
A Comparison of Cache Hierarchies for SMT
Processors

Daŕıo Suárez Gracia1, Teresa Monreal Arnal2, and Vı́ctor Viñals Yúfera1

Abstract—In the multithread and multicore era, pro-
grams are forced to share part of the processor struc-
tures. On one hand, the state of the art in multi-
threading describes how efficiently manage and dis-
tribute inner resources such as reorder buffer or issue
windows. On the other hand, there is a substantial
body of works focused on outer resources, mainly on
how to effectively share last level caches in multicores.
Between these ends, first and second level caches have
remained apart even if they are shared in most com-
mercial multithreaded processors.

This work analyzes multiprogrammed workloads
as the worst-case scenario for cache sharing among
threads. In order to obtain representative results, we
present a sampling-based methodology that for mul-
tiple metrics such as STP, ANTT, IPC throughput,
or fairness, reduces simulation time up to 4 orders of
magnitude when running 8-thread workloads with an
error lower than 3% and a confidence level of 97%.

With the above mentioned methodology, we com-
pare several state-of-the-art cache hierarchies, and ob-
serve that Light NUCA provides performance benefits
in SMT processors regardless the organization of the
last level cache. Most importantly, Light NUCA gains
are consistent across the entire number of simulated
threads, from one to eight.

Keywords— Cache Hierarcy, Multithreading, Simu-
lation, Sampling, NUCA

I. Introduction

MULTITHREADING (MT) is supported by an
ample spectrum of current processors devoted

to uneven computing segments such as: embed-
ded, high throughput, or high performance. Ex-
amples of representatives from these segments are
Netlogic XLP832 (4-way multithreading, 8-cores), Or-
acle SPARC T3 (8-way multithreading, 16-cores), or
IBM POWER7 (4-way multithreading, 4-6-8 cores),
respectively [1], [2], [3].

All previous examples share a powerful multilevel
cache hierarchy with large Last Level Caches (LLC),
and only the XLP832 departs from the conventional
organization including a ring for communicating the
private L2 caches, the eight L3 cache banks, and
the four DDR ports. While these LLCs seem able
to accommodate the multiple working sets of SMT
execution, sharing in the levels close to the processors
proves to be more complex. On one hand, L1 and
L2 caches deal with the latency-power vs. size trade-
off. On the other hand, MT architectures add a new
trade-off, number of threads in execution vs. miss rate.
With many threads, cache misses can be tolerated
executing instructions from other threads, but as

1Computer Architecture Group (gaZ). Dpto. de Informática
e Ingenieŕıa de Sistemas. Instituto de Investigación en Inge-
nieŕıa de Aragón. Universidad de Zaragoza. e-mail {dario,
victor}@unizar.es

2Department of Computer Architecture. Universitat Politéc-
nica de Catalunya (UPC). e-mail: teresa@ac.upc.edu

the number of threads grows, the collective working
set becomes larger and more changing, resulting in
miss ratios potentially harmful to performance. The
larger their number, the larger and size changing the
collective working set becomes and the larger the
miss rate. So when the miss rate reaches a critical
value in which threads execution fails to overlap, the
processor stalls and has the same problem that single
thread machines.

SMT architectures may be favored by caches de-
signed to support working set awareness such us the
L-NUCA [4]. L-NUCAs belong to a family of cache
organizations that has received much attention for
improving cache performance: Non-Uniform Cache
Architecture (NUCA) [5]. The seminal NUCA work
targets the wire delay problem1, and proposes the
melting of the L2 and L3 caches into a meshed array
of caches banks. Nevertheless, to the best of our
knowledge, there is little work on evaluating NUCA
with simultaneous multithreading processors (SMT).

Part of the complexity of assessing multiple cache
hierarchies lies in the required simulation framework.
So to carry out the experiments, we propose a simple
yet efficient MT simulation methodology ensuring the
accuracy of the results abreast with a sort simula-
tion time. The methodology is based on statistical
sampling, and contrary to other alternatives does not
require a prior long profiling of the applications.

This work gives two main contributions. The first
one is introducing a powerful methodology to evaluate
MT architectures. The second one is the comparison
and evaluation of several state-of-the-art cache hier-
archy organizations driven by the SPEC CPU2006
benchmark suite. From the results, we conclude that
regardless the number of threads L-NUCAs outper-
form conventional multibanked and dynamic NUCA
organizations, both in terms of throughput and fair-
ness.

The rest of the paper is organized as follows. Sec-
tion II elaborates on previous work. Section III
presents the proposed evaluation methodology. Sec-
tion IV describes our experimental framework and
the hierarchies under test. Section V comments on
the results, and Section VI concludes the paper.

II. Background

Tullsen, Eggers, and Levy in their SMT seminal
work compare the performance of private and shared
L1 caches (for both instruction and data) and observe
that regardless the number of threads (from 1 to 8)
shared data caches are the best choice and private

1The wire delay is longer than the bank delay and represents
most part of the total cache latency in LLCs.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/157809683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

instruction ones are only preferable for the 8-thread
case [6]. Also they point out that shared caches
do not require any special hardware for coherence
support. Then, Tullsen and Brown observed that in
many cases when a thread experiences a very long
latency operation, such as a cache miss, it is better to
flush the resources of the stalled thread rather than
keeping them ready [7].

Hily and Seznec studied how secondary cache band-
width limited SMT performance in a trace-driven
environment [8]. They point out that the larger the
number of executed threads the larger the L1 cache
size has to be. Besides, when the number of threads
increases, the memory references generated by the
simultaneous execution of independent threads ex-
hibit less spatial locality than that of a single thread,
increasing conflict misses.Block size is more critical
than associativity and as the number of threads rise,
it is preferable to keep small block sizes (16 to 32
BS).

To improve SMT performance, Settle et al. define
a cache partitioning scheme based on column caching
[9]. Two policies can control the partitioning: (a)
synchronous in which each 1 million cycles, the par-
tition is heuristically set for the next interval. (b)
asynchronous in which the LRU algorithm is affected
by some thread reuse counters.

Nemirovsky and Yamamoto analyzed the effect of
varying cache capacity, associativity, and line size
on miss rate for multistreamed architectures [10].
They observe that increasing both cache capacity and
associativity reduces miss ratio specially for small
caches and that large block size increase miss ratio.

The Multithreaded Virtual Processor (MVP) is
a coarse-grain multithreaded system with software
support that explicitly forces context switching on
long latency events such as cache misses, I/O, or
synchronization [11]. The evaluation comprised par-
allel workloads, and they show that when threads
share a few data, the increment in miss rate affects
performance.

Garcia et al. studied several data cache organi-
zations for multithreaded processors using a trace-
driven environment [12]. In accordance with other
authors [8], [13], they observe that large associativi-
ties reduce inter-thread misses and that XOR-based
placement reduces inter-thread miss rate in some
cases. Besides, they proposed several organizations
combining the hash-rehash caches and static cache
splitting.

Sarkar and Tullsen proposed two strategies to min-
imize inter-object data cache misses at compilation
time [14]. Lopez et al. studied control strategies for
reconfigurable caches in SMT GALS processors with
a limited set of SPEC CPU2000 benchmarks. They
conclude that the best control strategy to maximize
performance is the harmonic mean of the per-thread
weighted access time [15], [16].

Several authors have proposed SMT methodolo-
gies for selecting representative mixes of programs.
Raasch and Reinhardt propose to profile individual

applications and with the extracted characteristics
choose the most representative pairs [17]. By combin-
ing the pairs, they also generate 4-thread workloads.
Van Biesbrouck et al. proposed a methodology con-
sidering all starting phases and points but it requires
a complex profiling and an advanced work flow to
gather the results [18].

On the contrary our approach neither require pro-
filing nor complex output information gathering, but
it does not consider multiple starting points by de-
fault. Nevertheless, since we employ last simulation
policy2, faster programs execute multiple times until
the slower ones finishes, so they run together starting
at different points.

Finally, our proposal cares about how to select
representative mixes of multiprogrammed workloads
and not when to finalize simulations for obtaining
accurate metrics. In fact, this work pairs perfectly
methods such as FAME [19].

III. A Simple Statistic-based Methodology
for Multiprogrammed Workloads

The generation of simulation traces is always a time
consuming and costly process. Single program traces
extracted with solid approaches such as SimPoints
or SimFlex provide accurate simulation results [20],
[21]; however, no guidelines are found in the liter-
ature about how to obtain a representative set of
thread mixes from representative samples of thread
individuals. Our goal is to provide a simple method
to efficiently simulate multiprogramed workloads for
multiple metrics.

The key idea is instead of executing all possible
combinations for a given number of threads, to ex-
ecute a representative sample based on statistical
sampling [22], [21] so that simulation time reduces
by several orders of magnitude while keeping mea-
surements below a given error within a confidence
level large enough. In this work, we focus on mixes
composed of different threads (combinations without
repetition), but the proposed methodology can be
used with repetition as well.

selection of
metrics of interest

increase
sample size

selection of
micro-architectural

configurations

set preliminary
sample size

run
simulations

error within
confidence

interval
no

yes
results
ready

Fig. 1. Flowchart of the proposed methodology

Figure 1 shows the required steps to obtain the
sample:

Selection of metrics of interest: For example
if we want to compare the impact of different cache

2Simulation finishes when all threads have executed at least
100M instructions.

hierarchies on SMT processors we can take adjusted
STP and ANTT, IPC throughput3, and fairness [23],
[24].

STP =

n∑
i=1

CPISP
i

CPIMP
i

, ANTT =
1

n

n∑
i=1

CPIMP
i

CPISP
i

IPC througput =
n∑

i=1

IPCi, fairness =

min
i

(
CPIMP

i

CPISP
i

)
max

i

(
CPIMP

i

CPISP
i

)
MP and SP refer to the multithreaded and sin-

glethreaded execution of a program.
Selection of micro-architectural configura-

tions: Pick some of the configurations to be ana-
lyzed. In general those with lower performance are
preferable because they tend to experiment the high-
est variances of the metrics. In our cache hierarchy
comparison, we can take a conventional multibanked
organization, a dynamic NUCA, and a light NUCA.

Set preliminary sample size: In this step, we
have to choose a sample size—the larger the number
of threads, the lower this value [25]—, and then, to
randomly pick the combinations of programs for their
simulation. This value should be big enough [22],
larger than 30 at least, but tractable in the desired
simulation environment.

Run simulations: Run the selected combinations
and compute the sample size for your given confidence
interval with the next formula [22]:

n =

(
100 × z × s

r × x

)2

(1)

where n, z, s, r, and x stand for the sample size,
normal variate of the confidence interval, error (in
%), sample standard deviation, and population mean,
respectively.

Error within confidence level?: Check if the
obtained n is lower of equal than your preliminary
sample size. If not, pick some different extra combi-
nations, run them, and repeat the last steps until the
results are ready.

Once a sample size has been established, all the con-
figurations under test must be run in order to check
that their results also fit within the confidence interval.
Adding new configurations require the same proce-
dure, so if the initial selection of micro-architectural
configurations is carefully done, the sample size will
not grow.

IV. Comparing SMT cache Hierarchies

A. Common Baseline Parameters

We have heavily extended Simplescalar 3.0d [26]
for Alpha with: Simultaneous Multithreading Sup-
port [6], Reorder buffer and three issue windows (IW)
for integer, floating point, and memory instructions,
speculative wake-up support and selective recovery

3IPC throughput is advantageous because it allows an
absolute comparison among configurations. We can use
IPC throughput whenever mixes are made from independent
threads, because then no unpredictable instruction spinning
can arise; e.g., before entering a critical section.

(as in the Intel Pentium 4 [27]), one-cycle payload
and register file stages, accurate timing models for
non-blocking caches, write buffers, buses, network
contention, flow control, and request arbitration. For
the rest of parameters see Table I.

TABLE I

Baseline Processor Configuration

Fetch ICOUNT.2.8
Decode / Commit Width 4
Branch
Predictor

bimodal + gshare,
16 bit

ROB / LSQ 198 / 96

Issue
Width

4 (INT + MEM) +
4 (FP)

Issue
Queues

64(INT) / 32
(FP & MEM)

Functional
Units

4 INT + 4 FP ALU, 2 INT MULT + 4 FP
MULT/DIV

L1 cache 64KB-4Way-32B BS-2ports-LRU, Lat 2, Init.
Rate 1

L2 128KB:1MB-8Way-32B BS-1port-LRU
D-NUCA 128KB:512KB-4Way-128B BS-1port-LRU, 8

columns
L-NUCA 2:5Levels-16KB-4Way-32B BS-1port-LRF
L3 8MB-16W-128B BS-1port-LRU, 8 banks
Main
Memory

First chunk: 200 cycles, 4-cycle inter chunk,
16B wires

Thread fetch is prioritized based on the ICOUNT
policy [28]. Structures such as ROB, IWs, STB,
WB,. . . are shared among threads. To avoid star-
vation at commit, a thread can not occupy more
that three quarters of L2/L-NUCA/D-NUCA Write
Buffers. Threads commit in Round Robin fashion
with a maximum of 4 instructions committed by all
the threads (RR.4.X), where X corresponds to the
number of threads in execution [28].

B. Cache Memory Organizations

Focussing in the first and second cache levels, we
have selected three very distinct organizations. The
first one is the baseline, corresponding to a conven-
tional 3-level hierarchy with a 4-banked L2 cache,
and an 8-banked, 8-MB L3 cache, see Figure 2.

In any cycle, the L2 cache can start servicing up
to two L1 load misses from the MSHR, the rest of
banks can simultaneously begin the processing of a
write buffer entry, and two whole cache blocks can
be in transit to the L1 MSHR. For this configuration,
we tested L2 sizes from 128KB to 1MB organized in
either 1, 2, 4, and 8 banks. The output crossbar has
a fixed latency of 2 cycles with an initiation rate of 1
in configurations with 2 or more banks.

L2 bank0 L2 bank1 L2 bank2 L2 bank3

L1

cache ports

...

L1 mshr

L2: fetch-on-miss
L1: fetch-on-miss

L2_0
mshr

L2_1
mshr

L2_2
mshr

L2_3
mshr

to/from
next cache level

(a) Loads

L2 bank0 L2 bank1 L2 bank2 L2 bank3

L1

cache ports

wb0 wb1 wb2 wb3

L2: copy-back,
fetch-on-write
L1: write-through,
write-around

L2_0
mshr

L2_1
mshr

L2_2
mshr

L2_3
mshr

to/from
next cache level

(b) Stores

Fig. 2. Baseline L2 cache organization with 4 banks

The second hierarchy replaces the L2 and L3 caches
by a dynamic NUCA (D-NUCA) [5], Figure 3, in

DN bank2 DN bank3 DN bank4 DN bank5

L1

cache ports

DN bank0 DN bank1 DN bank6 DN bank7

DN bank2 DN bank3 DN bank4 DN bank5DN bank0 DN bank1 DN bank6 DN bank7

...

...

L1 mshr
D-NUCA: fetch-on-miss
L1: fetch-on-miss

Fig. 3. Multibanked Dynamic NUCA. A block can be mapped
to any of the columns surrounded by a dashed line

which its original interface with the L1 cache and
shared mapping have been replaced by a crossbar to
provide more bandwidth and by a simple mapping4,
respectively. As in the conventional organization,
there is a write buffer for each column. In this way
we can inject the same number of requests per cycle,
so the conventional hierarchy can be considered as
a particular case of a NUCA with a single row and
without the partial tags [5].

The last one is Light NUCA (L-NUCA) [4], but
also modified to provide more bandwidth, see Fig-
ure 4. Changes include widening the search links
from word to block size (from 8 to 32B), increasing
the write buffer size to match the rest of organiza-
tions (the buffer in between the r-tile and the rest of
tiles). Besides the replacement buffers are managed
with an improved back-pressure policy, so that the
eviction of blocks from the r-tile does not stall until
the replacement buffer of the r-tile becomes full.

We tested 2 organizations based on L-NUCA, one
including the same L3 than the baseline organization,
and another in which the LLC is a dynamic NUCA,
similarly to previous work [4].

level 2
tile

level 2
tile

RT

cache ports

level 2
tile

level 2
tile

level 2
tile

RESTT tiles

...

RT mshr

RESTT: no-fetch-on-miss
RT: fetch-on-miss

L-NUCA
miss queue

to next cache level

from next
cache level

(a) Loads

level 2
tile

level 2
tile

RT

cache ports

level 2
tile

level 2
tile

level 2
tile

RESTT tiles

RESTT: copy-back,
write-around
RT: copy-back,
write-around

RESTT
wb

in-flight
store
shift reg.

next cache
wb

(b) Stores

Fig. 4. 2-level L-NUCA load and store logical organization.
For the sake of clarity, the Figure includes neither all
network nor control flow links

During the setup or the organizations, we observed
two interesting design details helping to maximize
performance. First, regarding the priority of L1/r-
tile misses, loads should have priority over writes
except when a miss hits in the write buffer5 in which
case priorities are reversed until the requested data
can be served by the cache. Second, a centralized
write buffer reduces performance except when the
number of entries at each distributed write buffer is
very small. As an approximate rule of thumb, each
bank requires a coalescing write buffer with as many

4A block can only reside in one column.
5Write buffers do not provide data.

entries as threads are simultaneously executing. As
stated by Hily and Seznec, bandwidth can be the
limiting factor of the cache hierarchy in SMT [8], and
the larger the number of banks (up to 8), the bigger
the performance.

C. Workloads

Our multiprogrammed workload comprises combi-
nations of 2, and 4, 6, and 8 programs from SPEC
CPU2006 without repetition, namely, all benchmarks
but 483.xalanbmk [29]. For this type of study, mul-
tiprogramed loads are preferable over parallel ones
because they stress more the memory hierarchy since
there is no sharing among threads. For each program,
we have selected a representative trace consisting of
100 million instruction following the SimPoint guide-
lines [20]. Simulations terminate when all threads
have executed at least 100M instructions, last policy,
but program statistics are gathered for the first 100M.

V. Experimental Results

A. Sample Sizes and Simulation Time

Table II shows the number of all combinations with-
out repetition of our traces executing 2, 4, 6, and 8
threads, the average time required for running one
combination of programs6, and the sample size re-
quired to obtain accurate results, with an error less
than 3% with a 97% confidence level for all config-
urations under test. This means for example that
in 97 of 100 times a randomly chosen sample of 251
combinations will have an error than 3% in all the
metric compared to the whole population of 6-threads
combinations (37674). For the 2 threads case, we ex-
ecute all combinations because total execution time
is affordable. Nevertheless, as we increase the num-
ber of threads, our methodology obtains savings in
simulation time of ×93, ×150, and ×9743, for 4, 6,
and 8 threads, respectively.

TABLE II

Sample sizes varying the number of threads

Threads
2 4 6 8

Total combinations 378 20475 37674 3108105
Avrg. sim. time (min) 18.5 45.7 60.4 90.5
Sample size — 220 251 319

Table II provides the minimum sample size for all
metrics of interest with an error less than 3%, in
our case: STP, ANTT, IPT throughput, and fairness.
Since fairness represents the ratio between the min-
imum and maximum slowdowns, it has the largest
variance, and, hence, determines the required sample
size.

If we focus on a single number of threads, for ex-
ample 4, we can show the sample size of the best
configurations from each organization as table III
does. L2, NC-IxJ , LNI, LNI-NC-JxK correspond

6This value is for the L-NUCA + D-NUCA simulator, the
slowest in our simulation framework, in an Intel Nehalem 2.33
GHz.

to the conventional baseline, D-NUCA with I columns
and J rows, L-NUCAs with I levels, and L-NUCAs
combined with D-NUCAs organizations, respectively.
Besides, each configuration includes its total size for
the L2 and L-NUCAs and the size of their banks for
D-NUCA.

TABLE III

Sample sizes for the different metrics and

configurations in 4SMT execution

Metric
IPC

STP ANTT Throughtput Fairness
L2-256KB-8Banks 126 111 85 162
L2-1MB-8Banks 126 113 90 160
NC-8x2-512KB 111 132 119 218
NC-8x4-256KB 118 141 128 220
LN3-240KB 103 96 51 194
LN4-448KB 103 96 51 193
LN2-NC-8x2 104 96 48 189
LN2-NC-8x4 105 97 47 188
LN3-NC-8x2 106 96 46 210
LN3-NC-8x4 103 95 47 211

Irrespective of the organization, we observe that
the required sample size follows a common trend:
computing IPC throughput requires small sizes while
fairness, due to its greater variance, requires doubling
or even quadrupling the sample size. STP and ANNT
lie in a middle ground. Across all organizations, IPC
throughput is the metric giving the more uneven
sample sizes, meaning that L-NUCA organizations
achieve less IPC variability among individual thread
combinations. From these results, we conclude that
in general adding a different configuration to test does
not require a large investment in new simulations for
the preexisting configurations. Finally, fairness is the
only metric that requires more samples as the number
of threads rise. While many threads are able to keep
all functional units busy, they tend to bother each
other starving some of them. Conclusions are similar
for other number of threads, and we do not show
them for the sake of brevity.

B. STP, ANTT, IPC throughput, and Fairness

Figure 5 shows the results for the four metrics of
interest for the best configuration of each hierarchy
organization. STP and ANTT are metrics relative to
the performance of a single thread system aimed at
programs that may expend time in spin-lock loops,
which is not our case [24]. In both metrics, L2 over-
passes the rest of hierarchies from 4 threads and
beyond, and the L-NUCA ones dominates in the 2
thread case. This results are mostly due to the fact
the L2 has the worst IPC in single-thread mode and
the maximum IPC for all configurations is 4, so L2 rel-
ative slowdowns are smaller as the number of thread
rises.

IPC throughput is an absolute metric representing
the amount of committed instructions per unit of
time. LN+NC achieves the best results regardless
the number of threads close followed by LN. The
small difference between them is mostly due to the
NUCA partial tags not present in the L3 [5]. As the

number of threads and bandwidth demand increase,
the L2 overpasses the NC.

Fairness is defined as the quotient between the
programs that have suffered the lowest and the highest
slowdowns. A value of zero means complete starvation
of one thread,and a value of one means all threads
experience the same slowdown.

VI. Conclusions

The adoption of thread level parallelism as the
mainstream way to continue improving the perfor-
mance pace of computers requires novel mechanism
and the reevaluation of those which are well estab-
lished such as cache hierarchies. While large Last
Level Caches have received a lot of attention in recent
years, first and second levels have remained apart.

This work analyzes multiple state-of-the-art cache
hierarchies executing multiprogramed workloads from
2 to 8 threads. In order to provide accurate results
in a reasonable amount of time, we propose a sam-
pling based methodology reducing simulation time
by up 4 orders of magnitude for 8 thread workloads,
respectively. These savings do not occur at the cost
of fidelity because their error is less than 3% for a
97% confidence level for a high variance metric such
as fairness.

From the analysis we observe that regardless of
the Last Level Cache and the number of threads, L-
NUCA provides the more efficient solution in terms
of both throughput and fairness.

Acknowledgement

This work was partially supported by grants
TIN2010-21291-C02-01 (Spanish Government and
European ERDF), gaZ: T48 research group
(Aragón Government and European ESF), Consolider
CSD2007-00050 (Spanish Government), and HiPEAC-
2 NoE (European FP7/ICT 217068).

References

[1] Tom R. Halfhill, “Netlogic broadens XLP family,” Mi-
croprocessor Report, vol. 24, no. 7, pp. 1–11, 2010.

[2] J. L. Shin, K. Tam, D. Huang, B. Petrick, H. Pham,
Changku Hwang, Hongping Li, A. Smith, T. Johnson,
F. Schumacher, D. Greenhill, A. S. Leon, and A. Strong,
“A 40nm 16-core 128-thread cmt sparc soc processor,” in
Proc. IEEE Int. Solid-State Circuits Conf. Digest of Tech-
nical Papers (ISSCC), 2010, pp. 98–99.

[3] Ron Kalla, Balaram Sinharoy, William J. Starke, and
Michael Floyd, “Power7: Ibm’s next-generation server
processor,” IEEE Micro, vol. 30, pp. 7–15, 2010.

[4] Daŕıo Suárez, Teresa Monreal, Fernando Vallejo, Ramón
Beivide, and Vı́ctor Viñals, “Light NUCA: a proposal
for bridging the inter-cache latency gap,” in Prooceed-
ings of the 12th Design, Automation and Test in Europe
Conference and Exhibition (DATE’09), April 2009.

[5] Changkyu Kim, Doug Burger, and Stephen W. Keckler,
“An adaptive, non-uniform cache structure for wire-delay
dominated on-chip caches,” in Proceedings of the 10th
international conference on architectural support for pro-
gramming languages and operating systems (ASPLOS-X).
October 2002, pp. 211–222, ACM Press.

[6] D.M. Tullsen, S.J. Eggers, and H.M. Levy, “Simultane-
ous multithreading: Maximizing on-chip parallelism,” in
Proceedings. 22nd Annual International Symposium on
Computer Architecture, Jun 1995, pp. 392–403.

[7] Dean M. Tullsen and Jeffery A. Brown, “Handling long-
latency loads in a simultaneous multithreading proces-
sor,” in MICRO 34: Proceedings of the 34th annual

 0

 0.5

 1

 1.5

 2

1 2 4 6 8

a
d

ju
s
te

d
 S

T
P

Number of Threads

L2
NC
LN

LN+NC

 0

 1

 2

 3

 4

 5

1 2 4 6 8

a
d

ju
s
te

d
 A

N
T

T

Number of Threads

L2
NC
LN

LN+NC

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4 6 8

IP
C

 T
h

ro
u

g
h

p
u

t

Number of Threads

L2
NC
LN

LN+NC

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 6 8

F
a

ir
n

e
s
s

Number of Threads

L2

NC

LN

LN+NC

Fig. 5. Results for the best configuration of each organization: L2, NC, LN, and LN+NC correspond to the L2-256KB,
NC-8x4-256KB, LN3-240KB, and LN2-NC-8x4, respectively

ACM/IEEE international symposium on Microarchitec-
ture, Washington, DC, USA, 2001, pp. 318–327, IEEE
Computer Society.

[8] Sébastien Hily and André Seznec, “Contention on 2nd

level cache may limit the effectiveness of simultaneous
multithreading,” Tech. Rep. 1086, IRISA, fébrier 1997.

[9] Alex Settle, Dan Connors, Enric Gibert, and Antonio
González, “A dynamically reconfigurable cache for multi-
threaded processors,” J. Embedded Comput., vol. 2, no.
2, pp. 221–233, 2006.

[10] Mario Nemirovsky and Wayne Yamamoto, “Quantitative
study of data caches on a multistreamed architecture,” in
In Workshop on Multithreaded Execution, Architecture
and Compilation, 1998.

[11] Hantak Kwak, Ben Lee, Ali R. Hurson, Suk-Han Yoon,
and Woo-Jong Hahn, “Effects of multithreading on cache
performance,” IEEE Transactions on Computers, vol. 48,
pp. 176–184, 1999.

[12] Montse Garćıa, José González, and Antonio González,
“Data caches for multithreaded processors,” in Proc. of
the Workshop on Multithreaded Execution, Architecture
and Compilation, 2000.

[13] Sébastien Hily and André Seznec, “Standard memory hi-
erarchy does not fit simultaneous multithreading,” in Pro-
ceedings of the 2nd Workshop on MULTI-THREADED
EXECUTION, ARCHITECTURE and COMPILATION
(MTEAC-2), 1998.

[14] Subhradyuti Sarkar and Dean M. Tullsen, “Data layout
for cache performance on a multithreaded architecture,”
in Transactions on high-performance embedded architec-
tures and compilers III, Per Stenström, Ed., chapter Data
layout for cache performance on a multithreaded archi-
tecture, pp. 43–68. Springer-Verlag, Berlin, Heidelberg,
2011.

[15] Sonia López, Steve Dropsho, David H. Albonesi, Oscar
Garnica, and Juan Lanchares, “Dynamic capacity-speed
tradeoffs in smt processor caches,” in Proceedings of
the 2nd international conference on High performance
embedded architectures and compilers, Berlin, Heidelberg,
2007, HiPEAC’07, pp. 136–150, Springer-Verlag.

[16] Sonia Lopez, Oscar Garnica, David H. Albonesi, Steven
Dropsho, Juan Lanchares, and Jose I. Hidalgo, “Adaptive
cache memories for smt processors,” Digital Systems
Design, Euromicro Symposium on, vol. 0, pp. 331–338,
2010.

[17] Steven E. Raasch and Steven K. Reinhardt, “The impact
of resource partitioning on smt processors,” in Proceedings
of the 12th International Conference on Parallel Archi-
tectures and Compilation Techniques, Washington, DC,
USA, 2003, PACT ’03, pp. 15–, IEEE Computer Society.

[18] Michael Van Biesbrouck, Lieven Eeckhout, and Brad

Calder, “Representative multiprogram workloads for mul-
tithreaded processor simulation,” in IEEE Workload
Characterization Symposium. September 2007, pp. 193–
203, IEEE Computer Society.

[19] F.J. Cazorla, A. Pajuelo, O.J. Santana, E. Fernandez,
and M. Valero, “On the problem of evaluating the perfor-
mance of multiprogrammed workloads,” IEEE Trans. on
Computers, vol. 59, no. 12, pp. 1722 –1728, 2010.

[20] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad
Calder, “Simpoint 3.0: Faster and more flexible pro-
gram analysis,” in Proceedings of Workshop on Modeling,
Benchmarking and Simulation, 2005.

[21] Thomas F. Wenisch, Roland E. Wunderlich, Michael Fer-
dman, Anastassia Ailamaki, Babak Falsafi, and James C.
Hoe, “Simflex: Statistical sampling of computer system
simulation,” IEEE Micro, vol. 26, pp. 18–31, July 2006.

[22] Raj Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measure-
ment, Simulation, and Modeling, John Wiley & Sons,
Inc., April 1991.

[23] Ron Gabor, Shlomo Weiss, and Avi Mendelson, “Fairness
and throughput in switch on event multithreading,” in
Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, Washington, DC, USA,
2006, MICRO 39, pp. 149–160, IEEE Computer Society.

[24] S. Eyerman and L. Eeckhout, “System-level performance
metrics for multiprogram workloads,” Micro, IEEE, vol.
28, no. 3, pp. 42 –53, may. 2008.

[25] M. Ekman and P. Stenstrom, “Enhancing multiprocessor
architecture simulation speed using matched-pair compar-
ison,” in Proceedings of the IEEE International Sympo-
sium on Performance Analysis of Systems and Software,
2005, Washington, DC, USA, 2005, pp. 89–99, IEEE
Computer Society.

[26] Todd Austin and Doug Burger, SimpleScalar Tutorial
(for tool set release 2.0), SimpleScalar LCC, 1997.

[27] Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs,
Doug Carmean, Alan Kyker, and Patrice Roussel, “The
microarchitecture of the Pentium R© 4 processor,” Intel
Technology Journal, vol. 1st quarter, pp. 1–13, 2001.

[28] Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M.
Levy, Jack L. Lo, and Rebecca L. Stamm, “Exploiting
choice: instruction fetch and issue on an implementable
simultaneous multithreading processor,” in Proceedings.
23nd Annual International Symposium on Computer Ar-
chitecture, New York, NY, USA, 1996, vol. 24, pp. 191–
202, ACM.

[29] John L. Henning, “Spec cpu2006 benchmark descriptions,”
SIGARCH Comput. Archit. News, vol. 34, no. 4, pp. 1–17,
2006.

