61 research outputs found

    Design and Performance Analysis of Functional Split in Virtualized Access Networks

    Get PDF
    abstract: Emerging modular cable network architectures distribute some cable headend functions to remote nodes that are located close to the broadcast cable links reaching the cable modems (CMs) in the subscriber homes and businesses. In the Remote- PHY (R-PHY) architecture, a Remote PHY Device (RPD) conducts the physical layer processing for the analog cable transmissions, while the headend runs the DOCSIS medium access control (MAC) for the upstream transmissions of the distributed CMs over the shared cable link. In contrast, in the Remote MACPHY (R-MACPHY) ar- chitecture, a Remote MACPHY Device (RMD) conducts both the physical and MAC layer processing. The dissertation objective is to conduct a comprehensive perfor- mance comparison of the R-PHY and R-MACPHY architectures. Also, development of analytical delay models for the polling-based MAC with Gated bandwidth alloca- tion of Poisson traffic in the R-PHY and R-MACPHY architectures and conducting extensive simulations to assess the accuracy of the analytical model and to evaluate the delay-throughput performance of the R-PHY and R-MACPHY architectures for a wide range of deployment and operating scenarios. Performance evaluations ex- tend to the use of Ethernet Passive Optical Network (EPON) as transport network between remote nodes and headend. The results show that for long CIN distances above 100 miles, the R-MACPHY architecture achieves significantly shorter mean up- stream packet delays than the R-PHY architecture, especially for bursty traffic. The extensive comparative R-PHY and R-MACPHY comparative evaluation can serve as a basis for the planning of modular broadcast cable based access networks.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Software Defined Applications in Cellular and Optical Networks

    Get PDF
    abstract: Small wireless cells have the potential to overcome bottlenecks in wireless access through the sharing of spectrum resources. A novel access backhaul network architecture based on a Smart Gateway (Sm-GW) between the small cell base stations, e.g., LTE eNBs, and the conventional backhaul gateways, e.g., LTE Servicing/Packet Gateways (S/P-GWs) has been introduced to address the bottleneck. The Sm-GW flexibly schedules uplink transmissions for the eNBs. Based on software defined networking (SDN) a management mechanism that allows multiple operator to flexibly inter-operate via multiple Sm-GWs with a multitude of small cells has been proposed. This dissertation also comprehensively survey the studies that examine the SDN paradigm in optical networks. Along with the PHY functional split improvements, the performance of Distributed Converged Cable Access Platform (DCCAP) in the cable architectures especially for the Remote-PHY and Remote-MACPHY nodes has been evaluated. In the PHY functional split, in addition to the re-use of infrastructure with a common FFT module for multiple technologies, a novel cross functional split interaction to cache the repetitive QAM symbols across time at the remote node to reduce the transmission rate requirement of the fronthaul link has been proposed.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Determining the feasibility of a method for improving bandwidth utilization of cable networks

    Get PDF
    While the cable television industry has made significant investments in infrastructure to improve the number and quality of services delivered to their end customers, they still face the problem of limited bandwidth of signals down the last mile of coaxial cable to the subscriber premises. This thesis investigates an approach devised by the author to overcome this limitation. The method involves clustering of channels in both the upstream and downstream directions in a DOCSIS compliant cable system. A model of this approach is made and the theoretical maximum throughput is calculated for several scenarios. Results are compared to performance of existing systems. It is found that proposed approach yields significantly more throughput for a given RF bandwidth than others in the comparison

    Análise técnico-económica de redes de acesso : ferramentas de decisão

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesO recente crescimento de consumo de internet e televisão por cabo desencadeou a necessidade de novas redes de acesso. O mundo das telecomunicações tornou-se num negócio competitivo entre as operadoras. As estratégias de competitividade são agora com baseadas em qualidade do serviço e na acessibilidade dos preços a todas as categorias da população. Para garantir estes requisitos é necessário inovar em equipamentos e meios de distribuição. A implantação de novas redes de acesso tornou-se crucial na sociedade, mas a recente crise económica mundial forçou um dimensionamento cuidado para garantir o máximo lucro possível no negócio. Portanto esta dissertação apresenta uma análise económica e financeira da implementação de uma rede HFC. Mostra a estrutura da rede e as suas características tecnológicas, além disso explica como lidar com problemas no dimensionamento da rede: a incerteza espacial associada ao processo de adesão dos utilizadores e como lidar com consumo em excesso de largura de banda, também causado pelos utilizadores. Por fim realiza o estudo da instalação da rede HFC em três tipos diferentes de cenários e expondo os resultados económicos obtidos, permitindo a conclusão sobre a viabilidade destes projetos.The recent growth in Data Traffic and Cable Tv consumption triggered the need for new access networks and the world of Telecommunications has become a very competitive business among service providers. The strategies of competitiveness are now based on quality of services and affordable prices to all classes of the population. To guarantee these requirements, an equipment and distribution facilities innovation was necessary. The deployment of Next Generation Access Networks (NGA) has become crucial in society, but the recent world economic crisis has forced a careful dimensioning to produce the most profit possible with small investments. This dissertation presents a techno-economic analysis of a HFC network implementation. The network structure and technologic characteristics are presented, along with explanation of how to deal with problems in the network dimensioning: as spatial uncertainty associated with the adhesion process of the users and the surplus consumption of bandwidth by them. Finally, the study of the network implementation in three different sorts of areas is shown and the economic results obtained are exposed, providing the viability of these projects

    Alternate high speed network access for the last mile

    Get PDF
    Existing copper wire infrastructure no longer provides the required bandwidth for today's bandwidth -intense Internet applications. Homes and businesses in the last mile require the same access speeds offer by fiber optic cables. It is however, economically infeasible to bring fiber optic cable to each and every house and business in t he last mile. Free Space Optics and IEEE 802.11 are two technologies that offer high -speed capability and are potential last mile network access option. Free Space Optics uses lasers and IEEE 802.11 uses radio waves to send large amounts of data from one place to another. Both are wireless and uses license-free frequency band for transmission. Both are quickly deployable, easily scalable and cheaper to install and upgrade compared to wired infrastructures. These characteristics support applications that require high bandwidth and high degree of mobility, which are common in the military and civil networks. This thesis addresses the last mile problem and the current available access technologies which are unable to provide a high speed solution. Free Space Optics and IEEE 802.11 wireless technologies are explored and applied to a fictitious city for an economic analysis as possible high-speed network access method.http://archive.org/details/alternatehighspe109453616Captain, Singapore ArmyApproved for public release; distribution is unlimited

    Digital implementation of an upstream DOCSIS QAM modulator and channel emulator

    Get PDF
    The concept of cable television, originally called community antenna television (CATV), began in the 1940's. The information and services provided by cable operators have changed drastically since the early days. Cable service providers are no longer simply providing their customers with broadcast television but are providing a multi-purpose, two-way link to the digital world. Custom programming, telephone service, radio, and high-speed internet access are just a few of the services offered by cable service providers in the 21st century. At the dawn of the internet the dominant mode of access was through telephone lines. Despite advances in dial-up modem technology, the telephone system was unable to keep pace with the demand for data throughput. In the late 1990's an industry consortium known as Cable Television Laboratories, Inc. developed a standard protocol for providing high-speed internet access through the existing CATV infrastructure. This protocol is known as Data Over Cable Service Interface Specification (DOCSIS) and it helped to usher in the era of the information superhighway. CATV systems use different parts of the radio frequency (RF) spectrum for communication to and from the user. The downstream portion (data destined for the user) consumes the bulk of the spectrum and is located at relatively high frequencies. The upstream portion (data destined to the network from the user) of the spectrum is smaller and located at the low end of the spectrum. This lower frequency region of the RF spectrum is particularly prone to impairments such as micro-reflections, which can be viewed as a type of multipath interference. Upstream data transfer in the presence of these impairments is therefore problematic and requires complex signal correction algorithms to be employed in the receiver. The quality of a receiver is largely determined by how well it mitigates the signal impairments introduced by the channel. For this reason, engineers developing a receiver require a piece of equipment that can emulate the channel impairments in any permutation in order to test their receiver. The conventional test methodology uses a hardware RF channel emulator connected between the transmitter and the receiver under test. This method not only requires an expensive RF channel emulator, but a functioning analog front-end as well. Of these two problems, the expense of the hardware emulator is likely less important than the delay in development caused by waiting for a functional analog front-end. Receiver design is an iterative, time consuming process that requires the receiver's digital signal processing (DSP) algorithms be tested as early as possible to reduce the time-to-market. This thesis presents a digital implementation of a DOCSIS-compliant channel emulator whereby cable micro-reflections and thermal noise at the analog front-end of the receiver are modelled digitally at baseband. The channel emulator and the modulator are integrated into a single hardware structure to produce a compact circuit that, during receiver testing, resides inside the same field programmable gate array (FPGA) as the receiver. This approach removes the dependence on the analog front-end allowing it to be developed concurrently with the receiver's DSP circuits, thus reducing the time-to-market. The approach taken in this thesis produces a fully programmable channel emulator that can be loaded onto FPGAs as needed by engineers working independently on different receiver designs. The channel emulator uses 3 independent data streams to produce a 3-channel signal, whereby a main channel with micro-reflections is flanked on either side by adjacent channels. Thermal noise normally generated by the receiver's analog front-end is emulated and injected into the signal. The resulting structure utilizes 43 dedicated multipliers and 401.125 KB of RAM, and achieves a modulation error ratio (MER) of 55.29 dB

    Downstream Bandwidth Management for Emerging DOCSIS-based Networks

    Get PDF
    In this dissertation, we consider the downstream bandwidth management in the context of emerging DOCSIS-based cable networks. The latest DOCSIS 3.1 standard for cable access networks represents a significant change to cable networks. For downstream, the current 6 MHz channel size is replaced by a much larger 192 MHz channel which potentially can provide data rates up to 10 Gbps. Further, the current standard requires equipment to support a relatively new form of active queue management (AQM) referred to as delay-based AQM. Given that more than 50 million households (and climbing) use cable for Internet access, a clear understanding of the impacts of bandwidth management strategies used in these emerging networks is crucial. Further, given the scope of the change provided by emerging cable systems, now is the time to develop and introduce innovative new methods for managing bandwidth. With this motivation, we address research questions pertaining to next generation of cable access networks. The cable industry has had to deal with the problem of a small number of subscribers who utilize the majority of network resources. This problem will grow as access rates increase to gigabits per second. Fundamentally this is a problem on how to manage data flows in a fair manner and provide protection. A well known performance issue in the Internet, referred to as bufferbloat, has received significant attention recently. High throughput network flows need sufficiently large buffer to keep the pipe full and absorb occasional burstiness. Standard practice however has led to equipment offering very large unmanaged buffers that can result in sustained queue levels increasing packet latency. One reason why these problems continue to plague cable access networks is the desire for low complexity and easily explainable (to access network subscribers and to the Federal Communications Commission) bandwidth management. This research begins by evaluating modern delay-based AQM algorithms in downstream DOCSIS 3.0 environments with a focus on fairness and application performance capabilities of single queue AQMs. We are especially interested in delay-based AQM schemes that have been proposed to combat the bufferbloat problem. Our evaluation involves a variety of scenarios that include tiered services and application workloads. Based on our results, we show that in scenarios involving realistic workloads, modern delay-based AQMs can effectively mitigate bufferbloat. However they do not address the other problem related to managing the fairness. To address the combined problem of fairness and bufferbloat, we propose a novel approach to bandwidth management that provides a compromise among the conflicting requirements. We introduce a flow quantization method referred to as adaptive bandwidth binning where flows that are observed to consume similar levels of bandwidth are grouped together with the system managed through a hierarchical scheduler designed to approximate weighted fairness while addressing bufferbloat. Based on a simulation study that considers many system experimental parameters including workloads and network configurations, we provide evidence of the efficacy of the idea. Our results suggest that the scheme is able to provide long term fairness and low delay with a performance close to that of a reference approach based on fair queueing. A further contribution is our idea for replacing `tiered\u27 levels of service based on service rates with tiering based on weights. The application of our bandwidth binning scheme offers a timely and innovative alternative to broadband service that leverages the potential offered by emerging DOCSIS-based cable systems
    • …
    corecore