e., delayed hits can not
complete before their primary miss.

In addition, we keep track of the post-execution window’s head time
and tail time, see also Figure 6.5. The tail time is computed as the max-
imum of the tail time and the finish time of the newly inserted instruc-
tion at the tail of the post-execution window. Similarly, the head time is
the maximum of the head time and the finish time of the removed in-
struction. We then approximate the length of the critical path in the post-
execution window as the tail time minus the head time. Computing the
real critical path in the ROB requires walking the post-execution win-
dow for every newly inserted instruction, which is too time-consuming.
We found this approximation to be accurate enough for our purpose, as
we will demonstrate in the evaluation, see Section 6.4 and more specif-
ically Figure 6.6(a).
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Our method measures the critical path over the full program trace,
instead of measuring the critical path in the post-execution window.
This can be seen in Figure 6.5; the critical path over the full trace is
shown by the bold dashed arrows and the remaining critical path—in
bold arrows—starting from the fourth instruction in the post-execution
window—instruction with finish time = 8. The real critical path in the
post-execution window may be (slightly) larger than the critical path
observed through our method—the real critical path is 27 whereas
our approximation is 24. The difference comes from an additional
short dependency chain—the first and the third instruction in the post-
execution window. Both instructions are part of the real critical path
in the post-execution window, however they are not part of the critical
path over the full trace. In other words, the instructions on the ad-
ditional data dependency path are producers of an instruction on the
critical path over the full trace—fourth instruction in the post-execution
window. Furthermore, these instructions are not consumers of an in-
struction on the critical path over the full trace—already removed from
the post-execution window. Larger data dependence distances on the
critical path over the full trace will increase this effect. This error is
more pronounced if the real critical path in the post-execution window
is short. However, this is not a problem because in this case the effec-
tive dispatch rate is (most likely) larger than the dispatch width of the
pipeline.

Note that the earliest possible finish time of a newly inserted in-
struction is not only determined by the maximum finish time of its
producers, but also by the post-execution window’s head time. The
inserted instruction’s finish time then equals its execution latency plus
the maximum of the head time and the slowest producer’s finish time.

Once we have computed the critical path length, we can compute
the maximum possible execution rate through the post-execution win-
dow. Using Little’s Law, we compute the execution rate as the window
size divided by the critical path length. This reflects the fact that the
out-of-order processor cannot process instructions faster than dictated
by the critical path length. The effective dispatch rate then equals the
minimum of this execution rate and the designed dispatch width. Sim-
ilarly, the window drain time is computed as the maximum of (i) the
number of instructions in the post-execution window divided by the
processor’s dispatch width, and (ii) the length of the critical execution
path in the post-execution window.
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The branch resolution time is computed as the longest chain of de-
pendent instructions (including their execution latencies) leading to
the mispredicted branch, starting from the head pointer in the post-
execution window.

Interval length effect

Interval length (the number of instructions between two subsequent
miss events) has a significant impact on overall performance. In partic-
ular for a mispredicted branch, a short interval implies a short depen-
dence path to the branch (i.e., a short branch resolution time). A long
interval on the other hand, implies a longer branch resolution time. A
similar effect occurs for serializing instructions. A serializing instruc-
tion causes the instruction window to be drained. Window drain time
is correlated with the interval length prior to the serializing instruc-
tion. In order to model the dependence of interval length on branch
resolution time and window drain time, we empty the post-execution
window upon a miss event (lines 16, 26, 52, and 58).

6.2.3 Limitations

Our current implementation of interval simulation employs a function-
al-first simulation approach. This means that the functional simula-
tor generates a dynamic instruction stream, including user-level and
system-level code, that is subsequently fed into the timing simulator.
This implies that interval simulation does not simulate instructions
along mispredicted paths, hence, it does not capture the positive or
negative interference that wrong-path instructions may have on per-
formance, e.g., through cache prefetching effects. Moreover, function-
al-first interval simulation may lead to different thread interleavings
than what may happen in real systems.

A more accurate approach is to build a timing-directed simulator in
which the timing simulator directs the functional simulator along mis-
predicted paths and determines thread interleavings. Unfortunately,
timing-directed simulators are more difficult to develop. In our cur-
rent implementation we opted for functional-first simulation because of
its ease of development—this is a trade-off in development time, eval-
uation time and accuracy—and our evaluation shows good accuracy
against the cycle-accurate simulator. Implementing timing-directed in-
terval simulation may be a course of future work.
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benchmark input

blackscholes <cores> 4096
bodytrack sequenceB 1 4 1 1000 5 0 <cores>
canneal <cores> 10000 2000 100000.nets
dedup -c -p -f -t <cores> -i medias.dat -o output.dat.ddp
fluidanimate <cores> 5 in 35K.fluid out.fluid
streamcluster 10 20 32 4096 4096 1000 none output.txt <cores>
swaptions -ns 16 -sm 5000 -nt <cores>
vips im benchmark pomegranate 1600x1200.v output.v
x264 –quiet –qp 20 –partitions b8x8,i4x4 –bframes 3

–ref 5 –direct auto –b-pyramid –b-rdo –weightb
–bime –mixed-refs –no-fast-pskip –me umh –subme 7
–analyse b8x8,i4x4 –threads <cores>
-o eledream.264 eledream 640x360 8.y4m

Table 6.1: The multithreaded PARSEC benchmarks and their reference inputs
used in the full-system simulation experiments.

An obvious limitation of interval simulation is that it does not
model core-level performance in a detailed cycle-accurate way. Again,
this choice is motivated by our goal to improve simulator development
time and evaluation time.

Another limitation is that the timing of miss events may be different
compared to real systems. In particular, interval simulation walks the
pre-execution instruction window upon a long-latency load and sim-
ulates all miss events that are independent of the long-latency load in
the same cycle, which may be different from what may happen in a real
system. This is a reasonable assumption, because the miss events that
are independent of the long-latency load are hidden anyway.

6.3 Experimental setup

We use two benchmark suites, namely SPEC CPU2000 and PARSEC [5].
We use all of the SPEC CPU2000 benchmarks with the reference inputs
in our experimental setup, see Table 4.1. The binaries of the CPU2000
benchmarks were taken from the SimpleScalar website; these binaries
were compiled for Alpha using aggressive compiler optimizations. We
considered one hundred million simulation points as determined by
SimPoint [67] in all of our experiments in order to limit overall cycle-
accurate simulation time—this is exactly the problem tackled by inter-
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Processor core

ROB 256 entries
issue queue 128 entries
load-store queue 128 entries
store buffer 64 entries
processor width decode, dispatch and commit 4 wide

issue 6 wide
fetch 8 wide

functional units 4 integer, 4 load/store and 4 floating-point
functional unit latencies load (2), mul (3), fp (4), div (20)
fetch queue 16 entries
front-end pipeline depth 7 stages
branch predictor 12 Kbit local predictor,

8-way set-assoc 2 K-entry BTB, 32-entry RAS
Memory subsystem

L1 I-cache 32 KB 4-way set-assoc 64 B line size
L1 D-cache 32 KB 4-way set-assoc 64 B line size
L2 cache unified, 4 MB 8-way set-assoc 64 B line size,

12 cycles access latency
coherence protocol MOESI
main memory 150 cycle access time
memory bandwidth 10.6 GB/s peak bandwidth

Table 6.2: Baseline processor core model assumed in our experimental setup;
simulated CMP architectures share the L2 cache.

val simulation. When simulating multiprogram workloads, we stop
simulation as soon as one of the co-executing programs has executed
one hundred million instructions.

In addition to the single-threaded user-level SPEC CPU bench-
marks, we also use the multithreaded PARSEC benchmarks which
spend a substantial fraction of their execution time in system code. We
use 9 of the 13 PARSEC benchmarks that run on our simulator with the
small input set, see Table 6.1, and run each benchmark to completion;
the number of dynamically executed instructions per benchmark varies
between five hundred million to thirteen billion instructions. The PAR-
SEC benchmarks were compiled using the GNU C compiler for Alpha;
we use aggressive optimization, including -O3, loop unrolling and
software prefetching.

We use the M5 simulator [6] in all of our experiments. The SPEC
CPU benchmarks are run in user-level simulation mode, and the PAR-
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SEC benchmarks are run in full-system simulation mode.
Our baseline core microarchitecture is a 4-wide superscalar out-of-

order core, see Table 6.2. When simulating a CMP, we assume that all
cores share the L2 cache as well as the off-chip bandwidth for accessing
main memory, and we assume a MOESI cache coherence protocol. For
the multiprogram workloads, we were able to simulate up to 8 cores;
physical memory constraints limited us from running larger multicore
processor configurations. For the multithreaded workloads, we also
run up to 8 cores; the benchmarks run on top of the 2.6.8.1 Linux kernel.

6.4 Evaluation

We now evaluate interval simulation in terms of development cost, ac-
curacy and simulation speed. Accuracy is evaluated through a number
of experiments, and we consider single-threaded workloads, homo-
geneous and heterogeneous multiprogram workloads, multithreaded
workloads, and a performance trend case study.

6.4.1 Code size of core-level model

As mentioned earlier, an important goal for interval simulation is to
reduce the complexity of architectural simulators by raising the level
of abstraction. The detailed cycle-level out-of-order processor model
used in our experiments is about twenty eight thousand lines of code,
whereas the core-level mechanistic analytical model is less than one
thousand lines of code. Thus, interval simulation is easy to implement
and reduces the development cost drastically.

6.4.2 Single-threaded

We first consider single-threaded workloads running on a single-core
processor, and evaluate interval simulation in a step-by-step manner
in order to understand where the error sources are. For doing so, we
consider the following experiments; each experiment evaluates a par-
ticular aspect of interval simulation:

• Effective dispatch rate: We consider the branch predictor to be
perfect (i.e., all branch predictions are correct), as well as the I-
cache/TLB and L2 cache (i.e., all cache accesses are hits). The
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Figure 6.6: Evaluating interval simulation in a step-by-step manner: evaluat-
ing the modeling accuracy of the (a) effective dispatch rate, (b) I-cache/TLB,
(c) branch prediction and (d) L2 cache.
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L1 D-cache is non-perfect. This setup aims at evaluating the
accuracy of the modeling of the effective dispatch rate.

• I-cache/TLB: The branch predictor is perfect as well as L1 and L2
D-cache and D-TLB. The I-cache and I-TLB are non-perfect.

• Branch prediction: All caches are assumed to be perfect. The only
non-perfect structure is the branch predictor.

• L2 cache: The L1 I-cache is assumed to be perfect as well as the
branch predictor. The L1 D-cache and L2 cache are non-perfect.

Figure 6.6 compares the IPC measured through detailed simulation
versus the IPC estimated through interval simulation for each of the
above four experiments. Figure 6.6 (a) and (b) shows that the effective
dispatch rate and I-cache/TLB behavior is modeled accurately: the av-
erage error for both experiments is 1.8%. We observe slightly higher
errors for the branch prediction and L2 cache modeling with average
errors of 3.8% and 4.6%, respectively, see Figure 6.6(c) and (d). The diffi-
culty in predicting the impact of branch mispredictions on performance
is due to estimating the branch resolution time. The branch resolution
time is the number of cycles between the mispredicted branch being
dispatched in the instruction window and the branch being resolved,
or in other words, the critical path leading to the mispredicted branch
(due to the instructions that are yet to be executed in the instruction
window). Interval simulation however approximates the branch reso-
lution time by the critical path leading to the mispredicted branch in
the post-execution window. This is an overestimation of the penalty
if the critical path is partially executed by the time the mispredicted
branch enters the instruction window, or is an underestimation if crit-
ical path execution gets slowed down because of resource contention.
With respect to estimating the performance impact of L2 cache misses,
interval simulation tends to (slightly) overestimate the penalty due to
L2 misses. Interval simulation basically assumes there are no instruc-
tions dispatched underneath the L2 miss, however, the processor may
be dispatching instructions while the L2 miss is being resolved.

6.4.3 Homogeneous workloads

Putting everything together, the average error for the single-threaded
benchmarks equals 5.9%, see the top graph in Figure 6.7. The other
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Figure 6.7: Evaluating the accuracy of interval simulation for the single-
threaded SPEC CPU benchmarks. The two-core, four-core and eight-core ex-
periments assume two, four and eight copies of the same benchmark, respec-
tively.
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three graphs in Figure 6.7 show that interval simulation is capable of
tracking the conflict behavior in the shared L2 cache when running
homogeneous multiprogram workloads on a multicore processor (i.e.,
multiple copies of the same program run concurrently). The average
IPC prediction error for the two-core, four-core and eight-core ma-
chines are 5.9%, 6.0% and 4.8%, respectively. The largest errors are
due to estimating the branch prediction penalty (see vpr, applu, art),
and the L2 cache/TLB miss penalty (see equake, facerec, fma3d and
lucas). The maximum error observed in the design space is limited to
15.5% (for vpr on a single-core processor). Interval simulation clearly
identifies which benchmarks are susceptible to L2 cache sharing. For
example, the average IPC for art gradually drops as it is co-executed
with a copy of itself on each core of a two-core, four-core and eight-
core CMP. The average IPC for swim, and less pronounced for mgrid,
drops with a four-core and eight-core CMP. Some benchmarks are not
affected by L2 cache sharing as shown by both detailed and interval
simulation, e.g., mesa, sixtrack and wupwise.

6.4.4 Heterogeneous workloads

The next step in our evaluation considers heterogeneous multiprogram
workloads, i.e., multiple single-threaded workloads co-executing on a
multicore processor in which each core executes one single-threaded
workload. Figure 6.8 evaluates the accuracy for four heterogeneous
multiprogram workloads in terms of STP and ANTT. In each graph
there are three bars for each benchmark, corresponding with a two-
core, four-core and eight-core CMP. For example, see for the leftmost
workload mix in Figure 6.8, we co-run art with applu, mcf with lucas,
equake with wupwise, and swim with facerec on a two-core config-
uration; for the four-core configuration, we co-run art, applu, mcf and
lucas, and we co-run equake, wupwise, swim and facerec; for the eight-
core configuration we co-run all benchmarks in the workload.

The average error observed across all heterogeneous workloads
equals 2.0% and 2.9% for STP and ANTT, respectively; the maximum
error is 5.7% and 8.6% (STP and ANTT for mix 4 on 8 cores). The im-
portant observation from Figure 6.8 is that interval simulation tracks
performance trends very accurately, and is capable of modeling conflict
behavior in shared last-level caches. For example, we observe that STP
improves less for memory-intensive workloads (e.g., mix 1) compared
to computation-intensive workloads (e.g., mix 3), which suffer less
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Figure 6.8: Evaluating the accuracy of interval simulation for four heteroge-
neous multiprogram workloads in terms of (a) STP and (b) ANTT as a function
of the number of cores. The two-core configuration results show STP/ANTT
for workload mixes of co-executing benchmarks; e.g., in the leftmost workload
mix, we co-run art with applu, mcf with lucas, etc. For the four-core configu-
ration, we co-run art, applu, mcf and lucas, and we co-run equake, wupwise,
swim and facerec; for the eight-core configuration we co-run all benchmarks
in the workload mix.



118 Interval Simulation















                                   




















 


















































Figure 6.9: Evaluating the accuracy of interval simulation for the multi-
threaded full-system PARSEC workloads as a function of the number of cores.
Performance numbers are normalized to detailed cycle-accurate single-core
simulation.

from conflict misses due to cache sharing in a CMP. The same observa-
tion can be made for ANTT; ANTT is not affected very much for mix 2,
3 and 4, however, it drastically increases for mix 1.

6.4.5 Multithreaded workloads

We now consider the multithreaded PARSEC benchmarks. Figure 6.9
shows normalized execution time as a function of the number of cores
that the multithreaded workload runs on. The average error when com-
paring the estimated execution time obtained through interval simula-
tion versus cycle-accurate simulation is 4.6%: the error is below 6% for
most benchmarks, except for fluidanimate (11.4%). The important ob-
servation is that interval analysis estimates the performance trend with
the number of cores accurately. For example for vips, interval simu-
lation accurately tracks that performance does not improve with an in-
creasing number of cores. The fact that performance does not scale with
the number of cores is due to load imbalance and poor synchronization
behavior. For the other benchmarks, performance improves with an
increasing number of cores. Interval simulation tracks this trend accu-
rately, in spite of the absolute error, even for fluidanimate.
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6.4.6 Cache design space exploration

Figure 6.10 illustrates the accuracy of interval simulation for exploring
the shared L2 cache design space. We vary the size of the shared L2
cache (1 MB, 2 MB, 4 MB and 8 MB) and its set-associativity (4, 8 and
16). Each graph shows the normalized execution time; performance
numbers are normalized to detailed cycle-accurate single-core simula-
tion with a 1 MB 4-way set associative L2-cache. We show the average
normalized execution time over all PARSEC benchmarks as well as the
normalized execution time for canneal, vips and streamcluster running
on a two-core and four-core CMP. We obtained similar results for other
benchmarks. The overall conclusion is that despite the absolute error,
interval simulation tracks performance differences across multiple last-
level cache configurations and across a different number of cores.

6.4.7 Performance trend case study

Our case study considers a performance trade-off as a result of 3D
stacking [48], and compares two processor architectures. Our first
processor architecture is a dual-core processor with a 4 MB L2 cache
which is connected to external DRAM through a 16-byte wide memory
bus; our second processor architecture is a quad-core processor which
is connected to integrated DRAM (through 3D stacking) through a
128-byte memory bus and which does not have an L2 cache. Exter-
nal DRAM is assumed to have a 150-cycle access latency; 3D-stacked
DRAM is assumed to have a 125-cycle access latency.

The important observation from Figure 6.11 is that interval simu-
lation leads to the same conclusions as detailed cycle-accurate simula-
tion. The quad-core processor leads to better performance for a num-
ber of benchmarks, such as bodytrack, fluidanimate and swaptions; for
the other benchmarks on the other hand, cache space is more impor-
tant than processing power, and hence, the dual-core processor outper-
forms the quad-core processor, see canneal, vips and x264. This case
study illustrates that interval simulation leads to the same conclusions
in practical design trade-offs.

6.4.8 Simulation speed

Interval simulation is substantially faster than detailed cycle-level sim-
ulation, see Figure 6.12, which shows the simulation speedup through
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Figure 6.10: Evaluating the accuracy of interval simulation for tracking shared
cache performance as a function of the cache configuration and the number of
cores. Performance numbers are normalized to detailed cycle-accurate single-
core simulation with a 1 MB 4-way set associative L2-cache.
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Figure 6.11: Evaluating interval simulation in a practical design trade-off: a
dual-core processor with 4 MB L2 and external DRAM versus a quad-core
processor with 3D-stacked DRAM and no L2 cache. Performance numbers are
normalized to detailed simulation of the dual-core processor configuration.

interval simulation compared to detailed simulation for the multipro-
gram workloads and multithreaded workloads. The average simula-
tion speedup is a factor 10× for the multithreaded workloads and 4
cores, and a factor 14× for the multiprogram workloads and 8 cores.
We observe that higher simulation speedups are achieved for memory-
intensive benchmarks, see for example mcf and art, because of the func-
tional implementation of the memory subsystem during interval simu-
lation in contrast to the event-based simulation under detailed simula-
tion.

6.5 Related Work

As mentioned before, computer architects rely heavily on cycle-level
simulators. Developing cycle-accurate simulators is very time-consum-
ing and in addition, they have relatively poor performance in terms of
simulation speed. Development effort and evaluation time are becom-
ing a major concern as the number of cores on a chip-multiprocessor
increases. For this reason, it is not uncommon that architects make sim-
plifying assumptions when simulating large multicore and multipro-
cessor systems.
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Figure 6.12: Simulation speedup compared to detailed cycle-accurate simu-
lation for (a and b) the multiprogram SPEC CPU2000 workloads and (c) the
multithreaded PARSEC benchmarks.
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A common assumption is to assume that all cores execute—in pro-
gram order—one instruction per cycle as long as no cache miss events
occur, see for example [33, 42, 55]. Upon a miss event an additional
penalty is added to the simulated clock—this could be called ‘stall
event’ simulation. This approach does not model MLP—cache misses
do not overlap. Neither does it accurately capture the relative progress
(and the conflict behavior) between co-executing threads.

Interval simulation can be viewed along this line of ‘stall event’ sim-
ulation approaches, however, it captures the relative progress among
threads more accurately. In the absence of miss events, interval simula-
tion models the effective dispatch rate through the computation of the
critical path in the ROB. When a long latency load miss event occurs,
interval simulation models the MLP by walking over the pre-execution
window and marking overlapped independent loads. In addition, in-
terval simulation models branch prediction, which to our understand-
ing is not modeled in the simulation methodologies used in [33, 42, 55].
Therefore, interval simulation is a fast and more accurate alternative
for the one-IPC performance model.

6.6 Summary

In this chapter we have proposed interval simulation which raises the
level of abstraction in architectural simulation. Interval simulation re-
places the core-level cycle-accurate simulation model by a mechanis-
tic analytical model. The analytical model estimates core-level perfor-
mance by dividing the execution in so called intervals. The intervals
are separated by miss events, i.e., branch mispredictions, TLB misses
and cache misses (e.g., conflict misses, coherence misses, etc.); the miss
events and their latencies are derived through simulation. By analyz-
ing the types of miss events and their latencies, interval simulation can
estimate core-level performance. The core-level analytical performance
models drive the timing of the miss events, which in their turn deter-
mine core-level performance.

We evaluated the accuracy of interval simulation for both multipro-
gram SPEC CPU2000 workloads and multithreaded PARSEC bench-
marks, running in user-level simulation mode and in full-system sim-
ulation mode, respectively. We report an average error of 5.9% for
the single-threaded SPEC CPU2000 benchmarks compared to cycle-
accurate simulation in M5, and an average error of 4.6% for the mul-
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tithreaded PARSEC benchmarks. Interval simulation achieves a simu-
lation speedup of one order of magnitude compared to cycle-accurate
simulation. Moreover, interval simulation is easy to implement: our
implementation of the core-level mechanistic analytical model is about
one thousand lines of code, which is a dramatic reduction compared
to a detailed cycle-level out-of-order processor simulation model (28 K
lines of code for the out-of-order core model in M5). Thus, interval sim-
ulation tackles the simulator design trade-offs on two fronts: it reduces
development and evaluation time. We believe that interval simulation
is widely applicable for design studies that do not need cycle-accurate
timing at the core level, e.g., when making design decisions in early
stages of the design or when making system-level design trade-offs.



Chapter 7

Conclusion

Truth only reveals itself when one gives up all preconceived ideas.
Shoseki

The future influences the present just as much as the past.
Friedrich Nietzsche

In this dissertation, we have studied two simulation techniques, namely
statistical simulation and interval simulation. Statistical simulation as
presented in Chapter 3 forms the basis for the work discussed in Chap-
ters 4 and 5. In Chapter 6 we have elaborated on interval simulation.
In this chapter, we will summarize and compare both techniques. We
will end with a discussion on future work.

7.1 Summary

Designing a new microprocessor is extremely time-consuming because
of the large number of simulations that need to be run during design
space exploration. On top of that, every single simulation run takes
days or even weeks especially if complete benchmarks need to be sim-
ulated, i.e., architectural simulation is several orders of magnitude
slower than real hardware execution. Recent technology trends, which
put more and more cores on a single chip, exacerbates the simulation
problem. Thus, the need arises for faster simulation techniques.
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7.1.1 Statistical simulation

Statistical simulation is a fairly recently introduced simulation paradigm
that reduces the simulation time, and thus can help to reduce the de-
sign cost of new microprocessors. It is a very fast simulation technique
that only requires on the order of a million instructions per benchmark
to make an accurate performance estimate. Therefore, it is a useful tool
to cull a huge design space in limited time; a small region of interest
identified through statistical simulation can then be further analyzed
through more detailed and slower simulation runs.

The state-of-the-art in statistical simulation considered simple mem-
ory data flow models. We have proposed a more detailed and accurate
modeling of the memory data flow in order to improve the accuracy of
statistical simulation; we have modeled delayed hits, RAW memory de-
pendences and cache miss correlation. Our experimental results have
shown that accurately modeling memory data flow characteristics sig-
nificantly reduces performance prediction errors, e.g, the average IPC
prediction error has dropped from 10.9% down to 2.1%. Furthermore,
statistical simulation accurately predicts performance trends, which
makes it a useful tool for design space explorations.

The shift towards CMPs requires adjustments to statistical simu-
lation in order to capture the conflict behavior in shared resources,
such as last-level caches and main memory. We have shown that en-
hanced statistical simulation can predict this conflict behavior when
running multiprogram workloads on a CMP. In order to do so, we
have extended the statistical simulation paradigm in two ways. First,
we have modeled time-varying execution behavior in the synthetic
traces. Second, we have modeled cache behavior in a microarchi-
tecture-independent way through memory reuse distance and stack
depth distributions. Our experimental results have shown that statis-
tical simulation is accurate with average IPC prediction errors of less
than 7.3% over a broad range of CMP design points, while being one
order of magnitude faster than detailed simulation. This makes statis-
tical simulation a viable fast simulation approach to CMP design space
exploration.

7.1.2 Interval simulation

We have introduced yet another novel simulation paradigm, namely in-
terval simulation, which raises the level of abstraction in architectural
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simulation. Interval simulation replaces the core-level cycle-accurate
simulation model by a mechanistic analytical model. Instead of track-
ing the individual instructions as they propagate through the pipeline,
it considers the streaming of instructions through the dispatch stage, in
order to drive the timing simulation.

The streaming of instructions can be divided in so called intervals;
each interval is marked by a miss event leading to the discontinua-
tion of dispatching of instructions. The front-end will stop delivering
useful instructions to the back-end in case of an I-cache/TLB miss, a
branch misprediction or a serializing instruction. A long-latency load
will cause dispatch to stall, i.e., the load will block commit once it is at
the head of the ROB, the ROB fills up and eventually dispatch stops.
Moreover, the long-latency load will overlap independent future miss
events if both instructions causing the miss events reside in the ROB at
the same time. Interval simulation can estimate core-level performance
by analyzing the type of the miss events and their latencies. In turn,
the estimated core-level performance drives the timing of (future) miss
events.

Our experimental results have shown that interval simulation is
fairly accurate; we have reported an average error of 4.6% for the
multithreaded PARSEC benchmarks running in full-system simulation
mode. Moreover, our results have demonstrated that interval simula-
tion leads to correct design decisions in practical design studies. We
have achieved a simulation speedup of one order of magnitude com-
pared to cycle-accurate simulation. And finally, interval simulation is
easy to implement; our model has required no more than one thousand
lines of code, whereas a fully detailed simulator can easily consist of
tens of thousand lines of code. We believe that interval simulation
makes a good balance between development time, simulation speed
and accuracy, especially when we do not need cycle-accurate timing at
the core level.

7.2 Discussion

Computer architects heavily rely on cycle-level simulators, used at var-
ious stages of the design of a new processor. Past and current trends
in processor technology (e.g., superscalar out-of-order execution and
CMPs) increased the complexity of the microarchitecture, and thus the
complexity of the simulators. This phenomenon makes truly cycle-
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accurate simulation impractical for culling large design spaces. There-
fore, researchers came up with various techniques to cope with the sim-
ulation problem.

Statistical simulation and interval simulation are two techniques
that tackle this problem. Statistical simulation reduces the simulation
time by reducing the number of instructions that need to be simulated,
whereas interval simulation reduces the simulation time by raising the
level of abstraction, in other words, reducing the number of instruc-
tions that must be executed per simulated instruction. Therefore, both
techniques have their place in the computer architect’s toolbox. As
mentioned before these two techniques are orthogonal to and can be
used in conjunction with each other as well as with other simulation
speedup approaches, such as, sampled simulation, FPGA-accelerated
simulation, etc.

We like to make the statement that we do not view these techniques
as a replacement for cycle-accurate simulation. Instead, we view them
as useful complements to cycle-accurate simulation and other tools that
a computer designer has at his/her disposal for design studies where
the simulation speed is a bigger issue than accuracy.

We will now compare both techniques in terms of accuracy, simula-
tion speed and development effort. Furthermore, we will elaborate on
the size of the statistical profiles in statistical simulation.

7.2.1 Accuracy

Both techniques are highly accurate; the average IPC prediction error
for a single-core processor configuration is 2.4% for statistical simula-
tion and 5.9% for interval simulation. Moreover, both techniques can
capture the conflict behavior in shared caches when considering mul-
tiprogram workloads running on a CMP. For example, we achieve an
average IPC prediction error of 7.3% for statistical simulation and 4.8%
for interval simulation, when running homogeneous workloads on an
eight-core CMP. More important when culling large design spaces is
the relative error, which expresses the prediction error of one proces-
sor configuration relative to another configuration. Both techniques ac-
curately track the performance trends over the various processor con-
figurations, i.e., we achieve small relative errors. For example, our
two techniques are able to accurately track performance differences be-
tween the design alternatives in a practical design study (3D stacking
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case study).

7.2.2 Simulation speed

In our evaluation we have reported a simulation speedup of one order
of magnitude for both simulation paradigms. However, some remarks
are in place.

First, in Chapter 4 we have shown that statistical simulation for
single-core processors can achieve a speedup of four orders of magni-
tude—we considered ten billion instruction traces for which we gener-
ated synthetic traces of one million instructions. On the other hand,
when considering multicore processors, we need longer synthetic
traces in order to obtain converged performance estimates, because
the memory behavior in multicore statistical simulation is modeled
through virtual address distributions, stack depth distributions and
reuse distance distributions, rather than through cache miss rates. In
our experiments in Chapter 5 we generated synthetic traces of ten mil-
lion instructions, which is a factor ten smaller than the original one
hundred million instruction SimPoint traces. Due to the huge memory
requirements when collecting the statistical profiles, we were unable to
perform a similar experiment (with ten billion instruction traces) as was
done in Chapter 4. As a result, we were unable to show whether statis-
tical simulation for multicore processors can achieve higher speedup
factors for longer (ten billion instruction) traces.

Second, statistical simulation requires that we first collect a statisti-
cal profile, which is then used to generate a synthetic trace. This profile
partially depends on the microarchitectural configuration. Hence, we
have to recompute the statistical profile when we study a design space
that varies a parameter on which the profile depends. Interval simu-
lation, on the other hand, does not require an offline (profiling) phase.
When we compare the evaluation time of statistical simulation against
interval simulation, we also must take into account how much time
is needed to collect the profile and to generate a synthetic trace from
it. However, we improved the applicability of statistical simulation in
Chapter 5 by making the profile less dependent on the microarchitec-
ture, i.e., in contrast to single-core statistical simulation we modeled the
caches in a quasi microarchitecture-independent way.
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7.2.3 Development cost

The development time of a simulator is another important issue, that
we address in this dissertation. Interval simulation solves this issue by
raising the level of abstraction at the core-level, i.e., the simulator does
not implement the core’s pipeline in detail. Instead, it uses an analytical
model to determine the rate at which instructions stream through the
pipeline. The code size of the analytical model is much smaller com-
pared to a typical detailed implementation of the pipeline. Thus, it is
easier to implement and less error prone.

Statistical simulation, on the other hand, models the microarchitec-
ture in a cycle-accurate way. Moreover, the synthetic trace simulator is a
slightly modified version of a truly cycle-accurate simulator—the simu-
lator is modified in order to deal with synthetic instruction traces rather
than real instruction traces or executables. Furthermore, we also need
to implement a profiling tool and a synthetic trace simulator. There-
fore, the effort to develop a multicore processor statistical simulator is
rather high: not as high as developing a truly cycle-accurate simulator,
but still higher than interval simulation.

7.2.4 A note on the statistical profiles

As mentioned before, in Chapter 5 we have tried to compute the pro-
files of program traces of ten billion instructions. However, the amount
of memory required during this profiling step was extremely high. As
a consequence we were unable to collect the profiles on our 64-bit AMD
machine with 8 GB of physical memory. The main reason why the
memory usage during the profiling step is so high is that the profile
contains virtual memory address distributions. These distributions are
needed for the modeling of memory accesses during synthetic trace
simulation, i.e., the address determines the accessed set in a cache. The
physical memory requirement in order to be able to run the profiling
tool on long instruction sequences is a limitation of CMP statistical sim-
ulation.

7.3 Future Work

In this section we will give some possible avenues along which to take
future research.
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7.3.1 Statistical simulation

Statistical simulation as described in Chapter 5 only considers multi-
program workload. Extending this technique to multithreaded work-
loads would improve the applicability for CMP statistical simulation.
Therefore, we need to collect a distribution of address space identifiers
in order to model sharing of memory addresses among co-executing
threads—in the current implementation we use thread identifiers to
distinguish between the memory spaces. In addition, combining it with
the Nussbaum and Smith [60] and Hughes and Li [38] approaches will
make statistical simulation viable for modeling multithreaded work-
loads running on CMPs with shared resources.

Second, this thesis also improves upon prior work by considering
more realistic DRAM models. Statistical simulation could be further
improved by considering more detailed cache models including hard-
ware prefetching. Another interesting feature would be the modeling
of caches that are optimized for miss patterns per static load or per
group of loads. This may require a more accurate modeling of the lo-
cal history of memory access patterns in addition to the global history
described in Chapter 4.

Third, we have made a first but important step towards making the
statistical profile microarchitecture-independent. The cache statistics
are independent of the number of sets in the cache and the cache’s as-
sociativity; they still depend on the cache line size though. The branch
prediction statistics also depend on a particular branch predictor con-
figuration. Making the statistical profile completely microarchitecture-
independent would make the framework even more efficient and ap-
plicable. For example, statistically simulating SMT processors would
then become plausible.

Fourth, we found the accuracy of the shared cache performance es-
timation through statistical simulation to be subject to warm-up in the
shared cache. For now, we assume a hit-on-cold strategy. Considering
potentially more accurate and efficient cache warm-up strategies may
improve the overall prediction accuracy and lead to shorter synthetic
traces.
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7.3.2 Interval simulation

Our current implementation of an interval simulator employs a func-
tional-first simulation approach, which may lead to different lock con-
tention and different thread interleavings than what may happen in
real systems. Implementing a timing-directed approach will capture
lock contention and thread interleaving more accurately. Furthermore,
simulating instructions along mispredicted paths would allow us to
capture the interference that wrong-path instructions may have on
performance. However, this will make interval simulation harder to
develop—one must make a trade-off between accuracy and develop-
ment effort.

Second, in this dissertation we have shown that interval simulation
can accurately predict the performance of CMPs with up to eight cores.
The next step for interval simulation is to consider many-core proces-
sors with multiple tens of cores. Hereto, we need to parallelize the
interval simulator in order to simulate all cores concurrently. The sim-
ulation time can also be reduced through FPGA acceleration. The code
size of interval simulation is much smaller compared to cycle-accurate
simulation, i.e., 1 K vs. 28 K lines of code. Thus, interval simulation
would allow us to place more cores on a single FPGA, which reduces
the possible communication overhead between the FPGAs when simu-
lating very large scale multicore systems.

Third, a possible application of interval simulation is to combine
it with sampled simulation for CMPs. Single-core sampled simulation
uses functional simulation as fast-forwarding strategy between sam-
pling units. However, this would introduce inaccuracies in case of
multicore processors, i.e., during fast-forwarding the relative progress
of the threads would be 1 on 1, which is not the case in real sys-
tems. As illustrated in this dissertation, the relative progress be-
tween co-executing threads affects the conflict behavior in shared
resources. Interval simulation is a potentially better solution as a fast-
forwarding strategy between sampling units, because it captures the
relative progress of the threads more accurately.
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