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Abstract—Analytical performance modeling is a useful com-
plement to detailed cycle-level simulation to quickly explore the
design space in an early design stage. Mechanistic analytical
modeling is particularly interesting as it provides deep insight and
does not require expensive offline profiling as empirical modeling.
Previous work in mechanistic analytical modeling, unfortunately,
is limited to single-threaded applications running on single-core
processors.

This work proposes RPPM, a mechanistic analytical per-
formance model for multi-threaded applications on multicore
hardware. RPPM collects microarchitecture-independent char-
acteristics of a multi-threaded workload to predict performance
on a previously unseen multicore architecture. The profile needs
to be collected only once to predict a range of processor
architectures. We evaluate RPPM’s accuracy against simulation
and report a performance prediction error of 11.2% on average
(23% max). We demonstrate RPPM’s usefulness for conducting
design space exploration experiments as well as for analyzing
parallel application performance.

I. INTRODUCTION

Simulation is the predominant methodology for computer
architects to evaluate new processor architectures. Unfortu-
nately, simulation is extremely time-consuming and tedious,
especially when simulating multi-threaded workloads on mul-
ticore hardware. Analytical performance modeling is an attrac-
tive complement to detailed cycle-level simulation to quickly
explore large design spaces at early stages of the design
process. Several research groups have proposed analytical
performance models for superscalar processors. These tech-
niques can be broadly classified into three main categories:
(1) empirical models, (2) mechanistic models and (3) hybrid
models. Empirical models use training data obtained through
simulation to create black-box models using machine learning
and regression techniques, see for example [18], [23], [24],
[25], [26], [30]. Mechanistic models are white-box models
that capture the first-order mechanics of a processor, see for
example [15], [37]. Hybrid models cover the middle ground
through parameter fitting of a parameterized semi-mechanistic
model, see for example [8], [16]. Empirical models are typ-
ically very accurate but do not provide insight and require
extensive offline training. Mechanistic models are challenging
to develop but once developed, they provide deep insight and
do not require further offline training. This paper seeks to
advance the state of the art in mechanistic modeling.

Prior work in mechanistic modeling is limited to single-
threaded processors. Interval modeling, developed over a series
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of research papers by Michaud et al. [28], then Karkhanis
and Smith [22] and finally Eyerman et al. [15], models a
superscalar processor performance by building up a CPI stack
of components that represent useful computation versus lost
cycles due to miss events. To collect the number of miss events
(cache misses, branch misprediction rates, etc.), interval mod-
eling relies on offline functional cache and branch predictor
simulation. More recently, Van den Steen et al. [37] improved
upon this prior work by collecting only microarchitecture-
independent characteristics of an application. The key advan-
tage of doing so is that it allows for profiling the workload only
once after which performance can be predicted for a range of
previously unseen architectures. This prior work unfortunately
is limited to single-core processors.

This paper extends this prior work for predicting multi-
threaded application performance on multicore hardware.
Mechanistic modeling of multi-threaded application perfor-
mance is fundamentally more difficult than predicting single-
thread performance. Not only do we need to accurately model
per-thread performance, we also need to accurately model
synchronization, resource interference and cache coherence ef-
fects. Moreover, as demonstrated in this paper, multi-threaded
application performance prediction is further complicated by
the fact that small prediction inaccuracies of the execution time
in-between synchronization events, lead to an accumulation of
errors across the entire program execution because application
progress is determined by the slowest (most critical) thread.

Straightforward extensions of prior work towards multi-
threaded workloads further motivates this work. Predicting
multi-threaded application performance based on only the
main thread or only the critical thread leads to an average
performance prediction error compared to detailed simulation
of 45% and 28%, respectively, and a maximum error above
110%. There are three reasons for the poor accuracy: (1) it
does not model contention in shared resources, (2) it does
not model cache coherence effects, and (3) it does not model
synchronization overhead.

Some prior work focused on multicore performance predic-
tion. Jongerius et al. [21] propose a multicore performance
model for multiprogram workloads. Hence they only focus
on resource contention (i.e., negative interference) and do
not model positive interference, cache coherence nor synchro-
nization. Popov et al. [32] predict multi-threaded application
performance using Amdahl’s Law supplemented with the
simulation of snippets of representative parallel code regions.
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We propose RPPM, a mechanistic analytical model for
predicting multi-threaded application performance on multi-
core hardware [11]. A profiler collects a set of characteristics
that captures a workload’s behavior in a microarchitecture-
independent way. The profile contains per-thread characteris-
tics, as for the single-threaded model, as well as characteristics
that affect inter-thread interactions, including shared memory
access behavior and synchronization. The profile is then used
to predict performance on a previously unseen multicore archi-
tecture. We conjecture that the number of threads considered
during profiling equals the number of cores of the target
architecture. A key feature of RPPM is that the profile needs
to be collected only once, using which the performance for a
range of multicore architectures can be predicted. Although
the profile is measured during a particular multi-threaded
execution, and therefore it may be subject to a particular inter-
thread interleaving, we find it to enable accurate performance
prediction across architectures.

We evaluate the accuracy of RPPM against detailed cycle-
level simulation for all the OpenMP multi-threaded Rodinia
benchmarks and a subset of the pthread-based Parsec bench-
marks. RPPM predicts performance within 11.2% on average
(23% max error) for a quad-core processor. We demonstrate
the usefulness and applicability of RPPM for design space
exploration studies and application performance analysis. In
particular, we use RPPM to quickly identify the optimum
among five design points with varying characteristics in terms
of pipeline width and clock frequency while delivering the
same peak performance (in operations per second). We use
RPPM to construct bottlegraphs to analyze an application’s
parallel execution (im)balance.

II. MOTIVATION AND BACKGROUND

Modeling multi-threaded workload performance is challeng-
ing for at least three reasons. (1) One needs to accurately
model per-thread performance. (2) One needs to accurately
model inter-thread synchronization and interaction, including
resource interference and cache coherence effects. (3) Because
threads synchronize in a multi-threaded workload, there is an
effect of accumulating errors. The latter is probably less well-
known, hence we describe it next.

A. Accumulating Errors

In contrast to single-threaded performance modeling where
performance prediction errors over relatively small execution
regions are averaged out across the entire program execution,
this is not the case for multi-threaded applications. Modeling
multi-threaded performance is complicated by the fact that
accurate predictions are needed in-between synchronization
events, i.e., inaccurately predicting performance for the critical
thread between synchronization events leads to an accumula-
tion of error when predicting overall application performance.

We substantiate this claim through the following discussion.
Without loss of generality, consider a barrier-synchronized
multi-threaded application. (Other synchronization mecha-
nisms such as critical sections and producer-consumer in-

TABLE I: Accumulating prediction errors in barrier-
synchronized applications: overall prediction error as a func-
tion of thread count and inter-barrier prediction error. Predic-
tion errors accumulate because of synchronization.

#Threads Inter-barrier error
1% 5% 10%

1 0.00% 0.00% 0.00%
2 0.33% 1.67% 3.34%
4 0.60% 3.00% 6.01%
8 0.78% 3.89% 7.79%
16 0.88% 4.41% 8.83%

teractions face similar issues.) Predicting the execution time
for each thread in an inter-barrier region may lead to over-
and under-estimations for different threads. On average, we
assume (expect) the per-thread execution time to be predicted
accurately for each inter-barrier region, i.e., the execution
time may be over-estimated for some threads and under-
estimated for others. However, even though the execution
time predictions are accurate on average across all threads,
this is not enough for multi-threaded workloads because the
execution time of the inter-barrier region is determined by
the slowest thread. Over-estimations of the execution time of
inter-barrier regions lead to an accumulation of errors.

We illustrate this further using a micro-benchmark consist-
ing of a loop of one million iterations for which each iteration
takes the same amount of time. Assume now that the analytical
model is 100% accurate on average but introduces some
(random) over- or under-estimations within a given bound.
The loop is parallelized such that n iterations run in parallel,
with n the number of threads. All threads synchronize at a
barrier after they have each executed one iteration. We run
this micro-benchmark with different number of threads and
different assumed inter-barrier prediction errors. The results
are shown in Table I. When only a single thread is running,
the over- and underestimations balance each other out and
the resulting prediction error equals zero, i.e., we perfectly
predict the average inter-barrier execution time, as expected.
However, when running multiple threads, the execution time
of an inter-barrier region is determined by the slowest thread
reaching the barrier. As a result, the prediction error accu-
mulates across barriers, leading to significant inaccuracies for
predicting overall application execution time. We note that the
error increases with increasing thread count.

B. Single-Threaded Performance Model

With this mind, we now provide a brief background on
microarchitecture-independent analytical performance model-
ing for single-threaded applications, which we build upon to
model per-thread performance in RPPM; we refer the reader
to [37] for a more elaborate exposition of the single-threaded
performance model. We next describe naive extensions to this
prior work to predict multi-threaded application performance,
which, as we will show in the evaluation, are inaccurate.
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+

I-cache︷ ︸︸ ︷∑
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(1)

The single-threaded performance model consists of two
steps. In the profiling step, we use a Pin tool [27] to col-
lect an application profile containing only microarchitecture-
independent statistics, i.e., these statistics are inherent to the
workload and are independent of the underlying microarchitec-
ture. In the prediction step, these statistics are used as input
to the analytical model to predict the execution time on a
particular processor configuration. Execution time for a single
thread running on an out-of-order processor is predicted using
Equation 1.
We distinguish four components in the model:

Instruction-level parallelism: The base component is
obtained by dividing the number of micro-ops (N ) by the
effective dispatch rate (Deff). The effective dispatch rate is a
function of the width of the front-end pipeline, the available
ILP in the application, and the amount of contention in the
functional units. To accurately model ILP, we need fine-
grained profile information, i.e., we collect statistics regard-
ing instruction mix and inter-instruction dependences at the
granularity of a thousand instructions, which we call a micro-
trace. In order not to slow down profiling too much, we
profile a micro-trace of a thousand instructions once every
one million instructions. This allows us to characterize time-
varying behavior in ILP at a moderate profiling cost.

Branch misprediction: The branch component quan-
tifies the lost cycles due to branch mispredictions and is
computed as the number of mispredictions (mbpred) times the
branch resolution time (cres) (this is the time between the
branch being dispatched into the issue queue and reorder buffer
and its execution) plus the front-end pipeline refill time (cfr).
Prior work profiles branch behavior in a microarchitecture-
independent way using the information theoretic notion of
entropy [10], and uses this entropy profile to predict the branch
misprediction rate for a particular branch predictor.

Instruction cache: The I-cache component quantifies
the impact of instruction cache misses and is computed as
the product of the cache miss rate at each level (mILi) and
the respective miss latency (cLi+1). The cache miss rates are
predicted using micro-architecture-independent reuse distance
distributions using StatStack [14].

Long-latency loads: The D-cache component quantifies
the time the core stalls waiting for main memory requests to
resolve as a result of long-latency load misses. This compo-
nent is computed as the number of last-level cache misses
due to load instructions (mLLC) times the average memory
access latency (cmem), divided by the amount of memory-
level parallelism (MLP) or the average number of outstanding
long-latency load misses if at least one is outstanding. MLP
is computed using a microarchitecture-independent model as
described in [36].

Application Profiler
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Fig. 1: Schematic overview of the RPPM tool. A multi-
threaded application is profiled once to capture its
microarchitecture-independent characteristics; the profile is
then used as input to the RPPM model to predict performance
for a specific multicore processor.

C. Naive Multi-Threaded Extensions

We now consider two naive extensions of this prior work
to predict the execution time of multi-threaded applications
running on a multi-core processor. In the evaluation, we will
compare RPPM’s accuracy against these approaches.

MAIN: In the first approach, we only profile the main
thread. We define the main thread as the thread that gets
initiated upon program execution; this thread completes the
initialization phase before creating the other worker threads,
and finalizes the execution once the worker threads have
finished their execution. We apply the single-threaded model
as described above to predict the execution time of the main
thread. The predicted execution time for the main thread is
then used as a prediction for the overall execution time of the
multi-threaded application.

CRIT: The second approach profiles all application
threads separately instead of only the main thread. After using
the model to predict the execution time for every thread, the
thread with the longest execution time will be marked as the
critical thread. We then use the predicted execution time of the
critical thread as a prediction for the overall execution time
of the multi-threaded application.

Both these naive extensions do not properly take synchro-
nization into account. Nor do they account for interference in
shared resources and cache coherence effects.

III. RPPM

RPPM predicts multithreaded application performance us-
ing two key components, see also Figure 1:

1) A profiler that collects microarchitecture-independent
statistics including per-thread characteristics, shared
memory access behavior and synchronization events.

2) A prediction tool that takes these statistics as input and
predicts multi-threaded execution time on a particular
multi-core processor architecture.

A key property of RPPM is that the profile contains a collec-
tion of characteristics that are independent of the underlying
microarchitecture. Hence, we need to collect it only once and
we can then predict performance for a range of multicore



architectures. We note though that RPPM assumes the same
number of threads during profiling as there are cores in the
processor architecture for which we make the prediction.
However, a single profile can be used to predict performance
for a wide range of multicore architectures while varying clock
frequency, pipeline width and depth, window and buffer sizes,
cache sizes, cache hierarchies, branch predictor, etc. The fact
that the profile is independent of the underlying microarchitec-
ture speeds up design space exploration studies substantially as
the profiling cost is amortized across many predictions. Future
work will explore extending RPPM towards systems with more
threads than cores — this will require modeling various multi-
tasking effects including thread-to-core mapping, caching,
scheduling quanta, etc. [33].

A. Profiling

Profiling is done using a Pin tool [27], a dynamic binary
instrumentation tool. Some of the characteristics that we
collect are the same as for the single-threaded model by
Van den Steen et al. [37], i.e., statistics that relate to an
individual thread’s execution such as instruction mix, inter-
instruction dependences and branch behavior. To model multi-
threaded execution behavior, we in addition need to profile
synchronization as well as memory system behavior.

Synchronization: We track all synchronization events
(barriers, critical sections, etc.) by tracking specific library
function calls. RPPM provides support for both the pthread
and OpenMP parallel execution models.

When using the pthread library, the programmer typ-
ically uses the available function calls to mark syn-
chronization events. Defining a critical section for ex-
ample is done by calling pthread_mutex_lock and
pthread_mutex_unlock at the start and end of a critical
section, respectively. For OpenMP, the programmer marks a
for loop with a #pragma telling the compiler to insert the
necessary function calls for the runtime environment to exe-
cute the loop using parallel threads. For example, the function
call to gomp_team_barrier_wait marks a barrier. We
capture these function calls in the profiler and log the location
of the calls in the application’s synchronization profile.

Complex parallel applications use multiple barriers and/or
multiple critical sections. To be able to distinguish different
synchronization events, we also track function arguments. For
example, the function gomp_team_barrier_wait passes
the barrier (gomp_barrier_t) as a pointer, and by tracking
these function arguments we keep track of which specific
barrier a thread is waiting for.

If a programmer were to implement user-level synchro-
nization, one cannot rely on tracking specific function calls.
Instead, one would need to manually annotate the source code
to mark the various synchronization events.

Condition Variables: Condition variables are a widely
used synchronization primitive but require special support
beyond what we described in the previous section. Condition
variables are frequently used to implement barriers, for which

the variable is used to count the number of threads that
have reached the barrier, see also Algorithm 1. A thread
increments the condition variable as it grabs the lock and
finishes its work, and checks whether the variable equals
the number of worker threads. If not, the thread calls the
pthread_cond_wait function, pauses its execution and
releases the lock. If the condition is met, the thread calls the
pthread_cond_broadcast function to tell all waiting
threads that the condition is satisfied and all threads can
continue their execution.

Algorithm 1 Barrier using condition variables.

1: pthread mutex lock(&mutex);
2: n++;
3: if n < threads then
4: pthread cond wait(&cond, &mutex);
5: n = 0;
6: pthread cond broadcast(&cond);
7: pthread mutex unlock(&mutex);

As mentioned in the previous section, we profile all pthread
library calls to characterize an application’s synchronization
behavior. Unfortunately, this is not sufficient for condition
variables because the pthread_cond_wait function is not
always called. In particular, the last thread arriving at the
barrier does not actually call this function, see Algorithm 1.
The problem here is that which thread arrives at the barrier
the latest, or in other words, which thread does not call
the pthread_cond_wait function, depends on the micro-
architecture on which the application is executed, and may
be different between the profiling run and the run for which
the model predicts performance. To be able to adequately
model condition variables, we need to know when there is
a ‘possibility’ for a thread to wait — not only when the
thread effectively waits during the profiling run. We therefore
introduce a marker between lines 2 and 3 in Algorithm 1
to notify the profiler that all threads can potentially call
the pthread_cond_wait function. This allows RPPM to
capture the condition variable for all threads.

Condition variables are used not only for barrier synchro-
nization, but also for other synchronization constructs in-
cluding producer-consumer synchronization, semaphores, and
other variations. All of these will only under certain condi-
tions call the wait, broadcast and signal functions. We solve
this problem by adding markers in the source code and by
catching them during profiling. While this involves manual
changes to the source code, it is not that cumbersome in
practice: searching the respective condition variable function
calls and adding markers is fairly straightforward. For our
set of benchmarks from Rodinia and Parsec, we have five
benchmarks that use condition variables. For four benchmarks
(bodytrack, raytrace, streamcluster and vips), we had to
add one marker for the pthread_cond_wait function. For
facesim, we added a marker for the pthread_cond_wait
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Fig. 2: StatStack characterizes cache sharing and coherence
in a microarchitecture-independent way using per-thread and
global reuse distance distributions.

function and a marker for the pthread_cond_broadcast
function. In total, we thus had to add six markers.

Memory Behavior: In this work, we make a distinction
between cold misses versus capacity and conflict misses.
We model cold misses by simply counting the number of
unique memory locations accessed by a thread and across
all threads. We model capacity and conflict misses using
a microarchitecture-independent reuse distance profile. Stat-
Stack [14] collects a per-thread distribution of the reuse
distance between two references (by any thread) to the same
memory location. The StatStack extension for multi-threaded
applications by Ahlman [1] enables predicting both positive
and negative interference in shared caches as well as cache
coherence effects.

We first briefly describe how StatStack operates for single-
threaded applications. StatStack records the reuse distance
between memory accesses during the profiling phase. Reuse
distance is defined as the number of accesses between two
accesses to the same memory location (cache line). Collecting
reuse distances is relatively cheap, i.e., it suffices to just
increment a counter per memory location. Collecting stack
distances which quantifies the number of unique memory
accesses between two accesses to the same memory location
incurs much higher overhead because one needs to maintain
and search a stack of unique references. However, it is
straightforward to estimate the miss rate for a fully associative
LRU cache using the stack distance distribution [17]. StatStack
therefore converts the reuse distance distribution, which is easy
to collect, into a stack distance distribution to predict cache
miss rate.

Extending to multi-threaded applications requires that we
somehow interleave the memory access streams of the dif-
ferent threads to characterize the impact of cache sharing
and coherence. To this end, we use a global memory access
counter per memory location during profiling to calculate the
reuse distance across all threads. This is similar to the single-
threaded case except that we now consider a counter that
counts the number of memory accesses between two accesses
to the same memory location across all threads, rather than per
thread. This captures the impact different threads have upon
each other as depicted in Figure 2. In the per-thread access
stream for thread 1, the second access to address A has a
reuse distance of 3 and a stack distance of 2; however, because

of interleaving of the different threads, the reuse distance
increases to 7 with a stack distance of 4. An increase in stack
distance typically implies negative interference, i.e., a cache
line brought in by a thread may be evicted by another thread.
Note that interference does not need to be negative. In fact, in
case of data sharing, a thread may bring in data that another
thread may also need. For example, the reuse distance of the
second memory access to address D equals 3 for the second
thread when considered in isolation, but it decreases to 1 when
interleaved with the first thread.

We characterize memory hierarchy behavior by collecting
two reuse distance distributions per thread. The first one uses
per-thread counters per memory location to capture a thread’s
local reuse distance distribution, and is used to predict the
cache miss rates of the private L1 and L2 caches. The second
uses a global (i.e., shared among all threads) counter per
memory location to capture a thread’s reuse distance distribu-
tion when interleaved with the other concurrently executing
threads. This global reuse distance distribution is used to
predict the cache miss rate in the shared L3 cache. Write
invalidation due to cache coherence is captured by verifying
whether a memory location accessed twice by a given thread
was written by any other thread in-between the two accesses.
If so, write invalidation is detected and an infinite reuse dis-
tance is recorded in the per-thread reuse distance distribution,
indicating a cache miss for the second access.

It is worth noting that although the reuse distance distri-
butions used by StatStack are measured during a particular
profiling run on a particular machine — the distributions may
therefore be subject to a particular inter-thread interleaving —
StatStack models these inter-thread interactions in a statistical
way making the specific ordering during profiling less critical.
Moreover, we find that different distributions collected during
different profiling runs lead to very similar performance pre-
dictions.

Putting It Together: Figure 3(a) illustrates how profil-
ing is done while taking into account synchronization. The
grey parts denote sequential execution by the main thread;
colored parts denote parallel execution by the main thread and
the worker threads. Synchronization events (barriers in this
example shown as black horizontal lines) delineate different
epochs. We collect a separate profile per inter-synchronization
epoch for each thread. This profile contains the per-thread
characteristics. This includes the instruction mix, instruction
dependence distribution, branch behavior, reuse distance dis-
tributions, etc. The inter-synchronization epoch profiles then
serve as input to the performance prediction model, which we
describe next.

B. Prediction

The multi-threaded performance model itself operates in
two phases. The first phase (Figure 3(b)) predicts the active
execution time for each thread in-between synchronization
events. The second phase (Figure 3(c)) accounts for syn-
chronization events and introduces predicted synchronization
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Fig. 3: RPPM predicts multithreaded execution time in three
steps: (a) We profile an application’s synchronization behavior
and per-epoch statistics for each thread. We then predict
an application’s execution time (b) by predicting per-epoch
active execution times for each active thread, and (c) by
estimating the impact of synchronization on overall application
performance.

Algorithm 2 Estimating synchronization overhead

1: while not finished do
2: for Thread T in sorted(Threads, shortestTimeFirst())

do
3: if not isBlocked(T) then
4: Proceed T to next synchronization event

overhead (idle time because of synchronization) to predict
overall execution time. We now describe these two phases.

Per-epoch active execution time: We use the micro-
architecture-independent profile to predict per-epoch active
execution times for each thread. To do so, we use Equation 1
from the single-threaded model. Although we use the same
equation, some of the numbers that serve as input to the model
need to be computed differently. In particular, we need to
account for the impact shared resources and cache coherence
may have on per-thread performance, for which we leverage
the multi-threaded extension of StatStack as mentioned before.
In particular, we use the per-thread reuse distance distributions
to estimate the miss rates in the private L1 and L2 caches, and
we use the global reuse distance distributions to estimate the
per-thread miss rates in the shared LLC.

Synchronization overhead: The overall execution time
of a multithreaded application is predicted by combining the
predicted per-epoch active execution times for each of the
threads with the predicted synchronization overhead.

Estimating synchronization overhead, or estimating per-
thread idle time because of synchronization, is done using
Algorithm 2. We identify the thread with the shortest total
execution time (active and idle time) thus far that is not
blocked by the next synchronization event and symbolically
proceed it to this next event. This process iteratively progresses
the threads from the fastest to the slowest running thread to
the next synchronization event. The slowest thread eventually
determines the timing of the synchronization event. The faster

running threads experience idle time while the slower threads
have still not reached the synchronization event. By doing so,
we emulate the execution behavior at each synchronization
event and we repeat this process until all threads reach the
end of execution and the application finishes. At the end of
the symbolic execution, the critical path through the execution
determines the application’s execution time.

During the symbolic execution while emulating a synchro-
nization event, we calculate the number of cycles a thread
spends waiting for other threads, not making forward progress.
This is illustrated in Figure 3(c) for barrier synchronization.
Active execution time is depicted by a box; waiting time is
depicted by a dashed line; overall execution time is determined
by the slowest thread in-between synchronization events. In
particular, the execution time of the first inter-barrier epoch
is determined by the third thread; the execution time of
the second inter-barrier epoch is determined by the second
thread; overall execution time is predicted by summing up the
predicted inter-barrier execution times and the main thread’s
execution times when it is running alone.

We model the synchronization events as follows:
• Thread creation: The main thread is created at application

start-up; all other threads are therefore initially marked as
‘blocked’. When the main thread creates a new thread, the
thread is ‘unblocked’ and its start time is set accordingly.

• Critical sections: A critical section is a code segment that
has to be executed atomically, by a single thread at a
time. We mark accessing and leaving a critical section as a
synchronization event. Before a thread is allowed to enter a
critical section, the symbolic execution verifies that no other
thread is currently executing that same critical section. If
so, the thread blocks waiting for the critical section to be
released. Once released, the thread is allowed to proceed and
enter the critical section. The waiting time and the actual
execution time of the critical section determines overall
execution time.

• Barriers: A barrier is a location in the code where all threads
need to wait for each other to finish the execution of their
respective code segment. A thread can only continue when
all threads have reached the barrier. When a thread arrives at
a barrier it checks whether all other threads already reached
the barrier. If not, the thread blocks itself and waits. The
last thread arriving at the barrier releases the barrier and
determines the execution time of the inter-barrier epoch.

• Condition variables: As mentioned in Section III-A, we
add markers to catch condition variables during profiling.
We use these markers to verify the intended behavior of
the condition variable. If the condition variable is used to
implement barrier synchronization — easily recognized if
all but one of the threads need to wait at the condition
variable and any of the threads can release the barrier — we
model the condition variable as a barrier, as just described.
A producer-consumer relationship is recognized if a thread
or set of threads waits at the synchronization event — these
are the consumer threads — and another thread or set of
threads calls the broadcast function to release the waiting



TABLE II: Rodinia benchmarks and their inputs.

Benchmark Input

Backprop 4,194,304
BFS graph8M
CFD fvcorr.domn.010K
Heartwall test.avi 10
Hotspot 16384 5
Kmeans kdd cup
LavaMD 10
Leukocyte testfile.avi 5

Benchmark Input

LUD 2048.dat
NN 4096k
NW 16k x 16k
Particlefilter 128 x 128 x 10
Pathfinder 1M x 1k
SRAD 2048
Streamcluster 256k

thread(s) — these are the producer threads. Waiting at the
synchronization event may be conditional, i.e., threads only
have to wait if there are no items to process. The broadcast
operation may be conditional as well, i.e., the producer
may only broadcast new items if at least one consumer is
waiting for a new item. The producer-consumer relationship
is modeled by keeping track of the number of broadcast
markers, i.e., the number of created items. If the number of
created items equals zero at the time a consumer reaches the
synchronization event, the consumer threads is stalled. As
soon as the number of items is larger than one, the consumer
thread resumes its execution.

• Thread joining: A join occurs when waiting for a thread
to terminate. Its behavior is similar to a barrier, i.e., the
execution time of the longest running thread determines
when the join happens. The difference in execution time
is added as idle time to the shortest running thread.

We note that this is not a complete list of all possible syn-
chronization events, but a list of all events encountered in our
benchmark suite. Nevertheless, we are convinced that unlisted
events like semaphores or even indirect synchronization can
be modeled in a similar way.

IV. EXPERIMENTAL METHODOLOGY

Benchmarks: We consider all the benchmarks from the
Rodinia benchmark suite v3.1 [7] as well as a subset of
benchmarks from Parsec v3.0 [3]. We use the OpenMP
implementations of the Rodinia benchmarks and the pthread
versions of the Parsec suite to evaluate RPPM for different
parallel execution models. We set the number of cores to 4
in our experiments1. All of the Rodinia benchmarks create a
pool of 3 worker threads, which along with the main thread,
leads to 4 parallel threads. The Parsec benchmarks spawn more
threads, but we limit the amount of parallelism to 4, meaning
that only 4 threads will execute simultaneously. The reason
for doing so is because RPPM does not model simultaneous
multi-threading (SMT), i.e., it assumes one thread per core.
This is also the reason why we exclude dedup, ferret and
x264 as they create as many as 16 worker threads. For the
other benchmarks, we set the number of threads such that at
most 4 threads have an impact on execution time that is larger
that 1% and we have no more than 8 threads (twice the number
of cores).

1Simulation times prevented us from experimenting with larger core counts.

TABLE III: Synchronization events in the Parsec benchmarks.

Benchmark Critical Sections Barriers Cond. var.

Blackscholes – – –
Bodytrack 6,700 98 25
Canneal 4 64 –
Facesim 10,472 – 1,232
Fluidanimate 2,140,206 50 –
Freqmine – – –
Raytrace 47 – 15
Streamcluster 68 13,003 34
Swaptions – – –
Vips 8,973 – 1,433

We predict the execution time of the parallel region of
interest (ROI), which starts after initialization and ends before
finalization by the main thread; multiple parallel threads co-
execute in the ROI.

Data inputs: We use the medium inputs for the Parsec
benchmarks, but since there are no predefined inputs for the
Rodina suite, we select input data sets that lead to reasonable
simulation times while executing a sufficient number of in-
structions in the ROI, see Table II. Our benchmarks execute
between 50 million to 50 billion instructions in the ROI, with
LLC MPKI values ranging up to 40, and MLP ranging up to
5.3 for backprop.

Synchronization: Table III reports the number of dy-
namic synchronization events for the Parsec benchmarks.
We make a distinction between critical sections, barriers
and condition variables. Some benchmarks are dominated by
critical sections (e.g., fluidanimate), others by barriers (e.g.,
streamcluster), others by condition variables (e.g., facesim
and vips), or combination thereof. Some benchmarks, e.g.,
blackscholes, freqmine and swaptions, do not use any of
these synchronization types; this is because these benchmarks
are synchronized at the end of the execution through a join op-
eration, not reported in Table III. For completion, we note that
the Rodinia benchmarks only feature barrier synchronization.

Simulator: We evaluate RPPM’s accuracy by comparing
its performance predictions against simulation. We simulate
the benchmarks using Sniper, a state-of-the-art, parallel mul-
ticore simulator, while considering its most accurate cycle-
level hardware-validated core model [5]2. We simulate the
base multicore configuration as specified in Table IV, unless
mentioned otherwise. These simulated execution times serve
as our golden reference.

Profiling: We profile the benchmarks on an Intel Xeon
Gold 6140 (Skylake). We assume the same number of threads
during profiling as for prediction.

V. EVALUATION

We evaluate RPPM’s accuracy against cycle-level simula-
tion and compare against two naive extensions of the pre-
viously proposed single-threaded performance model, MAIN
and CRIT, as previously described in Section II-C. The results

2Hardware validation reports an 11% average prediction error for the most
detailed core model, which we use in this work.



Fig. 4: Prediction error for MAIN, CRIT and RPPM compared to cycle-level simulation for the Rodinia and Parsec benchmarks.
RPPM achieves an average prediction error of 11.2% and significantly outperforms the MAIN and CRIT approaches.
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Fig. 5: CPI stacks by RPPM (left bar) and through simulation (right right), normalized to simulation. The prediction error is
primarily attributed to inaccurate predictions of the base and data memory CPI components.

TABLE IV: Simulated architecture configurations.

Smallest Small Base Big Biggest

frequency [GHz] 5.00 3.33 2.50 2.00 1.66
dispatch width 2 3 4 5 6
ROB size 32 72 128 200 288
issue queue size 16 36 64 100 144

branch predictor 4 KB, tournament
L1-I cache 32 KB, 4-way, private
L1-D cache 32 KB, 4-way, private
L2 cache 256 KB, 8-way, private
LLC 8 MB, 16-way, shared

are shown in Figure 4, with the Rodinia benchmarks on the
left-hand side and the Parsec benchmarks on the right-hand
side; averages are reported on the far right.

MAIN predicts the execution time of the main thread
to predict overall application performance. This leads to an
average absolute prediction error of 45% with several outliers
up to 100%. The outliers are more common for the Parsec
benchmarks because the main thread is just doing some
bookkeeping and not performing any actual work. This leads
to a significant underestimation of the application’s overall
execution time.

CRIT predicts the execution time for all threads and then
takes the execution time of the slowest thread (critical thread)
as a prediction for the application’s execution time. CRIT
reduces the prediction error to 28% on average. CRIT is more
accurate than MAIN, particularly for the Parsec benchmarks,

because CRIT models the worker threads as opposed to just
modeling the main thread as done by MAIN.

RPPM clearly outperforms MAIN and CRIT with an aver-
age absolute error of 11.2% and a maximum error of 23%.
RPPM accurately predicts which thread is the most critical
thread in-between synchronization events which leads to an
overall more accurate prediction than MAIN and CRIT.

To help understand where the remaining error is coming
from, Figure 5 illustrates the average per-thread normalized
CPI stacks. We measure average per-thread CPI by computing
the respective CPI stacks for each thread separately and
then compute the average. RPPM’s modeling error is due to
inaccurate predictions for the base component (e.g., cfd), the
mem-D component (e.g., backprop) or both (e.g., nw). These
inaccuracies originate from the single-threaded prediction
model and/or the extended memory hierarchy model, which
indirectly leads to incorrect predictions for the synchronization
component.

VI. CASE STUDIES

Having evaluated the accuracy of RPPM, we now consider
two case studies to illustrate the usefulness and applicability
of RPPM.

A. Design Space Exploration

Our first case study considers a design space exploration
problem in which we profile the Rodinia benchmarks and
predict their performance for the five configurations listed in
Table IV. We vary processor width from 2 to 6 (and scale
ROB and issue queue resources accordingly) and vary clock



TABLE V: Case study: Predicting the optimum design point in
a design space. RPPM accurately predicts the (near) optimum
design points in a complex design space.

Bound 0% < 1% < 3% < 5%

backprop 0.00% 1 0.00% 1 0.00% 1 0.00% 1
bfs 0.00% 1 0.00% 1 0.00% 1 0.00% 2
cfd 0.00% 1 0.00% 1 0.00% 1 0.00% 1

heartwall 0.00% 1 0.00% 1 0.00% 1 0.00% 1
hotspot 0.00% 1 0.00% 1 0.00% 1 0.00% 1
kmeans 0.00% 1 0.00% 1 0.00% 1 0.00% 2
lavaMD 0.00% 1 0.00% 1 0.00% 1 0.00% 1

leukocyte 0.00% 1 0.00% 1 0.00% 1 0.00% 1
lud 0.00% 1 0.00% 1 0.00% 1 0.00% 1

myocyte 0.00% 1 0.00% 1 0.00% 1 0.00% 1
nn 0.00% 1 0.00% 1 0.00% 1 0.00% 1
nw 10.15% 1 10.15% 1 10.15% 1 0.00% 2

particlefilter 0.00% 1 0.00% 1 0.00% 1 0.00% 1
pathfinder 1.97% 1 1.97% 1 1.97% 1 1.97% 2

srad 0.00% 1 0.00% 1 0.00% 1 0.00% 1
streamcluster 19.11% 1 0.00% 2 0.00% 2 0.00% 2

average 1.95% 0.76% 0.76% 0.12%

frequency from 5 to 1.66 GHz across these design points. Note
that the maximum number of operations that can be executed
per second is constant across the five design points, i.e., all
five configurations can execute at most 10 billion instructions
per second.

We use RPPM to identify the design points that are within
a bound of x% of the predicted optimum, see Table V which
compares simulated performance of the predicted optimum
versus the true optimum (obtained through exhaustive sim-
ulation of all design points). If the bound is set to 0%, RPPM
identifies only a single design point which it predicts to be
optimal. The predicted optimum is the effective optimum for
all but three of the benchmarks, namely nw, pathfinder and
streamcluster. The average deficiency (performance differ-
ence) compared to the real optimum is 1.95% (see bottom row)
and up to 19.1% for streamcluster. Relaxing the bound al-
lows for identifying (potentially) several near-optimum design
points, out of which simulation can then be used to evaluate
these designs and identify the optimum. For a 1% bound,
we find that we identify two near-optimum design points for
streamcluster out of which simulation can determine the true
optimum. This eliminates the deficiency for this benchmark
and brings down the average deficiency to 0.76%. Setting
a higher bound of 5% increases the number of predicted
optimum design points (up to 2 for some benchmarks, see
rightmost column) but brings down the deficiency of the
identified design points to the true optimum to at most 1.97%
for pathfinder.

B. Bottlegraphs

Our second case study considers bottlegraphs [13] to vi-
sualize multi-threaded program performance. Each thread is
represented as a box, with its height equal to the thread’s share
in the total program execution time. The box’ width is equal to
the thread’s parallelism (number of threads running in parallel
if that thread is active). The boxes of all threads are stacked
upon each other with the widest box appearing at the bottom,

leading to a stack with a height equal to execution time. The
tallest box appears at the top of the stacked representation,
illustrating the bottleneck of the multi-threaded application.
Ideally, assuming a four-threaded application running on a
quad-core processor, all threads have a box with a height that
is one fourth of the total execution time, and the width equals
four; this suggests that all four threads run concurrently in
a balanced way. In cases of imbalanced execution, e.g., one
thread incurs sequential work, some threads will have a taller
and narrower box compared to the other threads.

Figure 6 reports the bottlegraphs for all the Parsec bench-
marks. (We do not report bottlegraphs for Rodinia because
these benchmarks are very well balanced, yielding almost per-
fect bottlegraphs.) We report two bottlegraphs per benchmark,
on either side of the vertical axis. The right-hand side reports
the bottlegraph obtained through simulation; the left-hand side
reports the bottlegraph through RPPM.

The key take-away is that RPPM accurately predicts an
application’s bottlegraph obtained through simulation. We cat-
egorize the Parsec benchmarks in three groups based on their
bottlegraphs. (1) The top five benchmarks are well balanced,
i.e., the main thread divides the work among four well-
balanced worker threads — the main thread is not doing any
actual work. (2) The bottom left benchmarks are less well-
balanced: the main thread spawns three worker threads and
both the main thread and the worker threads perform actual
work. For facesim, we observe that the execution is fairly
well balanced although the main thread needs to do slightly
more work than the worker threads. For freqmine, the main
thread is clearly the bottleneck although it performs quite a bit
of parallel work with its worker threads. (3) The bottom right
benchmarks are highly imbalanced. The main thread spawns
three worker threads but performs little to no additional work.
Hence the parallelism of the worker threads is limited to three
and the parallelism of the main thread equals one.

VII. RELATED WORK

We divide related work on methodologies to predict multi-
threaded application performance into four groups: (1) mod-
eling, (2) execution-driven simulation, (3) trace-driven sim-
ulation, analysis, and replay, and (4) online performance
prediction.

Analytical multicore performance modeling: As men-
tioned in the introduction, there exists some prior work
on analytical multicore performance prediction. Jongerius
et al. [21] propose a multicore performance model that is
limited to multi-program workloads, i.e., it does not model
synchronization, coherence nor positive cache interference.
Popov et al. [32] combines simulation results of representative
code snippets with Amdahl’s Law to provide performance
predictions — RPPM on the other hand is a pure analytical
model that relies on profiling, not simulation.

Execution-driven simulation: Simulating multi-threaded
programs is tedious and time-consuming. Prior work proposes
techniques to speed up the simulation of multi-threaded pro-
grams. Carlson et al. [4] propose a sampling methodology



0%

25%

50%

75%

100%

5 4 3 2 1 0 1 2 3 4 5

N
o
rm

a
liz

e
d

 c
ri

ti
ca

lit
y

Parallelism

Blackscholes

5 4 3 2 1 0 1 2 3 4 5

Parallelism

Canneal

5 4 3 2 1 0 1 2 3 4 5

Parallelism

Fluidanimate

5 4 3 2 1 0 1 2 3 4 5

Parallelism

Raytrace

5 4 3 2 1 0 1 2 3 4 5

Parallelism

Swaptions

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4

0%

25%

50%

75%

100%

5 4 3 2 1 0 1 2 3 4 5

N
o
rm

a
liz

e
d

 c
ri

ti
ca

lit
y

Parallelism

Facesim

5 4 3 2 1 0 1 2 3 4 5

Parallelism

Freqmine

Thread 0
Thread 1
Thread 2
Thread 3

5 4 3 2 1 0 1 2 3 4 5

Parallelism

Bodytrack

Thread 0
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6

5 4 3 2 1 0 1 2 3 4 5

Parallelism

Streamcluster

5 4 3 2 1 0 1 2 3 4 5

Parallelism

Vips

Fig. 6: Bottlegraphs for the PARSEC benchmarks: right-hand side for each graph reports the bottlegraph obtained through
simulation; the left-hand side reports the bottlegraph obtained using RPPM. RPPM accurately models the amount of parallelim
and a thread’s impact on overall application performance.

to speed up the simulation of multi-threaded programs. Their
approach uses pre-simulation analysis to guide sampling. They
accurately model synchronization during fast-forwarding. In
subsequent work, they propose a fast simulation methodology
specifically targeting barrier-synchronized applications [6].
RPPM collects microarchitecture-independent metrics during
a profiling run, which is at least one order of magnitude faster
than simulation.

Trace-driven simulation, analysis and replay: Some
prior work investigates trace-driven simulation and analysis
methodologies for multi-threaded programs. Nilakantan et
al. [29] propose a trace collection methodology for multi-
threaded programs that is architecture-independent and retains
synchronization behavior in the traces. Despite being faster
than execution-driven simulation, their simulation approach
is slower than our profile-driven mechanistic approach. Pin-
Play [31] is a tool for the deterministic recording and replay
of multi-threaded program executions.

Online performance prediction: DEP+BURST [2] es-
timates performance at different frequency settings to steer
DVFS by dividing execution time into epochs delineated by
synchronization events. This prior work is limited to DVFS
and does not enable making performance predictions across
microarchitectures. Other prior work uses analytical models
for understanding critical sections and scheduling heteroge-
neous multicores [9], [12], [13], [19], [20], [34], [35].

VIII. CONCLUSIONS

We proposed RPPM which takes microarchitecture-
independent characteristics as input to predict performance
of multi-threaded applications on a previously unseen mul-
ticore processor. RPPM extends prior work by modeling per-
epoch active execution times per thread (including the impact
of shared resource interference and cache coherence) and

synchronization overhead due to barriers, critical sections
and condition variables. RPPM predicts performance within
11.2% on average (23% max). Case studies illustrate RPPM’s
usefulness to evaluate multicore microarchitecture trade-offs
and conduct application performance analysis.
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