2,079 research outputs found

    RPPM : Rapid Performance Prediction of Multithreaded workloads on multicore processors

    Get PDF
    Analytical performance modeling is a useful complement to detailed cycle-level simulation to quickly explore the design space in an early design stage. Mechanistic analytical modeling is particularly interesting as it provides deep insight and does not require expensive offline profiling as empirical modeling. Previous work in mechanistic analytical modeling, unfortunately, is limited to single-threaded applications running on single-core processors. This work proposes RPPM, a mechanistic analytical performance model for multi-threaded applications on multicore hardware. RPPM collects microarchitecture-independent characteristics of a multi-threaded workload to predict performance on a previously unseen multicore architecture. The profile needs to be collected only once to predict a range of processor architectures. We evaluate RPPM's accuracy against simulation and report a performance prediction error of 11.2% on average (23% max). We demonstrate RPPM's usefulness for conducting design space exploration experiments as well as for analyzing parallel application performance

    MGSim - Simulation tools for multi-core processor architectures

    Get PDF
    MGSim is an open source discrete event simulator for on-chip hardware components, developed at the University of Amsterdam. It is intended to be a research and teaching vehicle to study the fine-grained hardware/software interactions on many-core and hardware multithreaded processors. It includes support for core models with different instruction sets, a configurable multi-core interconnect, multiple configurable cache and memory models, a dedicated I/O subsystem, and comprehensive monitoring and interaction facilities. The default model configuration shipped with MGSim implements Microgrids, a many-core architecture with hardware concurrency management. MGSim is furthermore written mostly in C++ and uses object classes to represent chip components. It is optimized for architecture models that can be described as process networks.Comment: 33 pages, 22 figures, 4 listings, 2 table

    A comparison of cache hierarchies for SMT processors

    Get PDF
    In the multithread and multicore era, programs are forced to share part of the processor structures. On one hand, the state of the art in multithreading describes how efficiently manage and distribute inner resources such as reorder buffer or issue windows. On the other hand, there is a substantial body of works focused on outer resources, mainly on how to effectively share last level caches in multicores. Between these ends, first and second level caches have remained apart even if they are shared in most commercial multithreaded processors. This work analyzes multiprogrammed workloads as the worst-case scenario for cache sharing among threads. In order to obtain representative results, we present a sampling-based methodology that for multiple metrics such as STP, ANTT, IPC throughput, or fairness, reduces simulation time up to 4 orders of magnitude when running 8-thread workloads with an error lower than 3% and a confidence level of 97%. With the above mentioned methodology, we compare several state-of-the-art cache hierarchies, and observe that Light NUCA provides performance benefits in SMT processors regardless the organization of the last level cache. Most importantly, Light NUCA gains are consistent across the entire number of simulated threads, from one to eight.Peer ReviewedPostprint (author's final draft

    Hardware acceleration of reaction-diffusion systems:a guide to optimisation of pattern formation algorithms using OpenACC

    Get PDF
    Reaction Diffusion Systems (RDS) have widespread applications in computational ecology, biology, computer graphics and the visual arts. For the former applications a major barrier to the development of effective simulation models is their computational complexity - it takes a great deal of processing power to simulate enough replicates such that reliable conclusions can be drawn. Optimizing the computation is thus highly desirable in order to obtain more results with less resources. Existing optimizations of RDS tend to be low-level and GPGPU based. Here we apply the higher-level OpenACC framework to two case studies: a simple RDS to learn the ‘workings’ of OpenACC and a more realistic and complex example. Our results show that simple parallelization directives and minimal data transfer can produce a useful performance improvement. The relative simplicity of porting OpenACC code between heterogeneous hardware is a key benefit to the scientific computing community in terms of speed-up and portability

    Encog: Library of Interchangeable Machine Learning Models for Java and C#

    Full text link
    This paper introduces the Encog library for Java and C#, a scalable, adaptable, multiplatform machine learning framework that was 1st released in 2008. Encog allows a variety of machine learning models to be applied to datasets using regression, classification, and clustering. Various supported machine learning models can be used interchangeably with minimal recoding. Encog uses efficient multithreaded code to reduce training time by exploiting modern multicore processors. The current version of Encog can be downloaded from http://www.encog.org
    • …
    corecore