

ANURADHA DANDE

SIMULATION OF MULTIPROCESSOR SYSTEM SCHEDULING

Master of Science Thesis

Examiner(s): Professor Jari Nurmi,
Doctor Sanna Määttä
Examiner and topic approved by the
Teaching and research Council on
06 April 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Trepo - Institutional Repository of Tampere University

https://core.ac.uk/display/250164433?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Information Technology

ANURADHA DANDE: Simulation of Multiprocessor System Scheduling

Master of Science Thesis, 48 pages + 20 Appendix pages

February 2014

Major: Software Systems

Examiner(s): Professor Jari Nurmi, Doctor Sanna Määttä

Keywords: Multiprocessor system, Scheduling, Simulation, Efficiency of the sys-

tem.

The speed and performance of computers have become a major concern today.

Multiprocessor systems are introduced to share the work load between the pro-

cessors. By sharing the work load among processors, the speed and efficiency

of the system can be increased drastically. To share the workload properly be-

tween the processors in the multiprocessor system a proper scheduling algo-

rithm is needed. Hence, one of the major factors that influence the speed and

efficiency of the multiprocessor system is scheduling. In this thesis, the main

focus is on the process scheduling for multiprocessor systems. The factors

which influence scheduling and scheduling algorithms are discussed.

Based on this idea of sharing the load among processors in the multiprocessor

system, a simulation model for scheduling in a symmetric multiprocessor sys-

tem is developed in the Department of Digital and Computer systems at Tampe-

re University of Technology. This model treats all the processors in the system

equally by allocating equal processor time for all the processes in the task and

also evaluates the total execution time of the system for processing an input

job. The scheduling algorithm in this simulation model is based on the input

processes priority. The necessity of scheduling in multiprocessor systems is

elaborated.

The goal of this thesis is to analyse how process scheduling influences the

speed of the multiprocessor system. Also, the difference in total execution time

of the input jobs with different number of processors and capacity of the proces-

sors in the multiprocessor system is studied.

ii

PREFACE

The research work in this thesis was done at department of Digital and comput-

er systems in Tampere University of technology. The aim of this project is to

analyze how scheduling influences the speed of multiprocessor system. A simu-

lation model of multiprocessor system scheduling is also implemented with the

thesis.

I would like to thank Professor Jari Nurmi for his support. I especially thank Doc-

tor Sanna Määttä for her continuous guidance and help in writing this thesis. I

also thank Jarno Mannelin for his help in QT related issues. I sincerely admit

that without the help of the above mentioned people the completion of this work

would not have possible.

Finally I thank my loving husband Chandra Sekhar and daughter Rishitha for

their support and cooperation while writing the thesis.

Tampere, 18.03.2014

Anuradha Dande

iii

TABLE OF CONTENTS

Abstract .. i

Preface.. ii

Table of Contents ... iii

Terms and Definitions ... v

1. Introduction .. 1

2. History of Multiprocessor Systems ... 4

2.1 Amdahl's Law ... 5

2.2 Moore’s Law ... 6

3. Architecture of Multiprocessor System... 8

3.1 Processor Symmetry .. 8

3.1.1 Symmetric Multiprocessing ... 8

3.1.2 Asymmetric Multiprocessing ... 9

3.1.3 Symmetric verses Asymmetric Multiprocessing 10

3.2 Memory Access .. 11

3.2.1 Uniform Memory Access Systems .. 11

3.2.2 Non-Uniform Memory Access Systems 11

3.2.3 Massively Parallel Systems .. 12

3.3 Processor Coupling .. 13

3.3.1 Tightly-coupled Multiprocessor Systems 13

3.3.2 Loosely-coupled Multiprocessor Systems 13

3.3.3 Tightly-coupled verses Loosely-coupled Multiprocessor

Systems .. 14

3.4 Software Implementation in Multiprocessor Systems 14

3.4.1 Single Instruction Single Data Processing 15

3.4.2 Single Instruction Multiple Data Processing 15

3.4.3 Multiple Instruction Single Data Processing 16

3.4.4 Multiple Instruction Multiple Data Processing 17

3.5 Issues in Multiprocessor Systems... 18

4. Concurrency in Multiprocessor Systems .. 20

4.1 Programming Models .. 20

4.1.1 Independent Parallelism ... 20

4.1.2 Regular Parallelism ... 21

4.1.3 Unstructured Parallelism ... 21

4.2 Concurrency control .. 21

4.2.1 Critical section .. 21

4.2.2 Mutex Lock ... 22

4.2.3 Semaphore ... 22

4.3 Concurrency implementation .. 22

5. Scheduling in Multiprocessor System .. 24

5.1 Scheduling Algorithms .. 24

iv

5.1.1 First In First Out Scheduling Algorithm 25

5.1.2 Shortest Job First Scheduling Algorithm 25

5.1.3 Priority Based Scheduling Algorithm 25

5.1.4 Round Robin Scheduling Algorithm .. 26

5.1.5 Multilevel Queue Scheduling Algorithm 26

5.2 Multiprocessor System Scheduling ... 27

5.2.1 Scheduling Criteria ... 27

5.2.2 Implementation of Scheduling in Multiprocessor Systems 28

5.2.3 Choosing a Scheduling Algorithm ... 29

5.2.4 Problems in Multiprocessor Scheduling 30

6. Simulation in Multiprocessor Systems ... 31

7. Design and Implementation of Simulation Model for Multiprocessor System

Scheduling .. 33

7.1 Scheduling Criteria in the Simulation Model 33

7.2 Concept Model.. 34

7.3 Design of Scheduler ... 35

7.4 Example .. 37

7.5 Technologies Used ... 39

7.6 Graphical User Interface, Inputs and Outputs 39

7.6.1 Graphical User Interface ... 39

7.6.2 Inputs .. 40

7.6.3 Outputs ... 40

7.7 Result Analysis ... 41

7.7.1 Analysis 1 ... 41

7.7.2 Analysis 2 ... 42

8. Conclusion and Future work .. 44

References.. 45

APPENDIXES ... 49

v

TERMS AND DEFINITIONS

Task Unit of execution in a job given to the system for exe-

cution.

Process Sub part of a task which is executed. Tasks contain

several processes.

Processor Customization of the system to meet specific needs of

the end user. The system is customized by configuring

the system parameters.

Concurrency Two or more processes executing in parallel

Scheduling Way of allocating processor time to processes for ex-

ecution

SMP Symmetric Multiprocessors

ASMP Asymmetric Multiprocessors

UMA Uniform Memory Access

NUMA Non Uniform Memory Access

MPP Massively Parallel Multiprocessors

GUI Graphical User Interface

1

1. INTRODUCTION

Speed and performance of the computer systems are the major concerns in the

computer industry. To increase the speed and performance of the system, the

total execution time of the input job should be reduced. The traditional ways to

reduce the total execution time of the input job in the system is by

 Increasing the transmission speed in the processor

 Increasing computational power of the processor [16]

To increase the transmission speed inside the processor, the high speed mod-

ules in the processor must be placed very close to one another. The transmis-

sion speed will be increased with the decrease in distance between the high

speed modules to an extent, but after a limit, this will not affect the speed the

system much. [16]

The computational power of processor depends on number of transistors in the

processor. Right now, processors contain millions of transistors. Increasing the

number of transistors on processors is a very difficult and expensive. Hence

increasing computational power of processor also has limitation. [16]

One of the best and efficient ways to increase the speed and performance of

the system is through parallel processing. Parallel processing is executing dif-

ferent parts of the same job simultaneously. This reduces the total execution

time of the input job. Multiprocessor systems contain more than one processor,

through which parallel processing is possible. All these processors in the multi-

processor system share the work load and execute in parallel. [16]

The work load or the input job contains one or more tasks and each task con-

tains one or more processes. These processes are shared among the proces-

sors in the multiprocessor system. By distributing the work load among the pro-

cessors in the system, the total execution time will be decreased drastically. [1]

Multiprocessor systems are very complicated as they are capable of parallel

execution. To perform all the processes in the task properly, they must be effi-

ciently executed. For an efficient execution, all the processes must be sched-

2

uled properly. Scheduling is the way of allocating processor time and resources

to the processes for execution. [1]

Distribution of the processes among the processors in the multiprocessor sys-

tem is done based on scheduling criteria of the system. The scheduling criteria

depend on the goals of scheduling and hardware architecture of the system.

These scheduling criteria vary from system to system [3]. The common goals of

scheduling are

• Minimizing the total execution time of the system

• Increasing the throughput

• Minimizing the waiting time of the processes

• Maximizing the resource utilization

• Sharing processor time for each process equally

• Minimizing the communication delay

• Handling task prioritization [1]

As the efficiency of scheduling reflects the speed of execution in the system,

multiprocessor system scheduling has become one of the most studied prob-

lems today. [3]

Scheduling is implemented by using appropriate scheduling algorithm. A

scheduling algorithm is selected and implemented according to the scheduling

criteria of the multiprocessor system. The order of execution of the process is

decided by the scheduling algorithm. [1]

In general, tasks are executed more quickly in multiprocessor system than

when run on a uniprocessor system. For smooth execution, communication be-

tween the processors in the system is necessary. Also, processes in the system

need to share memory and resources. In cases where the estimated execution

time of the task is small and if the communication between the processes, use

of shared resources is very frequent then uniprocessor systems may take ad-

vantage over multiprocessing systems in terms of execution time. [1]

Multiprocessor systems are very complex compared to uniprocessor systems.

Handling problems such as communication delays, resource allocations, error

debugging in multiprocessor systems is difficult [16]. As the multiprocessor sys-

tems are complex, simulation of multiprocessor systems helps to understand

and learn the internal functionality easily. [1]

3

As a part of the thesis work, a simulation model of multiprocessor system

scheduling is developed using SystemC and QT. The basic aim of this simula-

tion model is

• To understand the change in execution speed with the change in number

of processors and efficiency of processors in the multiprocessor system.

• To learn how priority of processes affects the order of execution of the

processes.

• To handle pre-emption of the processes while execution.

The rest of the thesis is organized as follows. Chapter 2 outlines the evolution of

multiprocessing technology over years. Chapter 3 discusses the architecture of

multiprocessing systems. Chapter 4 gives a brief idea of concurrency. Chapter

5 gives an overall idea of scheduling in multiprocessing system. In Chapter 6,

simulation in multiprocessor system is explained. Chapter 7 discusses about

design and implementation of simulation model of multiprocessor system. Con-

clusion and future work are in chapter 8.

4

2. HISTORY OF MULTIPROCESSOR SYSTEMS

The performance of a system can be increased by increasing the performance

of the processor. The performance of the processor can be increased by in-

creasing the clock rate [4]. During the evolution of computers, the size of pro-

cessors was reduced with the decrease in size of transistors. With decrease in

size of transistors, more transistors were placed in the processors, thus allowing

them to operate with very high clock rates and high computational power [16].

The increase in the number of transistors resulting in increase in speed of pro-

cessors over period of time is explained by Moore’s law, which was proposed

by Gordon E. Moore in 1970 [27]. Moore’s law is briefly explained in section 2.2.

The clock rate of the processor cannot be increased above a certain level due

to physical limitations. In that case, the system performance can be increased

further by increasing the number of processors in the system which can share

the workload and execute in parallel. [4]

The technique of sharing the work load among two or more processors in the

system and allowing these processors to work in parallel is called multipro-

cessing. The systems which carry out multiprocessing are called multiprocessor

systems [1]. The concept of multiprocessing created much of interest among

companies and users in many fields. Depending on technology and market

need, a number of companies started developing multiprocessor systems by

mid 1950s. [4]

In 1960’s, parallel processing systems with a cross switch that connects the

processors with input-output devices to memory are designed, these systems

are called mainframe systems. These systems are capable of supporting hun-

dreds and thousands of users simultaneously. Mainframe systems found exten-

sive use in public governing systems such as universities and hospitals. Super

computers were introduced in early 1980’s, with high throughput and high per-

formance using parallel processing. These super computers are faster and ca-

pable of doing complex tasks such as predicting weather forecast. In 1970’s,

parallel processing mini computers are introduced for using in large organiza-

tions such as hospitals which can support many users simultaneously. In

1980’s, microcomputers became popular as they were used as standalone per-

5

sonal computers. These systems are capable of parallel processing and are

used for personal computers and in offices. [24] [30]

The increase in speed of the overall system by improving a part of system is

explained by Amdahl’s Law. By using Amdahl’s Law, the change in the speed of

multiprocessor system with the increase in number of processors is briefly ex-

plained in section 2.1. [29]

2.1 Amdahl's Law

Amdahl’s law states that the performance of the system can be increased by

increasing the performance of a portion of the system. This theory can be ap-

plied to the multiprocessor systems to calculate the theoretical performance of

the system. [4]

Figure 2.1 Amdahl's equation for multiprocessing [4]

In Figure 2.1, N is the number of processors in the system and F is the portion

of the system which is sequential and cannot be run in parallel. This Amdahl’s

equation (in Figure 2.1) is used to calculate the maximum performance im-

provement of a multiprocessing system theoretically. The theoretical calculation

of the performance improvement in the system with the increase in number of

processors by using Amdahl’s law is shown in Figure 2.2. [4]

Figure 2.2 Amdahl's law for up to ten CPUs [4]

6

In Figure 2.2, the blue line shows the number of processors. If the F factor (the

portion of the system which is sequential and cannot be run in parallel) is in-

creased, the speed of the system is reduced, even after increasing the number

of processors. This can be noticed from the purple and the brown lines in the

Figure 2.2 [4]

2.2 Moore’s Law

Moore’s law states that” the number of transistors incorporated in a chip will

approximately double every 24 months.” In spite of existing power consumption

issues, Moore’s law is still applicable today [28]. The graph in the Figure 2.3

illustrates Moore’s law for Intel chips over a time period from 1970-2005. [32]

Figure 2.3 Increase in number of transistors in Intel chips over years[32]

The Figure 2.3 shows the transistor count in Intel chips from 1970’s to 2005.

From the straight line in the Figure 2.3, it is understood that the number of tran-

sistors is almost doubled in every 2 years in Intel chips. [32]

The system performance also increased in time by utilizing all the processors

efficiently using parallel processing. This is depicted in Figure 2.4 for Intel multi-

processor systems. [31]

7

Figure 2.4 Intel performance over time [31]

Figure 2.4 shows constant growth in relative performance of Intel multiproces-

sor systems from 1980 to 2003.

8

3. ARCHITECTURE OF MULTIPROCESSOR SYS-

TEM

Compared to uniprocessor systems, multiprocessing systems are capable of

executing multiple processes in parallel by sharing the work load among all the

processors in the system. The way of execution of the processes in the multi-

processing systems depends on the architecture of the system [1]. This section

explains different kinds of hardware and software architectures of multiproces-

sor systems. There are different kinds of multiprocessing systems which are

classified based on their symmetry, coupling, memory access and software im-

plementation. This chapter gives brief idea of classification of multiprocessor

systems.

Multiprocessor hardware implementations are carried out based on the way

how all the processors are connected in a multiprocessing system, how the re-

sources are shared among the processors and how communication between

the processors is made. Multiprocessor software implementations are carried

out based on data use and instructions processed by processors. [5][1]

3.1 Processor Symmetry

Symmetry of a system is defined by both the software and hardware design

constraints. For example, a multiprocessor system may utilize all its processors

equally or it may reserve few processors for special tasks such as responding to

priority interrupts. The multiprocessor systems are designed based on the kind

of jobs executed by the system. The design takes care of utilizing all the pro-

cessors in the system. Based on the processor symmetry, multiprocessing can

be classified as symmetric and asymmetric multiprocessing. [5]

3.1.1 Symmetric Multiprocessing

In symmetric multiprocessing (SMP) systems, all the processors are treated

equally. Here all the processors are connected in such a way that they share all

the tasks and resources equally. Symmetric multiprocessing architecture is

widely used. [5]

9

As all the processors are capable of working equally, the symmetric multipro-

cessing architecture balances the work load on the system efficiently by trans-

ferring and sharing the task equally among all the processors in the system.

Figure 3.1 shows a typical symmetric multiprocessor system where all the pro-

cessors are connected to the same memory through a bus. In symmetric multi-

processing, all the processors run on single operating system allowing parallel

processing. [5]

Figure 3.1 Symmetric multiprocessor system [5]

3.1.2 Asymmetric Multiprocessing

Unlike symmetric multiprocessing architecture, in asymmetric multiprocessing

architecture processors are not treated equally. As few processors will be re-

served for executing only certain tasks such as handling interrupts, the entire

work load is not shared equally between all the processors. Hence the workload

between the processors varies, as the work load cannot be moved among all

the processors equally. This kind of multiprocessing system is designed for ex-

ecuting specific tasks. [20] [1]

Asymmetric multiprocessing architecture is complex and difficult to implement

and understand. The processors in asymmetric multiprocessing architecture

may have different operating systems. The processors in this architecture need

not be aware of each another. [20]

Asymmetric multiprocessing system architecture uses master-slave mecha-

nism. The master processor verifies the priority and kind of the task, divides the

workload accordingly and assigns the task to the appropriate slave processors

to finish the task. Slave processors just execute the tasks given by the master

processor. Due to this, work load may not be shared equally between the pro-

cessors. Few processors may also be idle in this kind of execution. [5] [1]

10

Figure 3.2 and Figure 3.3 show examples of asymmetric multiprocessor system.

In Figure 3.2, all the processors do not have same access to the resources of

the system. Processor 1 and processor 3 have their private memory and all the

processors have access to memory and Input/Output devices. In the asymmet-

ric multiprocessor system in Figure 3.3, only processor 4 has access to Input

and Output devices. [5]

Figure 3.2 Example1 of Asymmetric multiprocessor system [5]

Figure 3.3 Example2 of Asymmetric multiprocessor system [5]

3.1.3 Symmetric verses Asymmetric Multiprocessing

All the processors in symmetric multiprocessing systems are treated equally

and all of them are capable of executing a given task. As asymmetric multipro-

cessing systems work on master-slave architecture all the processors are not

capable of executing all kinds of tasks. Master processor decides which proces-

sor executes which task. [20]

11

Implementing asymmetric multiprocessor architecture is very difficult compared

to symmetric multiprocessing architecture. A programmer should take special

care while designing asymmetric multiprocessing architecture. [20]

3.2 Memory Access

Based on sharing of memory, multiprocessors can be categorised as [35]

1. Shared memory systems

2. Shared disk systems

3. No sharing systems.

Based on memory access of the processors, multiprocessor systems are classi-

fied as Uniform Memory Access systems (UMA) and Non-Uniform Memory Ac-

cess systems (NUMA). [35]

3.2.1 Uniform Memory Access Systems

All the processors in the multiprocessor system have uniform access to the

memory in the system. Figure 3.4, illustrates uniform memory access systems

model. [35]

Figure 3.4 Uniform memory access systems (UMA) [35]

3.2.2 Non-Uniform Memory Access Systems

All the processors in the multiprocessor system will not have uniform access to

the memory in the system. This can be seen in the Figure 3.5 Non-Uniform

memory access systems model. [35]

12

Figure 3.5 Non-Uniform memory access systems (NUMA) [35]

3.2.3 Massively Parallel Systems

Massively parallel systems do not share a common memory, but they have ac-

cess to common disks. These systems may vary from few nodes to thousands

of nodes. All the nodes will be arranged in grid, mesh or hyper cube model.

Every node will have its own private memory and devices. Most of these mas-

sively parallel systems are designed in a way that on failure of a node, other

systems can access failed system resources. Figure 3.6 shows massively par-

allel systems model. [35]

Figure 3.6 Massively parallel systems model. [35]

13

3.3 Processor Coupling

Based on the way of connectivity and communication in the system, processor

coupling is classified in to tightly-coupled multiprocessor systems and loosely-

coupled multiprocessor systems.

3.3.1 Tightly-coupled Multiprocessor Systems

All the processors in a tightly-coupled multiprocessing system are connected via

bus and all the resources are shared equally among all the processors in the

system. Communication between the processors is carried out with the help of

shared memory in the system. Bandwidth of the bus, memory storage, retrieval,

and message passing techniques determine the performance in these systems.

Figure 3.7 shows an example of tightly-coupled multiprocessor system. [5][35]

 Figure 3.7 Tightly-coupled multiprocessor system [34][35]

This kind of coupling is used in chip multiprocessing or multi-core computing. All

the processors on a single chip are tightly-coupled. Multiprocessor mainframe

systems are generally tightly-coupled. [5]

3.3.2 Loosely-coupled Multiprocessor Systems

There is no regular pattern in the connectivity of processors in loosely-coupled

multiprocessor systems. All the processors are treated as clusters. Mostly these

types of systems are connected with high speed Ethernet. The Figure 3.8

shows an example of loosely-coupled multiprocessor system. Node 1, Node 2,

Node 3 are clusters connected to common disks via bus. [5]

14

Figure 3.8 Loosely-coupled multiprocessor system [35]

3.3.3 Tightly-coupled verses Loosely-coupled Multiprocessor Systems

Compared to loosely-coupled multiprocessor systems, tightly coupled multipro-

cessor systems give better performance. Tightly coupled multiprocessor sys-

tems occupy smaller area than loosely coupled multiprocessor systems. During

the design of tightly coupled systems, by allowing relevant components to work

together, they can be made more efficient in terms of energy consumption. [5]

The initial costs incurred in establishing tightly coupled multiprocessing systems

are higher than loosely coupled multiprocessor systems. When detached from

cluster, loosely coupled machines can be used as independent machines hence

it is easier to recycle loosely coupled systems. [5]

3.4 Software Implementation in Multiprocessor Systems

Based on data use and instructions processed by processors in computer sys-

tems, software implementations in computer systems are classified. Figure 3.9

shows the same. Flynn’s taxonomy explains this classification in detail. [21]

Figure 3.9 Inputs for Flynn’s taxonomy [36]

Different combinations of input data and instructions given to the systems are

discussed in the Flynn’s taxonomy. Table 3.10 shows the same. Based on the-

15

se combinations of input data and instructions, software architecture of the sys-

tem is classified in to 4 categories: [5] [21]

1. Single Instruction Single Data processing (SISD)

2. Single Instruction Multiple Data processing (SIMD)

3. Multiple Instruction Single Data processing (MISD)

4. Multiple Instruction Multiple Data processing (MIMD)

 Single Instruction Multiple Instruction

Single data SISD MISD

Multiple data SIMD MIMD

Table 3.10 Flynn’s taxonomy [21]

Parallel processing is carried out by SIMD processing and MIMD processing.

[21]

3.4.1 Single Instruction Single Data Processing

In SISD processing, each processor processes only single instruction by ac-

cessing data from a single memory source. Here, each processor sequentially

processes instructions (pipelined execution) where each instruction can access

one data item. Figure 3.11 represents the same. [5]

Figure 3.11 Single Instruction Single Data processing [36]

3.4.2 Single Instruction Multiple Data Processing

In a SIMD processing, the instructions are processed one after other in a se-

quence by accessing data from multiple data sources in parallel. [5]

16

In SIMD processing, large chunks of data is divided in to sub parts so that simi-

lar and independent operations can be operated in parallel. Figure 3.12 explains

the same. A set of instructions are executed by the processors in the system

one by one, where each processor performs similar operation on the sub parts

of chunk of data from multiple resources. This kind of single instruction multiple

data processing is used in parallel or vector processing systems where similar

operations are made on large chunks of data. This architecture reduces the

elapsed time in completing a given task. Thus increases the performance of the

system. [5]

Figure 3.12 Single instruction multiple data processing. [36]

In this architecture, proper care should be taken in dividing the data to several

sub parts. Special optimizing compilers are used in this SIMD processing sys-

tems to divide the data to several sub parts. This kind of architectures is used

for computer simulations. [5]

3.4.3 Multiple Instruction Single Data Processing

MISD processing is similar to parallel computing architecture where multiple

instructions are executed by different processors on same data. Figure 3.13

shows the same. These systems are also fault tolerant. There is no chance of

getting wrong results even if one of the processor in the system fails abruptly.

These systems are very expensive and do not improve performance. [5]

17

Figure 3.13 Multiple instruction single data processing [36]

3.4.4 Multiple Instruction Multiple Data Processing

In MIMD architecture multiple processors in the system can execute multiple

instructions on multiple data. This architecture is used for those systems where

instructions in the tasks can be executed independently in parallel. Figure 3.14

explains the same. Shared or distributed memory is used in this architecture

system. Using this architecture, parallel processing is achieved. Distributed sys-

tems use this architecture. [5][21]

Figure 3.14 Multiple instruction multiple data processing [36]

This architecture is used in the areas such as computer-aided design, comput-

er-aided manufacturing, simulation, modelling and communication switches.

Implementing this architecture is easy but the issues such as races (more than

one processes requesting for same resource), deadlocks and resource utiliza-

tion are common. To avoid or handle such issues critical sections, locks and

semaphores are used. [5]

18

3.5 Issues in Multiprocessor Systems

This chapter discusses the hardware and software issues related to multipro-

cessor systems. Multiprocessing systems are very complex thus understanding

the system is also difficult. For implementing multiprocessing in the system, the

input job must be divided and shared by all the processors in the system. Divid-

ing the entire input job to smaller tasks and processes is not easy. Special soft-

ware should be available in the multiprocessor systems to transform the main

job in to dividable form, so that splitting the input job to smaller tasks is done

meaningfully and efficiently. Scheduling is needed to allocate the processes

among the processors in the system. Balancing the work load between all the

processors is also a very challenging issue. [14]

Without proper synchronization among the processors in the system, data ac-

cessing is not reliable and may lead to wrong results. Tracking the execution of

events in the multiprocessor systems is not easy [14]. Due to unexpected laten-

cies (time delay between request and response) in the system, establishing

communication between processors and accessing resources is hard. [15]

In multiprocessor systems, synchronization issues may also occur if two or

more processes needs access for a shared resource at the same time, this re-

sults in race situation. Races are very common in multiprocessing environment.

Races are very harmful and difficult to resolve. Predicting race conditions while

scheduling is also difficult. As avoiding races will result to serialization, races

must be resolved very carefully. Races are resolved using critical sections,

semaphores and mutex locks. [1]

Critical section is the section in which only one process is allowed to access

shared resources and no other process can enter their critical sections. To syn-

chronize different processes entering critical section to access shared re-

sources, mutex locks or Semaphores are used. Mutex locks provide mutual ex-

clusion. Mutex locks control the processes entering critical section by locking

the process, while entering in critical section and releasing the locks while exit-

ing critical section. Mutex locks help to prevent race conditions. Deadlocks may

occur in situations when two or more processes need two or more shared re-

sources in order to finish the task and if they are waiting indefinitely for the an-

other to release the acquired locks of a shared resource. Deadlock detecting

and resolving is complex and expensive. [1]

Testing the multiprocessor systems is difficult. This is because tracking the exe-

cution of events in the multiprocessor systems is not easy. [41]

19

Issues such as network delays or power consumption are very crucial in multi-

processor systems. As the devices are manufactured smaller day by day, mil-

lions of transistors are packed in a single chip, which consumes more power

and emits a lot of heat. To control this heat, additional hardware is needed for

cooling and handling power consumptions in multiprocessor systems. [14] [3]

20

4. CONCURRENCY IN MULTIPROCESSOR SYS-

TEMS

Concurrency is a property where several processes in a task execute in parallel

by interacting with each other to complete the task. Concurrent computing pro-

gramming models are designed to implement concurrency. The concurrent

computation is carried in multiprocessor systems. [1]

4.1 Programming Models

A programming model defines the method of execution of the tasks. In general,

programming models are designed by the kind of problems handled and the

kind of system architecture where the model is deployed. A parallel program-

ming model defines the method of execution of parallel tasks under different

circumstances. These parallel programming models generally depend on the

way the job is divided in to sub tasks to execute in parallel and kind of interac-

tions or dependencies between the tasks. [9]

Problems related in implementation of concurrency are not same always. Based

on the problem and type of solution, a specific programming model is designed.

Hence, various programming models evolved during time. [9]

4.1.1 Independent Parallelism

In independent parallelism all the tasks are executed independently and in par-

allel. Independent parallelism is possible only when there is absolutely no de-

pendency or no interactions between the computations in the task. [9] [10]

For example, consider an application that needs to sort two data sets and

merge the two data sets finally. As there is no dependency between the two

data sets they can be sorted independently and in parallel. Finally, they can be

merged. [10]

21

4.1.2 Regular Parallelism

Regular parallelism deals with executing mutually dependent tasks in parallel.

Regular parallel programs require synchronization of computations and careful

monitoring of the computations in the task. In this kind of parallel programs, da-

ta sharing and mutual dependencies should be analysed thoroughly to deter-

mine how to execute them in parallel. However, analysing the programs in ad-

vance is not always possible as it is impossible for compilers to restructure and

understand all kinds of complex programs at all times. [9]

For example, if there are several tasks in an application sharing the same re-

source, then to maximize parallel execution of the tasks in the application all the

computations should be carefully monitored and the execution of the tasks

should be synchronized properly so that there is no overlapping in accessing

the resource [9]

4.1.3 Unstructured Parallelism

Unstructured parallelism arises in the situation when the tasks in the application

are least disciplined and nondeterministic. In this kind of applications all the

tasks should be coordinated explicitly. Otherwise the execution of the applica-

tion will be nondeterministic. [9]

For example, in complex applications with common memory where accessing

data by the tasks is not predictable, the conflicting data access tasks execution

should be explicitly monitored and synchronized. [9]

4.2 Concurrency control

Concurrency control is necessary to avoid ambiguity among concurrently exe-

cuting process in processing requests for allocating same shared resources at

the same time. To achieve concurrency control and synchronize processes,

mechanisms such as critical sections, mutex locks and semaphores are used.

[1]

4.2.1 Critical section

Races among the processes will arise when two or more processes try to ac-

quire access for same shared resource at the same time. To avoid such race

situations and to ensure smooth concurrent execution, critical sections are

used. [1]

22

Critical section is a segment in which only one process can enter and access

the shared resources. When one process is in its critical section for accessing

the resources, no other parallel executing process can enter in its critical sec-

tion. Critical section must provide mutual exclusion, which means at the same

time, no two processes can execute in their critical section. Processes using the

critical section are monitored by entry and exit status. Critical sections control

concurrency by synchronizing the processes in execution. [1]

4.2.2 Mutex Lock

To control processes in accessing critical section and prevent race conditions

mutex (mutual exclusion) locks are needed. Using mutex locks, processes are

locked while entering critical section and released while exiting the critical sec-

tion. Basic use of mutex locks is to provide mutual exclusion. Mutex locks are

implemented using boolean variables, to indicate the availability of the critical

section. Other processes if need to access the critical section, then stays in

busy waiting state for their turn to acquire the critical section. The processes in

busy waiting state checks continuously at regular intervals for the availability of

the critical section. One of the disadvantages of busy waiting is that during wait

the processor time (cycles) is consumed. [1]

4.2.3 Semaphore

Semaphores use signals for giving access for processes to critical section.

Semaphores control the access to predefined number of instances of critical

sections by incrementing and decrementing the values of the semaphore varia-

ble. [1]

4.3 Concurrency implementation

The first step in concurrency implementation is identifying the processes in the

task that can be executed in parallel. After identifying all the processes that can

be parallelized, they should be analysed based on their granularity, order of ex-

ecution, resources needed to execute and dependency on other processes.

Based on this analysis, the parallelizable processes should be scheduled for

execution. Accordingly, a scheduling algorithm to execute the task is designed.

[13]

The understanding of the tasks and the internal processes dependencies affect

the algorithm design of parallel programming. To ensure determinism in the ex-

23

ecution, scheduling of the processes should be controlled using external algo-

rithms than by system. Detailed study of the system and the input jobs is nec-

essary while designing algorithm for communication and synchronization mech-

anisms between the processes and shared resources. [13]

After the algorithm design and implementation for parallel execution of process-

es, program optimization is necessary to achieve performance gain. In parallel

programming the platforms of the memory hierarchies and the processors in the

system are different. This makes the program optimization more complicated.

Unlike sequential programming, the program optimization in parallel program-

ming depends on understanding the hardware of the system and estimating

errors at every step of execution. The optimized program must be tested at eve-

ry step by experimenting with all possible error prone situations. [13]

Testing and debugging techniques in parallel programming are much different

compared to sequential programming. As parallel programs are very complex,

clear knowledge on program execution is needed while designing the testing

cases. Detailed testing and debugging techniques are developed, as the pro-

cessors and memory hierarchy platforms are different. [13]

Adding new features to parallel programming applications is difficult and in-

volves more risk. As there are chances of affecting the total performance of the

system, more care should be taken while adding new features to the program.

[13]

24

5. SCHEDULING IN MULTIPROCESSOR SYSTEM

Scheduling is the technique of allocating processor time to processes in the

tasks for execution. Scheduling helps for executing the list of given tasks effi-

ciently and smoothly. In order to determine the sequence of execution of the

processes in the tasks, a well-defined scheduling algorithm is followed. [1]

Initially, all the input processes in the tasks are fed to a ready queue. A sched-

uler selects the processes from the ready queue to allocate processor time for

execution. A dispatcher dispatches the process to the processor. This is ex-

plained in Figure 5.1. [1]

Figure 5.1 Process allocation

5.1 Scheduling Algorithms

The scheduling is implemented using scheduling algorithms. Based on the kind

of task, the kind of processes in the task and type of system, appropriate

scheduling algorithm is chosen. The following are few well know scheduling al-

gorithms. [1]

25

5.1.1 First In First Out Scheduling Algorithm

First in first out scheduling algorithm schedules the processes to be executed in

the same order in which they arrive. Figure 5.2 describes the First in First out

scheduling algorithm [1]

Figure 5.2 First in First out scheduling

5.1.2 Shortest Job First Scheduling Algorithm

Shortest job first scheduling algorithm schedules the processes based on the

estimated time taken to execute them. The shortest time taking process will be

executed first. Figure 5.3 explains the shortest job first scheduling.

Figure 5.3 Shortest job first scheduling

5.1.3 Priority Based Scheduling Algorithm

In priority based scheduling algorithm, each process is assigned a priority ex-

ternally. Based on these priorities, the processes are scheduled. The highest

priority process is scheduled to be carried out first and so on for the other pro-

cesses. Figure 5.4 explains the Priority based scheduling. [1]

26

Figure 5.4 Priority based scheduling

5.1.4 Round Robin Scheduling Algorithm

In round robin scheduling algorithm, all the processes in the queue are execut-

ed for a fixed unit of processing time in a cycle. The CPU time is fairly distribut-

ed between all the processes. Each process gets equal share of CPU time. This

allocation of CPU process time is done in a cyclic way. Once the process is ex-

ecuted, it gets eliminated from the queue. Figure 5.5 explains Round Robin

scheduling. [1]

Figure 5.5 Round Robin scheduling

5.1.5 Multilevel Queue Scheduling Algorithm

In multilevel queue scheduling algorithm, all the processes are classified into

different groups according to the type of task performed. Each group of pro-

cesses is fed to a different queue. Each queue is scheduled differently with an

appropriate scheduling technique. All the queues are executed in parallel. [1]

27

5.2 Multiprocessor System Scheduling

The scheduling in multiprocessor systems is the execution of all the processes

in the given tasks on set of existing processors under optimizing criteria. The

goal of scheduling is to minimize the run time of a task set. [1] [18]

5.2.1 Scheduling Criteria

Scheduling criteria is decided based on the type of the system, efficiency and

number of processors, kind of tasks executed, interaction and dependency be-

tween the processes in the task and sharing of resources among the processes.

The general optimizing scheduling criteria includes:

• Processor utilization: Processor should be as busy as possible, that

means, processor utilization should be high.

• Throughput: Throughput is the number of processes completed in unit

time. Throughput should be high.

• Turnaround time: Turnaround time is the time taken to execute a pro-

cess. Turnaround time should always be low.

• Waiting time: Waiting time is the amount of time that a process

spends waiting in the Ready queue. Waiting time should be low.

• Response time: In an interactive system, the time from the submis-

sion of the request to the first response produced is called the re-

sponse time. The response time should be as low as possible.

• Deadline handling: Deadline handling is the ability to execute a pro-

cess in a given time. Deadline handling should be performed.

• Starvation free: Starvation is the condition of a waiting process which

is never executed. The scheduling algorithm should be starvation

free. [1] [18]

Other scheduling criteria include minimizing the cost, minimizing communication

delay, and giving priority to certain processes. The scheduling policy for a multi-

processor system usually involves these criteria. [3]

Pre-emptive and non-pre-emptive scheduling schemes must be specified in the

scheduling algorithm. In pre-emptive scheduling, based on predefined pre-

emptive conditions, the scheduler can pre-empt or kill a process which is taking

too long time to execute. In non-pre-emptive scheduling the scheduler allocates

the processor to the process till it is completely executed. [1]

28

5.2.2 Implementation of Scheduling in Multiprocessor Systems

Scheduling in multiprocessing systems is implemented based on the architec-

ture of the system. Hardware constraints such as sharing resources, speed of

bus, communication, coupling of the processors and memory access will influ-

ence the scheduling. Also, software constraints such as data and instruction

processing also affect the implementation of scheduling in multiprocessor sys-

tems. The two major approaches to multiprocessor scheduling are Asymmetric

multiprocessing and Symmetric multiprocessing. [1]

In asymmetric multiprocessing, the processors follow Master-Slave mechanism.

Master processor decides the scheduling and other processors follow instruc-

tions from the master processor and execute the processes. Master processor

distributes the processes from the ready queue among the processors based on

the scheduling algorithm. [1]

In symmetric multiprocessing, execution at each processor is independent of

one another. Here scheduling is carried out using 2 levels of queues − a global

ready queue and a local ready queue at each processor. [3] [1]

 All the processes in the given tasks are loaded into the global ready queue ini-

tially. Based on the predefined scheduling criteria of the system, all the pro-

cesses are rearranged. From the global ready queue, rearranged processes are

then moved to the local private queues at each processor in the system. This

way, the load is shared between the processors in the system. At each proces-

sor private ready queue, the processes are executed based on the scheduling

algorithm. Figure 5.6 explains scheduling in symmetric multiprocessor system.

[3] [1]

To speed up the total execution time, processes at busy processors can be

transferred to idle processors. [3]

29

Figure 5.6 Scheduling in multiprocessor systems

Communication between the processors can be carried out by message pass-

ing or by using shared memory. Resource sharing is carried by maintaining crit-

ical sections and locks. Whenever a process needs to use a shared resource,

then to access the resource the process enters the critical section and locks the

resource. After finishing the execution the process comes out of critical section

and releases the lock. During this time, no other process can access that re-

source. If a process takes too long time to release a resource, then based on

pre-emption conditions the process can be pre-empted.

The stability of a system is determined by the speed at which tasks arrive and

the speed at which the task complete. In general, as the system runs, new tasks

arrive while old tasks complete execution. A system is said to be unstable if the

speed at which the tasks arrive is greater than the speed at which they are exe-

cuted. A system is said to be stable if the speed at which the tasks arrive is

lower that the speed at which they are executed. A stable scheduling policy will

never make a stable system unstable. Unstable scheduling policy can push the

system into instability if the arrival rate is higher than the service rate for a sys-

tem. [3]

5.2.3 Choosing a Scheduling Algorithm

Choosing an appropriate scheduling algorithm is necessary in order to complete

a given task efficiently. There is no universal best scheduling algorithm. In prac-

tical, an appropriate scheduling algorithm for the system is chosen based on the

30

kind of job, dependencies among the processes and the resources needed by

the processes to execute. [1]

In many cases, two or more scheduling algorithms can also be combined to get

the desired algorithm. If the processes in a task are not scheduled properly then

the task is less likely to get executed. An appropriate process scheduling algo-

rithm for a given job is the one which fulfils the scheduling criteria of the system.

[1]

5.2.4 Problems in Multiprocessor Scheduling

The following are the major issues in multiprocessor scheduling:

• Allocation and sequencing: Analysing the sequence of operations of

the processes at processors is difficult when an input for execution of

one process is dependent on the output of other process which is ex-

ecuted at a different processor. In such cases the final result depends

on how well the processes are synchronised.

• Load balancing: All the processes which are fed to processors for ex-

ecution are not of same size. Predicting the size of continuous input

load in the system is not possible. Thus, load balancing among all the

processors in the system is not 100% possible.

• Communication delays and network delays: These delays may lead

to miscommunication between the processes and may result in errors

in solution. Also these delays give wrong estimation of execution

times.

• Loop scheduling: Predicting the actual loop execution time and relat-

ed work overhead while distributing and executing loops among dif-

ferent processors in parallel is difficult. [19]

31

6. SIMULATION IN MULTIPROCESSOR SYSTEMS

Simulation of multiprocessor system is an abstract representation of the pro-

posed or existing system as a software program. Simulation helps to under-

stand the behaviour of the multiprocessor system. [37]

The simulation model is built by replicating the functionality of the multiproces-

sor system design, hardware functionality and the software model. The inputs

and the data such as clock cycles should be as accurate as possible to drive

the simulation and to calculate the outputs accurately. The results of the simula-

tion model are represented using graphics, charts or data. [1][37][38]

Multiprocessor systems are very complex. To develop simulation models for

such systems accurately, all the factors influencing and affecting the system

should be carefully studied and considered. Hence, accuracy and validity of the

simulation model compared to the actual system depend on factors influencing

system considered while modelling. The drawbacks or functional bugs of the

actual system can also be identified by experimenting on these simulation mod-

els. [37][38]

Today, the size of simulation of multiprocessor systems vary from small to huge

which run from minutes to hours. These simulations find extreme need in vari-

ous fields such as computers, networking, atmospheric dispersion modelling,

logistics, noise mitigation, flight simulators, weather forecasting, reservoir simu-

lation, robot simulators, traffic engineering and more. [33]

The major issues associated with simulating these complex multiprocessor sys-

tems are accuracy and reproducing results. As there will be many real world

factors influencing the actual system, it is very difficult to predict and consider all

such factors while simulating the system. Hence simulations are not 100% ac-

curate to the actual systems. Reproducing the same results is also not possible

in the cases where random numbers are used in inputs or in calculation of in-

termediate values in the simulation. Thus verification and validation of the simu-

lation results is very crucial. [33]

As the clock cycles, network delays and real world problems in the actual sys-

tem are very difficult to predict and calculate, the multiprocessor systems simu-

32

lation models accuracy is always questionable. In spite of such accuracy issues,

simulation of multiprocessor system is always helpful to study, understand and

analyse the actual system. [37][38]

33

7. DESIGN AND IMPLEMENTATION OF SIMULA-

TION MODEL FOR MULTIPROCESSOR SYS-

TEM SCHEDULING

A simulation model is designed and implemented for understanding the working

of multiprocessor system scheduling. This simulation model consists of sym-

metric processors, which means that all the processors are treated equally. De-

pending on the input efficiency of the processors and the process priority, pro-

cesses are distributed among the processors equally and they are allocated

processor time for execution. The total execution time of the input job is calcu-

lated. Pre-emption of processes is also handled based on predefined condi-

tions.

An XML parser is integrated with this system to extract the inputs from XML files

to text files.

Message passing among the processes, resource allocation and sharing, net-

works delays in the system, task preferences in the input job and load balancing

among the processors are not considered in the design of this simulation model

for multiprocessor system scheduling.

7.1 Scheduling Criteria in the Simulation Model

The scheduling criteria of the system includes

1. Load sharing: Depending on number and efficiency of the processors, all

the processes of the input tasks are distributed among all the processors.

Hence, the load is shared among all the processors in the system.

2. Processor utilization: Processors are put as busy as possible by assign-

ing the processes to all the processors for execution (This factor de-

pends on amount of load on the system).

3. Priority considerations: Priority of the processes is considered while exe-

cution. All the processes are scheduled for execution according to their

priority.

34

4. Process pre-emption: The processes which take lot more than expected

time to execute are pre-empted following pre-define conditions. Pre-

emption conditions are checked for each process at every clock cycle.

5. Starvation free: At every clock cycle the processes are checked to know

if any process is starving for the execution. When found, it is put to pro-

cessor ready queue and allocated processor time for execution immedi-

ately.

6. Waiting time: The waiting time of the processes is controlled by raising

the priority of processes that have been waiting a long time to be execut-

ed.

7. Response time: As the load is shared among the processors in the sys-

tem, the execution is faster and response time is reduced.

8. Turnaround time: As the processes are loaded in to the processor queue

according to processor efficiency, the time taken to execute a process

will be lower. Hence, the turnaround time is put to as low as possible.

7.2 Concept Model

The concept model gives the overview of the system. Figure 7.1 illustrates the

concept diagram of simulation of multiprocessor system scheduling design.

From the concept diagram, it can be seen that the tasks are fed to the system

through an XML file. An XML parser is used to parse the processes information

of the tasks from the XML file. Then the processes’ information such as time

needed to finish the process, process priority and process number are given as

the input to the system in a text file. Also the processor information is fed to the

system. This processor information can also be modified through the GUI of the

system. The processor information contains the processor number and its effi-

ciency. According to the processor efficiency, each processor capacity is calcu-

lated. The scheduler schedules the processes by distributing the processes

among the processors where the processes are executed.

During the execution, the system displays errors messages (such as file read

write errors, file missing errors), process pre-emption messages and finally the

total execution time taken to finish the job.

35

Apart from execution, system also provides operations such as estimate, reset

and exit. Estimate operation, estimates the total time that would take for the

system to finish the job and gives total estimated execution time as result. Re-

set helps to reset the system by erasing all the existing inputs, outputs and in-

termediate data. Exit operation is used to exit from the system at any time.

The display of errors messages (such as file read/write errors, file missing er-

rors) and intermediate process pre-emption messages helps the user to under-

stand the execution in the system.

Figure 7.1 Concept diagram

7.3 Design of Scheduler

The scheduling and internal working of the scheduler of the system is described

in detail here. The Flow diagram in Figure 7.2 shows the follow of execution in

the scheduler of the simulation.

After filtering the processes’ information from the XML file, at global level the

processes are fed to a waiting queue. According to the process priority, the pro-

cesses are rearranged in the waiting queue. Also, based on the input processor

information, the capacity of the processors is calculated. At each processor a

local ready queue is maintained. These local ready queues at each processor

are loaded with the processes in the global waiting queue. At each processor a

scheduling algorithm is followed to execute the processes in its ready queue.

36

Priority based Round Robin scheduling is used in this simulation model to exe-

cute the processes in the ready queue at each processor.

During execution, at each clock cycle, the time required to execute the process

(time stamp of the process) is reduced by a predefined value. When the time

stamp of the process becomes zero, the process execution is completed and is

removed from the respective ready queue. After removal of the process, the

next priority process from the waiting queue is loaded. If waiting queue is emp-

ty, then no process will be loaded. Also, at every clock cycle the pre-emption

conditions are checked for all the processes in the waiting queue and in all

ready queues at each processor.

Figure 7.2 Flow diagram of scheduler

If a process is found waiting for a long time, then the process is given higher

priority according to predefined pre-emption conditions. If the process execution

time or waiting time takes even longer (longer than the predefined limits), then

the process is pre-empted or killed. The given job completes only after all the

processes in the ready queues and waiting queue are executed.

37

7.4 Example

The step by step execution inside the simulation model is explained using an

example in this section. Figure 7.3 shows the processes and processor infor-

mation, which are the inputs to the scheduler in this example. This is the pro-

cesses information after extracting from the XML file using XML parser. The

processor efficiency values in this example are the calculated values of the ac-

tual input.

Figure 7.3 Inputs

From the processor’s information, each processors capacity to execute number

of processes is determined from its efficiency. As can be seen from Figure 7.3,

processor 1 can accommodate and execute 3 processes at a time, processor 2

can accommodate and execute 2 processes at a time, processor 3 can accom-

modate and execute 1 process at a time and processor 4 can accommodate

and execute 2 processes at a time.

From processes’ information, the priority and required execution time of each

process are extracted. Based on processor capacity, processes are distributed

38

among the processors to execute in the order of their priorities. This distribution

of processes among processors is shown in Figure 7.4.

Based on processor and process information in Figure 7.3, as the processes 3,

5, 7 have priority 1 and they are allocated processor time first. Hence, process 3

with time required for execution - 5 time units is fed to processor 1. Process 5

with time required for execution - 3 time units is fed to processor 2. Process 7

with time required for execution - 2 time units is fed to processor 3. After dis-

tributing processes with priority 1 to the processors, processes with priority 2

are fed to processors. This distribution of processes’ among processors is done

till all ready queues are full or there are no more processes to execute.

Figure 7.4 Process execution sequence

The Figure 7.4 shows the execution sequence of the processes. Each proces-

sor follows Round Robin scheduling to execute the processes in its ready

queue. As shown in the Figure 7.4, the processes 3, 5, 7 and 2 are executed in

the first clock cycle at time unit 0. As they are executed, the time required to

execute the respective process is reduced by 1. At time unit 1, the processes 4,

1, 7 and 6 are executed. At time unit 2, process 3, 5 and 2 are executed. As the

process 7 has finished its execution, it is removed from the ready queue. As no

other process is waiting for execution, no process is loaded in place of process

7. This way the execution continues and by time unit 7, all the processes are

completed and the job is finished.

39

7.5 Technologies Used

The Table 7.5 illustrates the technologies used in developing the simulation

model.

Languages Implementation SystemC – Version 2.2

Graphical user interface QT- Version 4.5

Input data XML files

Framework Microsoft Visual Studio 2008

Platform Windows XP

Table 7.5 Technologies used

7.6 Graphical User Interface, Inputs and Outputs

7.6.1 Graphical User Interface

The graphical user interface used in this simulation model is shown in Figure

7.6

The input process data XML file name and its path are entered in the text box

opposite to label “Enter XML file name”. The processor information in text file

name and its path are entered in the text box opposite to label “Enter processor

info file name”. The processor information is displayed using “Display processor

file contents” button in the respective text area.

The processor information can be modified in the text area and updated in the

file using “update processor info file contents”. The errors and pre-emption

messages during execution are displayed in “Errors or messages” text area.

The total execution time taken to complete the job is displayed in the text box

“Total execution time”.

40

Figure 7.6 Graphical user interface

 “Estimate”, “Execute”, “Reset” and “Exit” are the operations. “Estimate” opera-

tion is used to estimate the total time to complete the job. “Execute” operation is

used to execute the job. “Reset” operation clears all the text boxes, text areas in

GUI and input, output files. “Quit” operation exits the application any time.

7.6.2 Inputs

The following are the inputs to the simulation model:

 An XML file containing information of the tasks and their respective pro-

cesses such as name of the tasks, process ID, process preference, re-

quired process execution time and process priority.

 A Text file containing processors information such as processor ID and

processor capacity.

7.6.3 Outputs

The following are the outputs of the simulation model:

 Estimation of total execution time

 Total execution time taken to finish the job

41

 The errors and pre-emption messages during execution. Figure 7.7

shows an example for display of Pre-emption Messages in GUI.

Figure 7.7 Pre-emption Messages

All the outputs are displayed in the GUI and also stored in output files.

Most important modules of the implementation of the simulation model of multi-

processor scheduling system is in appendixes.

7.7 Result Analysis

The results of the simulation of multiprocessor system scheduling are analysed

in this section.

7.7.1 Analysis 1

Input Conditions

Job information: Same job is executed in all the experiments

Processor information: Capacity of all the processors is constant, which is 1.

Number of processors is increased by 1 every time, starting from 1 to 8.

Experiment Result

With the increase in number of processors in the system, the total execution

time decreases. But after a point the system achieves saturation limit where the

increase in the number of processors in the system does not affect the total ex-

ecution time. This is shown in the Figure 7.8 Total execution time versus num-

ber of processors.

42

In the Figure 7.8, at the beginning, by increasing the number of processors from

1 to 5, very slight decrease in execution time is noticed, this is due to heavy

load on the processors. By increasing the number of processors to 6, a drastic

decrease in execution time can be seen. This drastic decrease in execution

time is because of the reduced load on all the processors. But after increasing

the number of processors from 6 to 8, there is no change in total execution time.

At this point system achieves a saturation limit.

Figure 7.8 Total execution time versus number of processors

The saturation limit varies with the size of the job being executed. The load is

distributed among all the processors in the system. The maximum number of

processors required to execute the job is limited to the size of the job. When the

number of processors exceed beyond the maximum limit, the extra processors

stay idle. Hence after this saturation limit, the increase in number of processors

in the system does not affect the total execution time of the job.

7.7.2 Analysis 2

Input Conditions

Job information: Same job is executed in all the experiments

0

20000

40000

60000

80000

100000

120000

0 2 4 6 8 10

To
ta

l E
xe

cu
ti

o
n

 T
im

e

Number of processors

Total execution time Vs Number of
processors

43

Processor information: capacity of all the processors is increased by 1 every

time, starting from 3 to 10. Number of processors in the system is constant (3

processors) for all the experiments

Experiment Result

The increase in the capacity of the processors in the system will decrease the

total execution time to an extent, when the number of processors in the system

is constant while executing same job every time. This is shown in Figure 7.9

Total execution time versus capacity of processors.

Figure 7.9 Total execution time versus capacity of processors

With the increase in the capacity of the processors each time, the processors

will be overloaded and will reach a saturation limit. After that limit, the increase

in capacity of the processors does not affect the speed and efficiency of the

system. At that point, the increase in number of processors can decrease the

total execution time by sharing the load.

100500

101000

101500

102000

102500

103000

0 2 4 6 8 10 12

To
ta

l E
xe

cu
ti

o
n

 t
im

e

Capacity of the processors

Capacity of the processors Vs Total
Execution time

44

8. CONCLUSION AND FUTURE WORK

This chapter presents the main conclusions of the thesis and the future work. In

this thesis, the major focus is to understand how the overall performance of

multiprocessor systems is improved by scheduling and sharing the workload

among all the processors in the system. Also, the change in speed of the multi-

processor system with the change in capacity of the processors and the number

of processors is analysed.

Compared to uniprocessor systems, the throughput and speed of the multipro-

cessor systems is high when an appropriate scheduling algorithm is used for

executing the input tasks. The appropriate scheduling algorithm is chosen

based on the tasks executed and the type of the system. An ideal scheduling

algorithm reduces the total execution time, increases the throughput, reduces

the waiting time of subsequent tasks in the queue, maximizes the processes

resource utilization and allocates processor time for each process equally.

In cases, when the input is very low, then the uniprocessor systems are faster

than the multiprocessor systems. This speed difference is because of the extra

network transfer time which is added to the total execution time in the multipro-

cessor systems.

In spite of accuracy issues, the experiments done within this thesis demonstrat-

ed the importance of process scheduling in increasing the execution speed and

efficiency in the multiprocessor systems.

In the future, to increase the accuracy of the simulation model of multiprocessor

system scheduling and to calculate the total execution time more accurately few

more factors must be considered. Those factors include

• Networks delays in the system

• Task preferences in the input job

• Message passing among the processes

• Resource allocations to the processes

• Load balancing among the processors by transferring processes from

one processor to other during the execution.

45

REFERENCES

1. Abraham Silberschatz, Peter Galvin, Greg Gagne. Ninth Edition. Operating

System Concepts. John Wiley & Sons, Inc, Hoboken, NJ. Pages 14-16,

105-147, 203-258, 261-304, 315-337.

2. Blaise Barney, Lawrence Livermore National Laboratory. Introduction to

Parallel Computing.

https://computing.llnl.gov/tutorials/parallel_comp/#Whatis

3. Steve J. Chapin, Jon B. Weissman. (January 2002). Distributed and

multiprocessor scheduling. Syracuse University, University of Minnesota.

http://www-users.cs.umn.edu/~jon/papers/handbook.pdf

4. Tim M. Jones. (March 2007). History of multiprocessing. IBM.

http://www.ibm.com/developerworks/library/l-linux-smp/

5. Noora sadon, Rand Nawfal, Karar Shakir, Muhanned Raad. Retrieved on

January 5, 2011. Multiprocessing System. Itswitech University.

http://www.itswtech.org/Lec/Manal(system%20programming)/simeners_A/M

ultiprocessing_System_Cimenar.pdf

6. Ben-Ari, Mordechai (2006). Principles of Concurrent and Distributed

Programming (2nd ed.). Addison-Wesley.

7. Gregory V. Wilson. (October 1994). The History of the Development of

Parallel Computing. Toronto University.

http://ei.cs.vt.edu/~history/Parallel.html

8. Mike Pacifico, Mike Merril. (1998). A General Overview of Parallel

Processing. CMSC 411 Project.

http://www.cs.umd.edu/class/fall2001/cmsc411/projects/parallel2/history.htm

l

9. Herb Sutter and James Larus. (September 2005). Software and the

concurrency revolution. Microsoft.

10. SAS group. Retrieved on January 20, 2011. Independent Parallelism. SAS

Institute.

http://support.sas.com/documentation/cdl/en/connref/61908/HTML/default/a

002626620.htm

https://computing.llnl.gov/tutorials/parallel_comp/#Whatis
http://www-users.cs.umn.edu/~jon/papers/handbook.pdf
http://www.ibm.com/developerworks/library/l-linux-smp/
http://www.itswtech.org/Lec/Manal(system%20programming)/simeners_A/Multiprocessing_System_Cimenar.pdf
http://www.itswtech.org/Lec/Manal(system%20programming)/simeners_A/Multiprocessing_System_Cimenar.pdf
http://ei.cs.vt.edu/~history/Parallel.html
http://www.cs.umd.edu/class/fall2001/cmsc411/projects/parallel2/history.html
http://www.cs.umd.edu/class/fall2001/cmsc411/projects/parallel2/history.html
http://support.sas.com/documentation/cdl/en/connref/61908/HTML/default/a002626620.htm
http://support.sas.com/documentation/cdl/en/connref/61908/HTML/default/a002626620.htm

46

11. IBM Corporation. (March 2006). Locks and concurrency control.

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm

.db2.udb.doc/admin/c0005266.htm

12. Dave Thomas, Chad Flower, Andy hunt. 2009. Programming Ruby - The

Pragmatic Programmer's Guide.

13. Wen-mei Hwu, Timothy G.Mattson and Kurt Keutzer. (August 2008). The

Concurrency Challenge. Urbana-Champaign, Intel, Berkeley.

14. David Geer. September 2007. For programmers, Multicore chips mean

multiple challenges. Freelance technology, Ashtabula, Ohio.

15. Arvind, Robert A lannucci. Laboratory for Computer Science. Massachusetts

Institute of Technology. Two Fundamental Issues in Multiprocessing.

http://webcourse.cs.technion.ac.il/236604/Spring2012/ho/WCFiles/limits-

MP.pdf

16. Saleh Elmohamed. 2002. Parallel processing concepts. CTC.

http://mpc.uci.edu/wget/www.tc.cornell.edu/Services/Edu/Topics/ParProgCo

ns/

17. Alan Joch. (November 2000). Chip Multiprocessing.

http://www.computerworld.com/s/article/54343/Chip_Multiprocessing

18. Siber cankaya. CPU scheduling.

http://siber.cankaya.edu.tr/OperatingSystems/ceng328/node1.html

19. Selected Problems of Scheduling Tasks in Multipro cessor Computer

Systems. By Maciej Drozdowski

20. Toby Foster, Electronic Design. Symmetric Multiprocessing Vs. Asymmetric

Processing.

http://electronicdesign.com/digital-ics/symmetric-multiprocessing-vs-

asymmetric-processing

21. Siber cankaya. Flynn's Taxonomy of Computer Architecture.

http://siber.cankaya.edu.tr/ParallelComputing/ceng471/node14.html

22. Jonathan Appavoo. Optimizing Multi-Processor Operating Systems Software

Research Review.

http://www.cs.bu.edu/~jappavoo/Resources/Papers/depth.pdf

23. David Kanter. An Introduction to multiprocessoe systems. December 11,

2006.

http://www.realworldtech.com/coherency/

http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0005266.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v8/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0005266.htm
http://webcourse.cs.technion.ac.il/236604/Spring2012/ho/WCFiles/limits-MP.pdf
http://webcourse.cs.technion.ac.il/236604/Spring2012/ho/WCFiles/limits-MP.pdf
http://mpc.uci.edu/wget/www.tc.cornell.edu/Services/Edu/Topics/ParProgCons/
http://mpc.uci.edu/wget/www.tc.cornell.edu/Services/Edu/Topics/ParProgCons/
http://www.computerworld.com/s/article/54343/Chip_Multiprocessing
http://siber.cankaya.edu.tr/OperatingSystems/ceng328/node1.html
http://electronicdesign.com/digital-ics/symmetric-multiprocessing-vs-asymmetric-processing
http://electronicdesign.com/digital-ics/symmetric-multiprocessing-vs-asymmetric-processing
http://siber.cankaya.edu.tr/ParallelComputing/ceng471/node14.html
http://www.cs.bu.edu/~jappavoo/Resources/Papers/depth.pdf
http://www.realworldtech.com/author/dkanter/
http://www.realworldtech.com/coherency/

47

24. Gordon Bell. Three Decades of Multiprocessors.

http://research.microsoft.com/en-

us/um/people/gbell/cgb%20files/three%20decades%20of%20multiprocessor

s%20acm%201991%20c.pdf

25. Gregory V. Wilson. (October 1994). The History of the Development of

Parallel Computing. Toronto University.

 http://ei.cs.vt.edu/~history/Parallel.html

26. Mike Pacifico, Mike Merril. (1998). A General Overview of Parallel

Processing. CMSC 411 Project.

http://www.cs.umd.edu/class/fall2001/cmsc411/projects/parallel2/history.htm

l

27. Leading Electronics INC. Moore’s Law or how over all processing power of

computers will double every two years.

http://www.mooreslaw.org/

28. Intel official web page. Moore's Law and Intel Innovation. Extracted in Feb-

ruary 2014.

http://www.intel.com/content/www/us/en/history/museum-gordon-moore-

law.html

29. Princeton. Amdahl's law.

https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Amdahl_s_law.htm

l

30. Oderog. Super Computers, Micro computer , Mini computers, and

Mainframe Computers.

http://oderog.hubpages.com/hub/supercomputers--micro-computer---mini-

computers--and-main-frame-computers

31. Kunle Olukotun and Lance Hammond. (September 2005). The future of

microprocessors. Stanford University.

32. Barrett-group. Mcgill. Nanotechnology: A Brief Overview.

http://barrett-group.mcgill.ca/tutorials/nanotechnology/nano03.htm

33. Wikipedea. Computer simulation. Retrieved on 25.01.2014

34. Nguyen Thi Hoang Lan. Advanced Architectures.

http://cnx.org/content/m29689/latest/

35. Oracle coorporation. Parallel Hardware Architecture.

http://docs.oracle.com/cd/A57673_01/DOC/server/doc/SPS73/chap3.htm

http://research.microsoft.com/en-us/um/people/gbell/cgb%20files/three%20decades%20of%20multiprocessors%20acm%201991%20c.pdf
http://research.microsoft.com/en-us/um/people/gbell/cgb%20files/three%20decades%20of%20multiprocessors%20acm%201991%20c.pdf
http://research.microsoft.com/en-us/um/people/gbell/cgb%20files/three%20decades%20of%20multiprocessors%20acm%201991%20c.pdf
http://ei.cs.vt.edu/~history/Parallel.html
http://www.cs.umd.edu/class/fall2001/cmsc411/projects/parallel2/history.html
http://www.cs.umd.edu/class/fall2001/cmsc411/projects/parallel2/history.html
http://www.mooreslaw.org/
http://www.intel.com/content/www/us/en/history/museum-gordon-moore-law.html
http://www.intel.com/content/www/us/en/history/museum-gordon-moore-law.html
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Amdahl_s_law.html
https://www.princeton.edu/~achaney/tmve/wiki100k/docs/Amdahl_s_law.html
http://oderog.hubpages.com/hub/supercomputers--micro-computer---mini-computers--and-main-frame-computers
http://oderog.hubpages.com/hub/supercomputers--micro-computer---mini-computers--and-main-frame-computers
http://barrett-group.mcgill.ca/tutorials/nanotechnology/nano03.htm
http://cnx.org/content/m29689/latest/
http://docs.oracle.com/cd/A57673_01/DOC/server/doc/SPS73/chap3.htm

48

36. Eurípides Montagne. University of Central Florida. Lecture: Flynn’s

Taxmony. Retrieved on 1st February, 2014.

37. Roger D. Smith. 1998. Simulation Article.

http://www.modelbenders.com/encyclopedia/encyclopedia.html

38. Sebastien Nussbaum, James E. Smith. Statistical Simulation of Symmetric

Multiprocessor Systems.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.1101&rep=rep1

&type=pdf

39. DocStoc. Introduction to computer simulation.

http://www.docstoc.com/docs/2690471/Introduction-to-Computer-Simulation-

Uses-of-Simulation

40. Charles J.Marcraft. Pearson publication. Server+ .

http://my.safaribooksonline.com/book/certification/serverplus/978076869020

0/multiprocessing-systems/ch03lev2sec3

http://www.modelbenders.com/encyclopedia/encyclopedia.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.1101&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.1101&rep=rep1&type=pdf
http://www.docstoc.com/docs/2690471/Introduction-to-Computer-Simulation-Uses-of-Simulation
http://www.docstoc.com/docs/2690471/Introduction-to-Computer-Simulation-Uses-of-Simulation
http://my.safaribooksonline.com/book/certification/serverplus/9780768690200/multiprocessing-systems/ch03lev2sec3
http://my.safaribooksonline.com/book/certification/serverplus/9780768690200/multiprocessing-systems/ch03lev2sec3

49

APPENDIXES

This section contains the most important modules of the implementation of

simulation model for multiprocessor system scheduling.

Simuation_scheduling.h

///***
//Header file for structure of the Simulation model for multiprocessor //scheduling
///***

#include "systemc.h"
#include <conio.h>
#include <string>

SC_MODULE (scheduling)
{
public:
SC_CTOR (scheduling)
{
}
void initialise();
void read_pr_info();
void read_process_info();
void wq_to_rq();
void swap_acc_to_priority();
int pr_execution(char status);
void print();
private:
// Process Data Structure
struct Processdata
{
int processnumber; // Process Number
std::string sequenceName; // Sequence Name
int preference; // Preference
unsigned int processtimestamp; // Timestamp
int processpriority; // Priority
unsigned int processwaitingtime; // Waiting Time
int packetcnt; // Packet count
char processprempted; // Preemption variable
}process;

// Processor Data Structure
struct Processordata
{
int processor_num; // Processor Number
int processor_efficiency; // Processor efficiency
int processorwaitingtime; //waiting time of processes
}processor;

Processdata readyqueue[30][30]; // Ready queue
Processdata waitingqueue[50]; // waiting queue
Processdata disp[50]; // completed processes values
Processdata dtemp[30]; // Temprory values

50

Processdata tmpar; // temprory swaping variable
Processdata modifiedprocessqueue[50];

Processordata dpr[30]; // processor data

FILE *pptr; // file pointer for input processes values
FILE *prptr; // file pointer for input processores values

// Count Variables
int npwq; // count total number of process in the waiting Q
int np_tot; // Temp total number of process in waiting Queue
int nrq1[20]; // count total number of process in the ready Q

int npr; // number of processors
int nprct[50]; // number of processors in each processor
int mod_pr_num;
char status; //Variable to hold the command
std::string fname; //variable to hold filename
std::string pr_fname; //variable to hold processor filename
};

Simuation_scheduling.cpp

///***
//Functions of scheduling in multiprocessor system of simulation model
///***

#include "simuation_scheduling.h"

// function to initialise all the values
void scheduling::initialise()
{
// constructor
npwq=0;
np_tot=0;
npr=0;
mod_pr_num=0;

for(int i=0;i<=30;i++)
{
for(int k=0;k<=30;k++)
{
readyqueue[i][k].processnumber=0;
readyqueue[i][k].processtimestamp=0;
readyqueue[i][k].processpriority=0;
readyqueue[i][k].processwaitingtime=0;
readyqueue[i][k].processprempted='N';
}
}
for(int k=0;k<=50;k++)
{
waitingqueue[k].processnumber=0;
waitingqueue[k].processtimestamp=0;
waitingqueue[k].processpriority=0;
waitingqueue[k].processwaitingtime=0;
waitingqueue[k].processprempted='N';
}
for(int k=0;k<=50;k++)
{
modifiedprocessqueue[k].processnumber=0;

51

modifiedprocessqueue[k].processtimestamp=0;
modifiedprocessqueue[k].processpriority=0;
modifiedprocessqueue[k].processwaitingtime=0;
modifiedprocessqueue[k].processprempted='N';
}
for(int i=0;i<=50;i++)
{
disp[i].processnumber=0;
disp[i].processtimestamp=0;
disp[i].processpriority=0;
disp[i].processwaitingtime=0;
disp[i].processprempted='N';
}
for(int j=0;j<=30;j++)
{
dpr[j].processor_num=0;
dpr[j].processor_efficiency=0;
dpr[j].processorwaitingtime=0;
}
}

// function to read processor information
void scheduling::read_pr_info()
{
ifstream fin_fle;

fin_fle.open("C:/Anu/prgs/sch/QT-prg/backup/gui/gui/pr_fname.txt",ios::in);
if(fin_fle.fail())
{
fstream out("errors.txt",ios::app);
out << "Error: cannot open processor data file name" <<endl;
out.close();
fin_fle.close();
exit(0);
}
fin_fle>>pr_fname;
fin_fle.close();

// Opening pdata.txt file in read mode

if((pptr=fopen(pr_fname.c_str(),"r"))==NULL)
{
fstream out("errors.txt",ios::out);
out << "Error: cannot read input file" <<endl;
out.close();
exit(1);
}
//
FILE * stream = fopen(pr_fname.c_str(),"r");

ifstream fin;
int eff=0;
fin.open(pr_fname.c_str(),ios::in);
if (fin.fail())
{
fstream out("errors.txt",ios::app);
out << "Error: cannot open processorinfo file " <<endl;
out.close();

exit(0);

52

}

int i=1;
while(!fin.eof())
{
fin>>dpr[i].processor_efficiency;
npr++;
dpr[i].processor_num=i;
dpr[i].processorwaitingtime=0;
i++;
}
fin.close();

for(int i=1;i<=npr;i++)
{
dpr[i].processor_efficiency=dpr[i].processor_efficiency/10;
}
for(int i=1;i<=npr;i++)
{
if(dpr[i].processor_efficiency==0)
eff++;
}
if(eff==npr)
{
exit(0);
}
for(int i=1;i<=npr;i++)
{
nprct[i]=1;
}
for(int i=1;i<=npr;i++)
{
nrq1[i]=1;
}
}

//function to read process information
void scheduling::read_process_info()
{
int i=1;
npr=0;
npwq=0;
np_tot=0;

ifstream fin;

fin.open("C:/Anu/prgs/sch/QT-prg/backup/gui/gui/fname.txt",ios::in);
if(fin.fail())
{
fstream out("errors.txt",ios::app);
out << "Error: cannot read process data file name" <<endl;
out.close();
fin.close();
exit(0);
}
fin>>fname;
fin.close();

/* Opening pdata.txt file in read mode */

53

if((pptr=fopen(fname.c_str(),"r"))==NULL)
{
fstream out("errors.txt",ios::out);
out << "Error: cannot open input file" <<endl;
out.close();
exit(1);
}

FILE * stream = fopen(fname.c_str(),"r");
fseek(stream, 0L, SEEK_END);

long endPos = ftell(stream);
if(endPos==0)
{
fstream out("errors.txt",ios::out);
out << "Error: empty input file " <<endl;
out.close();
fclose(pptr);
exit(1);
}
fclose(stream);

char seqNme[50];
char tmp[50];
while(!feof(pptr))
{
/* Reading the values in the file */

tmp[0]='a';
fscanf(pptr,"%s",&tmp);
if(isalpha(tmp[0]))
{
strcpy(seqNme,tmp);
}
else
{
waitingqueue[i].sequenceName = seqNme;
waitingqueue[i].preference=atoi(tmp);
fscanf(pptr,"%d",&waitingqueue[i].processtimestamp);
fscanf(pptr,"%d",&waitingqueue[i].processpriority);
fscanf(pptr,"%d",&waitingqueue[i].packetcnt);
if(waitingqueue[i].processpriority==0)
{
waitingqueue[i].processpriority=1;
}
/* Checking for the valid priority(Priority should be either 1 or 2 or 3) */
if((waitingqueue[i].processpriority<1)||(waitingqueue[i].processpriority>3))
{
fstream out("errors.txt",ios::app);
out << "Error: wrong priority value in input file" <<endl;
out.close();
exit(0);
}
waitingqueue[i].processnumber=i;
waitingqueue[i].processwaitingtime=0;
waitingqueue[i].processprempted='N';
i++;
npwq++;
}
}

54

np_tot=npwq;

fclose(pptr);

}
/* funtion to transfer the processes from waiting queue to the ready queue according to the
priority */

void scheduling::wq_to_rq()
{
int prlwt=0;
int npr_lwt=1;
int k=1;
for(int priority=1;priority<=3;priority++)
{
int flg=0;
for(int k=1;k<=npr;k++)
if(nrq1[k]<=dpr[k].processor_efficiency)
flg=1;
if(flg==1)
{
for(int i=1;i<=npwq;i++)
{
int f=0;

for(int k=1;k<=npr;k++)
{
if((nrq1[k]<=dpr[k].processor_efficiency)&&(f==0))
{
prlwt=dpr[k].processorwaitingtime;
npr_lwt=k;
f=1;
}
}
// Finding the processor with lowest waiting time
for(int j=1;j<=npr;j++)
{
if((prlwt>dpr[j].processorwaitingtime)&&(nrq1[j]<=dpr[j].processor_efficiency))
{
prlwt=dpr[j].processorwaitingtime;
npr_lwt=j;
}
}
if(waitingqueue[i].processpriority==priority)
{
for(int j=1;j<=npr;j++)
{
if(npr_lwt==j)
{
if((waitingqueue[i].processpriority==priority)&& (nrq1[j]<=dpr[j].processor_efficiency))
{
readyqueue[j][nrq1[j]].processnumber=waitingqueue[i].processnumber;
readyqueue[j][nrq1[j]].processtimestamp=waitingqueue[i].processtimestamp;
readyqueue[j][nrq1[j]].processpriority=waitingqueue[i].processpriority;
readyqueue[j][nrq1[j]].processwaitingtime=waitingqueue[i].processwaitingtime;
readyqueue[j][nrq1[j]].processprempted=waitingqueue[i].processprempted;

dpr[j].processorwaitingtime+=readyqueue[j][nrq1[j]].processtimestamp;

nrq1[j]++;

55

for(k=i;k<=npwq;k++)
{
waitingqueue[k].processnumber=waitingqueue[k+1].processnumber;
waitingqueue[k].processtimestamp=waitingqueue[k+1].processtimestamp;
waitingqueue[k].processpriority=waitingqueue[k+1].processpriority;
waitingqueue[k].processwaitingtime=waitingqueue[k+1].processwaitingtime;
waitingqueue[k].processprempted=waitingqueue[k+1].processprempted;
}
waitingqueue[k].processnumber=0;
waitingqueue[k].processtimestamp=0;
waitingqueue[k].processpriority=0;
waitingqueue[k].processwaitingtime=0;
waitingqueue[k].processprempted='N';
npwq--;
i--;

}
}
}
}
}
}
}
}

/* function to swap the higher priority processes in the waiting queue with the lower
priority ones in the ready queue */

void scheduling::swap_acc_to_priority()
{
for(int i=1;i<=npwq;i++)
{
for(int j=1;j<=npr;j++)
{
for(int i1=1;i1<=nrq1[j];i1++)
{
if(readyqueue[j][i1].processpriority>waitingqueue[i].processpriority)
{
dpr[j].processorwaitingtime-=readyqueue[j][i1].processtimestamp;

tmpar.processnumber=waitingqueue[i].processnumber;
tmpar.processtimestamp=waitingqueue[i].processtimestamp;
tmpar.processpriority=waitingqueue[i].processpriority;
tmpar.processwaitingtime=waitingqueue[i].processwaitingtime;
tmpar.processprempted=waitingqueue[i].processprempted;

waitingqueue[i].processnumber=readyqueue[j][i1].processnumber;
waitingqueue[i].processtimestamp=readyqueue[j][i1].processtimestamp;
waitingqueue[i].processpriority=readyqueue[j][i1].processpriority;
waitingqueue[i].processwaitingtime=readyqueue[j][i1].processwaitingtime;
waitingqueue[i].processprempted=readyqueue[j][i1].processprempted;

readyqueue[j][i1].processnumber=tmpar.processnumber;
readyqueue[j][i1].processtimestamp=tmpar.processtimestamp;
readyqueue[j][i1].processpriority=tmpar.processpriority;
readyqueue[j][i1].processwaitingtime=tmpar.processwaitingtime;
readyqueue[j][i1].processprempted=tmpar.processprempted;

56

dpr[j].processorwaitingtime+=readyqueue[j][i1].processtimestamp;
}
}
}
}
}

/* Functionality Segment.. Scheduling the processes */
int scheduling::pr_execution(char status)
{
int count=0;
int npnew=0;
int ck=0;
int i1=1;
int j1=1;
int k=1;

for(int k=1;k<=npr;k++)
nprct[k]=1;

/* Function call to load the processes in to the Ready queue */
wq_to_rq();

do
{
for(int j=1;j<=10;j++)
{
for(int i=1;i<=npr;i++)
{
if(nprct[i]>=nrq1[i])
nprct[i]=1;

if((readyqueue[i][nprct[i]].processtimestamp!=0)&& (nprct[i]<=nrq1[i]))
{
/* Incrementing the process waiting time in the ready queue(In this case Quantum is 1) */
for(int l=1;l<=nrq1[i];l++)
{
if(readyqueue[i][l].processtimestamp>0)
{
readyqueue[i][l].processwaitingtime+=100;
}
}
/* Reducing the timestamp(In this case Quantum is 1) */
readyqueue[i][nprct[i]].processtimestamp-=100;

/* Decrementing the total processors waiting time(In this case Quantum is 1) */
dpr[i].processorwaitingtime--;
if(i==1)
{
for(int l=1;l<=npwq;l++)
{
/* Incrementing the process waiting time in the waiting queue(In this case Quantum is 1) */

if(waitingqueue[l].processtimestamp>0)
{
waitingqueue[l].processwaitingtime+=100;
}

/* Changing the priority of the processes in the waiting queue, if the process is waiting for longer
time in the waiting queue*/

57

if((waitingqueue[l].processwaitingtime>2000)&&(waitingqueue[l].processpriority==3))
{
waitingqueue[l].processpriority=2;
/* Swaping the higher priority processes in the waiting queue with the lower priority ones in the
ready queue*/
swap_acc_to_priority();
}
if((waitingqueue[l].processwaitingtime>4000)&&(waitingqueue[l].processpriority==2))
{
waitingqueue[l].processpriority=1;
/* Swaping the higher priority processes in the waiting queue with the lower priority ones in the
ready queue*/
swap_acc_to_priority();
}
}
}
/* Changing the priority of the processes in the Ready queue, if the process is waiting for longer
time in the waiting queue*/
if((readyqueue[i][nprct[i]].processwaitingtime>2000)&&(readyqueue[i][nprct[i]].processpriority==3
))
{
readyqueue[i][nprct[i]].processpriority=2;
}
if((readyqueue[i][nprct[i]].processwaitingtime>4000)&&(readyqueue[i][nprct[i]].processpriority==2
))
{
readyqueue[i][nprct[i]].processpriority=1;
}
/* Preempting the processes, if its waiting time is too longer*/
if((readyqueue[i][nprct[i]].processwaitingtime>100000)&&(readyqueue[i][nprct[i]].processnumber
!=0))
{
disp[i1].processnumber=readyqueue[i][nprct[i]].processnumber;
disp[i1].processtimestamp=readyqueue[i][nprct[i]].processtimestamp;
disp[i1].processpriority=readyqueue[i][nprct[i]].processpriority;
disp[i1].processwaitingtime=readyqueue[i][nprct[i]].processwaitingtime;
disp[i1].processprempted='Y';

for(k=nprct[i];k<=nrq1[i];k++)
{
readyqueue[i][k].processnumber=readyqueue[i][k+1].processnumber;
readyqueue[i][k].processtimestamp=readyqueue[i][k+1].processtimestamp;
readyqueue[i][k].processpriority=readyqueue[i][k+1].processpriority;
readyqueue[i][k].processwaitingtime=readyqueue[i][k+1].processwaitingtime;
readyqueue[i][k].processprempted=readyqueue[i][k+1].processprempted;
}
readyqueue[i][k].processnumber=0;
readyqueue[i][k].processtimestamp=0;
readyqueue[i][k].processpriority=0;
readyqueue[i][k].processwaitingtime=0;
readyqueue[i][k].processprempted='N';
nrq1[i]--;

fstream out("errors.txt",ios::app);
out << "Process "<< disp[i1].processnumber <<" Preempted." <<endl;
out.close();

i1++;
}

58

}
count=0;
if(readyqueue[i][nprct[i]].processtimestamp==0)
{
for(int k=1;k<=nrq1[i];k++)
{
if(readyqueue[i][nprct[i]].processnumber==disp[k].processnumber)
count++;
}
/* Moving the completed processes to the display array */
if((count==0)&&(readyqueue[i][nprct[i]].processnumber!=0))
{
disp[i1].processnumber=readyqueue[i][nprct[i]].processnumber;
disp[i1].processtimestamp=readyqueue[i][nprct[i]].processtimestamp;
disp[i1].processpriority=readyqueue[i][nprct[i]].processpriority;
disp[i1].processwaitingtime=readyqueue[i][nprct[i]].processwaitingtime;
disp[i1].processprempted=readyqueue[i][nprct[i]].processprempted;

i1++;
int k=1;
for(k=nprct[i];k<=nrq1[i];k++)
{
readyqueue[i][k].processnumber=readyqueue[i][k+1].processnumber;
readyqueue[i][k].processtimestamp=readyqueue[i][k+1].processtimestamp;
readyqueue[i][k].processpriority=readyqueue[i][k+1].processpriority;
readyqueue[i][k].processwaitingtime=readyqueue[i][k+1].processwaitingtime;
readyqueue[i][k].processprempted=readyqueue[i][k+1].processprempted;
}
readyqueue[i][k].processnumber=0;
readyqueue[i][k].processtimestamp=0;
readyqueue[i][k].processpriority=0;
readyqueue[i][k].processwaitingtime=0;
readyqueue[i][k].processprempted='N';
nrq1[i]--;
}
nprct[i]--;
}
nprct[i]++;
} // end of i while

/* In place of completed processes, loading the waiting processes in to ready queue */
wq_to_rq();
/* Checking for the newly arrived processes */
/* Opening pdata.txt file in append mode */

if((pptr=fopen(fname.c_str(),"a+"))==NULL)
{
fstream out("errors.txt",ios::out);
out << "Error: cannot open input file" <<endl;
out.close();

exit(1);
}

npnew=1;

char seqNme[50];
char tmp[50];

while(!feof(pptr))

59

{
tmp[0]='a';
fscanf(pptr,"%s",&tmp);
if(isalpha(tmp[0]))
{
strcpy(seqNme,tmp);
}
else
{
dtemp[npnew].sequenceName = seqNme;
dtemp[npnew].preference=atoi(tmp);
fscanf(pptr,"%d",&dtemp[npnew].processtimestamp);
fscanf(pptr,"%d",&dtemp[npnew].processpriority);
fscanf(pptr,"%d",&dtemp[npnew].packetcnt);
if(dtemp[npnew].processpriority==0)
{
dtemp[npnew].processpriority=1;
}
/* Checking for the valid priority(Priority should be either 1 or 2 or 3) */
if((dtemp[npnew].processpriority<1)||(dtemp[npnew].processpriority>3))
{
fstream out("errors.txt",ios::app);
out << "Error: wrong priority value in input file##WQ" <<endl;
out.close();
exit(0);
}
dtemp[npnew].processnumber=npnew;
dtemp[npnew].processwaitingtime=0;
dtemp[npnew].processprempted='N';

npnew++;

}
}
npnew=npnew-1;
/* Closing the file pdata.txt */
fclose(pptr);

if(npnew>np_tot)
{
/* Moving the new processes into the waiting queue*/
j1=npwq+1;
for(int k=np_tot+1;k<=npnew;k++)
{
waitingqueue[j1].processnumber=k;
waitingqueue[j1].processtimestamp=dtemp[k].processtimestamp;
waitingqueue[j1].processpriority=dtemp[k].processpriority;
waitingqueue[j1].processwaitingtime=0;
waitingqueue[j1].processprempted='N';

dtemp[k].processnumber=0;
dtemp[k].processtimestamp=0;
dtemp[k].processpriority=0;
dtemp[k].processwaitingtime=0;
dtemp[k].processprempted='N';
npwq++;
j1++;
}
np_tot=npnew;
/* Moving the new processes into the ready queue*/

60

wq_to_rq();
swap_acc_to_priority();
}
}// end of j while
/* Printing all the Executed processes with the total time taken for execution of each process*/

if(i1==np_tot+1)
{
if(status=='Y')
{
status='X';
Processdata process_present[50];

read_process_info();
read_pr_info();

FILE *pptr;
if((pptr=fopen(fname.c_str(),"r"))==NULL)
{
fstream out("errors.txt",ios::out);
out << "Error: cannot open the input file" <<endl;
out.close();
exit(0);
}

int pcnt=1;
while(!feof(pptr))
{
/* Reading the values in the file */

fscanf(pptr,"%d",&process_present[pcnt].processtimestamp);
fscanf(pptr,"%d",&process_present[pcnt].processpriority);

process_present[pcnt].processnumber=pcnt;
process_present[pcnt].processwaitingtime=0;
process_present[pcnt].processprempted='N';

pcnt++;
}
pcnt--;
fclose(pptr);
for(int i=1;i<=np_tot;i++)
{

for(int j=1;j<=pcnt;j++)
{
if(process_present[j].processnumber==disp[i].processnumber)
{
process_present[j].processtimestamp=0;
process_present[j].processpriority=0;
process_present[j].processnumber=0;
process_present[j].processwaitingtime=0;
process_present[j].processprempted='N';

ofstream outdata; // outdata is like cin
outdata.open(fname.c_str()); // opens the file
if(!outdata)
{ // file couldn't be opened
fstream out("errors.txt",ios::out);

61

out << "Error: cannot open input file:" <<endl;
out.close();

exit(0);
}
for (int i=1; i<=pcnt; ++i)
{
if(process_present[i].processnumber!=0)
{
outdata << process_present[i].processtimestamp<< endl;
outdata << process_present[i].processpriority;
if(i<pcnt)

{
outdata<< endl;
}
}
}
outdata.close();
}
}
}
return disp[np_tot].processwaitingtime;
}
if(status=='E')
{
return disp[np_tot].processwaitingtime;
}
}
}while(i1<=np_tot); //end of do while loop
}

// Function to print the calculated result in the result.txt file
void scheduling::print()
{
sc_pvector<int> pr_eff;
int result=0;

char cmd;
int temp;
ifstream command;
command.open("C:/Anu/prgs/sch/QT-prg/backup/gui/gui/command.txt",ios::in);
assert (!command.fail());

command>>cmd;
command.close();

if(cmd=='E')
{
initialise();
read_process_info();
read_pr_info();
result=pr_execution('E');

ofstream fout;
fout.open("C:/Anu/prgs/sch/QT-prg/backup/gui/gui/result.txt",ios::out);
assert (!fout.fail());

fout<<result;

62

fout.close();
}
if(cmd=='Y')
{
initialise();
read_process_info();
read_pr_info();
result=pr_execution('Y');

ofstream fout;
fout.open("C:/Anu/prgs/sch/QT-prg/backup/gui/gui/result.txt",ios::out);
assert (!fout.fail());

fout<<result;

fout.close();

}
}

gui.h
//**
//header file for GUI input-output data
//**

#ifndef GUI_H
#define GUI_H

#include <QtGui/QMainWindow>
#include <QtGui/QApplication>
#include<QProcess>
#include "XMLFileParser.h"
#include "ui_gui.h"

class MyClass : public QMainWindow
{
Q_OBJECT

public:
MyClass(QWidget *parent = 0, Qt::WFlags flags = 0);
~MyClass();
void command(char);
void processorinfo();
QString read_est();
void multhread();
void display_errors();

public slots:
void quit();
void exefun();
void estfun();
void reset();
void reset_process();
void pr_display();
void update_pr_info();
void pr_filename();
void XML_filename();

private:

63

Ui::MyClassClass ui;
};

#endif // GUI_H

gui.cpp
//**
// Functions for GUI accessing and printing data
//**

#include "gui.h"
#include <QFile.h>
#include<QString.h>
#include <QTextStream>
#include<QVector>

// function to connect the buttons to resp functionalities
MyClass::MyClass(QWidget *parent, Qt::WFlags flags)
: QMainWindow(parent, flags)
{
ui.setupUi(this);

connect(ui.pushButton_1,SIGNAL(clicked()),this,SLOT(estfun()));
connect(ui.pushButton_2,SIGNAL(clicked()),this,SLOT(exefun()));

connect(ui.pushButton_4,SIGNAL(clicked()),this,SLOT(reset()));
connect(ui.pushButton_3,SIGNAL(clicked()),this,SLOT(quit()));
connect(ui.pushButton_6,SIGNAL(clicked()),this,SLOT(XML_filename()));

connect(ui.pushButton_5,SIGNAL(clicked()),this,SLOT(pr_filename()));
connect(ui.display_button,SIGNAL(clicked()),this,SLOT(pr_display()));
connect(ui.update_pr,SIGNAL(clicked()),this,SLOT(update_pr_info()));
}

void MyClass::XML_filename()
{
QString fname=ui.lineEdit_3->displayText();

JCParsingQt::XMLFileParser fileParser;
fileParser.readFile(fname, QString("data.txt"));

QString OutputFname="data.txt";

QString path="C:/Anu/prgs/sch/QT-prg/backup/gui/gui/";
QString completefilepath=path+OutputFname;

QFile file("fname.txt");

file.open(QIODevice::WriteOnly | QIODevice::Text);
QTextStream out(&file);

out<<completefilepath;

reset_process();

file.close();

}

64

// function to print the given file name in fname.txt file
void MyClass::reset_process()
{
ui.lineEdit_4->setText(0);
ui.textEdit->clear();
ui.pr_text->clear();

QFile file("command.txt");
file.open(QIODevice::WriteOnly | QIODevice::Text);
file.close();

QFile file3("result.txt");
file3.open(QIODevice::WriteOnly | QIODevice::Text);
file3.close();

QFile file4("errors.txt");
file4.open(QIODevice::WriteOnly | QIODevice::Text);
file4.close();
}
// function to print the given file name in fname.txt file
void MyClass::pr_filename()
{
QString pr_fname=ui.lineEdit_2->displayText();

QString path="C:/Anu/prgs/sch/QT-prg/backup/gui/gui/";
QString completefilepath=path+pr_fname;

QFile file("pr_fname.txt");

file.open(QIODevice::WriteOnly | QIODevice::Text);
QTextStream out(&file);

out<<completefilepath;

reset_process();

file.close();
}
// function to print the given command in command.txt
void MyClass::command(char ch)
{
QFile file("command.txt");

file.open(QIODevice::WriteOnly | QIODevice::Text);
QTextStream out(&file);

out<<ch<<endl;

file.close();
}
// function to display processor file contents
void MyClass::pr_display()
{
ui.pr_text->clear();

QVector<int> pr_eff;

QString pr_fname=ui.lineEdit_2->displayText();

65

QFile file1(pr_fname);

if (file1.open(QIODevice::ReadOnly))
{
QTextStream dta(&file1);

while(!dta.atEnd())
{
ui.pr_text->append(dta.readLine());
}

}
file1.close();
}

// function to display processor file contents
void MyClass::update_pr_info()
{
QVector<int> pr_eff;
int data;

QString update_data=ui.pr_text->toPlainText();

QString pr_fname=ui.lineEdit_2->displayText();
QFile file(pr_fname);
file.open(QIODevice::WriteOnly | QIODevice::Text);

QTextStream out(&file);
out << update_data;
file.close();
}

// function to extract processor efficiency values in to a vector
void MyClass::processorinfo()
{
QVector<int> pr_eff;
QString pr_fname=ui.lineEdit_2->displayText();
int data;
QFile file(pr_fname);
file.open(QIODevice::ReadOnly | QIODevice::Text);

if (file.open(QIODevice::ReadOnly))
{
QTextStream in(&file);

while(!in.atEnd())
{
in>>data;
pr_eff.push_back(data);
}
}
file.close();
}

//function to read the result value from the result.txt file
QString MyClass::read_est()
{
QString result;
QFile file("result.txt");

66

file.open(QIODevice::ReadOnly | QIODevice::Text);
QTextStream in(&file);

in>>result;
file.close();
return result;
}

//function to display errors from the errors.txt file
void MyClass::display_errors()
{

QString err;
QFile file("errors.txt"); // Read the text from a file
if (file.open(QIODevice::ReadOnly))
{
QTextStream stream(&file);

while(!stream.atEnd())
{
ui.textEdit->append(stream.readLine());
}
}
file.close();
}
// funtion to reset all the values
void MyClass::reset()
{
ui.lineEdit_4->setText(0);
ui.lineEdit_3->clear();
ui.lineEdit_2->clear();
ui.textEdit->clear();
ui.pr_text->clear();

QFile file("command.txt");
file.open(QIODevice::WriteOnly | QIODevice::Text);
file.close();

QFile file1("fname.txt");
file1.open(QIODevice::WriteOnly | QIODevice::Text);
file1.close();

QFile file5("pr_fname.txt");
file5.open(QIODevice::WriteOnly | QIODevice::Text);
file5.close();

QFile file3("result.txt");
file3.open(QIODevice::WriteOnly | QIODevice::Text);
file3.close();

QFile file4("errors.txt");
file4.open(QIODevice::WriteOnly | QIODevice::Text);
file4.close();

}

//function to reset values before quiting
void MyClass::quit()
{

67

reset();
}
// funtion to invoke functionality exe file
void MyClass::multhread()
{
QApplication::setOverrideCursor(Qt::WaitCursor);

QString program = "C:/Anu/prgs/sch/QT-
prg/backup/Simuation_scheduling/Simuation_scheduling/Debug/ Simuation_scheduling.exe";
QStringList arguments;

QProcess* process = new QProcess(this);
process->start(program, arguments);

// If this returns false, something went wrong
bool started = process->waitForStarted(2000);

unsigned waits = 0;

// Wait one second at a time for the process' end
while(!process->waitForFinished(1000))
{
++waits;

// If process won't end within one minute, terminate it
if(60 < waits)
{
process->terminate();
break;
}
}

// When the new process ends, execution is here

delete process;
process = NULL;

QApplication::restoreOverrideCursor();

}

// function to invoke necessary functionality to give an estimate time for scheduling
void MyClass::estfun()
{
QFile file4("errors.txt");
file4.open(QIODevice::WriteOnly | QIODevice::Text);
file4.close();
ui.textEdit->clear();

QFile file("result.txt");
file.open(QIODevice::WriteOnly | QIODevice::Text);
file.close();
processorinfo();
command('E');
multhread();

QString result = read_est();
ui.lineEdit_4->setText(result);

display_errors();

68

}

// function to invoke necessary functionality to execute the scheduling
void MyClass::exefun()
{
QFile file4("errors.txt");
file4.open(QIODevice::WriteOnly | QIODevice::Text);
file4.close();
ui.textEdit->clear();

QFile file("result.txt");

file.open(QIODevice::WriteOnly | QIODevice::Text);

file.close();

processorinfo();
command('Y');
multhread();
QString result = read_est();
ui.lineEdit_4->setText(result);

display_errors();
}

