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ABSTRACT

Heterogeneous Cloud Systems Based on Broadband
Embedded Computing

Richard Neill

Computing systems continue to evolve from homogeneous systems of commodity-based servers

within a single data-center towards modern Cloud systems that consist of numerous data-center

clusters virtualized at the infrastructure and application layers to provide scalable, cost-effective

and elastic services to devices connected over the Internet. There is an emerging trend towards

heterogeneous Cloud systems driven from growth in wired as well as wireless devices that incor-

porate the potential of millions, and soon billions, of embedded devices enabling new forms of

computation and service delivery. Service providers such as broadband cable operators continue

to contribute towards this expansion with growing Cloud system infrastructures combined with

deployments of increasingly powerful embedded devices across broadband networks. Broadband

networks enable access to service provider Cloud data-centers and the Internet from numerous de-

vices. These include home computers, smart-phones, tablets, game-consoles, sensor-networks, and

set-top box devices.

With these trends in mind, I propose the concept of broadband embedded computing as the

utilization of a broadband network of embedded devices for collective computation in conjunction

with centralized Cloud infrastructures. I claim that this form of distributed computing results

in a new class of heterogeneous Cloud systems, service delivery and application enablement. To

support these claims, I present a collection of research contributions in adapting distributed soft-

ware platforms that include MPI and MapReduce to support simultaneous application execution

across centralized data-center blade servers and resource-constrained embedded devices. Leveraging

these contributions, I develop two complete prototype system implementations to demonstrate an

architecture for heterogeneous Cloud systems based on broadband embedded computing. Each sys-

tem is validated by executing experiments with applications taken from bioinformatics and image



processing as well as communication and computational benchmarks.

This vision, however, is not without challenges. The questions on how to adapt standard

distributed computing paradigms such as MPI and MapReduce for implementation on potentially

resource-constrained embedded devices, and how to adapt cluster computing runtime environments

to enable heterogeneous process execution across millions of devices remain open-ended.

This dissertation presents methods to begin addressing these open-ended questions through the

development and testing of both experimental broadband embedded computing systems and in-

depth characterization of broadband network behavior. I present experimental results and compar-

ative analysis that offer potential solutions for optimal scalability and performance for constructing

broadband embedded computing systems. I also present a number of contributions enabling prac-

tical implementation of both heterogeneous Cloud systems and novel application services based on

broadband embedded computing.
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Chapter 1

Introduction

A number of evolutionary trends in Information Technology and the emergence of pervasive embed-

ded systems across both wired and wireless networks are impacting the computing landscape in two

ways. On one hand, computation is moving away from traditional desktop and centralized comput-

ing centers towards an infrastructural core that consists of many large and distributed data-centers

with high-performance computer servers and data storage devices. Following the Cloud computing

paradigm, these large-scale data-centers provide the delivery of numerous computational, storage

and application services to a multiplicity of peripheral clients, through various interconnection net-

works. On the other hand, the increasing majority of these clients consist of a growing variety

of embedded and consumer electronic devices. Such devices are mobile smart phones, tablets,

video-game consoles, television set-top boxes (STB), and a multiplicity of intelligent sensors whose

capabilities continue to improve. For example, both modern data-center class blade servers and

embedded devices share increasingly powerful multi-core systems-on-chip (SoC) and graphics pro-

cessor unit (GPU) implementations. This trend is confirmed by the recent announcement that

STMicroelectronics and ARM have teamed up to deliver high-performance ARM Cortex-A9 MP-

Core processors to the STB industry [34]. The ARM Cortex-A9 features from 1 to 4 cores, L1 and

L2 caches, with each core also containing either a media processing unit, or FPU with support for

both single and double precision floating-point operations [54].

The performance gap between data-center blade servers and embedded device processors also

continues to decrease as processor power dissipation and clock frequencies approach their upper

limit. As a consequence, Cloud-system platforms are becoming increasingly heterogeneous, with
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Figure 1.1: Evolution towards heterogeneous Cloud computing.

continued performance improvements achieved through growth in the number of Cloud-system

computational nodes, corresponding server processor cores, and software paradigms that exploit

patterns of distributed computation wherever possible.

Evolution towards heterogeneous Cloud systems. Service providers such as Google,

Amazon, Yahoo, and cable system operators (also referred to as Multiple Service Operators or

MSOs) are driving the trend in heterogeneous computational systems. Fig. 1.1 illustrates this

trend over roughly the past 15 years; where highly centralized data-center computing systems

have evolved towards a heterogeneous Cloud system model that is both highly distributed and

heterogeneous in device composition.

An early definition for heterogeneous Cloud systems is given by Crago, et al. [24] who extends

traditional Cloud computing infrastructures of homogeneous processors to a heterogeneous proces-

sor architecture consisting of GPUs and data-center blade servers utilizing general purpose CPUs.

The introduction of heterogeneity allows Clouds to be competitive with traditional distributed

computing systems at a larger scale and at comparatively lower capital expenditures [24]. In the

heterogeneous Cloud systems model, distributed Cloud data-centers have expanded to include the

integration of networks of distributed embedded systems as shown in Fig. 1.1. Emerging systems for

Embedded and Mobile Cloud Computing have extended the interpretation of heterogeneous Cloud

systems to include support for dynamic (on-demand without user interaction) device-capability aug-
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mentation from data-center Cloud computing facilities to billions of wired and wireless embedded

devices across diverse application domains [29; 64].

Similar to the previous definition of heterogeneous Cloud systems, a recent paper by Bonomi, et

al. describes the notion of Fog Computing as a highly virtualized platform that provides compute,

storage, and networking services between end devices and traditional Cloud computing data-centers

located at the edge of the network [16]. The definition of Fog Computing includes data-center class

systems and networked embedded devices that are highly location independent, such as connected

vehicles, and wireless sensors/actuator networks enabling the implementation of Smart Grid appli-

cations [16].

MSOs are examples of service providers that are driving the evolution of large-scale Cloud

systems and growth in deployment of large numbers of increasingly-powerful embedded processors

across broadband networks. As a result, there has been an explosion of both mobile and stationary

devices that access the Internet through broadband connectivity. In turn, this has led to rapid

increases in the number of consumer applications accessible through broadband networks. Since

2006, MSOs have accelerated the purchase and deployment of next-generation embedded set-top box

(STB) devices to support the deployment of digital interactive services and content. According to

a recent market research [65], worldwide STB shipments has a projected growth of over 150 million

units in 2010, rising to nearly 201 million units by 2013. Growth of mobile Internet computing has

outpaced similar desktop Internet adoption. For instance, during the first two years since launch,

Apple had acquired over 57 million iPhone and iTouch subscribers. This is more than eight times

the number of AOL users for a similar period during the emergence of desktop Internet [68].

1.1 Broadband Embedded Computing and Heterogeneous Cloud

Systems Taxonomy

In order to meet the growing computation and communication demands, MSOs are rapidly as-

sembling complex Cloud system infrastructures which are highly heterogeneous and distributed

over massive broadband networks. The MSO infrastructure primarily consists of geo-diverse Cloud

data-centers that efficiently deliver video and data over broadband networks to large populations

of embedded devices. These systems are unique in that they are centrally managed by the MSO
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Figure 1.2: Heterogeneous Cloud taxonomy.

and must scale to reliably execute concurrent application processes across millions of devices. I

claim that the ability to centrally manage the execution of application processes across millions of

broadband-networked embedded devices enables the utilization of service provider embedded systems

for a new class of distributed computation that I refer to as broadband embedded computing [79;

98; 99]. Broadband embedded computing is the utilization of a broadband network of embedded

devices for collective computation in conjunction with centralized Cloud data-center infrastructures.

Heterogeneous Cloud systems taxonomy. The evolution towards heterogeneous Cloud

systems has led to numerous Cloud computing system variants depending on the composition of

devices and platform services required. Fig. 1.2 illustrates a taxonomy for a number of hetero-

geneous Cloud computing system types based on the integration of various distributed embedded

systems and the traditional data-center centric Cloud computing model. The addition of broad-

band embedded computing is shown on the left-hand side of the figure as an intersection among

broadband connected networks of wireless sensor, embedded and mobile computing devices. Refer-

ring to Fig. 1.2, heterogeneous Cloud computing extends the definition and service-delivery model
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of traditional Cloud computing. For example, heterogeneous Cloud computing systems implement

standard Cloud service delivery methods such as: PaaS (Platform as-a Service), SaaS (Software as-

a Service), and IaaS (Infrastructure as-a Service). Therefore, the definition of Heterogeneous Cloud

systems from a service delivery perspective is consistent and derives from existing formal definitions

of Cloud computing [92]. In comparison to traditional Cloud systems, however, its taxonomy ex-

pands beyond an existing traditional data-center centric view to include emerging classes. Fig. 1.2

illustrates a number of emerging heterogeneous Cloud systems including: 1) mobile embedded, 2)

broadband embedded, 3) wireless-sensor network based, and 4) high-performance Cloud computing

systems. At the intersection of each technology, a different class of heterogeneous Cloud system

is defined. For example, the intersection of data-center centric Cloud computing and broadband

embedded computing results in heterogeneous Cloud service delivery platforms that utilize both

data-center and broadband embedded computing system resources.

The integration of broadband embedded computation with traditional data-center cluster sys-

tems and Cloud infrastructure technologies such as processor virtualization, distributed program-

ming models, and application services, results in a new class of heterogeneous Cloud systems based

on broadband embedded computing.

The taxonomy illustrated in Fig. 1.2 is representative, but not exhaustive. New classes of

heterogeneous Cloud systems will likely be developed in the future to further extend this taxonomy.

1.2 Dissertation Scope and Contributions

The scope of the dissertation is as follows. First, the dissertation develops and experimentally

confirms heterogeneous system computation utilizing broadband embedded devices through the

integration of traditional commodity blade server clusters with a real-world broadband embedded

computing system implementation. The broadband embedded computing system is based on com-

mon set-top boxes that exist worldwide in large numbers across multiple service provider systems.

A major research effort entails the investigation and development of new distributed software tech-

nologies based on two existing distributed computing paradigms, MPI and MapReduce, that are

optimized to enable heterogeneous system implementation. Specifically, the dissertation presents

the optimization of both MPI and MapReduce based software platforms for distributed embedded
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systems and their integration into traditional data-center cluster computing environments.

Second, the dissertation includes an in-depth analysis of broadband communications cost and

performance for the development of a scalable runtime environment system as well as validation in

the form of simulated application model behavior. Experimental results are utilized to support the

proposed design of a scalable communications model within broadband network environments.

Finally, an architecture for large-scale heterogeneous Cloud systems utilizing broadband em-

bedded computing is proposed. The dissertation concludes with the presentation of four proposed

application scenarios leveraging the systems developed throughout the dissertation. Open areas of

research include optimization of distributed middleware to improve communication performance as

well as addressing fault-tolerance in heterogeneous Cloud system environments.

The following outlines a detailed description of the dissertation contributions by chapter:

Dissertation contributions by chapter. The introduction in Chapter 1 defines the concept

of heterogeneous Cloud systems along with the fundamental thesis claim that the Cloud system

model taxonomy can be extended by utilizing a new class of broadband embedded computation

across networks managed by multiple service providers. Key to this claim is the concept of broad-

band embedded computing defined as the utilization of a broadband network of embedded devices

for distributed computation. Chapter 2 provides background for the remainder of the dissertation.

The feasibility of broadband embedded computing is confirmed through experimental studies and

analysis in Chapter 3. The study includes the implementation of a data-acquisition system that

obtains measures of embedded set-top device CPU, memory, and uptime over an extended period

of time, confirming available resources for broadband embedded computation.

Next, three different broadband embedded computing systems are implemented. The first-

generation system for broadband embedded computing based on MPI is implemented and experi-

mentally evaluated in Chapter 4. These research results were presented at the 2010 ACM Interna-

tional Conference on Computing Frontiers [99]. This is the first published work where an integration

between an embedded set-top cluster and Linux cluster is built to gain insight into practical system

requirements for heterogeneous system computing leveraging broadband embedded devices. Ex-

perimental results show that there are challenges regarding the scalability of traditional runtime

environments for broadband embedded computing, suitability of standard MPI implementations

on resource constrained embedded devices, and broadband communications performance.
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Based on the lessons learnt in Chapter 4, a second-generation broadband embedded computing

system is developed in Chapter 5 addressing key open issues from the first-generation system, lead-

ing to several new contributions which were published in a paper presented at the 12th IEEE/ACM

International Conference on Grid Computing [98]. First, a new virtualization model is described

that maps embedded devices into the runtime space of traditional compute cluster runtime man-

agement systems. Second, this virtualization model is implemented as a new runtime environment

called the Open Embedded Runtime Environment or OERTE. The OERTE system executes on

Linux blade servers within a centralized cluster representing a typical Cloud data-center infras-

tructure. OERTE provides transparent launch and execution of distributed application processes

across both traditional computing clusters and broadband embedded computing clusters based on

the standard Open Runtime Environment process execution model. OERTE also provides services

that offload operations from resource-constrained embedded devices to the virtual runtime envi-

ronment. Third, to support complete interoperability across traditional MPI Linux clusters and

broadband embedded computing clusters, an optimized version of the MPI software environment is

developed for the embedded device environment. The new embedded MPI library implementation

takes advantage of the OERTE virtual runtime system and is fully compatible with standard MPI

system implementations. The second-generation system is subjected to a number of experiments

including the execution of two applications (multiple sequence alignment, and image rendering) and

the IMB benchmark suite [19] to validate consistency across both cluster environments, compare

embedded versus blade processor performance, and evaluate broadband communication perfor-

mance of collective operations.

Cloud systems are increasingly being utilized to process large data-sets and solve so called

Big Data problems via MapReduce computation. Chapter 6 describes a new heterogeneous Cloud

system for MapReduce processing using broadband embedded computing. This work was published

at the 4th IEEE International Conference on Cloud Computing Technology [79]. Contributions

described in Chapter 6 include methods for porting the popular Hadoop system to the embedded

environment using several back-porting software techniques. The system is evaluated using common

MapReduce benchmarks to compare the performance of the traditional blade cluster and embedded

cluster environments.

Chapter 7 provides the first in-depth simulation study on broadband network performance
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characteristics when scaling the number of nodes to 8000 devices. A key contribution is formally

addressing the communication challenges associated with managing the communication costs as-

sociated to launching and executing an application process across millions of broadband devices.

Extensive experiments are described and carried out to evaluate broadband communications for typ-

ical client-server interactions. Two communication methods, multicast and unicast are evaluated

under various lab and simulation experimental scenarios to compare broadband communication

performance in both cases and perform a scalability analysis. Experimental results confirm the va-

lidity of the proposed network design for a highly-scalable runtime system for managing execution

across a heterogeneous Cloud system that includes broadband embedded devices.

Based on lessons learnt with the three broadband embedded computing system implementations

and the broadband network experimental results, Chapter 8 describes a complete heterogeneous

Cloud system architecture that utilizes both data-center server clusters and broadband embedded

devices. The final section of Chapter 8 discusses four proposed heterogeneous Cloud system ap-

plication scenarios based around broadband embedded computation. Some of the contributions of

this chapter were published at the 54th IEEE International Midwest Symposium on Circuits and

Systems [97]. I conclude the dissertation by presenting ideas for future work in Chapter 9.
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Chapter 2

Background

2.1 Overview

In this chapter background information covering a diverse range of topics is presented that is

used throughout the dissertation. Specific topics include: distributed computing based on MPI,

Map-Reduce, Volunteer, and Cloud computing service-infrastructure models, coverage of broadband

cable networking standards and technologies; cable service provider system architecture; and finally

a survey of embedded device technologies commonly deployed over broadband systems. While any

one of these topics entails volumes of books and deserves a detailed study in itself, the primary

purpose of the following sections is to set the context for the rest of the dissertation.

2.2 Distributed Computing

Distributed computing systems consist of autonomous computers that communicate through a

computer network while executing a distributed program to solve a computational problem [10]. In

distributed computing, a problem is divided into many tasks each of which is solved by one or more

computing nodes. Distributed computing systems consist of computational nodes that each contain

their own local memory and processor, and communicate with one another using message-passing

primitives [10]. An example of a distributed computing network model is shown in Fig. 2.1. There

are virtually an unlimited number of possible distributed computing network topologies. However,

in practice distributed computing networks typically follow a finite set of topologies essentially
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Figure 2.1: Distributed model of computation.

determined by the underlying computational communication pattern required to solve the given

computational problem. In support of solving computational problems using the message passing

model of computation, various programming models for distributed programming have emerged

over the last two decades. The Message Passing Interface (MPI) and MapReduce are two leading

examples that are in use today. A third model for distributed computing, which harvests Internet-

based computing resources from personal computers is called volunteer computing and is described

in Section 2.2.3.

2.2.1 Distributed Computing Based on MPI and the Open MPI Environment

The MPI environment consists of a de facto standard library and runtime system for the develop-

ment, implementation and execution of both distributed and parallel computing applications based
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Figure 2.2: MPI send and receive operations.

on the message passing programming model. Within the MPI framework, a library of over 120

functions is available for all common operating systems. The MPI library is divided up into mul-

tiple categories of communication primitives; however the point-to-point and collective libraries,

in both synchronous (blocking) and asynchronous (non-blocking) varieties, are the most common

operations used by the majority of MPI applications. The basic point-to-point MPI operations

between two host processes are send and receive. These are illustrated in Fig. 2.2. The more

complex collective communication primitives involve groups of host nodes whose processes are all

communicating within a single organized domain referred to as a communicator. Collective op-

erations may be built using the fundamental point-to-point send and receive message operations

as building blocks. In more optimized cases, however, the collective library implementation may

utilize broadcast and multicast capabilities of the underlying communication network.

As an example of three common collective operations, Fig. 2.3 and Fig. 2.4 illustrate the MPI

broadcast and scatter-gather operations. The broadcast operation is used for situations where a

single host process wishes to transfer a single message to all host processes within a communicator.

The scatter operation is utilized in situations where an array of messages must be distributed among

a group of host processes from a single-source host process (each element of the local host process

array is sent to a different remote host MPI process). The gather function is essentially the reverse

operation, wherein a single host process constructs an array of messages from the group of host

processes in the communicator (each element of the array is received from a different remote host
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Figure 2.3: MPI collective broadcast operation.

Figure 2.4: MPI collective scatter-gather operation.
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Figure 2.5: Basic MPI master-worker computational pattern.

MPI process). The MPI point-to-point and collective libraries provide a rich set of primitives, but

they still represent a small subset of those available. The interested reader may find the complete

set of library functions defined within the MPI standard specification [52].

A simple model for distributed computing is called the master-worker pattern and is repre-

sented in Fig. 2.5. The master-worker pattern is a typical MPI application communication pattern,

where a single central system, or MPI host process often called the master, orchestrates the ex-

ecution of a distributed application by sending both program and data messages to one or more

MPI host processes called workers. When the workers have completed their task, results are sent

back to the master MPI host process. In this scenario, where each MPI process executes and com-

municates independently of all other MPI processes, the MPI application is called embarrassingly

parallel. Bioinformatic sequence alignment or Monte Carlo simulations are examples of embarrass-

ingly parallel applications. However, more complex computational models often require message

operations which involve data and communication inter-dependence among MPI host processes. In

these cases, the application is not embarrassingly parallel; here distributed computation is among

processor nodes and there is typically extensive use of MPI collective operations. An example is

N-Body Simulation which solves for a dynamic system of particles under the influence of physical

forces [49]; here multiple MPI processes communicate among one another in a nearest neighbor or
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Figure 2.6: Basic MapReduce computational pattern.

lattice topology organization as they represent particles within the simulation domain [49].

Open MPI. The execution and lifecycle management of MPI parallel and distributed applica-

tions are handled through the MPI runtime environment. The leading Message Passing Interface

library and runtime environment implementation is called Open MPI [100]. All Open MPI im-

plementations include a library of communication routines that support point-to-point message

buffer send and receive operations, as well as collective communication and computation opera-

tions that facilitate group-wide data movement and computation, respectively. In addition, Open

MPI includes a runtime environment called Open Runtime Environment or ORTE, which enables

concurrent execution of MPI based programs across all MPI processing nodes. Open MPI was de-

veloped over the last decade for distributed cluster computing and is now a de facto standard MPI

implementation with a large base of software available for execution on most, if not all, distributed-

memory, parallel computing architectures. Open MPI [42; 100] is highly modular, architected for

inter-operability, portability, extensibility and scalability, and incorporates the best features of a

number of earlier MPI implementations, thus making it an excellent choice for distributed memory

computing platforms. Further details on the architecture and design of Open MPI will be given

in the context of the experimental systems presented in Chapters 4 and 5.
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2.2.2 Distributed Computing Based on MapReduce and the Hadoop Environ-

ment

While the MPI programming model and the Open MPI environment have gained de facto standard

status with ubiquitous usage within the High-Performance Computing community, in recent years

the MapReduce programming model, originally developed at Google [28] has also gained widespread

acceptance, particularly for large-scale, data-intensive computing, analysis and search problems [82].

In particular, an open source version, called Hadoop, is seeing increased adoption in both industry

and academia [82]. MapReduce is essentially a programming model where distributed computing

algorithms are expressed in terms of two important operations: Map, and Reduce.

Computational problems expressed in terms of a distributed MapReduce algorithm follow a

communication pattern similar to what is shown in Fig. 2.6. Here, a single master node controls

and initiates the execution of map operations on a set of worker nodes, which compute input data

into an intermediate format. Next, the output of the mapper node is passed to a second set of

nodes that execute a reduction operation before computing and delivering a final output result.

Programmatically, the MapReduce programming model is inspired by functional languages, but was

developed into a large-scale parallel system by Google and, later, into a Cloud service by Yahoo.

The MapReduce algorithm executes both Map and Reduce operations in two phases. Application-

specific input-data is processed by the Map operation phase whose output is a set of intermediate

<key,value> pairs. Next, a Reduce operation phase is applied to all intermediate pairs with the
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Figure 2.8: Hadoop MapReduce system architecture.

same key. The Reduce phase typically performs some kind of merging operation and produces zero

or more output pairs [28]. Finally, the output pairs are sorted by their key value. As an example,

Fig. 2.7 illustrates the MapReduce wordcount program, which produces as output, the number

of occurrences of each word in an input text string. It operates as follows: first, during the Map

phase, input text is tokenized into words and key-value pairs, where each key is a word from the

input and the value is 1. For example the first four key-value pairs computed from the Map phase

in Fig. 2.7 are (Hadoop,1) (runs,1) (on,1) (the,1). Second, during the Reduce phase, all keys are

grouped together and the values for similar keys are added. In the example shown, the first four

key-values are grouped and summed, producing: (Hadoop,3) (runs,1) (on,1) (the,1).

An architecture for the Hadoop MapReduce system is shown in Fig. 2.8. MapReduce systems

are scalable due to the master-worker parallel architecture. Google [28] and Yahoo [117] utilize

MapReduce extensively in providing Cloud-based services for both internal applications and to

Internet-based client applications accessible through Web Services [75]. A key advantage of the

MapReduce architecture lies in its loose coupling of components that makes them suitable for

Virtual Machine implementation, thus leading to better scalability and fault-tolerance for some

applications than traditional parallel computing models such as MPI [77].

Hadoop is an open source Java implementation of MapReduce that additionally includes a

runtime environment for the execution of MapReduce programs written in the Java programming
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Figure 2.9: HDFS architecture.

language [51]. The Hadoop implementation of MapReduce makes extensive use of a distributed

file system called the Hadoop Distributed File System (HDFS) as its underlying foundation. In

comparison, the Google MapReduce implementation is based on a distributed file system providing

similar capabilities referred to as the Google File System (GFS) [77]. The Hadoop system is

based on a distributed master-slave architecture; is both highly-scalable as well as fault-tolerant

through its use of task and data replication. The Hadoop core implementation is divided into two

fundamental layers, HDFS [77] and the Hadoop MapReduce Execution system, that work together

to execute MapReduce applications.

Hadoop Distributed File System. HDFS follows a master-worker architecture and is illus-

trated in Fig. 2.9 [17]. A single master node called the NameNode contains all metadata describing

the HDFS filesystem and namespace along with the location of all blocks of data making up the

filesystem. The blocks themselves reside on one or more worker systems called DataNodes which are

responsible for managing data-block storage. The mapping of blocks in the filesystem namespace

to DataNodes is determined by the NameNode. To store a file in this architecture, HDFS splits the

file into fixed-sized blocks (typically 64MB) and stores them on the workers (DataNodes) [77]. The

NameNode maintains the namespace metadata associated with the distributed filesystem, and all

information regarding the location of input splits/blocks in all DataNodes. The NameNode is also

responsible for executing all filesystem namespace operations like opening, closing and renaming

files and directories [17]. Block replication and optimized block placement along with heartbeat
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Figure 2.10: Hadoop HDFS and MapReduce architecture.

messaging are key features of the HDFS architecture. With block replication and placement, HDFS

reliability is enhanced by storing multiple replica copies of a given block across multiple DataNodes.

The blocks themselves are placed intelligently within the Hadoop cluster to minimize communi-

cation costs and latency. The Hadoop HDFS system is made fault-tolerant through the use of

heartbeat messages between the NameNode and DataNode to assure DataNodes are functioning

properly. In the expected case of DataNode failures, a DataNode rebalancing process is initiated.

This automatically migrates and reorganizes the cluster to guarantee a minimum number of DataN-

ode replicas to maintain Hadoop system stability. As shown in Fig. 2.9, to make use of the HDFS

for MapReduce applications, clients read or write the HDFS by first requesting file access from the

NameNode, which performs the appropriate filesystem operations (open, close, create, rename) on

behalf of the client and responds with a list of DataNodes that contain the required block for the

corresponding read or write access. The client then may perform read or write operations directly

on the DataNode. Besides serving read or write requests from clients, DataNodes also perform

block creation, deletion, and replication upon instruction from the NameNode [17].

Hadoop MapReduce Engine. The MapReduce engine executes the actual Map and Reduce
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functions of the client application, or job, and runs on top of HDFS as its data storage manager [77].

This is illustrated in Fig. 2.10. Similar to HDFS, the MapReduce engine also has a master-worker

architecture consisting of a single JobTracker as the master and a number of TaskTrackers as the

workers [77]. The JobTracker is responsible for monitoring and managing the MapReduce job

across its execution over the Hadoop cluster and for assigning tasks to the TaskTrackers. Each

TaskTracker manages the execution of the actual Map and Reduce tasks on a single computational

node. A Hadoop cluster may consist of as little as one JobTracker and TaskTracker nodes, but

in a typical cluster hundreds of TaskTrackers may exist. Each TaskTracker node has a number of

simultaneous execution slots, each executing either a Map or a Reduce task [77] with a corresponding

DataNode to provide block locality to minimize communication. In the example architecture shown

in Fig. 2.10, a small two rack Hadoop cluster consists of four hosts that are typically commodity

Linux-based x86 servers. Each Hadoop cluster must include a JobTracker and NameNode as shown

in Node 1. The remaining nodes consist of three TaskTrackers for executing Map and Reduce tasks,

along with three DataNodes.

2.2.3 Distributed Computing based on Volunteer Computing and BOINC

During the last decade a new parallel and distributed computing model called volunteer computing

(also known as public-resource computing) has emerged for utilizing the large installed base of hun-

dreds of millions of PC and gaming systems to solve computationally complex scientific problems.

The key concept is to leverage the enormous number of idle processor cycles available through-

out the Internet by users willing to donate unused personal system resources. As a form of Grid

Computing, volunteer computing aggregates computational power in an organized fashion to solve

a common problem [8]. However, unlike traditional Grid Computing, the computational resources

of the public resource computing platform often exceed the computational power of most privately

owned or government-sponsored grid supercomputer infrastructures [8].

There are many examples of volunteer computing initiatives, but perhaps the best known are

SETI@Home [53] and Folding@Home [50], which data back to 1999 and 2001, respectively. Started

at Stanford University in conjunction with Google, Folding@Home aims to advance research on

protein folding, a very important problem in the field of computational biology. The SETI@Home

project seeks to process large data-sets produced from radio-telescope signals in search of extrater-
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restrial intelligence.

The implementation of volunteer computing systems centers around specialized software that

is downloaded by consumers to participating PC systems or game consoles such as the PlaySta-

tion 3 [115]. For a given volunteer computing initiative, units of work or computational tasks that

are required to solve a targeted problem are made available to users typically from within a screen

saver or background agent running on the consumer device. In this model of computation, when

the screen saver or agent is available it receives tasks assigned by a master server. These tasks are

then processed by the consumer device on a best effort basis. Results are sent back to the mas-

ter server when the task is completed. Compared to other types of high-performance computing,

volunteer computing has a high degree of diversity [9]. The volunteered computers vary widely in

terms of software and hardware type, speed, availability, reliability, and network connectivity [9].

While early volunteer effort relied on custom software implementations, most volunteer computing

initiatives today have standardized around the BOINC (Berkeley Open Infrastructure for Network

Computing) open source platform developed at U.C. Berkeley Space Sciences Laboratory [47].

BOINC Volunteer Computing Platform. The BOINC model involves projects and vol-

unteers [9]. A BOINC project corresponds to an organization or research group that does public-

resource computing [8]. It is identified by a single master URL, which is the home page of its web site

and also serves as a directory of scheduling servers [8]. After downloading a special BOINC client to

their personal system, participants register with projects that can involve one or more applications,

which may change over time. A BOINC server architecture is illustrated in Fig. 2.11. The BOINC

database is the central BOINC platform component and stores descriptions of applications, plat-

forms, versions, work units, results, accounts, teams, and so on [8]. Server functions are performed

by a set of web services and daemon processes. Scheduling servers handle RPCs from clients: they

issue work and handle reports of completed results [8]. Data Servers handle file uploads using a

certificate-based mechanism to ensure that legitimate results are transferred between the clients

and the BOINC servers. All file transfers occur over HTTP. The BOINC system platform includes

tools for creating, starting, stopping, and querying projects; adding new applications, platforms,

and application versions, creating work-units and monitoring server performance [8]. Participants

may join a BOINC-based project by visiting the projects web site, filling out registration form, and

downloading the BOINC client [8]. The BOINC client may operate in one of several modes: as a
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screen saver that shows graphics of the running application; as a windows service which operates

even when no users are logged in; and as a UNIX command-line program [8].

The BOINC platform has been adopted by a number of volunteer computing organizations that

are supporting over 50 projects including Grid Republic [63] and the IBM sponsored World Com-

munity Grid [9]. As of 2011, over 6.2 million machines running the BOINC platform are members

of the World Community Grid, which exceeded, in terms of teraflops, the fastest supercomputer

(Tianhe-1A) in 2011 [103]. Similarly, the Folding@Home project has reported 5PFlops performance

over 350,000 machines, as of March 7, 2009 [103].

While volunteer computing systems offer scalability on the order of the number of PCs or game

consoles active on the Internet at any one time, in practice participation is not predictable and is
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ad-hoc. This presents challenges in terms of offering a service level agreement (SLAs) that offer the

same quality of service that Cloud-service providers now commonly guarantee. Despite these issues,

distributed Internet computing has shown great success and highlights the potential of harnessing

Internet connected devices in solving previously infeasible scientific problems and experiments [50;

53; 63].

2.3 Cloud Computing

Cloud computing can be thought of as a specialized form of distributed computing with the addition

of service abstraction and virtualization of processor, storage, network, and applications that hide

the underlying computational infrastructure to the extent required by external users of the cloud. A

Cloud offers a large pool of easily usable, and accessible virtualized resources [116]. These resources

can be dynamically reconfigured to adjust to a variable load (scale), allowing for optimum resource

utilization [116]. The pool of resources is typically exploited by a pay-per-use model in which

guarantees are offered by the infrastructure provider by means of customized SLAs [116].

The term Cloud computing originally evolved as a concept where large aggregations of compu-
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tational systems within one or more data-centers and other application specific software services

are made available ubiquitously to users over a network, commonly the Internet [105]. This is

illustrated in Fig. 2.12 [105]. Similarly, in the Berkeley definition [11], Cloud Computing refers to

both the applications delivered as services over the Internet and the hardware and systems software

in the data-centers that provide those services [11]. In this definition, the data-center hardware and

systems software is an instance of a Cloud [11]. The services themselves have long been referred to

as Software as a Service (SaaS) [11], where SaaS is any software service available from a network

accessible Cloud to users on-demand for a metered period of time. While the Berkeley definition

is representative, there are in fact many definitions of the ”Cloud” as well as of the term ”Cloud

Computing”. However, the most commonly accepted formal definition is by NIST [92]:

”Cloud computing is a model for enabling convenient, on-demand network access to a shared

pool of configurable computing resources (e.g., networks, servers, storage, applications, and services)

that can be rapidly provisioned and released with minimal management effort or service provider

interaction.”

However, neither the NIST formulation, nor the interpretation of what it means, are univer-

sally accepted. A pragmatic approach is to understand common attributes of typical Cloud solu-

tions [103]. NIST defines Cloud Computing by the following essential characteristics [92]:

• On-Demand self-service. A consumer can provision computing capabilities or services

automatically without human intervention.

• Ubiquitous network access. Capabilities are available over the network and accessed

through standard mechanisms.

• Resource pooling. The service provider computing resources are pooled to serve multiple

consumers using a multi-tenant model, with different physical and virtual resources dynam-

ically assigned and reassigned according to demand. Resources and services are generally

transparent to the consumer.

• Rapid elasticity. Capabilities can be elastically provisioned and released. Resources appear

unlimited to service consumers.

• Measured service. Cloud systems automatically control and optimize resource use by

leveraging a metering capability as some level of abstraction appropriate to the type of service.
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While these essential characteristics have evolved over time, the general evolution of Cloud

Computing has been progressive with the emergence of new Cloud service and delivery models as

described next.

2.3.1 Taxonomy of Cloud Services Delivery

The Cloud and its associated computing models are generally classified by their service delivery

types and deployment scenarios. The most basic Cloud services delivery model follows a layered

approached called the SPI model [92] or Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and previously defined Software as a Service (SaaS).

Infrastructure as a Service. Representing the lowest level of Cloud services, IaaS providers

manage large sets of computational resources, such as compute nodes and storage systems. Through

virtualization, these system elements may be dynamically managed and resized to build ad-hoc sys-

tems as demanded by customers [116]. Consumers utilize the IaaS resources by deploying and run-

ning arbitrary software which can include operating systems and applications [92]. The consumer

does not manage or control the underlying Cloud infrastructure, but has control over operating

systems and deployed applications [92]. Typically an IaaS provider supplies virtual machine im-

ages or different operating system flavors [103]. These images can be tailored by the consumer to

run any given custom or packaged application [103]. Compute, storage and network bandwidth are

consumable commodities in an IaaS environment and charged by CPU time, gigabytes-per-month,

and bandwidth transit into and out of the Cloud system, respectively [103]. The Amazon Elastic

Compute Cloud (EC2) is a classic example of IaaS [77].

Platform as a Service. Cloud systems can offer an additional abstraction beyond supplying a

virtualized infrastructure. They can provide the software platform where consumers deploy applica-

tions based on a set of software services that include programming languages, libraries, application

services and framework tools provided by the Cloud provider [116; 92]. The primary difference

between IaaS and PaaS is the level of interaction required with the hardware and operating system

platform. In PaaS, there is no interfacing or administration of virtual machines or infrastructure.

With PaaS, the sizing of the hardware resources demanded by the execution of the services is

made fully transparent [116]. Instead, the platform is abstracted, thus enabling the consumer to

focus on application development. The trade-off, however, comes at the cost of less flexibility and



CHAPTER 2. BACKGROUND 25

the requirement to develop applications in the specific environment support by the PaaS provider.

Examples of PaaS providers are Google Apps Engine and Microsoft Azure [77].

Software as a Service. SaaS refers to services and applications that are available on an on-

demand basis accessed through a network or the Internet. SaaS provides an alternative to locally

run services and applications that in many cases cannot scale computationally or are otherwise

infeasible. According to NIST [92], the SaaS capability enables the consumers to use the providers

applications running on a cloud infrastructure [92]. The applications are accessible from various

client devices through either a thin client interface, such as a web browser or tablet, or a program

interface [92]. The underlying SaaS Cloud infrastructure is fully transparent to the consumer, hence

SaaS provides the highest level of Cloud services. Salesforce.com is one of the best known examples

of SaaS [77].

Since the number of Cloud service delivery models is ever increasing, the term Everything as

a Service or XaaS is used to define the Universe of all Cloud service delivery models: it is a

generic term to denote all service deliveries that exist and that might be created in the future [35;

107]. Esteves has offered one possible Cloud service delivery taxonomy [35]. As shown in Fig. 2.13,

the root of the taxonomy is represented by XaaS since it encompasses all possible service deliveries.

Each leaf corresponds to a subset of service deliveries defined by NIST including for completeness,

Business Process as a Service which corresponds to the notion of outsourcing business or enterprise

processes to the Cloud.

The Cloud model architecture can be illustrated as in Fig. 2.14: it consists of concentric layers

with the physical infrastructure at the center, followed by progressively higher-levels of virtualiza-

tion and abstractions built on top of one another as we move outward. The systems infrastructure or

datacenter layer shown in Fig. 2.14 represents the physical computational and storage systems that

implement the cloud hardware and software systems. This infrastructure may follow any number of

computational models including: shared memory (typical of large multi-core symmetric multipro-

cessing servers), distributed memory, message passing based compute clusters (typically based on

commodity Linux based server blades), or a hybrid combination of both. The programming model

or software environment is generally determined by the service type and the Cloud provider. Com-

mon development models include anything from a consumer-defined software environment provided

as IaaS in the form of a configurable, generic operating system, within a virtual machine instance,
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Figure 2.13: Cloud services delivery taxonomy[35].

to service provider instrumented platforms built around web and database services typically of-

fered as PaaS. For larger scale or HPC applications, distributed and parallel programming models

are available in any of PaaS, SaaS or XaaS. For example, Service Providers of data-intensive or

computation-intensive Cloud services and applications support an infrastructure based on cluster

computing leveraging MPI or Map-Reduce as described in Section 2.2. This form of Cloud service

is illustrated in the example of Fig. 2.14. An important point to note is that each Cloud ser-
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Figure 2.14: Cloud model as a layered architecture.

vice delivery method discussed (IaaS, PaaS, SaaS, or XaaS), has an implementation that is totally

transparent to the consumer. Underlying an essential characteristic of the Cloud computing model,

the consumers do not know if their Cloud application service requires a single processor core or a

distributed system of tens of thousands of processor cores. Moreover, there is full location indepen-

dence to the consumer as execution may be centralized or geographically dispersed among numerous

computational systems.

2.3.2 Cloud System Deployment Models

In addition to service delivery types, access to Cloud services is defined by a set of Cloud deployment

models which describe the manner and access scope provided by Cloud service providers. There are
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four primary deployment models [92] defined as follows; 1) Public or external Clouds, 2) Private or

Internal Clouds, 3) Community Clouds, and 4) Hybrid Clouds. Each is briefly described next.

Public Cloud. This Cloud infrastructure is provisioned for open use by the general public [92].

Many public Clouds are available, including Google App Engine (GAE), Amazon Web Services

(AWS), Microsoft Azure, IBM Blue Cloud, and Salesforce.com’s Force.com [77]. These providers

are commercial providers and offer publicly accessible remote interfaces for accessing their respective

Cloud services.

Private Cloud. In this deployment model, the Cloud infrastructure is provisioned for exclusive

use by a single organization comprising multiple business units [92]. It may be owned, managed,

and operated by the organization or a third party [92]. It may be on premise or external.

Community Cloud. A Community Cloud infrastructure is provisioned for the exclusive use

of a specific community of consumers from organizations that have shared concerns [92]. It may be

owned and operated by one or more of the community members, or a third party.

Hybrid Cloud. The Hybrid Cloud deployment model is simply a composition of one or

more of the other deployment models. It is composed of two or more distinct Cloud infrastructures

(private, community, or public) that remain unique entities, but are bound together by standardized

or proprietary technologies [92].

2.4 Broadband Cable Service Provider Systems

Among the largest organizations that utilize and operate massive computational and network infras-

tructures are broadband cable service providers, also known as Multiple Service Operators (MSO).

Broadband cable service providers offer Internet access, voice-over-IP, and interactive digital video

content across centrally managed broadband networks and systems to over 50 million consumer-

electronic embedded devices at subscriber homes within the United States alone [67]. Compared

to the United States, global broadband penetration is accelerating, and is expected to reach 600

million subscribers accessing over 1 billion embedded devices. China is leading the growth trend

with an overall broadband cable adoption reaching 152 million subscribers [72].

Fig. 2.15 illustrates the distribution of the leading ten MSOs operating within the United

States [67]. Table 2.1 lists the top ten number of subscribers associated to each of the MSOs pub-
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lished by the National Cable TV Association [70]. To deliver a wide range of interactive content

and network services to a large population of managed embedded devices, MSOs have developed

massive, distributed network and computational system infrastructures whose software and ser-

vice delivery models are moving towards the Cloud system environment described in Section 2.2.

In contrast, traditional High Performance Computing (HPC) environments have relied on largely

homogeneous computing systems with emphasis on peak performance and throughput, optimized

for complex scientific calculations in the fields of computational physics, chemistry and biology.

Indeed, MSOs have implemented a heterogeneous system composed of multiple geo-diverse man-

aged data-centers connected through broadband and fiber based network technologies that provide

services to millions of distributed intelligent embedded devices. The remaining sections of this
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Top 10 Broadband Cable Service Providers

Comcast 22,360,000

Time Warner 12,109,000

Cox 4,789,000

Charter 4,371,000

Cablevision 3,264,000

Bright House 2,109,000

Suddenlink 1,268,000

Mediacom 1,100,000

Insight 670,000

CableOne 628,000

Table 2.1: Number of subscribers for top 10 cable service providers as of Sept. 2011

chapter describe the primary system components that comprise a cable service provider system,

including the broadband network and the cloud infrastructure also referred to as digital head-end.

Section 2.6.1 describes embedded devices and processor technologies typically managed or attached

to cable service provider systems along with their evolution into the foreseeable future.

2.4.1 Broadband Cable Service Provider Network Technologies

Broadband cable service providers deliver multimedia and data services, including Internet access

through a two-way Hybrid-Fiber RF cable (HFC) infrastructure. As shown in Fig. 2.16, all data

communication occurs between a cable provider head-end or data-center and typically thousands of

Cable Modem (CM) attached devices, which may include personal computers, WiFi access points for

mobile and tablet devices, or other embedded devices such as set-top boxes (STB). A STB provides

for secure reception of premium video content and interactive applications such as program guides,

search and video on-demand. At the head-end, a Cable Modem Termination System (CMTS)

connects the cable modem network to the centralized Cloud. The cable model network is organized

as a tree and branch structure (which is essentially a bus topology) with the rest of the cable service

provider network. For Internet access and connections to any outside networks, both CMTS and

CMs act as forwarding agents to transport the data transparently across the cable modem network.
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Figure 2.16: Broadband DOCSIS network architecture.

The CMTS interface to the cable modem network is through independent downstream and

upstream communication channels, where each channel occupies a different RF frequency range

(typically within a 6Mhz spectrum allocation) for its operation. The downstream channel is a

one-to-many communication between the CMTS to all CMs, whereas the upstream channel is

shared among all CMs and thus requires the CMTS to allocate and manage all CM transmission

activities including bandwidth allocations and prioritization of network data. All management of

network bandwidth in both downstream and upstream channels is through a Media Access Control

(MAC) layer as defined by the Data over Cable System Interface RF Specification(DOCSIS) [57;

90].

The DOCSIS interface defines both the Media Access Control (MAC) layer as well as the

physical RF communications layer. The original DOCSIS MAC layer interface (DOCSIS 1.0)

provides a single best-effort service with simple prioritization using a contention-based request

scheme [109]. The DOCSIS 1.0 physical layer supports a maximum downstream data rate of

roughly 30.34 Mbps. Upstream channels of 3.2Mhz offer a maximum data rate up to 10.3Mbps

that is shared by all CM devices using a TDMA scheme (Time Division Multiplex Access) [27].

DOCSIS 1.1, which is currently deployed by cable service providers, enhances the DOCSIS 1.0 MAC

layer protocol with a set of quality-of-service (QoS) extensions enabling support for real-time and
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Figure 2.17: Structure of DOCSIS upstream and downstream packets.

constant bit rate services such as voice over IP (VoIP) and real-time video distribution. DOCSIS

2.0 supports all DOCSIS 1.1 capabilities, but increases the upstream capacity to 30Mbps through

more advanced modulation techniques and by increasing the RF upstream channel allocation to

6.4Mhz [109].

2.4.1.1 Overview of DOCSIS Protocol

The structure of the DOCSIS downstream and upstream packets also referred to as frames is

illustrated in Fig. 2.17. The downstream data is sent as a continuous stream of fixed size units (204

bytes) carefully chosen so that MPEG video frames and DOCSIS data frames can coexist within a

single RF channel [27]. The DOCSIS data frame area is further broken into a 1 byte sync byte and

a 3 byte MAC header that determines what type of payload is contained in the 184 byte DOCSIS
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payload area. For example, the payload may carry CMTS management, timing synchronization

messages, or standard TCP/UDP/IP data. The DOCSIS data frame ends with a 16 byte forward

error correction code computed by DOCSIS transmission logic at the sender. In contrast, the

upstream data is modeled as a stream of transmission opportunities or slots in the time domain,

also called minislots. A single interval of upstream communication is broken into minislots that are

a multiple of 6.25 microseconds long [27]. Depending on the system configuration, each minislot

period may contain between 8 and 32 bytes of data. To manage the allocation of bandwidth to each

CM, DOCSIS has a reservation-based, CMTS-centric TDMA approach for allocating bandwidth

on the upstream channel, with a dynamic mix of contention and reservation-based transmission

opportunities [1]. Using TDMA, multiple devices are granted data transmission opportunities to a

shared communication channel through carefully controlled transmission time-slots. The CMTS and

the CM network maintain accurate time synchronization relative to one another through periodic

MAC layer ranging and timing messages [27; 1].

The lower portion of Fig. 2.17 illustrates the allocation of minislots during a typical upstream

interval. CMs may use the contention minislots as defined by the CMTS for transmitting their

requests, and the CMTS will allocate transmission opportunities for the CMs in the next interval

frame, if capacity is available [90]. This contention model is referred to as a best-effort service, and is

the only upstream allocation method defined in DOCSIS 1.0. For CMTS bandwidth management

purposes, each CM has a unique MAC address that is mapped within the DOCSIS network to

a Service Identifier (SID) [1]. There are four types of SIDs: 1) broadcast for identifying active

upstream allocations that are available to all CMs; 2) multicast for a subset of CMs; 3) unicast for

a specific CM; and 4) null, which is a special case meaning no intended CM’s are targeted [109;

1]. Each SID instance is unique and identifies zero, one or more 1 CM devices and associates them

to bandwidth allocations and QoS policies. DOCSIS CM upstream allocation methods along with

QoS are described further in Sections 2.4.1.2 and 2.4.1.3, respectively.

The CMTS manages CM upstream transmission opportunities by periodically transmitting a

MAC layer protocol bandwidth allocation message (called an allocation MAP message) on the

downstream to all CMs. The allocation MAP is a MAC management message that defines three

types of minislot allocations for upstream intervals: 1) minislots as data grants for particular CMs

1CM targets may be any of broadcast, multicast, unicast, or the special null case.
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Figure 2.18: MAP message payload structure.

to transmit data, 2) minislots for contention request transmission (CMs requesting a data grant),

and 3) minislots as an opportunity for new CMs to join the network.

Fig. 2.18 illustrates the layout of a MAP message payload [27; 1]. Each entry represents an

allocation of minislots to targeted CMs (associated to SID) for a given upstream transmission

interval. The allocation MAP message is a variable-length MAC message made up of a fixed MAC

and MAP message header and a variable number of Information Elements (IE). Each IE defines

the allowed usage for a range of minislots for a unique upstream interval [1]. The IE consists of a

14-bit SID, a 4-bit IUC type code and a 14-bit starting offset. The 14-bit SID specifies the targeted

set of CM devices mapped to a unique service class. The 4-bit type code defines the type of traffic

carried during the interval, and the 14-bit offset, the starting time for the interval.

A more detailed structure of the IE is shown in Table. 2.2. The IUC field determines the IE type

as shown in the first column of Table. 2.2. A Request IE provides intervals in which bandwidth-

requests may be made for upstream transmission. The Request/Data IE provides an interval for

either bandwidth requests or short data packets. The Initial Maintenance IE provides intervals

in which new stations may join the DOCSIS network, where Station Maintenance IEs provide

opportunities for existing CM maintenance operations. Data grants are provided to CMs using the

Short and Long Data Grant IE. These grants provide an opportunity for a CM to transmit one or

more upstream DOCSIS frames (recall the DOCSIS frame contains a MAC header followed by a
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IE Name Interval Usage Code

(IUC) (4 bits)

SID (14 bits) Mini-slot Offset (14 bits)

Request 1 any starting offset of REQ region

Request/Data 2 multicast starting offset of IMMEDIATE

Data region

Initial Maintenance 3 broadcast/multicast starting offset of MAINT region

Station Maintenance 4 unicast starting offset of MAINT region

Short Data Grant 5 unicast starting offset of Data Grant assign-

ment

Long Data Grant 6 unicast starting offset of Data Grant assign-

ment

Null IE 7 zero ending offset of the previous grant.

Used to bound the length of the last

actual interval allocation

Data Ack 8 unicast CMTS sets to map length

Reserved 9-14 any reserved

Expansion 15 expanded IUC # of additional 32-bit words in this

IE

Table 2.2: Information Element (IE) structure.

MAC Ethernet frame). Finally a Null IE is used to terminate the list of IEs. Within each IE the

14-bit offset field defines the specific mini-slot assignment in terms of the time from the beginning

of the minislot interval for a given IE entry [27; 90; 1].

2.4.1.2 DOCSIS Upstream Bandwidth Allocation

All DOCSIS network devices acquire upstream bandwidth allocations and transmission opportu-

nities from the CMTS through MAP messages as described in Section 2.4.1.1. The actual CM

requests to the CMTS occur through a number of explicit request mechanisms that include any of

the following three kinds [20]:

Unicast Requests Polls. The CMTS may send periodic request opportunities as means of

real-time polls regardless of network congestion to allow CMs to transmit data without requiring

a contention request process. These transmission opportunities are included in the downstream

MAP messages [20].
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Figure 2.19: Contention reservation request and MAP grants[20].

Piggybacking Requests. Piggybacking is a method defined by DOCSIS where CM requests

for additional bandwidth are sent within scheduled upstream data transmissions. Piggybacking

reduces contention, since the CM bandwidth requests are transmitted within the data packets [20].

Contention Based Requests. Within each upstream transmission interval, a portion of

minislots are allocated for contention-based requests that may collide with one another, but are

available to all CMs. Contentions are resolved by a Contention Resolution algorithm defined by the

DOCSIS standard. The CMTS controls assignments on the upstream channel through the MAP

MAC message and determines which minislots are subject to collision. Contention resolution is

based on a Truncated Binary Exponential Back-off, with the initial back-off window and maximum

back-off window controlled by the CMTS [27; 20]. These values are specified as part of the MAP

message. When a CM has information to send and wants to enter the contention resolution process,

it sets its internal back-off window equal to the back-off start defined in the MAP currently in

effect. The CM then randomly selects a value within its back-off window. This random value

indicates the number of contention minislots the CM must wait before transmitting [20]. After a

contention transmission, the CM must wait for a Data Grant (Data Grant Pending) or Data Ack in

a subsequent MAP, which completes the contention resolution process. The amount of data the CM

may then transmit, after the Data Grant is received, is defined by the request IEs or Request/Data

IEs contained in the MAP message. Fig. 2.19 illustrates the relationship between MAP and Data

Grants for contention based bandwidth requests. In the event a CM contention message is lost due
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to a collision, the CM determines that it was lost when it finds a MAP without a Data Grant or

Data Ack for it. The CM must now increase its back-off window by a factor of two (as long as it

is less than the maximum back-off window) [20]. The CM then selects a new back-off value within

this window and retries the process described above. This process may occur up to a maximum

number of retries (16 as defined in the DOCSIS specification). After this the upstream request

must be discarded [20].

2.4.1.3 DOCSIS Quality-of-Service (QoS)

A single QoS service class is supported in DOCSIS 1.0 using service identifiers or SIDs (see Sec-

tion 2.4.1.1). The CMTS assigns SIDs to CMs as part of managing upstream communication, in

conjunction with best-effort data transmission through the contention arbitration described pre-

viously. In DOCSIS 1.0 networks, each CM is assigned only one SID for both upstream and

downstream directions, creating a one-to-one correspondence between a CM and its SID. This lim-

its the flexibility of DOCSIS 1.0 networks, since all traffic is treated the same, independently of the

service level and communication bandwidth requirements [27; 60].

DOCSIS 1.1 (as well as DOCSIS 2.0 and higher versions) enhances DOCSIS 1.0 with the concept

of service flows and introduces several new QoS concepts including: 1) Packet Classification and

Flow identification; 2) Service Flow QoS Scheduling; and 3) Fragmentation and Concatenation.

The multiple QoS service flow classes now apply independently to both downstream and upstream

communication channels, thus adding more flexibility in managing DOCSIS network bandwidth

and services [60]. The DOCSIS 1.1 QoS framework is based on the following objects: Service

Flows, Service Class and Packet Classifiers.

Service Flows. A service flow is a MAC layer transport service that provides unidirectional

transport of either upstream frames transmitted by the CM or downstream frames transmitted

by the CMTS. A Service Flow is characterized by a set of QoS parameters such as latency, jitter,

and throughput assurances. In order to standardize operation between the CM and CMTS, these

attributes include details on how the CM requests upstream minislots and the expected behavior

of the CMTS upstream scheduler [20; 60]. DOCSIS 1.1 service flows are identified and assigned to

CMs using a Service Flow Identifier (SFID) which extends the DOCSIS 1.0 Service Identifier or

SID functionality specifically for QoS management. Note, however, that DOCSIS 1.1 continues to
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use the term SID, but it only applies exclusively to upstream service flows. Every CM establishes

a primary service flow for the upstream and downstream directions with separate SFIDs for the

purpose of maintaining connectivity with the CMTS for DOCSIS MAC and management messag-

ing [60]. DOCSIS 1.1 also allows for multiple service flows assignments that can be created either

statically or dynamically to meet the needs of on-demand traffic. Multiple service flows enable CMs

to support a combination of data, voice, and video traffic concurrently while optimizing bandwidth

utilization [60].

Service Class. A service class defines a collection of settings maintained by the CMTS that

provide a specific QoS service tier (such as maximum bandwidth or traffic priority) to a CM that

has been assigned a given service flow associated with that service class [1; 60]. The DOCSIS 1.1

service class also defines the MAC layer scheduling type for the service flow. The schedule type

defines the type of data requests that the CM can make, how often it can make those requests,

as well as the priority the CMTS determines for granting transmission opportunities to all CM

devices [60]. A CM can also be assigned multiple service flows, allowing it to have multiple traffic

flows that use different service classes [60].

The following schedule types are supported:

• Best-Effort (BE). A CM competes with the other CM devices in making bandwidth re-

quests and must wait for the CMTS to grant those requests before transmitting data. This

service flow is similar to the default method in DOCSIS 1.0 networks for upstream bandwidth

allocation [60].

• Real-time polling service (rtPS). A CM is given a periodic time-slot in which it can make

bandwidth requests without competing with other CM devices. This class-of-service allows

real-time transmissions with data bursts of varying length [60].

• Non-real-time polling service (nrtPS). A CM is given regular opportunities to make

bandwidth requests for data bursts or varying size. This flow is similar to rtPS except the

CMTS can vary the time between polling of the CMs, depending on the current traffic and

network congestion [60].

• Unsolicited grant service (UGS). In the UGS service, CMs can transmit fixed data bursts

at a guaranteed minimum data rate and with a guaranteed maximum level of jitter. This
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type of service flow is suitable for traffic that requires a Committed Information Rate (CIR),

such as Voice-over-IP (VoIP) [60].

• Unsolicited grant service with activity detection (UGS-AD). The UGS-AD service

class is similar to UGS. Here, however, the CMTS monitors the traffic to detect when the CM

is not using the service flow, in which case the CMTS switches the service flow to a rtPS type.

When CMs begin using the flow again, the CMTS switches the flow back to UGS class of

service. The UGS-AD class allows the CMTS to manage unused bandwidth more effectively

during time-periods when the UGS service flow is not required [60].

Packet Classification. In DOCSIS 1.1 networks, CM devices can use multiple service flows,

each with a different level of service. To quickly assign upstream and downstream packets to their

proper service flows, the CMTS uses the concept of Packet Classification and Packet Classifiers.

Packet classification describes a process executed at the CMTS, whereby a set of packet-header fields

are used by the CMTS network processor to classify packets onto service flows, establishing the

appropriate data-transmission priority for the given service flow. Each packet classifier specifies one

or more packet header attributes such as source MAC address, destination IP address, or protocol

type [60].

Fig. 2.20 illustrates the logical structure for DOCSIS packet classifiers and their relation to

upstream and downstream service flows. When the CMTS receives downstream and upstream

packets, it compares each packets headers to the contents of each packet classifier. When the

CMTS matches the packet to a classifier, the CMTS then assigns the proper SFID to the packet

and transmits the packet to or from the CM. If no matching classifier is found, the packet is

forwarded to the primary default service flow. Packet classification ensures that all packets are

assigned to their proper service flows and thus proper QoS characteristics [27; 60].

Fragmentation and Concatenation. DOCSIS 1.1 introduced two other features to support

better QoS operation; fragmentation and concatenation. Fragmentation splits large data packets

so they can fit into smaller time slots and is enabled on a per service flow basis. When enabled for

a service flow, fragmentation is initiated by the CMTS when it grants bandwidth to a CM with a

grant size that is smaller than the corresponding bandwidth request from the CM. Concatenation

enables a CM to combine multiple upstream packets into one larger MAC data frame, allowing the
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Figure 2.20: DOCSIS packet flow classification[59].

CM to make only one time-slot request for the entire concatenated frame [27; 60]. Fragmentation

and concatenation together, enable better use of upstream resources and improve throughput.

2.4.2 Broadband Cable Service Provider Network Architecture

Fig. 2.21 shows a high-level architecture of a typical broadband cable system network that supports

approximately 8 million consumer electronic (CE) embedded devices. Three regional data centers,

or head-end facilities are shown, each containing all necessary infrastructure to operate a complete

regional system that typically spans hundreds of miles and services 1 to 3 million subscriber devices.

A vast fiber interconnection network is designed to transport both digital video and TCP/IP data

traffic between the data-centers and consumer devices, as well as network peering points including:

content service providers, third-party clouds that offer a variety of services, and the Internet at
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Figure 2.21: Example of a network architecture of a broadband cable service provider.

large. The regional head-ends are typically interconnected using a dense wavelength-division multi-

plexed (DWDM) fiber 400 Gb/s transport network capable of expansion up to 800Gb/s bandwidth,

enabling video and data distribution. The distribution network provides for movement between

regional head-ends with very low-latency transmission delay typically on the order of a few mil-

liseconds. The DWDM network is configured as a full mesh-topology, providing a fault-tolerant

environment, where loss of communication on any path will not result in a loss of communication

services.

In order to scale video and data distributions to millions of devices, each regional head-end

data-center feeds approximately 65-75 smaller remote-hubs that are geographically dispersed. Each

remote-hub is typically fed with 20Gb/s bandwidth via DWDM communication links. Some remote-
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hubs support smaller device populations, and therefore require less network bandwidth and fiber

capacity. The remote-hub is primarily designed to segment or partition the total device population

into smaller device population clouds to ensure reasonable network bandwidth and traffic scala-

bility. Each remote-hub drives 200 to 400 physical-layer translation devices or nodes. A node is

a physical-layer distribution element containing fiber-to-RF, RF-to-fiber converters and RF ampli-

fiers, where devices such as set-top boxes, cable-modems, or even WiFi access nodes are physically

interconnected in a tree topology resembling a bus interconnection network. It is important to note

that all embedded devices on a cable service provider system are connected to nodes via RF coax

cables. The nodes themselves connect back to the remote-hubs over fiber. Nodes do not provide

any layer 2 switching or routing functions, but due to their role in converting between fiber and

RF, the term hybrid fiber/RF network is used when describing a cable network system. In the ex-

ample shown in Fig. 2.21, each hub feeds approximately 320 nodes, with each node in turn feeding

approximately 400 subscriber homes.

Remote-hub Architecture. Each of the remote-hubs illustrated in Fig. 2.21 is interconnected

using a fiber-based optical network and supports physical-layer communication for approximately

80,000 to 160,000 subscriber devices. The remote-hub provides segmentation or partitioning of

physical-layer communication services for both data and video content. Interconnection between

the regional head-ends and remote-hubs is via long distance, single-mode fiber optic cabling using

DWDM technologies. DWDM enables the multiplexing and demultiplexing of multiple optical

carriers or channels over a single fiber using multiple light wavelengths. DWDM enables distribution

of multiple data and video communication flows over distances exceeding 100km [58].

The internal architecture of a remote-hub is illustrated in Fig. 2.22. A DWDM fiber switch

connecting the remote-hub with the central head-ends demultiplexes both video signals and data

traffic. The video signals are converted into RF signals and all data traffic is sent to a Gigabit

Ethernet network switch. The network switch supports multiple Gigabit Ethernet networks each

of which, supports one or more DOCSIS routers. The output of each DOCSIS router consists of

one or more RF signals, which are re-combined with all the video RF signals from the DWDM

switch, producing a single combined RF output signal. This combined RF signal is converted back

to a pair of optical signals for bidirectional optical fiber communication to and from fiber/RF node

devices. The fiber/RF node device converts the optical signal back into RF, feeding a bus like RF
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Figure 2.22: Remote-hub architecture.

cable network topology where each subscriber premise is attached.

Fig. 2.23 illustrates the layout of a typical internal data network within a remote-hub. The

internal data network is typically supplied with 20Gb/s aggregate communication link bandwidth

from the larger regional head-end data centers via the DWDM switch. Since each remote-hub may

contain on average 5 to 10 DOCSIS routers, a router/switch is utilized to aggregate all traffic from

multiple networks between the DWDM fiber switch and the DOCSIS router devices as shown in

Fig. 2.23. The network feeding each DOCSIS router is actually formed by multiple 1Gb/s Ethernet

networks that are bonded together. For example in Fig. 2.23, each DOCSIS router is supplied

4Gb/s overall bandwidth. This ensures adequate bandwidth on the DOCSIS RF network side of

the system. The specific number of DOCSIS routers within a given remote-hub is determined by

the number of nodes fed and associated bandwidth requirements for the given region. In general,

the trend is towards much higher bandwidth to subscribers, therefore remote-hub data networks

are moving to newer 10Gb/s Ethernet links and consequently the input to the DOCSIS router is
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Figure 2.23: Remote-hub data network architecture.

also moving to 10Gb/s interfaces. The broadband RF network terminates into the DOCSIS router

devices, where it is then converted to standard Ethernet TCP/IP protocols. The broadband RF

network is based on the DOCSIS MAC layer protocols as described further in Section 2.4.1.1.

Each DOCSIS router contains a number of DOCSIS network line cards that drive the hybrid

fiber/RF service provider cable plant using RF modulation techniques across fiber interconnects.

Fig. 2.24 illustrates a representative line card. In this example, each line card supports 5 down-

stream and 20 upstream interfaces that feed multiple hybrid fiber/RF node devices. Assuming an

average of 2 line cards per router, approximately 40 nodes are supported for each CMTS router

enabling DOCSIS communication support for up to 20,000 broadband embedded devices. Given 5

to 10 DOCSIS routers per remote-hub, approximately 100,000 to 200,000 subscriber devices may

be supported per remote-hub.

The DOCSIS physical layer network driven by each of the hybrid fiber/RF nodes, supports 400

to 500 DOCSIS CM embedded devices over a RF bus topology. Fig. 2.25 illustrates the connection
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Figure 2.24: DOCSIS router line card organization.

Figure 2.25: Hybrid fiber/RF node device

of multiple embedded device attachments to a DOCSIS based cable service provider system. As

discussed in Section 2.4.1.1, DOCSIS CM devices may include any of set-top boxes, VoIP phones,

and WiFi access points (for both residential and commercial applications) that attach personal

computers, tablets, smart phones, game consoles, and connected Smart-TV’s.
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2.4.3 Broadband Cable Service Provider System Architecture

Fig. 2.26 illustrates the internal functional components of the remote-hub, broadband network,

head-end, and typical regional data-center. A head-end can be partitioned into four functional sub-

systems; 1) a digital content and RF distribution system including content protection services, 2)

command and control system for embedded devices such as set-top boxes, 3) one or more compute

and data-center server clusters, and 4) Internet and cloud system network peering infrastructures.

The regional data-centers or head-end clouds are all inter-connected utilizing the same DWDM

fiber network for connecting remote-hubs. Therefore each regional data-center or remote-hub may

access content or data located anywhere on the system.
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Figure 2.26: Broadband cable service provider system architecture.
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Digital content and RF distribution system. The digital content and RF distribution

system is illustrated in the upper left and center of Fig. 2.26. A modern broadband cable sys-

tem is designed to carry audio/video content in the form of MPEG-2 or MPEG-4 signals. These

MPEG signals, also referred to as digital audio/video feeds, are delivered either from local content

sources (for example video footage captured on a digital video camera) or, more commonly, con-

tent providers that syndicate their content throughout countries typically over satellite delivery. In

both cases, digital content feeds are multiplexed together along with encryption information using

MPEG multiplexing hardware whose outputs are baseband frequencies that are upconverted to

RF frequencies within a 6Mhz band using QAM (Quadrature Amplitude Modulation) modulator

devices. The broadband RF signals are then distributed to remote-hubs using the DWDM fiber

transport network as described in Section 2.4.2 and illustrated in the center of Fig. 2.26. The

QAM devices at the head-end in conjunction with the remote-hub RF network and fiber/RF node

comprise the RF distribution system. The remote-hub and fiber/RF node physical RF distribution

system are interconnected via fiber up to 50km in distance. The fiber/RF node converts optical

signals back to RF frequencies which are then amplified before driving the RF cable network where

embedded devices attach, as shown on the right of Fig. 2.26. To support communication with

legacy RF devices, which do not support QAM based signaling, a second RF modulation scheme

referred to as QPSK (Quadrature Phase Shift Keying) is present as part of the RF distribution

system. The QPSK modulator and demodulator elements in Fig. 2.26 are primarily utilized by the

command and control system described next. The DOCSIS network is also considered part of the

RF distribution system, and consists of two subsystems: 1) a two-way IP network interconnect be-

tween the DWDM switching network, data-center servers and cloud, within the regional head-ends,

and 2) the DOCSIS network and router system that resides in each remote-hub.

Command and control systems. Embedded devices compatible with broadband cable net-

works are managed by a specialized embedded control system that orchestrates device registration,

operating system boot and application processes lifecycle management for set-top boxes, cable

modems and cable system WiFi access points. The embedded system control system shown in

Fig. 2.26 sends and receives command and control messaging to/from embedded devices through

the QAM and QPSK RF distribution system. The command and control system is also responsi-

ble for generating encryption messages which are delivered as part of the MPEG video and data
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stream for securing premium content services to devices capable of receiving video streams. For

distribution of data to all devices, a broadcast data carousel is managed by the command and con-

trol system. The broadcast data carousel provides a mechanism for cyclical data distribution (data

represented as a filesystem is repeatedly broadcast) over both the QAM and QPSK RF networks

at specified delivery frequencies that devices such as set-top boxes may listen to. In this manner,

scalable data delivery can occur in a unidirectional manner to a large number of devices eliminating

the need for two-way communication.

Compute and data-center server clusters. In addition to RF specific devices such as

QAM and QPSK described earlier, DOCSIS network components, and embedded control systems,

multiple data-center server complexes provide a wide range of network, content, and application

layer services over TCP/UDP/IP protocols to the overall system. The bottom center of Fig. 2.26

illustrates multiple clusters of server clouds each interconnected through a central network backbone

of core routers and switches. The server clusters consist of typical rack mounted Linux multi-core

blade servers available from companies such as Cisco, IBM, Dell or HP. Each individual cluster

performs a specific set of services to the embedded device network that may include network services

such as DHCP or DNS, or more application-oriented services such as interactive user-interfaces

for electronic programming guides (EPG) and video-on-demand (VOD). In recent years, newer

embedded devices such as smart tablets and intelligent televisions have become prevalent in terms

of their operation on cable broadband systems. Therefore, new compute intensive service clusters

have been established to provide these devices with IP based services such as streaming video, search

and recommendation-aware applications, to name a few. The multiple server clusters communicate

with one another within a regional data-center over a centralized 10Gb/s Ethernet backbone that is

switched, whereas bidirectional communication across data-centers (among different regional data-

centers or head-ends) and the DOCSIS based embedded device network is through the DWDM

transport network. This is indicated in Fig. 2.26 as the connection between the regional data-

center DWDM switch and the core routing/switching network shown in the center of the server

cluster clouds.

Internet and cloud system network peering. High-speed Internet access as well as third-

party private cloud services to both internal server clusters and the millions of embedded devices

is provided through direct peering connections from Internet backbone providers and respective
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third-party cloud providers. Interconnection is based on multiple fiber connections that aggregate

multiple 10Gb/s links over fiber, to each of the core routing/switching network infrastructures

within each regional data-center. This is illustrated as the public and private network clouds

interconnected to the core routing/switching network in the system architecture shown in Fig. 2.26.

It should be noted that the integration to public and private network clouds is a key aspect of the

ability of broadband service providers to support the production of new cloud services as well as

their consumption.

2.5 Embedded Device Processors

Consumer electronic devices that attach to broadband cable networks are built utilizing increasingly

powerful embedded processors from companies such as IBM, Cisco, ARM and Broadcom corpora-

tions. In this section I briefly describe a number of embedded processors that are now common in

many DOCSIS cable modems, set-top boxes, game consoles, smart tablets and TV devices in-use

within broadband subscriber homes. Section 2.6 illustrates the application of embedded processors

to the implementation of various highly integrated consumer embedded devices.

IBM Cell Processor. The IBM Cell processor was developed by IBM, SONY and Toshiba for

the Playstation 3 game-console and later also for high-performance applications including server

products [81]. The Cell processor is a high-performance, multicore, 64-bit based architecture op-

erating at clock rates exceeding 3GHz, consisting of the following primary subsystems: 1) a 64-bit

SIMD PowerPC core (PPE) with L1 and L2 caches that acts as a management processor; 2) 8 SIMD

compute cores referred to as Synergistic Processing Elements, or SPEs, each containing 256KB of

local memory and high-speed DMA for data movement. The SPEs are essentially 128bit vector

processors that can operate on multiple pieces of data at once; 3) the element Interconnect bus

(EIB) to support communication between subsystems; 4) two Rambus XDR memory controller;

and 5) two Rambus FlexI/O controllers providing dual input/output interface channels.

Cisco STB SoC. While the current trend in embedded devices is towards the use of high-

performance, licensable multi-core processor macros, as opposed to proprietary custom processor

technologies, many STB devices in use today make use of STB vendor designed System-on-Chip

(SoC) technologies. For example, a typical Cisco STB SoC available during 2007 includes the
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Figure 2.27: ARM Cortex-A9 MP processor. [Source: www.arm.com]

following functional components [59]: 1) a CPU core based on a 700MHz 32bit MIPS instruction

set architecture, dual 16-bit DDR memory for 32-bit external memory interfacing, with hardware

graphics support for 2-D drawing and blitter operations; 2) basic I/O operations such as USB and

Infrared (IR) input; 3) support for wideband RF demodulation of both audio and video signals;

and 4) decryption circuitry, as well as two-way DOCSIS (QAM) or DAVIC (QPSK) communication

as described in Section 2.4.1.1. The remainder of the SoC functionality integrates the various video

and audio signals from the MPEG and graphics accelerator hardware into output signals required

for television receivers.

ARM Multicore Processor. Representative of a more recent embedded processor is the ARM

Cortex-A9 MP 32-bit multicore processor. The ARM family of processors is found in numerous

consumer electronic embedded devices, including smart tablets such as the Apple IPAD, mobile

phones, mobile computing, as well as next generation set-top boxes and smart TV devices. The

chip may operate from 800MHz to 2GHz, and is available in a number of configurations to optimize

cost, performance and power [54]. The key features of the ARM Cortex-A9 MP are illustrated in

Fig. 2.27 [54] and include the ability to support anywhere from 1 to 4 high-performance Cortex-

A9 CPU cores, each with 32K L1 instruction and data caches, providing 2.5DMIPS/MHz/core
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Figure 2.28: ST Smart-TV processor. [Source: www.st.com]

performance [54]. Optionally, FPU/NEON processing units may be added for high-performance

single and double precision FPU operations, including a 128-bit SIMD instruction set addition

by the NEON execution unit [54]. A snoop control unit provides cache coherency in a multicore

processor environment. To further improve performance, an optional external L2 cache memory

control unit enables integration with up to 8MB of L2 cache memory [54]. The ARM family of

embedded processors can scale across a variety of consumer electronic markets or applications. The

processors are generally licensed as synthesizable or hard-macro implementations [54].

ST Newman Smart TV SoC. Emerging digital televisions now contain powerful processors

enabling interactive applications such as Netflix and Internet access. As a final example of the

use of embedded processor technologies for consumer device applications, the block diagram of the

STMicroelectronics Newman Smart TV FLI7680 SoC is shown in Fig. 2.28 [73]. The ST FLI7680

contains a dual-core ARM Cortex A9 processor with 1MB cache and 3D graphics processor based

on the ARM MALI 400 GPU. The ST FLI7680 integrates dedicated audio and video decoders,

cryptographic processor, video composition engine. Video and audio processing for exceptional

front-end screen experience is provided by 14-bit color and contrast processing with hardware

functions for video color sharpness and noise reduction [73]. Multiple output interfaces including
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Figure 2.29: Generic DOCSIS cable modem block diagram.

HDMI and network access such as Ethernet are fully integrated.

2.6 Broadband Embedded Devices

Section 2.5 described a small cross-section of embedded processors found in consumer electronic

devices. This section explores how these chips are used to implement embedded devices deployed on

cable broadband networks and in particular, the evolution of broadband cable set-top box devices.

DOCSIS Cable Modem. The block diagram of a typical DOCSIS cablemodem is shown

in Fig. 2.29 [74]. These embedded devices provide local IP network connectivity to a broadband

network over DOCSIS protocols as described in Section 2.4.1.1. These devices are highly inte-

grated, cost sensitive systems, found within millions of set-top boxes, home cablemodem routers,

voice-over-IP (VoIP) phones, and WiFi access point devices. Referring to Fig. 2.29, the DOCSIS

cablemodem is fully implemented using two Broadcom chips [55], relying only on external com-

ponents for RF conversion, SDRAM Memory and Flash, as well as physical cable/LAN ports.

Common to cablemodem devices is support for VoIP services. This requires the addition of DSP

and voice CODEC processor chips as well as physical phone ports.
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Figure 2.30: ARM based STB block diagram. [Source: www.arm.com]

Cisco STB. Similar to cablemodem devices, STB devices make use of highly integrated and

often proprietary SoC technology. The Cisco SoC introduced in Section 2.5 is utilized to imple-

ment a complete Cisco model 4650 STB. The 4650 STB implementation features a single SoC that

contains a MIPS based CPU core, Media processor, complete DOCSIS cablemodem, along with

configurable static and flash memory modules. All remaining components include tuner and var-

ious analog discrete blocks necessary for interfacing with external I/O ports, network interfaces,

connectors and indicators. The Cisco 4650 STB is representative of the technology available for

STBs produced between 2005 and 2009.

ARM Based STB. The recent trend in STB embedded devices, as in most consumer elec-

tronic devices, is towards more powerful processors and memory configurations. Recently STB

chip producer STMicroelectronics has licensed ARM technology to develop next generation STB

devices [34]. Similar to the Cisco STB, Fig. 2.30 illustrates the block diagram of a highly inte-
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Figure 2.31: ST based Smart-TV block diagram. [Source: www.st.com]

grated, high-performance multi-core ARM based STB. In this implementation, the CPU is based

on the Cortex-A9 processor, with an additional MALI-400 GPU. Memory and I/O functions are

fully integrated and based on ARM soft or hard macro cell libraries. Not shown in Fig. 2.30 are

additional components such as memory, flash, and external physical interface ports.

Next Generation Smart-TV. The block diagram of a current generation Smart-TV is shown

in Fig. 2.31. Based on the ST FLI7680 Newman chip described previously, a high performance,

multicore Cortex-A9 system implements an intelligent TV capable of 3D graphics applications

and Internet access with nothing more than external memory. An optional WiFi-support module

and physical interfaces are the minimum required components for a complete Smart-TV system.

The Smart-TV system block diagram example demonstrates the degree of system integration and

high-performance processor technologies available in modern consumer-electronic embedded devices

currently operating on broadband networks.

2.6.1 Evolution of Broadband Embedded Devices

Embedded device technologies continue to advance in performance and density as evident in the

examples discussed in Sections 2.5 and 2.6. Over the past decade a number of trends have emerged
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Figure 2.34: Desktop PC versus STB cost/DMIP.

that are influencing the evolution in functionality, performance and cost of consumer-electronic

devices relative to larger classes of computing systems such as high-performance computing systems

(HPC). The impact to broadband STBs devices and embedded systems in general has been favorable

and is illustrated in Fig. 2.32, Fig. 2.33 and Fig. 2.34. In terms of the evolution of STB functionality,

Fig. 2.32 illustrates the five year trend in STB capabilities between 2007 and 2012. In the span of

less than five years, a STB has evolved from hosting a single 300Mhz processor without floating-

point unit, one 2-D graphics unit and just 32MB of memory to a modern multi-core system-on-chip

(SoC) with two 1.3-Ghz processing cores, multiple video and 3D graphics accelerators, and 1GB

of memory. Fig. 2.32 illustrates the STB historic trend towards increased performance, across all

functional subsystems including CPU, memory, graphics, and networking. During this same time

period the STB operating system has also transitioned from proprietary to an open Linux based

software system. Fig. 2.33 and Fig. 2.34 illustrate a relative decrease in computational performance

gap and cost/performance between PC/blade servers and STB devices. This trend is primarily

driven by the convergence to multi-core processors and an upper bound on the maximum processor

frequencies achievable. The convergence is further driven by the fact that similar processor cores are

now utilized in the design of both embedded devices and high-performance computational systems
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based on commodity blade based servers. Due to limits in the continued growth in processor clock

frequency, the relative gap between high-performance systems and embedded device processing

capabilities continues to narrow. In fact, the shrinking performancer gap is currently having a

relatively different impact on server systems versus STB electronics because the computational

power of STBs, as are other embedded devices such as cell-phones, tablets, and Smart-TVs, is

increasing at a faster rate than the computational power of server class systems. For example

Fig. 2.34 illustrates typical non-DVR STB costs dropping from $175 to between $150 and $100

dollars, with performance increasing 4 times over a 2 year period. Note that the clock rate of the

STB processor was 15 times slower in the year 2000; however, in the year 2010 the difference has

dropped to within 3 times in the last 2 years.

2.7 Summary

This chapter provided a high-level overview of multiple technologies including distributed and Cloud

computing frameworks as well as broadband technologies that comprise typical broadband cable

service provider systems. Managed Broadband DOCSIS networks provide necessary physical layer

and protocol infrastructure to enable communication services for QoS supported, data delivery

over broadcast and unicast methods using TCP/IP protocols. Section 2.4.2 presented a cable ser-

vice provider system, illustrating a system architecture model that scales to support the operation

of millions of embedded devices, which attach to the broadband network over DOCSIS protocols

presented in Section 2.4.1.1. The embedded devices themselves fall into a number of categories

depending on their functionality. As illustrated in Section 2.5 and Section 2.6, however, the em-

bedded processor and device technologies are closing the performance gap with high-performance

computing clusters and data-center class computing systems. By integrating managed broadband

service provider systems, networks and embedded devices, distributed computation across broad-

band embedded devices enables a new class of heterogeneous computing infrastructure as well as

new opportunities for new Cloud services.
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Chapter 3

Broadband Embedded Computing

Evaluation And Feasibility

3.1 Introduction

In this chapter an empirical study is conducted to validate and demonstrate the feasibility of

broadband embedded computing. As introduced in Chapter 2, a model of distributed parallel com-

putation utilizing broadband embedded devices requires a distributed broadband embedded device

infrastructure that can provide both computational resources and network bandwidth sufficient for

distributed computation in addition to delivery of traditional video, data and other interactive ser-

vices. I evaluate the feasibility for utilization of STB devices for broadband embedded computing

by measuring their operating characteristics during typical usage under real world conditions. All

experimental testing results are obtained through statistical data gathered from a realistic broad-

band embedded system environment over a one month period. The results show that devices such

as set-top boxes are good candidates for emerging broadband embedded computation due to their

operating characteristics and usage patterns.

3.2 Experimental Methodology

An experimental framework for collecting and analyzing empirical data from Cisco 4200 STB devices

and DOCSIS 1.1 network traffic was designed and implemented. The Cisco set-top boxes are
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Figure 3.1: Experimental system model.

those available in 2004 and contain 32MB of memory and a 170MHz CPU. Fig. 3.1 illustrates a

high-level representation of the measurement system and the data gathered from the STB devices

and DOCSIS network. The STB device behavior is modeled in terms of CPU utilization, free

memory, and uptime using available STB operating system parameters. Device model data is

collected from approximately 4000 devices, selected randomly, for a period of one month over

varying load conditions such as video streaming, interactive usage, or idle time, typical of usage

patterns. Concurrently, measurements of the network utilization as a function of different services

over time is used to evaluate the STB bandwidth requirements in the presence of other data services.

Network utilization is measured by collecting transmit and receive byte counters at the broadband

router for each DOCSIS 1.1 device grouped by service. It should be noted that DOCSIS 1.1 network

bandwidth is effectively scheduled on a best-effort basis and can be further managed utilizing QoS

profiles as described in Section 2.4.1.3. As a managed service, network performance requirements

would typically be defined as part of system design requirements.
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Figure 3.2: Block diagram illustrating experimental system architecture.

3.3 Experimental System Design and Implementation

Referring to Fig. 3.2 the test system is comprised of 4000 STB devices and a centralized STB statistic

collection and logging system developed for the data-acquisition experiments. The collection and

logging system is made up of two Sun 480 UNIX servers that hosts the data acquisition software

written in Java. The collection software is launched from a CRON job which runs every 15 minutes

and polls the complete population of STB devices, retrieving the STB device model parameters

shown in Fig. 3.1. The collection software is multithreaded with a dispatch control module launching

a new thread for each set-top polling process. This is done to ensure that the collection system

would be non-blocking and poll all STB devices, as there is no assurance that any single device will

respond because it could be turned off or disconnected. Network statistics collection is implemented
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using standard SNMP polling software adjusted to retrieve byte counter set-top box Management

information base (MIB) variables for each device. All transmit and receive byte counters are broken

down by service and QoS profile. Data is stored using a combination of mySQL and the UNIX file

system. Since a large amount of data is generated, a set of tools for processing and visualizing the

data is necessary. A Java post processor program was used to normalize and summarize the data

for this purpose. The program reads in record data produced by the collection system and produces

output files that can be visualized using a graphics or plotting package. Origin lab graphing software

was used to generate all the final surface plots described in the next section.

Figure 3.3: CPU utilization.
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Figure 3.4: Memory utilization.

3.4 Experimental Results

3.4.1 Set-top Device Characteristics

Experimental data was collected for STB CPU utilization, free memory, and device uptime, over a

one month acquisition period. Data was processed to generate a series of plots. Figures 3.3, 3.4 and

3.5 shows the resulting surface plots for CPU, free memory, and uptime respectively. Each plot

represents frequency distributions of device count on the Y axis versus the X axis model attribute,

over time in the Z axis.

Fig. 3.3 CPU utilization is below 50% with the majority of devices below 20%. Such low

CPU utilization suggests that the application processor is underutilized with the MPEG processor

performing most of the system work. The calculated mean is 19% with a standard deviation of 12%,

most likely a result of the second peak that occurs between the 30% and 45% CPU utilization levels.

Fig. 3.4 also shows that the amount of available free memory is typically between 5MB and 15MB
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Figure 3.5: Device uptime.

with a calculated mean of 12MB and standard deviation of 3MB. STB devices available in 2004

were very memory constrained but consistent with their initial target functionality. It is interesting

to note that CPU and free memory exhibit minimal variations over time. This behavior supports

the argument that the application processor is utilized only during short interactive sessions, or

other command and signaling operations while the MPEG processor handles most of the system

overhead. The STB uptime behavior shown in Fig. 3.5 indicates that most devices are available

typically around 15 days but as high as 60 days. The calculated mean is 16 days with a standard

deviation of 18 days. The variation in uptime statistics is due to different STB devices having been

rebooted at different times during the acquisition window.

3.4.2 Broadband Network Characteristics

All set-top devices share a common TCP/IP DOCSIS network with cable modems and VoIP ser-

vices. In this study measured router statistics for each of the DOCSIS traffic flows is obtained to
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(a) Downstream utilization

(b) Upstream utilization

Figure 3.6: Downstream and upstream network bandwidth utilization by service type.
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gain insight into current STB network utilization in the presence of other services. The STB devices

in this study are connected to a router that can support a total of 304MBits/sec of downstream

traffic and 200MBits/sec of upstream traffic. Note that router capacity is a function of the number

of line cards and how the RF network is connected to the router. Generally, as more capacity

is required, additional router cards and/or partitioning is also required. Hence, specific device or

service bandwidth is usually a defined parameter during the design process.

Fig. 3.6 illustrates the downstream and upstream network utilization grouped by service. Cal-

culated statistics are as follows: The monthly set-top network bandwidth has a downstream mean

of 101Kbits/sec, standard deviation of 82Kbits/sec, and peak utilization of 638Kbits/sec. The

upstream mean is lower at 56Kbits/sec, standard deviation of 28Kbits/sec, and typical peak of

85Kbits/sec. There was however a onetime peak of 2Mbits/sec during a master reboot that forced

all devices to generate numerous concurrent requests. This can be seen as a spike in Fig. 3.6(b).

One other anomaly worth noting is the loss of activity shown on Fig. 3.6(a). This is simply a

two-day loss of data collection during a system outage. In the presence of all services, STB net-

work utilization remains low at less than 1% of total router bandwidth. In contrast, the cable

modem service utilizes over 94% of router downstream capacity and 91% upstream. This is con-

sistent with the dominate usage of cable modem services. Utilizing a STB device in the context

of a distributed concurrent system would require additional capacity planning. This could poten-

tially result in additional router scaling or network partitioning as a function of overall system

performance requirements.

3.5 Related Works

Related research in evaluating service provider managed, embedded devices such as set-top boxes

and broadband networks for their feasibility for non-traditional utilization has focused on overall

architectures and their energy efficiencies for large-scale computation. Recent work by Batista, et

al. [14] describes an architecture for harnessing under-utilized STB processor cycles for Internet

scale high-performance computation and volunteer computing initiatives such as SETI@Home [53].

However in this work, limited testing in terms of actual embedded device suitability is described,

because there is an underlying assumption that STB devices may voluntarily participate in the
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proposed architecture. From the perspective of total power consumption and energy efficiency,

Furlinger, et al. [38] analyze the current state of distributed computing on mobile and consumer

electronic devices reporting performance results against a 4-node Apple TV cluster. In contrast, the

contributions presented in this chapter emphasize the acquisition and measurement of device and

system parameters data that can directly support the propositions (that under-utilized processor

cycles are available for computation). The study in this chapter is similar to the works of Dischinger,

et al. [30] and Maier, et al. [88] in broadband network characterization, with the major difference

in measurement techniques. Whereas in this study the point of network measurement is through

statistics taken from broadband routing infrastructure, the other research works performed their

measurements from the perspective of the edge client devices.

3.6 Summary

The most common cable service provider managed embedded device, the set-top box, offers good

potential for computation beyond its primary functions. Results from Section 3.4 indicate that

STB processor and memory are largely under-utilized, and there is adequate bandwidth available

on typical broadband networks for heterogeneous computing. However, the devices utilized for these

experiments are based on 10 year old processor technology, and are, therefore, low in performance

and capacity compared to typical blade servers found in clusters, or even mobile devices in-use

today. Trends in next generation STB device SoC technology shall continue to narrow the gap in

raw performance, as embedded devices including set-top boxes, connected-TV’s, home-gateways,

and tablets make use of similar high-performance multi-core processors found in blade and clus-

ter server systems. Given these trends, and the experimental data illustrating the usage profiles of

managed broadband devices and systems, a high-performance heterogeneous computational system

based on the concept of broadband embedded computing can be realized by aggregating a large

network of embedded devices, designing the network for QoS correctness, and leveraging program-

ming models taken from distributed and Cloud computing environments. Chapter 4 describes the

implementation of a first-generation system to support this thesis: it demonstrates a heterogeneous

broadband embedded computing system utilizing a mixture of Sun Solaris blade servers, embedded

set-top devices and a subset of the MPI library for message passing software to solve a parallel
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Bioinformatic application problem.
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Chapter 4

First Generation System For

Broadband Embedded Computing

Utilizing Open MPI

4.1 Introduction

In Chapter 3 the set-top box a managed broadband embedded device, was shown to exhibit func-

tional charecteristics and utility in enabling its use within heterogeneous distributed computing

architectures. There exists then the opportunity to leverage the multitude of large scale Multiple

Service Operator (MSO) infrastructures to build a variety of distributed broadband embedded com-

puting platforms based on the distributed computing technologies described in Chapter 2 such as

MPI and MapReduce (See Sections 2.2.1 and 2.2.2). The composition of traditional cluster com-

puting with broadband embedded computing supports a mix of application workloads spanning

from bioinformatics, high-performance computing (HPC), social networking and even large-scale

distributed processing required for Big-Data problems in data mining and analytics. In this chap-

ter, I present a contribution that encompass heterogeneous computing, in the form of composing

traditional data-center computing clusters, with distributed embedded systems, in the form of a

first-generation system for broadband embedded computing and in conjunction with the Open

MPI message passing environment for distributed computing. An important aspect of this work
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is the implementation of a resource-constrained MPI library featuring a subset of point-to-point

communications primitives for embedded devices and a runtime environment that enables basic

interoperability between heterogeneous systems in the proposed system architecture.

As the performance of MSO-managed networks continues to grow and STBs start featuring

sophisticated multicore processors [34], I propose a heterogeneous system architecture that com-

bines a traditional Unix-based computer cluster with a broadband network of STB devices. To

further experimentally validate the potential of this idea, a complete prototype system is imple-

mented which represents a scaled-down version of the proposed architecture but can fully support

a representative MSO streaming-video service (Section 4.2).

To validate the feasibility of implementing a broadband embedded computing system, the dis-

tributed message passing computing programming model based on the MPI software is imple-

mented. The MPI implementation developed is an inter-operable subset of Open MPI which

can run on the STB real-time operating system and, therefore, can act as the middleware for the

heterogeneous system. The implementation and system integration is described in Sections 4.3

and 4.4. The first-generation broadband embedded computational system is tested by porting an

MPI-implementation of ClustalW, a computationally-intensive bioinformatics application that is

executed on both the computer cluster and the network of STBs (Section 4.5). ClustalW solves

the Multiple Sequence Alignment problem, which is one of the most important problems in Bioin-

formatics.

Experimental results show that it is possible to execute ClustalW efficiently on our system

while the STBs continue simultaneously to operate their primary functions, i.e. decode MPEG

streams for monitor display and run an interactive user interface, without any perceived degradation

in interactive performance comparing user-interface loading time or evidence of visual artifacts such

as macro-blocking (Section 4.6). Indeed, I observe that content services on the STBs are unaffected

by the presence of parallel computation due to the separation of content and application processing

functions within their micro-architectures. Major challenges, however, need to be addressed in

order to provide a highly-scalable heterogeneous runtime system and an efficient messaging-passing

environment for distributed computation with millions of embedded devices.

In the remaining sections, I discuss: feasibility, implementation challenges, and opportunities

in utilizing embedded STB devices for broadband embedded computing, heterogeneous parallel
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Figure 4.1: Block diagram of the complete prototype of the proposed heterogeneous system for

broadband embedded computing and parallel application execution.

computing, and distributed processing. The development and experimental results from testing

this system further supports the thesis claim that broadband embedded computing is a viable

computational system architecture for heterogeneous Cloud based computing systems.

4.2 System Architecture

Fig. 4.1 gives a detailed view of the prototype system designed and implemented as a scaled-down,

but complete and representative, version of the broadband embedded computational system for

execution of heterogeneous parallel applications that I envisioned. This is a distributed-memory,
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message-passing parallel computer that combines two functionally-independent clusters: a tradi-

tional Unix-based computing cluster with eight 4200 Sun machines (the Linux Cluster) and an

embedded set-top cluster with 32 Cisco 4650 devices (the Set-Top Cluster). The two clusters share

a common control server: the MPI Master Host. This server consists of a Sun 4200 processor that is

connected to the Linux Cluster and Set-Top Cluster through a pair of Cisco Gigabit Ethernet net-

work switches. The MPI Master Host initiates and typically coordinates all MPI processes across

the clusters. Parallel applications based on Open MPI can execute on either cluster independently

or on the whole system as a single large heterogeneous cluster.

The backbone network of the Linux Cluster is built using Gigabit Ethernet. Instead, the Set-

Top Cluster requires a broadband router for converting between the DOCSIS network [57] and the

Gigabit Ethernet backbone. The DOCSIS standard broadband-network technology for TCP/IP

over Radio Frequency (RF) cable is described in Section 2.4.1.1. Notice that each broadband

router can support over 10,000 STBs, thus providing large scale fan-out from the Linux Cluster to

the Set-Top Cluster.

All 4200 Sun machines of the Linux Cluster are configured with two 2.8 GHz AMD Opteron

dual-core processors, 16GB of system memory and run the Solaris 10 operating system. A Sun

5210 network attached storage array (NAS) provides 750GB of disk space using Sun NFS. The

NAS system is also dual-connected using Gigabit Ethernet in the same manner as the MPI Master

Host. This allows for a common directory structure and file access model for all processing nodes

including the STB devices through a data access proxy system. This is particularly important

for the execution of parallel MPI applications because each Open MPI host requires access to a

common file system repository.

The Set-Top Cluster consists of 32 Cisco 4650 STBs that are connected using a RF network

for data delivery using MPEG and DOCSIS transport mechanisms. The Cisco 4650 is a modern

STB that contains a 700MHz MIPS processor, a dedicated video and graphics processor, 128MB of

expandable system memory and many network transport interfaces including DOCSIS 2.0, MPEG-

2, and DAVIC [62]. Indeed an important architectural feature of modern STBs is the multiple-

processor design which allows the MIPS processor, graphics and video processors, as well as network

processors to operate in parallel over independent buses. For instance, this makes it possible for

user-interface applications to execute efficiently in parallel with any real-time video processing.
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The DOCSIS 2.0 TCP/IP and MPEG-2 transport stream interfaces are based on quadrature

amplitude modulation (QAM) protocols for transmitting and receiving signals on North Ameri-

can digital cable systems. DAVIC is a legacy 1.54Mbps interface predating DOCSIS and is used

only for start-up signaling during STB initialization. The DOCSIS 2.0 standard provides for an

inter-operable RF modem, based on TDMA protocols organized in a star topology connecting the

central router and the STB DOCSIS interface. Devices on DOCSIS share access to the network, as

arbitrated by the central router, and operate effectively at up to 38Mbps in the downstream direc-

tion (towards the STB) and 30Mbps in the upstream direction (towards the cluster). The MPEG-2

interface is primarily used for decoding video programs, but can also receive data delivered via the

Broadcast File System (BFS) service on a dedicated QAM frequency. In this prototype system the

BFS data delivery mechanism is used to deliver the embedded runtime environment to the STBs.

A number of additional devices are required for STB management, application and data delivery, as

well as video-content distribution. Indeed, the Set-Top Cluster is part of a scaled-down version of

a complete cable system that consists of two additional subsystems: (1) a subsystem that provides

STB management and control and (2) a collection of specialized devices for routing, transport, and

distribution that support MPEG video and data delivery and transfer of TCP/IP data between

the Gigabit Ethernet network and the RF set-top DOCSIS network.

As shown in Fig. 4.1, the management and control subsystem consists of a Sun 880 server,

which is responsible for the initialization, configuration, and delivery of broadcast applications and

data using its BFS carousel. Broadcast applications are STB executables that are simultaneously

available to all STB devices connected to the dedicated broadband network. A STB device tunes

to a specific channel frequency and receives the broadcast application or data of interest using a

proprietary Cisco communications protocol. The BFS data is sent from the central server, or head-

end, at regular cyclical intervals—hence the term carousel—over MPEG-2 directly into a QAM

device where it is modulated onto the RF cable plant at a specified frequency for STB reception.

For non-broadcast applications, a Sun 4200 is used as an Apache HTTP server that delivers ap-

plication executables and data in parallel to all requesting STBs through the DOCSIS TCP/IP

broadband network. Basic TCP/IP network services are provided by a Sun 4200 running DHCP

and TFTP. DHCP is used to assign an Internet address to each STB. TFTP is the primary method

for distributing configuration information. A video content channel using a single video source and
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Figure 4.2: STB embedded software stack.

a MPEG video-output generator is used for video display on all STBs. Interconnect between the

Set-Top Cluster and the Linux Cluster as well as RF transport for video and data is supported

by a number of specialized devices, including the Cisco 7246 UBR Router. For transmitting and

receiving DAVIC, DOCSIS and MPEG-2 data over the RF cable network, a set of QAM/QPSK

modulators and demodulators is shown along with a RF combiner/splitter module that connects

all devices together.

In summary, the prototype system described is representative of a real cable system

that allows the execution of high-performance applications on the embedded processors

of the set-top boxes under realistic operations scenarios. For instance, target applications

such as the MSA program described in Section 4.5 are executed on the embedded processor, while

the rest of the components in the STB, and particularly the MPEG video processing chain, are

busy providing streaming-video content. In fact, the experimental results for the MSA application

described in Section 4.6 were obtained while the STBs were simultaneously decoding a test set of

MPEG videos for display on a collection of monitors and running an MSO interactive user interface

with no perceived degradation of content display.
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4.3 Software and Middleware

Set-Top Box Embedded Software. Each Cisco 4650 set-top device runs a hybrid software

environment that consists of Cisco’s PowerTV middleware layered over a embedded real-time

operating system (RTOS) which is based on a Linux kernel (Fig. 4.2). All applications are written

to run on top of the PowerTV application program interface, a proprietary Cisco API, and not

on top of the Linux kernel. PowerTV itself consists of PowerCore, and PowerModules,

a set of device-independent libraries. The PowerModules libraries provide functionality for

communicating on the network, accessing applications or data from the BFS, tuning control such

as changing channels, managing MPEG transport streams, encryption services, a widget library

called PowerDraw for writing graphically rich applications, and a complete ANSI C library. In

the prototype system, the TCP/IP PowerModule, which is compliant with BSD sockets, is used

to implement the basic MPI send and receive routines as described in the next section.

While the Linux operating system and PowerCore resides in FLASH memory, all Power-

Modules are designed to be independent and downloadable over the network at boot time, or

on-demand, through dynamic instantiation much like a dynamic shared library available in Unix.

Additionally, there are special user-level processes such as the resident application manager that

control all application life-cycles associated to user-interface applications, communications with the

central services, as described in the previous section, and the overall STB user environment.

Open MPI System Software. The first prototype of the proposed Broadband Embedded

Computing system is based on the use of the Open MPI programming model (version 1.2). Open

MPI is an open-source implementation of the Message Passing Interface (MPI) standard for de-

veloping parallel applications that execute on distributed memory parallel cluster systems [100].

Open MPI is modular and configurable. It provides an extensible runtime environment called

ORTE and MPI middleware APIs to support robust parallel computation on systems ranging from

small mission-critical and embedded systems to future peta-scale supercomputers [39]. Open MPI

is based on the modular component architecture (MCA), a lightweight component architecture that

allows for on-the-fly loading of frameworks, component modules, and runtime selection of features

(including network device, OS, and resource management support), thus enabling the middleware

to be highly configurable at runtime. Fig. 4.3 illustrates the MCA layered component approach [39].

Among all the Open MPI frameworks, the OMPI and ORTE frameworks are of primary interest
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Modular Component Architecture (MCA)
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Figure 4.3: Open MPI component architecture.

because they support the point-to-point MPI operations and runtime process execution between

the Linux Cluster and the Set-Top Cluster.

The Open MPI framework (OMPI) includes the actual MPI API layer as well as the underlying

components necessary to implement the APIs. Consistent with the MCA, the MPI layer is actually

built on top of other management and messaging layers. These, for instance, handle point-to-point

messaging over TCP/IP, which supports the primary MPI APIs used in this work. In Open MPI

this is implemented using the point-to-point management layer (PML), the byte transfer layer

(BTL) and the BTL management layer (BML) [39]. PML handles the upper-level interface to the

MPI API layer as well as message fragmentation, assembly, and re-assembly. BML abstracts the

network transport layer by managing one or more BTL modules that support actual movement

of data over various network interfaces such as TCP/IP over Gigabit Ethernet, high-performance

Infiniband, or even a shared-memory multiprocessor systems executing MPI applications.

The Open Run Time Environment (ORTE) framework is primarily responsible for the MPI

environment resource discovery and initialization, process execution, I/O, and runtime control.

The execution of a parallel application is started by running the mpirun command which activates

an ORTE daemon process. This process contacts each MPI host in the cluster to initiate a local

peer ORTE process. During startup all ORTE processes participate in a resource discovery and
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eventually begin execution of the parallel application on all hosts that make up the cluster. ORTE

continues to coordinate the MPI application processes until the completion of its execution.

4.4 Porting Open MPI to STB Devices

In order to execute the target parallel application on our prototype system we developed an in-

teroperable subset of the Open MPI software infrastructure to run on the Set-Top Cluster and

interact with the full Open MPI 1.2 implementation running on the Linux Cluster. While trends

in embedded computing lead to continued improvements in computational capabilities with each

generation of STBs, currently these devices are still limited in terms of memory and processor

resources. Hence, an early design consideration was to determine the minimum subset of the Open

MPI API needed for developing a workload that would enable meaningful experimentation and

performance evaluation with some real parallel applications. After analyzing the complete MPI

specification and selecting the target application we determined that only the nine API functions

reported in Table 4.1 were necessary for our current purposes. While the first six API functions are

often sufficient to support many applications, the MPI Pack() and MPI Unpack() functions were

added because they are required for the target application, i.e. the MSA program discussed in

Section 4.5.

Leveraging the modularity and configurability of Open MPI we developed a library and run-

time layer that is an inter-operable, compatible implementation of a subset of the OMPI and ORTE

frameworks to run on the Cisco 4650 STB embedded software stack illustrated in Fig. 4.2. We in-

cluded the following inter-operable components of the OMPI point-to-point framework: the MPI

layer supporting the nine APIs listed above, a PML component implementation, and a BTL com-

ponent for TCP/IP messaging over either Gigabit Ethernet or the DOCSIS broadband network.

None of the other OMPI component frameworks were supported in the first prototype implemen-

tation. We combined the implementation of the API of Table 4.1 with the OMPI and the Open

MPI ORTE software frameworks into a single PowerTV application library cv mpi that is loaded

on the STB during boot time. Parallel applications written for the PowerTV API running on

the STB access this library at runtime in a way similar as MPI developers would load the dynamic

shared Open MPI library libmpi.so on a Unix system.
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API Function Description

MPI Init() Initialize the MPI execution environment

MPI Finalize() Terminate MPI execution environment

MPI Send() Basic blocking point to point send operation

MPI Recv() Basic blocking point to point receive operation

MPI Wtime() Return elapsed time on the calling processor

MPI Comm rank() Return the rank of the calling process in

the communicator

MPI Comm size() Return the size of the group associated with

a communicator

MPI Pack() Pack a datatype into contiguous memory

MPI Unpack() Unpack a datatype from contiguous memory

Table 4.1: The set of supported MPI API functions.

The set-top ORTE module supports the minimum ORTE protocol transactions to launch, pass

command arguments to, and terminate the given MPI parallel application process. For instance,

when a parallel MPI application built using the API functions of Table 4.1 is started on the master

Unix Sun 4200 host of our prototype system by running the command line “mpirun -np 33 <args>

<MPI program>”, the ORTE process running on the MPI Master Host contacts the 32 ORTE-

compliant processes running on the corresponding 32 STBs. Each of these processes utilizes the

DOCSIS TCP/IP network to download the parallel application on demand. Once the initialization

of the runtime environment is completed, the MPI application starts its execution in parallel on

the Linux Cluster and the Set-Top Cluster.

Limitations of the First-Generation Implementation. In order to execute the MPI appli-

cations launched from the Linux Cluster, the STB devices require an inter-operable implementation

of the ORTE framework. By analyzing the standard ORTE framework we identified a number of

challenges in terms of protocol overhead and fault tolerance. ORTE is a complex framework: a

large portion of the implementation is designed for device discovery, exchange of process environ-

ment, and network information, occurring between all host devices. This creates scaling issues

as the Set-Top Cluster size increases from thousands to millions of computational devices. As an

illustration of the ORTE runtime overhead, testing of our experimental implementation revealed

that ORTE requires a minimum of 165 bytes as measured by tcpdump per ORTE node-map data
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structure. This list is sent to all hosts in the system during the ORTE initialization phase as part

of a group “allgather” operation. This is acceptable for a typical cluster network of a few hundred

or thousand nodes but it would not scale to a network of five million or more STBs because over

1GB of information would be sent to each STB, a quantity that exceeds the memory resources

available in today’s STBs. Hence, for our prototype system, we implemented a light-weight ORTE

framework that relies on a statically-configured environment and consists of the minimal protocol

that is sufficient to inter-operate with the full Open MPI environment of the Linux Cluster.

A second challenge to system scalability is the reliable execution of MPI applications. In many

cases, the possible failure of a single MPI application would result in the termination of all processes

within the process group. A large-scale system with millions of devices will likely have frequent

failures. Hence, for future development of large-scale systems based on our architecture we plan to

incorporate solutions such as those proposed as part of Open MPI-FT [78].
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4.5 Multiple Sequence Alignment

To evaluate the feasibility of our heterogeneous parallel system as well as its performance in com-

parison to a more traditional computer cluster we chose Multiple Sequence Alignment (MSA), one

of the most important problems in bioinformatics. Since MSA is an NP-hard problem, in practice

most of its instances require the use of approximation algorithms such as the popular ClustalW

program [114]. There are various parallel versions of ClustalW, including ClustalW-MPI [85]

and Mason (multiple alignment of sequences over a network) [26; 32]. We started from the source

code of Mason, which is based on the Mpich implementation of MPI, and we ported it on our

system, which uses Open MPI, so that we could run it on both the Linux Cluster and the Set-

Top Cluster. This allows us to run multiple experiments to compare the parallel execution of

different instances of the MSA problem on different system configurations of each cluster as dis-

cussed in Section 4.6. In all cases, the output of the Mason program produces a final multiple

sequence alignment along with detailed timing measurements for each stage of the computation.

Next, we describe the approximation MSA algorithm used by ClustalW and its Mason parallel

implementation.

Solving MSA with ClustalW. MSA is the problem of aligning biological sequences, typ-

ically DNA sequences or protein sequences, in an optimal way such that the highest possible

number of sequence elements is matched. Given a scoring scheme to evaluate the matching of se-

quence elements and to penalize the presence of sequence gaps, solving the MSA problem consists

in placing gaps in each sequence such that the alignment score is maximized [26]. The ClustalW

approximation algorithm consists of three phases. Given an input of N sequences, Phase 1 com-

putes the distance matrix by aligning and scoring all possible pairs of sequences. For N input

sequences, there are N ·(N−1)
2 possible optimal pair-wise alignments that can be derived with the

dynamic programming algorithm of Needleman and Wunsch [96] as modified by Gotoh [41] to

achieve a O(n2) performance, where n is the length of the longest sequence. The resulting dis-

tance matrix is simply a tabulation of score metrics between every pair of optimally-aligned se-

quences. Phase 2 of the algorithm processes the distance matrix to build a guide tree, which

expresses the evolutionary relationship between all sequences. The guide tree can be derived with

the neighbor-joining clustering algorithm by Saitou and Nei [106]. Phase 3 produces the final

multiple sequence alignment of all N original sequences by incrementally performing (N − 1) pair-
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Figure 4.4: Parallel execution of ClustalW algorithm.

wise alignments in the order specified by the guide tree (progressive alignment algorithm) [37;

114].

Parallel MPI Implementation of MSA. Mason is a parallel implementation of ClustalW

for execution on distributed-memory parallel systems using MPI [26; 32]. It proceeds through nine

steps (Fig. 4.4):
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Figure 4.5: Alternative partitions of distance matrix.

1. The master host processor reads the input file containing N sequences and allocates an N×N

distance matrix structure that is used to hold all optimal alignment scores between any two

sequences. The master also partitions the distance matrix by dividing up the sequences among

the P worker processors to distribute the workload, network, and resource requirements during

the alignment step.

2. The master sends all required sequences to the P worker processors based on the distance

matrix partitioning scheme computed in Step 1. Each processor has a fraction Nf of the total

number of N sequences to align.

3. The P worker processors compute their
Nf ·(Nf−1)

2 alignments in parallel using the pairwise

alignment dynamic programming algorithm.

4. All worker processors send their resulting alignment scores back to the master in parallel.

5. After receiving all scores and completing the distance matrix the master builds the guide tree.

6. The master computes and sends an alignment order along with the respective sequences

required for progressive alignment to all worker processors.

7. All worker processors perform progressive alignment in parallel.

8. All worker processors send their partial multiple alignments back to the master in parallel.

9. The master progressively aligns the remaining multiple alignments to produce the final result.
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Processor Overall Execution Time (Sec) - Floating Point

Type # S500-L1100 S100-L1500 S500-L200 S200-L300 Avg.

Sun 4200

1 5129 830 426 162

8 1580 245 157 55

Speedup 3.2 3.4 2.7 2.9 3.1

Cisco 4650

8 51989 8185 4256 1769

32 16617 2651 1485 714

Speedup 3.1 3.1 2.9 2.5 2.9

Table 4.2: Overall execution times and speedups for two different system configurations of each

cluster (Floating Point.)

Processor Overall Execution Time (Sec) - Fixed Point

Type # S500-L1100 S100-L1500 S500-L200 S200-L300 Avg.

Sun 4200

1 4666 757 383 146

8 1427 228 146 51

Speedup 3.3 3.3 2.6 2.9 3.0

Cisco 4650

8 29732 4924 2575 1090

32 9507 1629 908 441

Speedup 3.1 3.0 2.8 2.5 2.9

Table 4.3: Overall execution times and speedups for two different system configurations of each

cluster (Fixed Point).

Experimental results by Datta and Ebedes show that 96% of computational time is spent in the

derivation of the distance matrix, i.e. in the first three steps of Fig. 4.4, while the remaining time is

split between the other two phases [26]. While the distance-matrix computation is the main target

for parallelization, maximizing the achievable speedup depends on the strategy that is used to

partition the matrix among the P worker processors. A possible approach consists in sending all N

sequences to all processors so that each processor computes exactly N ·(N−1)
2P pairwise alignments.

This approach, which is illustrated in Fig. 4.5(left), distributes evenly the workload among the

processors, but has the highest message-passing cost since all processors receive all N sequences,

whether they are used or not. Alternative partitioning strategies have been proposed to reduce

the communication cost [26]. The strategy shown in Fig. 4.5(right) assigns a square section of the

distance matrix to most of processors, while some processors receive one of the smaller sections

along the diagonal. This method reduces the amount of message passing in exchange for an unequal

workload distribution. For small input sizes the first approach outperforms the second because the

communication costs are still relatively low and all processors are fully utilized [26]. However, for
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(a) Linux Cluster (float) (b) Set-Top Cluster (float)

Figure 4.6: Relative parallelization speedup: Linux Cluster vs. Set-Top Cluster (floating-point

computation).

aligning large sets of long DNA or protein sequences, which consist of perhaps thousands or even

tens of thousands of sequences, the second approach may be more convenient because the resulting

distance matrix can be partitioned such that communication costs and processor memory resources

are minimized.

4.6 Experimental Results

Using the MSA problem as the target application, we completed a set of experiments on the

prototype system of Fig. 4.1. While our system allows us to analyze various combinations of devices,

in these experiments we focused on comparing different configurations of the Linux Cluster, which

consists only of Sun 4200 nodes, with different configurations of the Set-Top Cluster, which consists

only of Cisco 4650 STBs. Specifically, we considered four Linux Cluster configurations with 1, 2, 4

and 8 Sun 4200 acting as worker processors and four Set-Top Cluster configurations with 8, 16, 24

and 32 STBs acting as worker processors. Every configuration uses the same Sun 4200 processor as

MPI master host. In each experiment we run Mason on a particular input data set that consists

of a given number of DNA sequences.

Generation of Data Sets. Given an input file that specifies a set of transition probabilities,

the Rose sequence generator tool returns sets of either protein or DNA sequences that follow an

evolutionary model and, therefore, are more realistic than purely random-generated sequences [112].
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(a) Linux Cluster (fixed) (b) Set-Top Cluster (fixed)

Figure 4.7: Relative parallelization speedup: Linux Cluster vs. Set-Top Cluster (fixed-point com-

putation).

Using Rose’s standard input settings we generated four sets of DNA sequences, which present

different size and complexity:

• S500-L1100: 500 DNA Sequences with 1100 base pairs.

• S100-L1500: 100 DNA Sequences with 1500 base pairs.

• S500-L200: 500 DNA Sequences with 200 base pairs.

• S200-L300: 200 DNA Sequences with 300 base pairs.

In general, larger sets of longer sequences are computationally more complex than smaller sets

of shorter sequences. The algorithm partitions N sequences into
Npart·(Npart−1)

2 tasks, each requiring

the pairwise alignment ofMpart sequences. Hence, an upper bound on the computational complexity

of MSA is given by O((Npart)
2 · (Mpart max)2), where Mpart max denotes the longest sequence in

the set of Mpart sequences making up any given sequence partition Npart. In our collection the

S500-L1100 set is the most computational complex while the S200-L300 set is the least complex.

The other cases lie somewhere in between.

Floating-Point vs. Fixed-Point Operations. As part of our experiments, we analyzed also

the performance impact of converting floating-point operations in Mason to fixed-point operations

for each possible configuration of both clusters. This analysis is important because current STBs

do not feature a floating-point hardware unit and only support floating point operations through

emulation in software. Hence, estimating how much of the current performance gap is due to the lack

of this unit allows us to better extrapolate the performance that could be obtained when running
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(a) Linux Cluster configurations (b) Set-Top Cluster configurations

Figure 4.8: Execution time breakdown for each of the four configurations of the two clusters.

other algorithms, which necessarily require floating-point precision, on future clusters of next-

generation of embedded devices, which are expected to contain floating-point units. We focused

our effort on converting to fixed-point operations only the code in the first phase of the algorithm

(distance-matrix computation) because it accounts for over 90% of the overall computation time.

The conversion was achieved by replacing float variables with long integers and multiplying by a

constant factor sufficient to maintain five digits of precision in all scoring routines comprising the

pairwise-alignment algorithm. Results were converted back to floating point from fixed-point values

by dividing all fixed-point score values by a constant factor prior to populating the distance matrix.

In terms of accuracy, we found less than 1% difference in results beyond five digits of precision.

Execution Time Breakdown. Figures 4.8(a) and 4.8(b) report the execution time breakdown

of the floating-point version of Mason with the S500-L1100 input data set for each of the four

configurations of the Linux Cluster and Set-Top Cluster, respectively. The results for the fixed-point

version as well as for the other data sets are similar. In both cases, as expected, the distance-matrix

computation accounts for well over 90% of the overall execution time regardless of the number of

processors. This number varies from 1 to 8 for the Linux Cluster and from 8 to 32 for the Set-Top

Cluster. These results are in line with similar results presented in the literature for other parallel

implementations of ClustalW [32; 26; 85] and confirm the validity of the parallelization efforts

discussed in Section 4.5.

Parallelization Speedup. Table 4.2 and Table 4.3 reports the overall execution times in

seconds obtained running both the floating-point version and the fixed-point version of Mason

with each input data set on two configurations of the Linux Cluster (consisting of 1 and 8 Sun 4200
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Data Set 32 STB vs. 1 Sun 4200

(float) (fixed) Gain (%)

S500-L1100 3.24 2.04 37

S100-L1500 3.19 2.15 33

S500-L200 3.49 2.37 32

S200-L300 4.41 3.02 31

Table 4.4: Comparing a Set-Top Cluster with 32 boxes to 1 Sun 4200: gain due to fixed-point

computation.

processors respectively) and two configurations of the Set-Top Cluster (consisting of 8 and 32 Cisco

4650 STBs respectively). For instance, for the case of the floating-point version of Mason, the data

set for the hardest problem (S500-L1100) is processed in 5129s by a single Sun 4200 while a cluster

with eight Sun 4200 processors takes only 1580s (a speedup of 3.2). Meanwhile, for this problem, a

cluster of eight Cisco 4650 devices need 51989s but this time is reduced to 16617s for a cluster of 32

devices (a speedup of 3.1). The speedup values are similar across the four data sets and regardless

of the program version (floating-point or fixed-point) with an approximate average value of 3X

for the Linux Cluster and 2.9X for the Set-Top Cluster. Figures 4.6 and 4.7 illustrate the relative

speedups due to parallelizations normalized to the slowest computation time for each data set as we

increase the number of nodes for each of the four configurations of the Linux Cluster and Set-Top

Cluster for both types of computation, respectively. Notice that while the execution time does not

decrease linearly as we increase the number of Sun processors (or Cisco devices), an important

result is that across all the various data sets both the Linux Cluster and Set-Top Cluster exhibit

similar scaling and performance improvements, with comparable speedup due to parallelization in

both platforms.

How Many Set-Top Boxes to Make a High-Performance Processor? The first row of

Table 4.4 reports the ratio of the execution time of the fastest Set-Top Cluster configuration (32

Cisco 4650) over the execution time of the slowest Linux Cluster configuration (1 Sun 4200) for

the various data sets. For instance, this ratio is 16617/5129 = 3.24 when the two clusters run the

floating-point version of Mason with the S500-L1100 data set. In other words, 32 STB devices take

3.24 as much time as a single Sun processor to perform the same task. Or, again, we could say that

one high-performance processor is equivalent to 104 STB devices. On the other hand, this ratio
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drops to 2.04 when the fixed-point version of Mason is used for both clusters 1, an improvement of

37% as shown in the remaining rows of Table 4.4. This translates in a new equivalence gap factor

of 66 STBs per high-performance processor. Finally, notice that the frequency of the Sun 4200

processor is four times as fast as the frequency of the embedded processor in the Cisco 4650 STB.

Hence, accounting for this frequency ratio, the equivalence gap factor would become 16.5.

4.7 Lessons Learnt

Impact of Communication. In comparing the relative platform speedups we observe that the

communication cost or overhead due to MPI is not a factor on either the Linux Cluster and Set-Top

Cluster for our experimental system. This is due to the small size of the experimental broadband

network and limited number of embedded devices. In a larger broadband network with many

STBs, a key consideration will be assuring ample network bandwidth and minimal latency to each

embedded device. MSOs are currently supporting millions of embedded devices over DOCSIS

networks and plan to continue improving overall network performance through ongoing protocol

enhancements that will include the following:

1. Quality-of-service (QoS) enforcement on a per-application basis assuring minimum bandwidth

allocations.

2. Increased network performance in both directions to achieve over 300Mb/s downstream and

120Mb/s upstream through channel bonding. Channel bonding is part of the DOCSIS 3.0

standard which increases network performance by concatenating multiple channels into one

larger virtual channel [48].

3. Making best use of the DOCSIS multicast and broadcast capabilities wherever possible.

Additionally, MSOs are improving the DOCSIS broadband network by continuing to reduce

the number of embedded devices per DOCSIS channel. With fewer devices per channel, additional

1Notice that using the fixed-point computation for the MSA problem is faster for both clusters, but is relatively better

for the Set-Top Cluster because the STBs do not have a floating-point hardware unit. Naturally, there are other important

scientific problems that necessarily require floating-point operations. Our approach to parallel computing will be applicable to

these problems only when STBs will feature a floating-point unit, which is expected to happen soon [34].
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access slots within the TDMA scheme are available, thus increasing the throughput for all devices

on that channel. There are, however, challenges wherever collective communications are part of the

underlying computation because DOCSIS communications among set-top, as all DOCSIS devices,

occur through centralized broadband routers. This introduces additional latencies for peer-to-peer

communications and, therefore, must be accounted for within the application design of collective

communications.

4.8 Related Works

While the utilization of large scale networks of embedded devices for heterogeneous computing

within a managed, dedicated system cloud raises new challenges and opportunities in system scala-

bility and performance, the idea of harnessing distributed embedded systems, particularly over the

Internet, is not new. A number of initiatives have focused on utilizing volunteer PC hosts or game

consoles for solving difficult problems such as those found in Computational Biology. For instance,

Folding@Home [50] and GridRepublic [63] were formed to leverage the enormous number of idle

processor cycles available on the Internet. In these projects, specialized software is downloaded

to participating PCs or game consoles, such as the PlayStation 3 featuring the IBM Cell multi-

core processor, with units of computation dynamically offered by subscribers typically through a

screensaver application or background agent running on the host device. In this model, when the

agent is available it receives tasks assigned by a master server to be processed on a best-effort

basis. Results are sent back to the master server when the task is completed. This system offers

scalability on the order of the number of PCs or game consoles active on the Internet at any give

time. Its success shows the potential of harnessing distributed embedded devices that are widely

deployed by the tens of millions units today. Still the fact that the “device participation” is not

predictable ultimately limits throughput guarantees, maximum task concurrency, and service-level

agreement between actors.

Most related works in the area of integrating message-passing middleware into embedded devices

have focused on reducing the size of the MPI stack. Lightweight MPI (LMPI) is based on a thin-

client model where the MPI API layer is implemented on top of a thin-client-message protocol

which communicates with a proxy server that supports a full MPI stack [7]. LMPI client requests
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are routed through the proxy server, which acts on behalf of one or more MPI thin-client user

processes. A key benefit of the LMPI approach is the elimination of the need for an operating

system on the embedded device. Other approaches attempt to reduce the size of the MPI stack

through refactoring or are based on a bottom-up implementation of a minimal MPI stack, as in the

case of Embedded MPI (eMPI) [91]. Similarly to eMPI we use a bottom-up approach to implement

the minimal MPI API set. But in our proposed system each Cisco STB contains a modern real-

time operating system that can support a native MPI implementation. Also, while previous work

in executing MPI on embedded devices has focused on small test kernels, from an application-

viewpoint our work is closer to the work of Datta [32; 26] and Li [85] because we evaluate our

parallel system with a real workload.

4.9 Summary

A proposed heterogeneous platform architecture for distributed computing, in particular broadband

embedded computing, that leverages traditional Unix cluster technologies in combination with a

broadband network of embedded set-top boxes (STB) is presented and contributed as unique work

in the area of heterogeneous computing and embedded systems. An implemention of a complete pro-

totype system that fully represents a scaled-down version of the proposed architecture including an

inter-operable subset of Open MPI to integrate the systems. A parallel version of the ClustalW

bioinformatics application is ported on the system by completing the necessary optimizations to

reduce the memory requirements for execution on the STBs and improve parallel workload data

distribution. Experimental testing established that it is possible to execute ClustalW on the

prototype system while the STBs continue simultaneously to operate their primary functions, i.e.

decoding MPEG streams for monitor display and running an interactive user interface, without any

perceived degradation. Further, experimental results show that scaling up the system by adding

more STBs to the embedded cluster gives equivalent performance gains as scaling up the number of

processors in a traditional Unix cluster. While the proposed platform architecture has the potential

of scaling to millions of units, a number of critical challenges in the area of protocol overhead and

lack of complete interoperability when implementing the MPI ORTE runtime environment and

MPI library for embedded devices is identified. Addressing these challenges is my next goal and
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will be presented in Chapter 5.

The presented work however validates the feasibility and motivation of developing a more com-

plex system infrastructure for Broadband Embedded Computing. Given the technology trends in

MSO broadband networks and in hardware/software solutions for STBs, as well as other embedded

devices operating on service provider networks, this study demonstrates that to leverage a broad-

band network of embedded devices for Broadband Embedded Computing is not only an interesting

proposition for supplying a low-cost and energy-efficient computing platform, but can support both

computationally-intensive service-provider workloads, heterogeneous Cloud services, and emerging

consumer-driven applications that require a computational workload distributed accross data-center

clusters and a network of embedded devices.
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Chapter 5

Second Generation System For

Broadband Embedded Computing

Utilizing Open MPI

5.1 Introduction

In this chapter a second-generation heterogeneous system for broadband embedded computing

based on distributed message passing and Open MPI is implemented. The implementation improves

upon the system described in Chapter 4 in a number of key areas including:

1. A new contribution in architecture and implementation whereby runtime environment scala-

bility is made possible through a generalized virtualization framework model that maps and

abstracts embedded devices within the processor space of data-center class server hosts; The

new framework also includes a contributed caching technique for minimizing embedded device

memory requirements and reducing network latency during Open MPI runtime environment

and system-wide application process initialization.

2. A full implementation of the MPI library primitives, including collective operations.

3. A larger experimental system implementation that now includes 128 set-top devices with

enhanced memory and processor performance compared to those devices utilized in the system
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of Chapter 4.

Additionally, new experiments to fully characterize the second-generation system and results

are presented.

The second-generation system prototype implements a small-scale version of the proposed larger

scale MSO service-provider system where a Linux Cluster features nine high-end blade servers and

the Embedded Cluster now consists of 128 STBs. The two clusters are interconnected through

the broadband network of a complete head-end cable system (as described in Section 5.2). While

the cable system remains fully operational in terms of its original function (e.g. by distributing

streaming-video content to the STBs which render it to their displays), it is possible to simulta-

neously and effectively execute other parallel applications demonstrating the STB as a broadband

computing resource by leveraging the additional computation resources that are available in the

STB multi-core processors. Specifically, in the second-generation system, a complete port of the

Open MPI software library to the set-top box optimized for embedded devices is implemented. As

discussed in Section 5.3, this porting posed important challenges in terms of resource management

and scalability. These challenges are addressed by performing a virtualization of the embedded

processors that allows them to transparently inter-operate with the computer cluster using the

message-passing model (Section 5.4).

To evaluate the resulting second-generation system and its utility for broadband embedded

computation using Open MPI, various experimental results were carried out as described in (Sec-

tion 5.5). First, it is demonstrated that the system can execute the complete set of benchmarks for

point-to-point and collective operations that are part of Intel MPI IMB benchmarks. Then, in order

to gain further insight into the relative performance scaling of the Embedded Cluster versus the

Linux Cluster, we run two important parallel applications: ClustalW-MPI (The bioinformatic par-

allel sequence alignment application discussed in Section 4.5) and Tachyon (a parallel ray-tracing

application). The experimental results confirm the important convergence trend between tradi-

tional computing and embedded computing using Open MPI and support the case for broadband

embedded computing.

The chapter is organized as follows: First, I describe the heterogeneous system architecture that

includes a Linux Cluster and complete next-generation broadband cable system with contemporary

embedded set-top devices. Next, I describe an important contribution of this dissertation: a model
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and implementation of embedded processor virtualization for integrating a distributed embedded

system into a Linux computational cluster. These contributions consist of server and embedded

client software implementations which I refer to as the Open Embedded Runtime Environment,

or OERTE fully described in Section 5.4. Section 5.4 concludes with a description of the second-

generation Open MPI Embedded libraries significantly expanded to include complete support of

MPI version 2.0 primitives for full inter-operability with MPI standard version 2.0 compliant hosts.

The remaining sections discuss the experimental workloads: IMB, ClustalW-MPI, and Tachyon,

used for evaluating the system, followed by an analysis of test results. Finally, I conclude with

related work and a summary for this chapter.

5.2 The System Architecture

Fig. 5.1 provides a complete view of the second-generation heterogeneous system architecture for

broadband embedded computing system that we designed and implemented. It is composed of four

main subsystems.

Computer Cluster. The Linux Cluster consists of a traditional network of nine blade servers

and Network Attached Storage (NAS). Each blade has two quad-core 2.0GHz Xeon processors

with 32GB of memory and 1Gb/s Ethernet interface. Each processor runs Debian Linux. One

of the nine blades acts as Master Host, i.e. is dedicated to the Open MPI runtime management

and is the master server for the Linux Cluster and the Embedded Cluster host nodes. These use

NFS to mount the 2TB Sun storage array which provides a remote common file-system partition

to store both applications and data for each of the executing MPI processes across both clusters.

The master system also hosts the virtualization software to map the embedded processors into the

runtime environment of the Linux Cluster.

Embedded STB Cluster. The Embedded Cluster consists of 128 Samsung SMT-C5320 set-

top boxes (STB) that are connected with a radio-frequency (RF) network for data delivery using

MPEG and DOCSIS transport mechanisms. The Samsung SMT-C5320 is an advanced (2010-

generation) STB featuring a dual-core SoC with a Broadcom MIPS 4000 class processor, a floating-

point unit, dedicated video and 2-D/3-D-graphics processors with OpenGL support, 256MB of

expandable system memory, 64MB Flash memory, and many network transport interfaces (DOC-
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Figure 5.1: The proposed heterogeneous system architecture for broadband embedded computing.

SIS 2.0, MPEG-2/4 and Ethernet). Indeed an important architectural feature of modern STBs is

the multi-core architecture design which allows the MIPS processor, graphics/video processors, and

network processors to operate in parallel over independent buses. Hence, user-interface applications

(such as the electronic programming guides) can execute in parallel with any real-time video pro-

cessing. Indeed, it is the growing parallel-computing capability of the emerging SoC architectures for

STBs that enables the execution of applications outside the realm of interactive-TV, thus opening

the opportunity for large-scale broadband embedded computing that we are pursuing with our work.

Digital Cable Head-End. This is responsible for controlling the Embedded Cluster devices

and providing all interactive television services including: electronic program guide, user-interface,
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video-on-demand (VOD), and the delivery of MPEG-2 videos. Our digital head-end supports the

current generation of STBs based on the Cablelabs Tru2way standard [6] and is a scaled-down

but complete implementation of a modern digital DOCSIS-based broadband cable system in-use at

today’s largest MSOs. As shown in Fig. 5.1, its core components include:

1. The Tru2way Object Carousel for MPEG-2 delivery of Embedded Cluster applications and

Tru2way-standard STB signaling.

2. Two Linux hosts for TCP/IP DHCP and TFTP network services, which are required for

assigning system-wide IP addresses and DOCSIS cable-modem configuration data to all Em-

bedded Cluster devices.

3. A HTTP application/data server that supports interactive television services via TCP/IP

over the DOCSIS network.

4. Support for MPEG-2 video sources that are multiplexed and grouped into digital channels,

including a single channel for VOD streams.

5. A RF distribution and combining network that utilizes a Cisco QAM modulator device to

translate digital input signals from the carousel, multiplexed MPEG sources, and VOD server,

into modulated QAM256 RF frequencies, which can be combined with the DOCSIS router

RF output to feed the broadband network of STBs.

DOCSIS is a standard broadband-network technology for TCP/IP over RF cable that is de-

scribed in Section 2.4.1.1 [57]. It provides for an inter-operable RF modem, based on TDMA

protocols organized in a star topology connecting the central router and the STBs. The SMT-

C5320 DOCSIS 2.0 TCP/IP and MPEG-2 transport stream interfaces use quadrature amplitude

modulation (QAM) protocols for transmitting and receiving signals on North American digital cable

systems. Devices on DOCSIS share access to the network, as arbitrated by the central router, and

operate effectively at up to 27Mbps in the downstream direction (towards the STB) and 27Mbps

in the upstream direction (towards the cluster). The MPEG-2 interface is primarily used for de-

coding video programs, but can also receive applications or data delivered via the Tru2way Object

carousel (OC), a broadcast file system service on a dedicated QAM frequency. This data is sent

from the head-end at regular cyclical intervals—hence the term carousel—over MPEG-2 directly
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into a QAM device where it is modulated onto the RF cable plant at a specified frequency for STB

reception. Broadcast applications are STB executables or data that are simultaneously available to

all STBs connected to the broadband network. A STB device tunes to a specific channel frequency

and receives the application/data of interest according to the Tru2way protocol. The carousel

may also deliver Tru2way signaling and other forms of data over DOCSIS as multicast group mes-

sages following the DOCSIS Set-top Gateway, or DSG protocol [4]. In the prototype system this

data-delivery mechanism is used to control the STB boot-up and user-interface applications.

For non-broadcast applications, a Linux application/data server is used as an Apache HTTP

server that delivers application executables and data in parallel to all requesting STBs through the

DOCSIS TCP/IP broadband network. As mentioned previously, basic TCP/IP network services

are provided by a Linux host running DHCP and TFTP. DHCP is used to assign an Internet address

to each STB. TFTP is the primary method for distributing DOCSIS configuration information. A

video-content channel using a single video source and a MPEG video-output generator is used for

video display on all STBs.

Network. The system network is a managed dedicated broadband network which is divided

into three IP subnets to isolate the traffic between the DOCSIS-based broadband Embedded Cluster

network, the Linux Cluster network, and the digital cable head-end. Its implementation is based

on two Cisco 3560 1Gb/s Ethernet switches and one Cisco 7246 DOCSIS broadband router. The

upper switch in Fig. 5.1 interconnects the 8 blades along with the NAS and master host. The lower

switch aggregates all the components on the head-end subnetwork. The DOCSIS subnetwork is

utilized by the Embedded Cluster whose traffic exists on both the Linux Cluster and the digital

head-end network. The broadband router has 1Gb/s interfaces for interconnection to the Linux

Cluster and head-end networks and a broadband interface for converting between the DOCSIS

network and the Ethernet backbone. Each broadband router can support over 16,000 STBs, thus

providing large scale fan-out from the Linux Cluster to the Embedded Cluster. While in a normal

cable system the Linux Cluster and the digital cable head-end do not necessarily need to share

traffic, we connected them over Gigabit Ethernet because this enables, for instance, the execution

of MPI collective operations among the Linux Cluster and Embedded Cluster nodes in a seamless

way.
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Figure 5.2: The Open MPI modular component architecture (MCA).

In summary, while being representative of a real cable system, our prototype system

allows us to execute MPI application processes simultaneously on both the Linux Clus-

ter blades and the Embedded Cluster processors under realistic operations scenarios.

For instance, we can execute multiple workloads such as the IMB benchmarks described in Sec-

tion 5.5.2, the MSA application described in Section 4.5, and the Ray Tracing application described

in Section 5.5.3 on the embedded processor, while the rest of the components in the STBs, and

particularly the MPEG video processing chain, are busy providing streaming-video content. A key

element of our system is the managed broadband network, which not only enables the heterogeneous

system implementation, but it offers also a dedicated and massively-scalable infrastructure that can

be leveraged for broadband embedded computing. In fact, the experimental results for the MSA

application described in Section 4.6 were obtained while the STBs were simultaneously decoding a

test set of MPEG videos for display on a collection of monitors and running an MSO interactive

user interface with no perceived degradation of content display.
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5.3 Open MPI: Basics and Challenges

Open MPI is an open-source implementation of the Message Passing Interface (MPI) library for

development of parallel applications on distributed memory computer architectures [100]. Open

MPI is the result of merging and combining three main previous MPI implementations and is

currently among the most popular libraries for high-performance computing applications. As il-

lustrated in Fig. 5.2, the Open MPI design is centered on the Modular Component Architecture

(MCA), which provides a flexible and configurable environment for design-time development and

run-time installation of various software frameworks [39; 100]. An MCA framework is a construct

that is created for a single, specific tasks and provides a public interface. Examples of tasks are:

the launch of processes on the local host, the execution of collective operations, and forwarding

input-output from MPI application processes. A framework uses the MCA services to find and load

components at run-time. An MCA component is a self-contained implementation of a framework’s

interface, which can be inserted into the Open MPI code base at run-time and/or compile-time.

An MCA module is an instance of a component. The component modules are self-contained soft-

ware units that export well defined interfaces and can be dynamically selected and composed with

other modules at run-time.

Open MPI is a large project with many different sub-systems. Fig. 5.3 shows the three major

ones, which build on each other according to a layered and structured model. OMPI is the top

layer and contains the actual implementation of the MPI application program interface. The Open

Runtime Environment (ORTE) is responsible for managing the launch and runtime lifecycle of

the parallel processes of a given MPI application. Both OMPI and ORTE rely on the underlying

Open Portability Layer (OPAL), which contains the utility and “glue” code needed to integrate

the higher-layer component modules with the native (host) operating system.

The Open Runtime Environment (ORTE). In the Open MPI 1.4.2 release, the ORTE

subsystem follows the Open MPI MCA architecture and has 14 distinct frameworks, which of-

fer a flexible and highly-configurable runtime environment by supporting various tasks including:

managing process mapping or affinity, launching of MPI processes onto physical processing cores,

managing of MPI cluster-wide process lifecycle during execution, error messaging, redirection of

process I/O, and process-wide group communications facilities. Thanks to the MCA, ORTE frame-

work components may be replaced with different implementations, all dynamically configurable at
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Figure 5.3: The three Open MPI subsystems and the primary ORTE modules.

runtime. Fig. 5.3 shows the primary ORTE modules required in our virtualization implementation

described in Section 5.4.2. The execution of a MPI job is initiated by running the mpirun command

on a computer in the cluster, which therefore becomes the host node process (HNP). As the newly-

designated master node, the HNP initiates one or more ORTE Daemon (ORTED) processes on each

client host node supporting ORTE, through a remote execution protocol (e.g. RSH or SSH), or

a specialized process-launcher communication protocol. Each ORTED process communicates with

the Process Lifecycle Management (PLM) module whose functions include controlling the actual

mapping of MPI processes to the processing cores and managing their complete execution. For

each process, this includes runtime initialization, application launch, signaling, message delivery,

and termination. The PLM performs these operations in conjunction with the ORTE Daemon

Local Launch System (ODLS), a module which defines an interface contract for each of them and
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launches local processes on the MPI host node. Finally, the ORTE framework uses grpcomm, a group

communication module, to distribute message information among the peer ORTE client hosts and

the HNP.

Challenges in Porting Open MPI to Embedded Devices. One important message opera-

tion required to launch any Open MPI application is the sharing of per-process module information,

or module exchanges (modex). This is performed by grpcomm which executes an allgather() opera-

tion as follows: each ORTE client gathers local process information and sends it to the HNP, which

assembles the information for all processes running on every client and then re-distributes it to all

clients. The operation requires fairly high network bandwidth and fairly large memory on each

host. Further, these requirements scale up with the number of hosts in the cluster. This represents

a significant scaling challenge for the effective utilization of Open MPI in a heterogeneous comput-

ing system that aims at leveraging millions of embedded devices as the one that we envision. For

instance, if we assume a typical modex data-structure of 500 bytes, and a cluster with P hosts and

N MPI processes per host, then each host must store P ∗N ∗ 500 bytes of data. In a large system

where P can be of the order of millions, even if we have a small number N of processes, the mem-

ory requirements to store modex data could easily exceed 1GB per embedded device. This is an

unrealistic requirement for today’s embedded SoCs. But even if future SoC architectures were able

to accommodate it, it would require to consume a significant data-transfer time simply to copy into

the host memories, thus undermining the performance gains from parallelizing the computation.

In the next section we discuss how we addressed these challenges. In particular, we leveraged the

Open MPI MCA architecture to modify the functionality of the ORTE subsystem by replacing

the ORTE ODLS component module with a new ODLS module. This new software framework is

called OERTE, standing for Open Embedded Runtime Environment. The new module is interfaced

with a newly-developed embedded version of the ORTE framework to support the virtualization of

the embedded processors. This allows us to decouple the embedded-process modex management so

that all ORTE modex operations are performed at the server side (as described in Section 5.4.2).
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5.4 Embedded Processor Virtualization and Embedded Software

Optimization

This section describes the characteristics of the embedded STB software environment and con-

tributed model implementation towards solving a fundamental problem in launching a large num-

ber of MPI processes across a broadband network of distributed embedded devices such as STBs

for heterogeneous computing. In particular, two new implementations are described; 1) the new

OERTE server and client software implementation of ORTE for MPI application execution across

embedded devices that supports the virtualization of embedded processors into the Linux Clus-

ter and, 2) a complete implementation of Open MPI software libraries, optimized for resource

constrained embedded devices.

5.4.1 Embedded STB Software Environment

The STB software environment is based on an embedded version of Linux with a reduced footprint

of only 16MB. This was obtained by minimizing the size of the required kernel, utilities, and asso-

ciated libraries, which are resident in Flash memory. For example, the embedded Linux operating

system does not include facilities for desktop window systems, development tools, multiple shell

environments, or utility packages typical of a full-package Linux distribution. The shell, provided

by BusyBox [56], consists of over 100 common Linux and GNU utilities, whose implementation

is highly optimized for embedded devices, requiring only 400KB. The kernel, based on the Linux

v2.6 distribution [66], includes support for threads, BSD socket interfaces, network services (NFS,

DHCP, Telnet, etc.), and standard GCC libraries. This is sufficient for developing and executing

sophisticated multi-threaded Linux applications and MPI applications.

The STB initialization process occurs as follows: during power-on or a reboot, the STB Flash-

based boot-loader starts the Linux kernel. This executes all initialization scripts found in the

/etc/init.d and /etc/rc.d directories. All network interfaces are configured using DHCP and

the remote file-systems are NFS-mounted from the NAS Storage. To support the development

of interactive television applications, the STB also initializes a Java Virtual Machine and a set

of Java class instances. After the execution of all STB initialization scripts, a start-up script in

/etc/rc.local runs a special Linux application which provides a runtime-environment manager
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Figure 5.4: Embedded device virtualization.

required for the STB interoperation with the Linux Cluster Open MPI environment. The runtime

environment application OERTE is described further in Section 5.4.2. The OERTE client executes

as a background daemon process listening for OERTE server side command and control signalling

to manage the launch and lifecycle management of all STB executing MPI applications.

5.4.2 Embedded Processor Virtualization

A critical step and key contribution in the design of a heterogeneous system for broadband em-

bedded computing is the virtualization of the STB embedded processors in the context of the

Open MPI ORTE and the TCP/IP networking environment. First, embedded processors in the

Embedded Cluster network are mapped into the processor domain of the Linux Cluster system.
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Figure 5.5: Virtualization of the STB embedded processors.

Second, the executions of the Open MPI processes running on the Embedded Cluster are mapped

into the Linux Cluster. This was accomplished by implementing those software components which

are necessary to support the mapping of the runtime and lifecycle management for these Open

MPI processes into the standard Open MPI runtime software environment running on the Linux

Cluster. Embedded Processor virtualization is illustrated in Fig. 5.4. Fig. 5.5 illustrates the high-

level architecture of the resulting implementation in the context of a heterogenous cluster. On the

right-end side, K embedded processors are mapped into a Linux host, which contains J processors.

From the external viewpoint of other Linux nodes in the Linux Cluster, the host system becomes a

heterogeneous multi-processor system with a total of N = J+K processing cores. The host system

is virtualized in the sense that the Linux Cluster nodes are unaware of the Embedded Cluster and

simply view the virtualized host as a single N -processor Open MPI compute node. As a result, the
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overall heterogeneous system equipped with K additional virtualized embedded processors may be

utilized in any of three possible configurations in the experimental system:

1. A 129 node heterogeneous cluster consisting of a single Linux master node plus 128 Embedded

Cluster processors.

2. A Linux Cluster consisting of the single Linux master node and eight Linux compute nodes.

3. A heterogeneous cluster consisting of the Linux master node, the eight Linux Cluster nodes,

and the 128 Embedded Cluster nodes.

In order to complete the embedded-processor virtualization, the STB process runtime manage-

ment environment is integrated into the Open MPI process runtime environment by implementing

the OERTE framework described next. The OERTE framework provides protocol transformation

and adaptation between the two heterogeneous runtime environments. Specifically, a new version

of the Open MPI ORTE called Open Embedded Runtime Environment (OERTE) was developed.

It consists of four major components: 1) a new ODLS module, 2) an OERTE server, 3) an OERTE

embedded client that runs on embedded STB devices, and 4) Open MPI Embedded, an optimized

Open MPI library for the resource-constrained embedded STB devices.

The New ODLS Module. As shown in Fig. 5.3, the original ORTE contains a ODLS module,

which is responsible for: the launch/termination of an Open MPI process on the local host, various

signaling, and the managing of modex-entry communications between the launched process and

the ORTED during the initial phases of its execution. In particular, to manage a local process the

ODLS external interface contract defines four primary functions: the process launch is initiated

with Launch local procs, which specifies how many processes (along with their input arguments)

must start on the computer host; abnormal termination is obtained by sending Kill local procs

to all executing processes; Linux process signals, such as SIGSTOP are passed to all executing MPI

processes with Signal local procs; and, finally, the modex data-exchange operations are performed

with Deliver message.

In this implementation we replace the standard ODLS module with a New ODLS Module at

runtime, as shown in Fig. 5.6. The new module implements the primary functions by forwarding

all requests over a TCP/IP socket interface to a new external OERTE server. This is a component
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Figure 5.6: The OERTE server architecture.

which performs the ODLS functions in the context of the distributed embedded system environment

and returns all responses in a manner that is equivalent to the original ODLS module function

implementation as if these functions were executed locally. Response messages are sent from the

OERTE server to the New ODLS Module over a second TCP/IP socket. In this manner the New

ODLS Module provides a bi-directional bridge between the standard ORTE environment operating

on the Linux Cluster and the external OERTE server, which is optimized to manage the Embedded

Cluster runtime environment.

Open Embedded Runtime Environment (OERTE) Server. The OERTE server is a

stand-alone multi-threaded Java server that acts as a runtime management server for the Embed-

ded Cluster. It executes alongside the ORTE process and transforms ODLS function calls into

operations that can be executed on the Embedded Cluster. As shown in Fig. 5.6, the OERTE

server architecture includes an ODLS Interface module, which listens on the sender socket for the

command functions from the New ODLS Module. As these are received, they are converted into
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an internal Java object representation that is passed to the Runtime Manager. This works in con-

junction with the Command & Control Interface module to coordinate the sequencing of message

deliveries over TCP/IP to the client daemons running on the Embedded Cluster nodes. Responses

from these processes are handled in a similar way: a client initiates a TCP/IP connection to the

server and delivers response messages to the Command & Control Interface; these are converted

back by the Runtime Manager to the appropriate ODLS-response format for transmission to the

New ODLS Module for further processing before returning to the PLM module and finally the

ORTED process.

The OERTE server has also a subsystem for generation and processing of modex data, which

contains all the Internet address and port number information associated with the Linux Cluster

and Embedded Cluster devices. This information is required by MPI processes to communicate with

one another during execution of point-to-point or collective communication operations. The modex

data is shared with all MPI processes through a modex-exchange operation that is coordinated

among all cluster ORTED processes and the Host Node Process (HNP). Recall the HNP is the host

system that initiates all MPI processes across a computational cluster when the mpirun command

is executed.

In order for the Embedded Cluster to inter-operate with the Linux Cluster, the OERTE server

must provide Embedded Cluster modex data to the ORTED process running on the same host in a

manner that is transparent to all other Linux Cluster hosts as well as the HNP. This is achieved as

follows. First, during OERTE server initialization, a configuration file that defines the Embedded

Cluster network parameters is loaded into an in-memory data-structure buffer which is modeled

after the original modex data structure. When the modex data associated to all the virtual processes

(i.e. the processes running on the embedded devices) is requested by the ORTED process, the New

ODLS Module makes a request to the OERTE server, which simply returns the information loaded

in the data-structure buffer. This is then forwarded to the ORTED and delivered to the HNP, which

aggregates all modex data from all hosts running ORTED in the heterogeneous cluster. The modex

exchange process is completed when the HNP sends all the data from all nodes in both the Linux

Cluster and the Embedded Cluster to each ORTED process. In the case of the Embedded Cluster,

however, this information is delivered to the OERTE server, which stores it in a cache memory

where it can be accessed by the processes running on the STBs through an on-demand caching



CHAPTER 5. SECOND GENERATION SYSTEM FOR BROADBAND EMBEDDED
COMPUTING UTILIZING OPEN MPI 107

Figure 5.7: The software architecture of the OERTE embedded client.

mechanism. This mechanism is implemented in the OERTE embedded client process running on

the STBs.

OERTE Embedded Client. To complete the OERTE virtualization framework, the OERTE

embedded client was developed as a complete new replacement of the Open MPI ORTE mod-

ule optimized for embedded devices. It consists of an application-client daemon that runs as a

background process on the embedded Linux operating system. It is responsible for accessing MPI

applications locally or from remote services, such as NFS-mounted file systems, and provides the

runtime execution environment on the STB. This includes a number of functions: process launch,

delivery of modex data and process signals, re-direction of I/O from the executing MPI application
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to the OERTE server, and process termination. With an approximate size of 32KB, it utilizes a

relatively small amount of the STB memory resources.

Fig. 5.7 shows the software architecture of the OERTE embedded client. The main process

is started at STB boot-time from a standard Linux rc.local boot script and executes in the

background continuously waiting for command and control signalling messages from the OERTE

server. This main process forks a sequence of three threads which are executed asynchronously by

all sub-systems: 1) a Process Launch Manager; 2) an Application Loader; and 3) a Modex Data

Manager.

The Process Launch Manager is responsible for handling command and control protocol com-

munications with the OERTE server. It manages the MPI application lifecycle by processing

commands from the OERTE server to launch, deliver signals to, and terminate applications. It

also accesses the Open MPI application from the STB-resident memory (as stored by the Ap-

plication Loader) and starts each MPI application by executing a fork and a Linux system call.

All applications are child processes of the Process Launch Manager, which may deliver Linux sig-

nals and can support redirection of application I/O as required. The Application Loader thread

is responsible for accessing and bringing into the STB memory the intended MPI application as

determined by the Process Launch Manager thread. The specific method for loading an applica-

tion is abstracted within the Application Loader, e.g. applications can be accessed independently

and concurrently from the STB local Flash memory or retrieved from a remote file system. As

future delivery methods become available the Application Loader can be extended. Finally, a sep-

arate Modex Data Manager thread manages a small in-memory cache to support the Open MPI

application modex-data look-up in coordination with the OERTE as shown in Fig. 5.6.

Open MPI Embedded Library. An important contribution of this work is the development

of an optimized, reduced-footprint version of the Open MPI library to minimize the use of STB

memory resources following an approach similar to the one used by McMahon et al. for the mpich

mpi software distribution [91]. Specifically, we removed those frameworks and modules which are not

applicable in the STB environment by modifying the Linux build tools appropriately. For example,

we removed the Byte-Transfer-Layer (BTL) modules which support delivery of messages over one

or more network interfaces other than TCP, such as Infiniband or shared memory. Similarly,

we removed modules for parallel I/O and vendor-specific debugging modules. Finally, thanks to
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the embedded processor virtualization discussed above, we could remove also most of the ORTE

subsystem. In terms of size reduction, our optimized embedded version is about 32% smaller than

the full Open MPI library, which is about 3.1MB. While this represent a significant memory saving

for the current STB generation, as the memory capacity of embedded systems continues to grow

we expect that this optimization will become less necessary.

In this implementation the ORTE framework was significantly reduced since the embedded

processor runtime environment is no longer based on it. Indeed, we replaced ORTE with two

new modules. First, the OERTE embedded client replaced the original ORTED. Second, the

ORTE module for group communications (grpcomm) was refactored to support cache-based modex-

lookup operations of the OERTE client instead of the ORTE collective operation method. This

is a key optimization to overcome the scaling challenge (discussed in Section 5.3) of deploying

Open MPI applications on a large-scale distributed embedded system. Whereas the standard

ORTE implementation relies on a group collective allgather operation to exchange modex data

among all processes resulting in a memory storage requirements of the order of O(N ∗ P ), in our

implementation the embedded client requires O(1) memory thanks to the fixed size modex-caching

subsystem. In this subsystem, all modex look-up operations are made to a local cache whose entries

are co-managed by the OERTE server and embedded client processes.

5.5 Experimental Results

To validate the prototype system as well as the new Embedded Open MPI implementation OERTE

server and client system, three sets of experiments with different workloads taken from MPI bench-

marks, bioinformatics and Ray Tracing were completed. The goal of the experiments with the IMB

benchmark suite is to demonstrate that the virtualization approach enables the interoperability

between a Linux Cluster and Embedded Cluster to run any Open MPI application. The goal of

the experiments with Ray Tracing and MSA is to evaluate the scaling potential of the system as a

parallel execution platform.
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5.5.1 Experimental Setup

Recall from Fig. 5.1 that the Linux Cluster consists of 9 Linux blades with dual 2Ghz quad-core

Xeon processors (one blade acting as master host) while the Embedded Cluster consists of 128

Samsung SMT-C5320 STBs each with a single dual-core 400MHz Broadcom processor. In our

experiments, we executed each workload test using all 8 blades plus the master on the Linux

Cluster and all 128 embedded STBs on the Embedded Cluster. For each experiment on the Linux

Cluster each workload is repeatedly executed by scaling the number of MPI processes (from 8,

through 16 and 32, to 64) while evenly distributing them across all Xeon cores. On the Embedded

Cluster, each workload is repeatedly executed by scaling the number of MPI processes (from 8 to

128) and distributing them with a one-to-one mapping on the 128 STBs (i.e. each STB runs at

most one MPI process).

5.5.2 IMB MPI Benchmarks

The IMB benchmark suite developed by Intel consists of three parts (IMB-MPI1, IMB-MPI2, and

IMB-IO) and provides an efficient way to measure the performance of the main MPI functions [19].

IMB enables the measurement of collective communications performance of a distributed com-

puting cluster based on MPI. The following IMB-MPI1 benchmarks were executed which allows

testing the important single-transfer, parallel-transfer, and collective communication operations:

ping-pong, send-recv, exchange, allreduce, reduce, reduce-scatter, allgather, gather, scatter,

bcast, alltoall, barrier. In particular, ping-pong, measures startup latency and throughput for

a single-transfer message exchange between two processes. Parallel-transfer benchmarks, such as

send-recv and exchange, measure the throughput of concurrent messages sent or received by a

particular process in a periodic chain. The collective benchmarks measure the time needed to com-

municate among a group of processes in different patterns. We run each benchmark with various

message sizes (in bytes): 64, 1K, 8K, 32K, 128K, and 256K. The tests were executed on both the

Linux Cluster and the Embedded Cluster varying the number of MPI processes from 8 to 64 across

all 8 nodes in the case of the Linux Cluster and 8 to 128 MPI processes across all 128 STB devices in

the case of the Linux Cluster. The following experiments were executed from the IMB benchmarks

listed in Table 5.1.

Each bar diagram in Fig. 5.8 shows the execution time as function of the number of processors
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Figure 5.8: IMB test results.

and message size. For each test on both clusters, as we increase the number of processors the

execution time increases, except for ping-pong and bcast on the Linux Cluster where it depends

only on the message size. In ping-pong, the communication involves only two computer nodes and

the average execution times over all message sizes are 122ms and 0.9ms for the Embedded Cluster

and the Linux Cluster, respectively. This large difference is due to the performance gap between

the Linux Cluster Gigabit Ethernet network and Embedded Cluster DOCSIS network. In fact, the
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ping-pong send-recv exchange

allreduce reduce reduce-scatter

allgather gather scatter

alltoall bcast barrier

Table 5.1: IMB Experiments.

reported bandwidth for this benchmark averages between 45MB/s and 50MB/s for Ethernet but

only 0.39MB/s for DOCSIS. The reported execution time of bcast (a broadcast communication

test) on the Linux Cluster remains approximately constant as we vary the number of computer

nodes (averaging 3.7s across all message sizes) and it increases only as we increase the message size:

for 64B messages the average execution time is 0.07ms while for larger 256KB message becomes

10ms. In contrast, the execution times of bcast for the Embedded Cluster increase as we increase

both the number of nodes (from 840ms for 8 STBs to 7.1s for 128 STBs) and the message size

(from 200ms for 64B messages to 13.4s for 256KB message, averaged across all node counts). The

difference in performance and the sensitivity to the node number between the Linux Cluster and

Embedded Cluster are due not only to the lower bandwidth of DOCSIS but also to the highly-

optimized implementations of this Open MPI collective operations, which the Linux Cluster nodes

can access.

For the rest of the results of Fig. 5.8, the execution time increases directly proportional to the

number of nodes and the message sizes. In all cases, it is far less on the Linux Cluster than on

the Embedded Cluster (approximately by a factor of 100) and the reasons are similar as above:

first, Gigabit Ethernet offers 100 times the bandwidth in comparison to DOCSIS (and significant

higher for communications between the Xeon cores that are on the same chip); second, the Linux

Cluster can run implementations of such collective Open MPI operations as gather, scatter, and

allgather that are highly optimized.

Besides these facts, however, the important conclusions of these experiments are: (1) the vali-

dation that Embedded Open MPI Implementation running on the Embedded Cluster can execute

correctly all IMB MPI benchmarks and (2) the demonstration that the performance of the collective

MPI operations scales consistently across both the Linux Cluster and the Embedded Cluster envi-

ronments. The next sets of results show how for those Open MPI applications that do not benefit

for high-performance implementations of collective operations the performance gap between the
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Figure 5.9: Ray-Tracing results: (a) Embedded Cluster; (b) Linux Cluster.

two clusters is much smaller and decreases with the scaling of the parallel applications and cluster

size.

5.5.3 Parallel Ray Tracing

The Tachyon Ray-Tracer is a parallel application workload to evaluate the scaling performance

of our system on a parallel image-processing application. Ray tracers are used to render scene

images in games, 3-D modeling/visualization, and virtual reality applications [86]. They are well

suited for parallelization thanks to their high data parallelism; each pixel in the rendered image can

be processed independently and, therefore, different pixels can be assigned by the master host to

different computer nodes [111]. The workload is embarrassingly parallel, where a single master host

partitions the work associated to rendering an image into pixel blocks that are then assigned to

multiple worker processing nodes that do not require any communications with one another, other

than the master host. The Tachyon Ray-Tracer renders an image by using a scene description

library of primitives as input data, which it parses into an internal scene object database. The scene

description input-data contains constructs that define the location and viewing direction of camera

and light sources; the locations, shapes, and various types of different objects such as polygons,

spheres, cylinders, boxes, and triangles making up a scene [86]. Other parameters such as image

resolution can also be specified.

The Tachyon rendering process constructs an output image by decomposing the full image

viewing plane, or grid of pixels. into blocks. They are then assigned to computer nodes for ren-
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dering, along with the scene object database which is fully replicated on each processor node. The

rendering computation occurs in parallel as each processing node operates on a different assigned

block of pixels. For each processing node, its assigned block of pixels are colored based on the light

sources and objects defined in its local copy of the scene data-base. Each computer node has a

local copy of the scene database. The ray-tracing process on each node proceeds as follows. To

compute the correct color for each pixel, a ray is shot from the camera through the viewing plan

into the scene [86]. The ray is then checked against the scene data-base list of objects to determine

the first that it intersects. Next, the light sources are checked to see if any of the light rays reaches

that intersection. If so, the color to be reflected is calculated based on the color of the object and

the color of the light source. The resulting color is assigned to the pixel where the camera ray and

the viewing plane intersect. This process is iterated until all pixels in the assigned image block are

processed. Each processor node sends its assigned block of ray-traced image to the master host

where the final scene output file is generated. In our experimental setup, we used a scene input file

(SC98) from the Tachyon distribution and rendered it in two resolutions (512x512 and 2048x2048)

to account for two different computational complexities. Similar to our other experiments, we exe-

cuted the Tachyon application on the Linux Cluster and Embedded Cluster increasing the number

of MPI processes across available computer or embedded device nodes. On the Linux Cluster we

execute across all 8 Linux hosts, plus the master host, increasing the number of MPI processes from

8, 16, 32, and 64 in each experimental iteration. We execute the experiments in a similar manner

on the Embedded Cluster, however we increase the number of MPI processes to 128 utilizing all

128 embedded STB devices.

As shown in Fig. 5.9, both clusters exhibit improved performance as the number of MPI pro-

cesses grows. For the high-resolution case, as we increase the number of nodes from 8 to 64 the

execution time improves from 9.3s to 7.07s (a speedup of 1.3) on the Linux Cluster and from 120.7s

to 47.9s on the Embedded Cluster (thus resulting in a higher speedup of 2.5, which becomes 5.3

with 128 STBs). For the 512x512 resolution, as we go from 8 to 64 nodes, the execution time goes

from 0.58s down to 0.44s on the Linux Cluster and from 6.9s to 1.27s on the Embedded Cluster

(and down to 1.01s with 128 STBs). For the Linux Cluster the performance gain is flat and the

execution time is I/O bounded, thus resulting in overall speedup of just 1.3, with the parallel por-

tion of the application having a speedup of 4.3. Instead, the Embedded Cluster overall speedup is
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Figure 5.10: Impact of sequence size/length on performance scaling.

Processor Overall Execution Time (Sec)

Type # S100-L1500 S200-L300 S300-L200 S500-L200 S200-L500 S500-L1100 S1500-L100 Avg.

Linux

1 692 129 62 341 289 4130 1687

64 43 15 8 51 21 326 730

Speedup 16.1 8.6 8.1 6.7 13.7 12.7 2.3 9.7

C5320 STB

8 3257 693 319 1652 1522 20854 5834

128 391 113 44 216 154 2340 1246

Speedup 8.3 6.1 7.2 7.7 9.8 8.9 4.7 7.3

Table 5.2: Experiments with Multiple Sequence Alignment: Overall execution times and speedups

of each cluster.

5.5 (6.9 with 128 STBs), with its parallel portion having a speedup of 7.7 (14.9 with 128 STBs).

In summary, the Embedded Cluster benefits more than the Linux Cluster when the ray-tracer

image computation is large, requiring more pixel calculations computed in a data-parallel model.

Instead, the Linux Cluster is penalized when the ray-tracer image computation is small, as more

time is spent performing I/O relative to computation. This effect is illustrated in Fig. 5.9(b) where

the Linux Cluster execution time for the 512x512 case remains flat as we increase the number of

processing nodes. In contrast, Fig. 5.9(a) shows that for the 2048x2048 case, the Embedded Cluster

exhibits linear scaling as we increase the number of STBs.
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Figure 5.11: MSA execution time across all benchmarks: (a) Embedded Cluster; (b) Linux Cluster.

5.5.4 Multiple Sequence Alignment

This is the fundamental problem in bioinformatics that was presented in detail in Section 4.5:

instances of DNA or protein sequences must be optimally aligned so that the highest possible

number of their elements match. Given a scoring scheme to evaluate this matching and penalize

the presence of sequence gaps, to solve MSA consists in placing gaps in each sequence to maximize

the alignment score [26]. Since MSA is an NP-hard problem, an approximation algorithms such

as ClustalW is typically used [114]. We run the Mason parallel ClustalW implementation using

MPI [26; 32], which proceeds as follows: the master host partitions the N input sequences among P

worker processors; these perform pair-wise alignment on their set of sequences in parallel; alignment

scores are sent back to the master which constructs the guide tree and distributes the computed

guide order along with associated sequences where the workers then compute a partial MSA; finally,

the workers send their partial multiple alignments back to the master, which performs the final stage

of progressive alignment. We used Rose, a tool that produces synthetic sets of DNA sequences

which follow an evolutionary model [112], to generate 7 sequences of various length and base pair.

In the sequel, the encoding Sx-Ly denotes a data set of x DNA sequences with y base pairs (e.g.

S100-L1500 means “100 DNA Sequences with 1500 base pairs”).

Multiple Sequence Alignment Parallelization Speedup. Fig. 5.11 shows the results of

executing the parallel MSA application on the Embedded Cluster and Linux Cluster. Again, as the

number of MPI processes increase from 2 to 64 across the Linux Cluster nodes, and 8 to 128 across

the Embedded Cluster nodes, the execution time decreases consistently for all the seven synthetic
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test sequences.

Table 5.2 reports the overall execution times for all sequences for two particular configurations

of each cluster (1 and 64 processors for the Linux Cluster, and 8 and 64 STBs for the Embedded

Cluster) together with the relative speedups. In most cases the Linux Cluster has higher speedup.

This is expected given the benefits of high-performance Xeon processors and Gigabit Ethernet (as

verified with the IMB benchmarks). In two cases (sequences S500-L200, S1500-L100), however,

the Embedded Cluster outperforms the Linux Cluster in terms of speedup: as shown in Fig. 5.10,

it exhibits higher relative performance gains as we increase the number of sequences, when the

average sequence length is relatively short. This is due to the data-parallelism portion (aligning

partitioned N ·(N−1)
2 sequence permutations independently) of the MSA algorithm, which benefits

a cluster with a large number of nodes. In contrast, the Linux Cluster gives higher performance

gains for longer sequences as their processing requirements has complexity bounded by O(n2), thus

favoring the higher performance blade servers when the number of sequences is small compared to

their length. However, Fig. 5.10 shows that in moving from 64 to 128 STBs the Embedded Cluster

actually manages to complete the application execution in a time that is shorter that the time

taken by the Linux Cluster with only two blades.1 This suggests that an Embedded Cluster with

sufficient processing nodes is suited for a wider range of data-intensive, parallel applications where

very large data-sets must be processed.

Discussion. As we evaluate these experimental results (and particularly the IMB ones), if we

factor out any performance gain advantage of the Embedded Cluster due to the data-parallelism of

the workloads, it is clear that differences in network performance have a significant impact on the

overall execution time. As we look to further improve our system, a number of factors including

physical network and software architecture must be considered to reduce these differences. In

terms of physical network, the Embedded Cluster system was tested on a lab environment (where

contention exists) that did not include the use of QoS parameters to manage bandwidth allocations.

The DOCSIS standard has facilities for managing and prioritizing bandwidth on a per device or

1As one considers the significance of obtaining the same performance of two blade servers with a cluster of over

64 STBs, it should be kept in mind that each blade features 64-bit processors running at a clock frequency which is

five times higher than the clock frequency of the 32-bit processor of the STB! In other words, for certain classes of

Open MPI applications the gap between the two cluster is being reduced.
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application basis. While this may reduce contention, the physical network is still bounded by a

maximum upstream and downstream bandwidth of 27Mb/s. To overcome this limitation, future

DOCSIS 3.0 networks will use channel bonding to obtain higher bandwidth up to 340Mb/s. Further

performance improvements are possible for certain communication operations that make natural

use of broadcast and multicasting techniques.

Trends in STB Hardware and Software. As discussed in Chapter 2, the performance of

embedded devices continues to improve with each new generation. We expect this trend to continue

as consumer-driven applications and services are becoming ubiquitous across multiple screens, both

mobile and at home. For instance, the Apple iPad contains more computing power than most

workstations of just a few years ago. The large commoditization and shrinking performance gap

between the most powerful processors and the embedded consumer-electronic devices is a powerful

force behind the concept of broadband embedded computing that is envisioned in this dissertation.

Future generations of our system will utilize these new emerging devices while continuing to improve

the communication architecture and targeting new applications and workloads.

STB cost considerations. STB costs continue to drop, however, at $100 to $500 per-device,

represent a significant expense to cable system operators. Approximately 10% to 15% of STB de-

vices are replaced each year with new devices, due to failures or damage. This ongoing replacement

results in a continuous progression of STB device capabilties and performance. Additionally, cable

operators recoup STB capital outlays through regulated leasing of equipment to subscribers. In

this manner, broadband operators continue to operate and manage both STB devices and their

broadband network while economically distributing large numbers of STBs to subsribers.

5.6 Related Works

There are a number of recent efforts on the virtualization of mobile devices for grid computing [15;

76]. This work focuses on the utilization of virtualization to enable the transparent integration

of embedded computing and managed broadband networks with data-center class server computing

systems for distributed computation based on the message-passing model.

Related works such as LMPI and eMPI described methods for integrating message-passing

middleware into embedded devices by reducing the size of the MPI stack [7; 91]. Similarly to LMPI
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and eMPI, we used a top-down approach to minimize the MPI framework and eliminate unnecessary

software modules, resulting in a reduced memory library foot-print. In this work, however, each

STB contains a modern real-time Linux operating system that can support a complete native MPI

implementation enabling the elimination of unnecessary software modules while still maximizing

functionality. Also, while previous work in executing MPI on embedded devices has focused on small

test kernels, we can run complete application that use of a rich set of MPI operations, including

collectives.

Google designed and deployed a massively-parallel system comprised of commodity dual-core

PCs running Linux combined with its custom Map-Reduce framework for parallel computing [28].

This platform is distributed across many data-centers and was estimated in size at over 450,000

systems [36]. A possible future large-scale version of our proposed architecture would have impor-

tant differences with the Google platform, including the use of a broadband network of embedded

devices instead of a network of clusters of PCs and the use of a hybrid MPI and Map-Reduce

application model which is today an active area of research.

5.7 Summary

A second-generation heterogeneous distributed system architecture for broadband embedded com-

puting using Open MPI that is fully interoperable and provides scalable process launch within the

Open MPI ORTE runtime environment is presented. Key contributions in this work include a new

method to integrate networks of embedded processors with computer clusters through a software

virtualization framework for large-scale application process launching called Open Embedded Run-

time Environment or OERTE. This enables embedded processors to transparently inter-operate

with computer clusters using the message-passing model. The second-generation prototype is im-

plemented and evaluated with three sets of experiments to validate its operations and scaling

potential. The experimental results indicate that the performance of the system is impacted by the

existing broadband DOCSIS network, which is not optimized for Open MPI collective operations.

Future work is required in this area. Chapter 7 presents a solution to improving the communication

performance of broadband embedded computing systems for certain broadcast classes of collective

operations across broadband networks. The experimental work presented, however, does demon-
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strate that the second-generation system is already capable of delivering significant performance

gains for some classes of Open MPI applications. This suggests a wealth of opportunity in leverag-

ing broadband embedded computing for heterogeneous Cloud system applications, especially those

that are data-intensive or data parallel in nature.
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Chapter 6

Broadband Embedded Computing

System For MapReduce Utilizing

Hadoop

6.1 Introduction

Chapters 4 and 5 described two broadband embedded computing framework implementations

based around the Open MPI message passing model for distributed parallel computing, which is

predominant within scientific and parallel computing application domains. However, as the growth

in the amount of data created, distributed and consumed continues to expand at exponential rates,

systems built to support the MapReduce programming model are seeing a surge in interest to

address computational requirements surrounding the Big Data phenomenon.

According to a recent research report from the International Data Corporation, the amount

of digital information created and replicated has exceeded the zettabyte barrier in 2010 and this

trend is expected to continue to grow “as more and more embedded systems pump their bits

into the digital cosmos” [22]. In recent years the MapReduce framework has emerged as one of

the most widely used parallel computing platforms for processing data on very large scales [82].

While MapReduce was originally developed at Google [28], open-source implementations such as

Hadoop [51] are now gaining widespread acceptance. The ability to manage and process data-
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intensive applications using MapReduce systems such as Hadoop has spurred research in server

technologies and new forms of Cloud services such as those available from Yahoo, Google, and

Amazon.

Meanwhile, the Information Technology industry is experiencing two major trends. On one

hand, computation is moving away from traditional desktop and department-level computer centers

towards an infrastructural core that consists of many large and distributed data centers with high-

performance computer servers and data storage devices, virtualized and available as Cloud services.

These large-scale centers provide all sorts of computational services to a multiplicity of peripheral

clients, through various interconnection networks. On the other hand, the increasing majority

of these clients consist of a growing variety of embedded devices, such as smart phones, tablet

computers, and television set-top boxes (STB), whose capabilities continue to improve while also

providing data locality associated to data-intensive application processing of interest. Indeed, the

massive scale of today’s data creation explosion is closely aligned to distributed computational

resources of the expanding universe of distributed embedded systems and devices. Multiple Service

Operators (MSOs), such as cable providers, are an example of companies that drive both the rapid

growth and evolution of large-scale computational systems, consumer and business data, as well as

the deployment of an increasing number of increasingly-powerful embedded processors.

This ongoing work in developing platforms for broadband embedded computation is motivated

precisely by the idea that ubiquitous adoption by consumers of embedded devices and the combina-

tion of the technology trends in embedded systems, data centers, and broadband networks opens the

way to a new class of heterogeneous Cloud computing for processing data-intensive applications. In

particular, in this chapter I present an implementation of broadband embedded computing system for

MapReduce utilizing Hadoop as an example of one such systems. Its potential application domains

include: ubiquitous social networking computing, large-scale data mining and analytics, and even

some types of high-performance computing for scientific data analysis. In particular, the chapter

presents a heterogeneous distributed system architecture which combines a traditional cluster of

Linux blade servers with a cluster of embedded processors interconnected through a broadband

network to offer massive MapReduce data-intensive processing potential (and, potentially, energy

and cost efficiency).

The implementation of the Hadoop MapReduce framework is presented as extensions to the
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Figure 6.1: Architecture of the broadband embedded computing system for MapReduce utilizing

Hadoop.

broadband embedded computing system architectures introduced in Chapters 4 and 5. As discussed

in Section 6.3, this porting posed important challenges in terms of software portability and resource

management. These challenges are addressed in two ways. First, porting techniques are developed

for embedded devices that leverages back-porting of enterprise software in order to implement

the Hadoop system for embedded environments. Second, to execute MapReduce applications on

such resource-constrained embedded devices as STBs, both memory and storage requirements are

optimized by eliminating unnecessary software components of the Hadoop platform. The result is

an embedded version of the Hadoop framework.

Section 6.4 presents a set of experiments which confirm that the embedded system implementa-

tion of the Hadoop runtime environment and related software libraries runs successfully a variety

of MapReduce benchmark applications. Also, in order to gain further insight into the relative

performance scaling of the Set-Top Cluster versus the Linux Cluster while running MapReduce ap-

plications, the number of processing elements (which correspond to the number of Hadoop nodes)

and the size of the input data are varied. Overall, the experimental results expose the Set-Top

Cluster performance sensitivity to certain classes of MapReduce applications and indicate avenues

of future research to improve our system.
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6.2 The System Architecture

Fig. 6.1 provides an overview of the architecture of the system developed and built: this is a hetero-

geneous system that leverages a broadband network of embedded devices to execute MapReduce

applications by utilizing Hadoop. It is composed of four main subsystems.

Linux Blade Cluster. The Linux Cluster consists of a traditional network of nine blade servers

and a Network Attached Storage (NAS). Each blade has two quad-core 2GHz Xeon processors

running Debian Linux with 32GB of memory and a 1Gb/s Ethernet interface. One of the nine

blades is the Hadoop master host acting both as NameNode and JobTracker for the MapReduce

runtime management [51]. Each of the other eight blades is a Hadoop slave node, acting both

as DataNode and TaskTracker [51] while leveraging the combined computational power of the

8 processing cores integrated on the blade. The blades use the Network File System (NFS) to

mount the 2TB Sun storage array, which provides a remote common file-system partition to store

applications for each of the executing Hadoop MapReduce applications. For storing the Hadoop

Distributed File System (HDFS) data, the blades use their own local hard-disk drive (HDD).

Embedded STB Cluster. The Set-Top Cluster consists of 64 Samsung SMT-C5320 set-top

boxes (STB) that are connected with a radiofrequency (RF) network for data delivery using MPEG

and DOCSIS transport mechanisms. The Samsung SMT-C5320 is an advanced (2010-generation)

STB featuring an SoC with a Broadcom MIPS 4000 class processor, a floating-point unit, ded-

icated video and 2D/3D-graphics processors with OpenGL support, 256MB of system memory,

64MB internal Flash memory, 32GB of external Flash memory accessible through USB, and many

network transport interfaces (DOCSIS 2.0, MPEG-2/4 and Ethernet). Indeed, an important archi-

tectural feature of modern STBs is the heterogeneous multi-core architecture design which allows

the 400MHz MIPS processor, graphics/video processors, and network processors to operate in paral-

lel over independent buses. Hence, user-interface applications (such as the electronic programming

guides) can execute in parallel with any real-time video processing. From the viewpoint of running

Hadoop applications as a slave node, however, each STB can leverage only the MIPS processor

while acting both as DataNode and TaskTracker. 1 This is an important difference between the

1In the Set-Top Cluster, there is also a Linux blade which is the Hadoop master node, acting both as NameNode

and JobTracker.
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Set-Top Cluster and the Linux Cluster. Finally, in each STB, a 32GB USB memory stick is used

for HDFS data storage, while NFS is used for Java class storage.

Network. The system network is a managed dedicated broadband network which is divided

into three IP subnets to isolate the traffic between the DOCSIS-based broadband Set-Top Cluster

network, the Linux Cluster network, and the digital cable head-end. Its implementation is based on

two Cisco 3560 1Gb/s Ethernet switches and one Cisco 7246 DOCSIS broadband router. The upper

switch in Fig. 5.1 interconnects the 8 blades along with the NAS and master host. The lower switch

aggregates all the components on the head-end subnetwork. The DOCSIS subnetwork is utilized

by the Set-Top Cluster whose traffic exists on both the Linux Cluster and the digital head-end

network. The broadband router has 1Gb/s interfaces for interconnection to the Linux Cluster and

head-end networks as well as a broadband interface for converting between the DOCSIS network

and the Ethernet backbone. Each broadband router can support over 16,000 STBs, thus providing

large-scale fan-out from the Linux Cluster to the Set-Top Cluster.

Embedded Middleware Stack. The embedded middleware stack is based on Tru2way, a

standard platform deployed by major cable operators in U.S. as part of the Open Cable Application

Platform (OCAP) developed in conjunction with Cablelabs [4]. Various services are delivered

through the Tru2way platform including: chat, e-mails, electronic games, video on-demand (VOD),

home shopping, interactive program guides, stock tickers, and, most importantly, web browsing [6].

To enable cable operators and other third-party developers to provide portable services, Tru2way

includes middleware based on Java technology that is integrated into digital video recorders, STBs,

TVs, and other media-related devices.

Tru2way is based on Java ME (Java Micro Edition) with CDC (Connected Device Config-

uration) designed for mobile and other embedded devices. The Tru2way standard follows FP

(Foundation Profile) and PBP (Personal Basis Profile) including: io, lang, net, security, text, and

util packages as well as awt, beans, and rmi packages, respectively. Additional packages include

JavaTV for Xlet applications, JMF (Java Media Framework), which adds audio, video, and other

time-based media functionalities, and MHP (Multimedia Home Platform), which comprises classes

for interactive digital television applications. On top of these profiles, the OCAP API provides

applications with Tru2way-specific classes related to hardware, media, and user-interface packages

unique to cable-based broadband content-delivery systems.
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Remark. While this rich set of Java profiles offer additional features to the embedded Java

applications, there exists a significant gap between the Java stack provided by Tru2way and the Java

Platform Standard Edition (Java SE), which is common to enterprise-class application development.

Hence, since the standard Hadoop execution depends on the Java SE environment, we had to

develop a new implementation of Hadoop specialized for the embedded software environment that

characterizes devices such as STBs. We describe our effort in the next section.

6.3 Porting Hadoop to the Broadband Embedded System

There are several issues that need to be addressed in order to successfully run Hadoop on a dis-

tributed embedded systems like our broadband network of STB devices.

First, Hadoop and Hadoop third-party libraries require many bootstrap classes not supported by

the Tru2way JVM. Also, for many classes the Tru2way JVM supports only a subset of methods: e.g.,

both Tru2way and Java SE have the java.lang.System class, but the java.lang.System.getenv()

method exists only in Java SE.

Second, the Tru2way JVM only supports older versions of Java class file formats while Hadoop

is developed using many Java 1.6 language features including: generics, enums, for-each loops,

annotations, and variable arguments.

Third, the task of porting Java applications to another JVM with different profiles is quite

challenging and, differently from porting native codes to JVM [13; 80], it has not been actively

studied in the literature. If not an impossible task, to modify Hadoop and the Hadoop third-party

libraries at the source code level is not really practical because there are more than fifty of such

libraries and, in some cases, their source code is not available.

Finally, despite all the efforts to improve the JVM portability [102; 108], to port the Java SE

JVM to the STB environment is very hard because these embedded devices do not support key

features such as frame buffer or native implementations.

To address these challenges, we have developed a binary level porting method for embedded

devices that imports missing class files and retro-translates all the class files so that the embedded

Tru2way JVM can execute them. Our method leverages the Java Backport package, which is the

implementation of JSR 166 (java.util.concurrent APIs), introduced in Java SE 5.0 and further
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Figure 6.2: Two software stacks to support Hadoop: STB vs. Linux Blade.

refined in Java SE 6.0, for older versions of Java platforms [2]. The Retrotranslator has two main

functionalities: 1) it translates newer class files into an older format for an older JVM; and, 2) it

extends the Backport package so that most Java SE 5.0 features are available for an application

that runs on the Java SE 1.4 and Java SE 1.3 JVMs [3]. The runtime classes from those two

packages can be added to the Tru2way JVM.

Fig. 6.2 shows the resulting software stack to support the execution of Hadoop in the embedded

environment of an STB running the Tru2way JVM and contrasts it with the traditional software

stack based on the Java SE JVM running on a common Linux blade. In particular, the embedded

software stack includes the Imported Runtime Classes, which are the results of the backporting

technique, and the Profile Gap Filler, which collects all additional components that were developed

specifically for the embedded STB devices.

Fig. 6.3 illustrates the procedure developed to port Hadoop and all the Java packages necessary

for running Hadoop to the STB devices. While it was developed and tested for our broadband

embedded system, for the most part this procedure is a contribution of general applicability to port

Java applications originally developed for the Java SE JVM to other embedded systems which have

different and more limited JVMs: e.g., this procedure can be followed also for porting any Java
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Figure 6.3: Porting the Hadoop-supporting Java classes to the STB devices.

applications to other JVM such as BD-J or Android’s Dalvik [43; 93]. The procedure consists of a

sequence of eight main steps:

1) Class Aggregation. Here all the input classes are simply copied into a single directory and

the priorities among the duplicated or collided classes are determined.

2) Dependency Analysis. For this step, which is key to implementing efficiently a large Java ap-

plication like Hadoop on resource-constrained embedded devices, we developed a novel dependency

analysis technique called Class Weaving. This starts by analyzing the class dependencies within a

Java package as well as across the packages and then changes the dependency to reuse as much as

possible those classes which are available in the embedded Java ME environment. The goal is to

generate all the information on class dependencies that is necessary at later steps to minimize the

number of classes which will be imported from the various open-source Java SE runtime libraries

(and to strip out all unnecessary classes from the original packages.) Fig. 6.4 illustrates how Class

Weaving works: a class dependency tree is generated by analyzing each class while minimizing the

number of classes to be imported. For example, Hadoop’s TaskTracker class uses the Pattern class,

which in turn uses the Matcher class: both these classes exist in Java SE but not in the STB Java

ME environment and, therefore, need to be imported. On the other hand, the Pattern class uses

the Character class, which exists also in Java ME and, therefore, it will not be imported from Java

SE: instead, the Pattern class will be woven to use Java ME’s Character class.

3) Import List Generation. Based on the information collected at the previous step, the list

of classes to be imported is generated. At this step, the list can be refined through additional

customizations. Unlike most JVMs, some embedded JVMs have their bootstrap classes embedded

in a way that are not accessible to the application developers and provide only stub classes to
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Figure 6.5: Class count before & after class stripping optimization.

them. For instance, packages like xerces or log4j do exist in the actual bootstrap classes for

internal purposes but are not included in the stub classes.

4) Backport List Generation. The Java class loaders check if the package name of the target

class begins with the ’java.’ prefix when the class file location is not in the bootstrap classpaths

and, if so, returns an error. To avoid this, the prefix needs to be changed: e.g., in the case of

our system with the ’edu.columbia.cs.sld.backport.ocap.java.’ prefix. A list of the mappings

between the original and the new prefix is generated for all the imported classes with package names

that begin with ’java.’ to be used later in the retro-translation step.

5) Class Stripping Optimization. Since many embedded systems have limited memory and

storage resources, only the necessary Java classes should be stored in the embedded device. This

is achieved by collecting dependency trees that begin with the seed classes, which include the
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entry point Xlet class that launches Hadoop DataNode and TaskTracker, various classes that are

dynamically loaded from configuration files or from the source code, and the patched classes. In

our case, this step results in a 60% reduction of the number of classes that must be deployed in the

STBs, as shown in Fig. 6.5.

6) Retro-translation. Since the Tru2way JVM recognizes classes up to Major Version Number

48, all the class files with Major Version Number 49 or higher need to be retro-translated. Most

packages, including Hadoop, provide classes with major version number 50, which corresponds to

Java 1.6. At the binary level, the class file formats and package names of Hadoop, Java SE, and

the application libraries need to be properly modified.

7) Patch Application. While a number of classes were imported from open-source Java SE

runtime libraries through the Class Weaving technique described above, we had to newly develop

a number of missing classes and methods which needed to be optimized before being added to

the Java stack of the STBs. The same was necessary for classes that could not be imported from

the open-source Java SE runtime library due to the native implementations. Also, patches were

necessary to fix some defects found in the Tru2way implementations.

8) Package Generation. This final step generates the packages that will be launched on the

Tru2way JVM from the stripped classes, links a custom class loader that will load user-defined

Mapper and Reducer classes, and binds an entry point Xlet that will execute Hadoop DataNode and

TaskTracker.

6.3.1 Challenges in Porting Hadoop to STB Devices

The number of JVM processes supported in the system is one of the biggest differences between

the STB Java environment and a Linux blade server utilizing Java SE. While the users of the latter

can launch multiple instances of JVM, only one JVM instance can be launched during boot time

within an STB. On the other hand, there are two important behaviors in Hadoop that rely on the

capability of multiple JVM executions: first, TaskTracker and DataNode are running two different

JVM processes; second, for each task processed in a TaskTracker node, a new JVM instance is

launched unless there is an idle JVM which can be reused for the task.

To support these behaviors while coping with the STB limitation of running only one JVM

instance, we implemented a new ProcessBuilder class that creates a thread group whenever the
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launch of a new JVM process is requested. Each thread group provides a distinct set of Hadoop

environmental variables which are managed within the threads belonging to a given thread group

without interfering with other threads groups. The ProcessBuilder class implementation also en-

ables optimizations such as replacing IPC (Inter-Process Call) with method invocations in the same

process, and the elimination of local data transfers through sockets with local file-copy operations.

A number of other middleware issues related to porting Hadoop to an embedded device like

the STB were discovered and resolved. For example, certain Java classes have bugs that make the

application behave improperly, halt, or sometimes fail. In these cases the classes were replaced

with better implementations or patched to align with the Hadoop Java class requirements. Also,

some configuration changes were made to the system: e.g., the Socket timeout constant had to be

slightly extended to account for variations in network response times or delays. Finally, to relieve

memory constraints, we reduced the number of threads associated to unimportant services such

as the metrics service which profiles the statistics of performance or the web service that provides

status information.

6.4 Experiments

In order to evaluate our embedded Hadoop system for its scalability characteristics and execution

performance, we executed a number of MapReduce experimental tests across the Linux Cluster

and Set-Top Cluster. All the experiments were performed while varying the degree of parallelism,

i.e. by iteratively doubling the number of Hadoop nodes, of each cluster: specifically, from 1 to

8 Linux blades for the Linux Cluster (where each blade contains eight 2GHz processor cores) and

from 8 through 64 STBs for the Set-Top Cluster (where each STB contains one 400MHz processor

core). The results can be organized in four groups which are presented in the following subsection.

We report the average results after executing all tests multiple times.

6.4.1 The WordCount Application

WordCount is a typical MapReduce application that counts the occurrences of each word in a large

collection of documents. The results reported in Fig. 6.6(a) and 6.6(b) show that this application

scales consistently for both the Set-Top Cluster and Linux Cluster. As the size of the input data
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Figure 6.6: WordCount execution time as function of problem size (bytes), node count: (a) Set-Top

Cluster and (b) Linux Cluster.

increases, the Set-Top Cluster clearly benefits from the availability of a larger number of STB nodes

to process larger data sets. The Linux Cluster execution time remains approximately constant for

data sizes growing from 128MB to 512MB since these are relatively small, but then it begins to

double as the data sizes grow from 1GB to 32GB. In fact, above the 1GB threshold the amount

of data that needs to be shuffled in the Reduce task begins to exceed the space available within

the heap memory of each node. A similar transition from in-memory shuffling to in-disk shuffling

occurs in the Set-Top Cluster for smaller data sets due to the smaller memory available in the STB

nodes: specifically, it occurs somewhere between 64MB and 512MB, depending on the particular

number of nodes of each Set-Top Cluster configuration.

Table. 6.1 reports the ratios between the execution times of two Set-Top Cluster configurations

over two corresponding equivalent Linux Cluster configurations, for large input data sets. 2 The

2The values in parenthesis are computed by extrapolating the execution times on the Set-Top Cluster.
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# of Nodes

STB / Blade

Size 8 / 1 64 / 8

1G 49.2 49.4

2G 52.9 41.5

4G 63.9 39.6

8G (64.5) (48.8)

16G (64.5) (42.1)

32G (61.3) (38.3)

Table 6.1: WordCount execution time ratio as function of problem size (bytes) and node count.

first column reports the ratio of the configuration with eight STBs over one single blade with eight

processor cores; the second column reports the ratio of the Set-Top Cluster configuration (with

64 STBs) over the Linux Cluster configuration (with eight blades for a total of 64 cores.) Across

the different data sizes, the performance gap of the Set-Top Cluster relative to the corresponding

Linux Cluster with the same number of Hadoop nodes remain approximately constant: it is about

60 times slower for the configuration with 8 nodes and about 40 times slower for the one with 64

nodes. Notice that these values are the actual measured execution times; they are not modified to

account for the important differences among the two systems such as the 5X gap in the processor’s

clock frequency between the Linux blades and the STBs. A comprehensive discussion of the reasons

behind the performance gap between the two systems and how this may be reduced in the future

is given in Section 6.4.5.

6.4.2 HDFS & MapReduce Benchmarks

The second group of experiments involve the execution of a suite of standard Hadoop benchmarks.

The goal is to compare how the performance of the Set-Top Cluster and Linux Cluster scales for

different MapReduce applications. The execution times of these applications expressed in seconds

and measured for different configurations of the two clusters are reported in Fig. 6.7. The numbers

next to the application names in the first column denote input parameters, which are specific to each
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8 STBs 64 STBs 1 Blades 8 Blades

Benchmarks (8 cores) (64 cores) (8 cores) (64 cores)

Sleep 1285.1 119.6 1223.6 114.5

RandomTextWriter 8 799.6 743.9 177.6 172.0

PiEstimator 1k 461.1 163.5 212.1 52.5

PiEstimator 16k 463.4 474.0 213.7 52.5

PiEstimator 256k 603.6 783.2 214.6 52.4

PiEstimator 4M 1240.9 2048.2 213.9 52.5

PiEstimator 64M 7373.0 10482.5 314.8 58.4

K-Means 1G 3679.2 1149.3 794.7 24.5

Classification 1G 3009.0 784.9 864.7 25.45

Figure 6.7: Execution times (in seconds) for various Hadoop benchmarks.

application: e.g. “MRBench 16 8” denotes that the MRBench application is running 16 mappers

and 8 reducers, while the “Pi-Estimator 1k” denotes that Pi-estimator runs with a 1k sample size.

Sleep is a program that simply keeps the processor in an idle state for one second whenever

a Map or a Reduce task should be executed. Hence, this allows us to estimate the performance

overhead of running the Hadoop framework. For the representative case of running Sleep with 128

mappers and 16 reducers, the Set-Top Cluster and the Linux Cluster performance is basically the

same.

RandomTextWriter is an application that writes random text data to HDFS and, for instance,

it can be configured to generate a total of 8GB of data uniformly distributed across all the Hadoop

nodes. When it is running, eight mappers are launched on each Linux blade, i.e. one per processor

core, while only one mapper is launched on each STB node. Since the I/O write operations dominate

the execution time of this application, scaling up the number of processor cores while maintaining

the size of the random text data constant does not really improve the overall execution time.

Pi-Estimator is a MapReduce program that estimates the value of the π constant using the

Monte-Carlo method [12]. For the Linux Cluster, the growth of the input size does not really impact

the execution time for a given system configuration, while moving from a configuration with one
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Figure 6.8: HDFS data-replication mechanism (R=3) and replication time.

blade to one with eight blades yields a 4x speedup. For the Set-Top Cluster, in most cases scaling

up the number of nodes causes higher execution times because this program requires that during

the initialization phase the STBs receive a set of large class files which are not originally present

in the Embedded Java Stack. This file transfer, which uses the pipelined mechanism explained in

Section 6.4.4, takes a long time that more than cancels out any benefits of increasing the number

of Hadoop nodes.
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6.4.3 Data Mining Applications

To evaluate the feasibility of utilizing the Set-Top Cluster system for data-mining applications, we

performed two experiments based on MapReduce versions of two common algorithms. K-Means is

a popular data mining algorithm to cluster input data into K clusters: it iterates until the change

in the centroids is below a threshold to successively improve the clustering result [45]. Classification

is a MapReduce version of a classic machine learning algorithm: it classifies the input data into

one of K pre-determined clusters [95]. Unlike K-Means, Classification does not run iteratively, and,

therefore, does not produce intermediate data.

The last two rows in the table of Fig. 6.7 report the results of running these two applications,

each with an input data set of size 1GB. For both applications the results are similar: the execution

time when running on the Set-Top Cluster with eight STBs is about four times longer than running

in the Linux Cluster with one 8-core blade; furthermore, when both systems are scaled up by a

factor of eight, the performance gap grows from four to forty times. The growing gap is mainly due

to the fact that scaling up the system parallelism while keeping the input data size constant leads

to shuffling a large number of small data sets across the Hadoop nodes. This requires peer-to-peer

communication among the nodes, an operation that the DOCSIS network of the Set-Top Cluster

does not support as well as the gigabit Ethernet network of the Linux Cluster does. To better eval-

uate the difference in transfer time between the two networks we complete the following experiment

focused on the HDFS data replication, which requires similar peer-to-peer communication among

the Hadoop nodes.

6.4.4 Data Replication in HDFS

The Hadoop Distributed File System (HDFS) replicates data blocks through pipelining of DataN-

odes based on the scheme illustrated in Fig. 6.8(a): for a given replication number R, a pipeline of

R DataNodes is created whenever a new block is copied to a DataNode and the data are transferred

to the next DataNode in the pipeline until the last one receives it. This mechanism causes a large

transfer-time penalty for the Set-Top Cluster due to DOCSIS-network overhead associated with the

transfer of data between pairs of Hadoop nodes. Specifically, a DOCSIS network does not support

direct point-to-point communications among STBs. Instead, all communications occur between a

given STB and the DOCSIS router located in the cable-system head-end: this acts as a forwarding
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agent on behalf of the two communicating STBs. Due to this architecture, as we increase the

number of STBs in the system (each STB corresponding to one Hadoop node) more slow commu-

nications between pairs of STBs occur, thus impacting negatively the overall data-replication time.

In contrast, the data replication time spent in the Linux Cluster remains constant as we grow the

number of nodes thanks to: (i) the fast communication channels among cores on the same blade

and (ii) the gigabit Ethernet network connecting cores across different blades.

6.4.5 Discussion

The performance of executing Hadoop MapReduce applications is influenced by various system

properties including: the processor speed, memory, I/O, and networking capabilities of each node.

Further, the relative impact of each factor depends on the computation and communication prop-

erties of the specific MapReduce application in a way that may vary considerably with the given

input problem size and the total number of nodes comprising the Hadoop system. Next, we discuss

how the system properties of the Set-Top Cluster compare to those of the Linux Cluster and outline

how the technology trends may reduce the gap between the two systems.

Processor performance. In our experimental setup, there is a 5X gap in processor clock

frequency between the Set-Top Cluster and Linux Cluster nodes. Further, we empirically noticed

another factor of 2X in processing speed which we attributed to the different computer architectures

of the 2GHz Xeon and 400MHz MIPS processors. This gap is expected to decrease considerably as

next-generation STB devices will incorporate commodity 1GHz+ multi-core processors now found

in smartphone and tablets, while it is unlikely that the blade clock frequency will increase much.

I/O Operations. The RandomTextWriter benchmark represents many MapReduce applica-

tions which execute numerous data-block storage operations. In fact, the Hadoop system itself can

be very I/O intensive when performing data replication. We run the TestDFSIO test to evaluate the

I/O performance of HDFS by reading/writing files in parallel through a MapReduce job. This pro-

gram reads/writes each file in a separate map task, and the output of the map is used for collecting

statistics relating to the file just processed; then, the statistics are aggregated in the reduce task to

produce a summary. The results of running TestDFSIO reveal that an STB has 0.115MB/s reading

and 1.061MB/s writing speed while the corresponding values for a Linux blade are 68.526MB/s
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Figure 6.9: Native IO Performance Comparison

and 99.581MB/s. 3 We also run a simple native C program that executes read and write operations

using large files on the two clusters with 4 different interfaces: USB, FLASH, NFS, and HDD. The

results are reported in Fig. 6.9. We note that the network performance of STB NFS read and write

is significantly less, by a factor of nearly 100, than the network performance of the Linux blade

server. This gap is primarily due to the DOCSIS network, whose effective transfer rate is limited

to 4MB/s compared to 1Gb/s Ethernet network, whose effective maximum transfer rate is closer

to 125MB/s. On the other hand, the measured performance of the USB and external hard-drive

interfaces on both the STB and Linux blade server is comparable. This is due to the common

commodity SoC for USB and disk interfaces used in the design of both the STBs and blades. In

our experiments, the Linux blades use an internal hard-drive disk (HDD) while the STBs, which

do not contain an internal hard-drive, rely on a USB memory stick whose read performance is

6 times slower (and write performance is 24 times slower) than the HDD when providing HDFS

storage. This gap can be reduced by having the STBs use a better file system for the USB sticks

than FAT32 such as SFS [94]. Also, as shown in Fig. 6.9, an external USB HDD could provide

a 1.5-4.2 speed-up for reading/writing over the USB memory stick. Here, the technology trends

should provide next-generation STB devices with HDD and USB 3.0.

3The STB shows significant difference between upload and download speed due to the inherently asymmetric and

lower transfer rate characteristics of the DOCSIS network.
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Networking. The lack of support for peer-to-peer communication among STBs in the DOCSIS

network limits considerably the HDFS replication mechanism (as discussed in Section 6.4.4), the

Hadoop shuffling operations (as seen for the K-Means, Classification and WordCount programs),

and the transfer of large class files during the initialization phase (as in the PI-Estimator). In

particular, shuffling generates an implicit all-to-all communication pattern among nodes that is

application specific: each node sends its corresponding Map results to other nodes through HTTP,

generating |Node|2 communication exchanges, which for the DOCSIS network results in inefficient

upstream communication requests as nodes attempt to transfer data blocks from Mappers to Re-

ducers. A similar performance impact occurs during Hadoop replication: for a given replication

factor R and a total number of blocks M , the number of DOCSIS upstream communication trans-

fers to complete replication is M × (R − 1). As the input size increases the number of blocks

increases in direct proportion, thus increasing the replication time. The scalability in Set-Top

Cluster largely depends on the amount of data to be shuffled generated by the Map tasks and the

replication communication overhead. This problem may be addressed in part with the deployment

of the higher performance DOCSIS 3.0 standard [40], which supports up to 300 Mb/s upstream

bandwidth. Then, opportunities for further improvements include: optimization of the Hadoop

scheduling policy, network topology optimization, and leveraging the inherent multi-casting ca-

pabilities of DOCSIS to reorder the movement of data blocks among nodes and reduce network

contention.

6.5 Related Works

The Hadoop platform for executing MapReduce applications has received great interest in recent

years as problems in large-scale data analysis and Big Data have increased in importance. Work in

the area of heterogeneous MapReduce computation, however, remains rather limited, notwithstand-

ing the growth of embedded devices interconnected through broadband networking to distributed

data centers. Our work is aligned with efforts in the Mobile Space to bridge MapReduce execution

to embedded systems and devices. For example, the Misco system implements a novel framework

for integrating smartphone devices for MapReduce computation [31]. Similarly, Elespuro et al.

developed a system for executing MapReduce using smartphones under the coordination of a Web-
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based service framework [33]. Besides the fact that our system uses a wired network of embedded

stationary devices instead of a mobile network, the main difference with these systems is that we

ported the Hadoop framework, including the HDFS, based on the Java programming model. Other

related work include utilizing GPU processors to execute MapReduce [46]. While most related

work in adapting MapReduce execution to embedded devices has focused on leveraging service-

side infrastructure, our work is closer to current research under way for large scale execution of

MapReduce applications on the Hadoop platform across Linux blade and PC clusters [113].

6.6 Summary

A heterogeneous system for broadband embedded computing to execute MapReduce applications

by leveraging a broadband network of embedded STB devices was developed, implemented and

tested. In doing so, we addressed various general challenges to successfully port the Hadoop frame-

work to the embedded JVM environment. We completed a comprehensive set of experiments to

evaluate our work by comparing various configurations of the prototype Set-Top Cluster with a

more traditional Linux Cluster. First, the results validate the feasibility of our idea as the Set-Top

Cluster successfully executes a variety of Hadoop applications. From a performance viewpoint,

the Set-Top Cluster typically trails the Linux Cluster, which can leverage more powerful resources

in terms of processor, memory, I/O, and networking. On the other hand, for many applications

both clusters demonstrate good performance scalability as we grow the number of Hadoop nodes.

But a number of problems remain to be solved to raise the performance of executing MapReduce

applications in the Set-Top Cluster: in particular, critical areas of improvement include the STB

I/O performance and the communication overhead among pairs of STBs in the DOCSIS broadband

network. Still, the gap between embedded processors and blade processors in terms of speed, mem-

ory, and storage continues to decrease, while higher performance broadband networks are expected

to integrate embedded devices into the Cloud. These technology trends hold the promise that

future versions of the MapReduce computing system presented in this chapter can help to leverage

broadband embedded computing for Internet-scale data-mining and analysis as part of emerging

heterogeneous Cloud system platforms.
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Chapter 7

Scalable Network Architecture For

Broadband Embedded Computing

7.1 Introduction

The communication network among computational nodes is a key building block for all distributed

computing and Cloud system infrastructures. Despite the rapid performance improvement of CPU

processing power, the communication network is still generally the limiting factor in determining

the overall computational system performance [25]. In Chapters 5 and 6, we saw that the inherent

characteristics of the DOCSIS broadband network result in a significant difference between the

Linux Cluster and Set-Top Cluster performance results, as measured by workload completion time.

A second issue, the process launch problem, arises when the time taken for launching application

processes across a large distributed computing system continues to increase as the number N of

compute nodes increases [18]. Here the runtime environment (such as MPI ORTE or the MapReduce

Hadoop system) must efficiently manage, in conjunction with the communications network, the

distribution and execution of distributed processes in a bounded time window that is small relative

to the actual application execution time. Ideally, the runtime environment is able to launch new

processes in sub-linear time as the size of the computational cluster increases and for any given

message size representing the application executable payload; otherwise as N increases, the runtime

system will spend more time initializing and launching application processes in comparison to

performing useful computation. The results discussed in Section 7.4.2 will illustrate this point. The
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process launch problem is particularly challenging for the implementation of large-scale broadband

embedded computing platforms, especially as we scale the computational cluster sizes from just a

few hundred or thousand nodes to potentially millions of nodes. Broadband networks of embedded

devices on this scale exist today. According to the National Association of Cable Television (NCTA),

digital subscriber penetration that includes set-top boxes and other embedded broadband network

access devices exceeds 75 million in the Unites States alone [69].

A key issue that has emerged from the work presented in Chapters 5 and 6 is the impact of

DOCSIS network communication costs on both runtime system scalability and application execu-

tion for large-scale heterogeneous broadband embedded computing systems. This chapter examines

the performance of broadband service provider networks, including characteristics of the underlying

DOCSIS network, to gain insight to address these challenges. Experiments are developed to evalu-

ate generalized message-delivery performance among DOCSIS device nodes using two application

models in conjunction with standard unicast and multicast communication methods. Two network

delivery scenarios are evaluated for their scaling properties under different conditions such as traf-

fic load and the persistence of network connections. Experimental testing is performed using both

simulation tools and the prototype lab system presented in Chapter 5. Two models, representing

the generalized process execution-launch model and the parallel MSA application, are benchmarked

to validate both accuracy (simulation versus lab system time measurement comparison) and the

potential for large scalability of the number N of computational nodes in the system. Results are

presented for DOCSIS network performance under various message size and delivery conditions.

Experiments confirm that multicast communication methods minimize message data transmission

time, resulting in improved process launch-execution and application completion times. This re-

sult is key towards implementing an optimal communications infrastructure for scalable broadband

embedded computing. Based on these experimental results, the chapter concludes with a proposed

architecture for scalable network architecture for broadband embedded computing.

7.2 Broadband Network Architecture

A typical large-scale broadband service provider system, such as a cable operator system, can be

abstracted into the illustration of Fig. 7.1. In this figure, the overall system and broadband network
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Figure 7.1: Broadband network architecture.

architecture is decomposed as follows: 1) one or more data-center clouds, each containing compute

servers and storage, feeding a set of routers that implement a broadband network access based on

the DOCSIS standards [57]; 2) one or more broadband networks that support network access to

millions of embedded devices including set-top boxes, PCs, game-consoles, and tablets as well as

WiFi services. The DOCSIS based broadband network itself provides regional connectivity over

RF physical media. However, the RF network is converted to a fiber-based transport at a device

known within the cable industry as a node (indicated as a red circle in the figure), whose function

is back-haul the communications signals to the data-centers and remote hub facilities (refer to Sec-

tion 2.4.2). Here, these signals are converted back to DOCSIS RF physical layer standards. Note

that data communications across DOCSIS networks actually occur bi-directionally using indepen-

dent downstream (DS) and upstream (US) channels (operating on independent RF frequencies) as
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Figure 7.2: Typical round-trip timing for a large service provider broadband network.

indicated in Fig. 7.1. Service provider systems integrate these multiple broadband networks with

each other and with centralized managed data-centers using high-speed fiber based technologies,

such as dense wavelength division multiplexing (DWDM). This leads to a high-performance wide

area network that may span hundreds of miles while connecting millions of embedded devices.

Fig. 7.2 illustrates a high-level broadband network architecture along with typical round-trip

ping times between different networks comprising a typical large broadband service provider.

Round-trip times were obtained by executing a set of 10 ping operations on an actual service

provider system and averaging the set of resulting measurements. The various clouds in Fig. 7.2

represent data-centers or remote-hub facilities that communicate with one another over high-speed

fiber transports. These facilities also contain broadband DOCSIS router infrastructure to support

the communications of subscriber devices (shown as black dots in Fig. 7.2) with other networks

within the system and the Internet. The smaller symbols with the letter N within them indicate

the node devices used to convert between RF and fiber physical layer protocols as mentioned above.

From Fig. 7.2 we note that the ping times within a data-center are on the order of 0.3ms, whereas
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the network delay between data-center systems or remote-hubs is on the order of 2.5ms. Within

the DOCSIS network itself, the network delay increases to 6.5ms on average from a typical device

node to its closest router. The delay increases to 13ms between any two device nodes within the

same DOCSIS router network. The delay is highest, at 16ms, when the device nodes are separated

by at least two routers on different DOCSIS networks (DOCSIS networks that are on different

remote-hubs). This illustrates the hierarchical nature of a typical service provider network that

partitions a large population of broadband devices across multiple DOCSIS networks, each support-

ing a subset of devices, and a high-speed back-bone network to integrate the broadband networks

to each other and the centralized data-centers. The ping times between DOCSIS device nodes

from Fig. 7.2 also illustrate the inherent latency that occurs when two DOCSIS devices commu-

nicate with one another. Unlike other physical media types, such as Ethernet where two devices

communicate directly, DOCSIS-based communication requires that devices communicate through

the DOCSIS router. This additional communication cost presents a fundamental performance con-

straint for broadband networks, effectively doubling the message transfer time required for two

DOCSIS devices to exchange messages. This performance constraint is illustrated in Fig. 7.2 where

two devices on the same network require 13ms to communicate with one another. DOCSIS net-

works have the advantage they are fully managed by service providers, hence they are categorized

as managed networks. A service provider managed network is designed and configured to assure it

maintains a minimum performance guarantee to all device nodes, including committed data-rates

and bandwidth.

7.2.1 DOCSIS Network Communication Flows

DOCSIS network communications may be described by various logical layer communication flows.

As discussed in Section 7.2, the DOCSIS standard defines simultaneous communication flows or

transmissions of data in two independent directions; downstream and upstream. Downstream refers

to all data transfers from the DOCSIS router to a given DOCSIS compatible device node. Whereas

upstream refers to the opposite communication flow direction; from a device node to the DOC-

SIS router. The downstream and upstream communication flows are independent of one another.

The DOCSIS standard segments communication across multiple RF frequencies, thereby enabling

concurrent upstream and downstream communication channels within the RF broadband physical
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infrastructure. DOCSIS downstream transmission supports both one-to-many and one-to-one com-

munication flows. In contrast, upstream is limited to one-to-one communication flows. This is a

characteristic of the DOCSIS standard where upstream transmission opportunities are arbitrated

by the DOCSIS router, as defined by DOCSIS TDMA access mechanisms (refer to Section 2.4.1.1).

At the logical communications layer, similar to the standard Internet protocol suite defined by
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the IETF [5], the DOCSIS network standard includes the definition of both unicast and multicast

Internet Protocol (IP) communication flows [57] as illustrated in Figures 7.3 and 7.4, respectively.

A unicast flow is defined as a distinct set of transmissions between a single pair of source and

destination device nodes. Unicast transmissions are connection oriented, with each transmission

requiring an individual copy of data sent to each destination device node, through the TCP/IP

delivery mechanism.

In contrast, multicast delivery occurs between a single source host or device node, referred to

as the multicast source, and one or more destination hosts or device nodes, defined by a special

class of IP addresses and referred to as the multicast group address. Multicasting is far more

efficient for scalable data transmission since a single copy of data is transferred to many receivers

simultaneously [61]. However, since multicast is based on UDP/IP delivery mechanisms, it lacks

reliability assurances like those offered by the TCP/IP protocol. Multicast delivery is considered

‘best effort’, as it lacks facilities for congestion avoidance, flow-control, or in-order delivery message

data guarantees [61], which are instead supported in unicast delivery. Interest in overcoming these

weaknesses has resulted in a number of multicast protocol and application-layer library enhance-

ments that include: the NORM protocol specified in IETF RFC-5740 [5], the Reliable Multicast

Protocol (RMTP) [101], and the MCL Multicast Library [104]. These are implemented as applica-

tion layer protocol modules that reside above the UDP/IP multicast transport layer. Multicast IP

communications across broadband networks is supported through the DOCSIS Set-Top Gateway

(DSG) standard [4; 61]. DSG defines a mechanism for IP multicast delivery between the IP multi-

cast source host and DOCSIS-capable device node end-points. A key aspect of the DSG standard is

the elimination of the multicast group management protocol known as IGMP requirements [5] for

DOCSIS devices. This is accomplished by transferring the multicast IGMP protocol messaging re-

quirements to the DOCSIS router. In this scenario, the DOCSIS router acts as a proxy by managing

the required multicast protocol operations [61] on behalf of the DOCSIS broadband network hosts.

Using this mechanism, multicast group membership and MAC layer delivery addressing is mapped

to one or more statically-defined tunnel addresses, referred to as DSG tunnels. DOCSIS devices

have the option, through configuration, to bind their low-level multicast address to the appropriate

tunnel address during their initialization phase. The DSG standard also requires that multicast IP

datagrams match the MTU size of the underlying DOCSIS MAC layer. Therefore DOCSIS routers
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do not fragment IP packets that exceed the maximum transmission unit size (no-fragment bit is set

in the IP header), which has the effect of requiring both fragmentation and reassembly within the

application services layer at the sending and receiving hosts respectively. Finally, DSG supports

the notion of an IP broadcast model using a special broadcast tunnel, whose implementation is a

generalization of the multicast tunnel framework where the tunnel identifier is set to zero. Similar

to IP based broadcast communications, a broadcast tunnel transmits a single message copy to all

DOCSIS hosts simultaneously. In summary, in terms of comparing logical Internet Protocol (IP)

communication flows with that of DOCSIS, the latter supports equivalent IP models for unicast,

multicast and broadcast communication patterns for downstream transmissions, and unicast for

upstream transmissions. The choice of which communication flow to utilize is examined in the

following sections in order to develop efficient broadband embedded computing software for com-

munication between client and server device nodes. The performance for each of these different

flows is evaluated by experiments that measure communication performance when varying message

size and the number of nodes.

7.3 Experimental System Environments

Experimental testing for broadband performance evaluation is conducted using both OPNET sim-

ulations and a lab system environment consisting of 128 STB nodes. The OPNET simulation tool

executes across a cluster of 5 Linux high-performance blade servers, each consisting of 8 2.1GHz

cores and 64GB of memory. This enables up to 5 concurrent simulations to execute in parallel. The

lab environment utilizes the Open MPI broadband embedded computing system implementation

described in Chapter 5. The lab system environment enables the execution of MPI test applications

that measure communications and computation performance.

7.3.1 Simulation Environment

The simulation environment is based on OPNET Network Modeler (version 17.1). This is a com-

mercial grade, discrete-event simulation tool, containing advanced network simulation models, in-

cluding broadband-specific network model support for DOCSIS and DSG standards. The OPNET

tool supports simulation of a large network of nodes, thus enabling insight into the scaling capa-
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Figure 7.5: OPNET scenario snapshot illustrating server, DOCSIS router, and broadband network

of device nodes.

bilities of various DOCSIS broadband network systems, including those with and without external

traffic profiles. Experimental simulation instances are defined as Modeler scenarios; these are de-

veloped by using either the Modeler GUI or the OPNET automated scenario generation tools

(required when the number of nodes is large) to draw interconnections between network nodes

such as servers, DOCSIS routers, and one or more DOCSIS device nodes such as cable-modems

or STB devices. Fig. 7.5 illustrates a completed scenario design within Modeler for the simulation

of a single server, DOCSIS router and a small network of 128 DOCSIS device nodes. Once the

network node topology is created, attributes within the nodes such as their respective application

model or DOCSIS parameters are modified to establish the simulation execution parameters of

the given simulation scenario. Attribute definitions are node-model specific and vary in definition

among the numerous node models OPNET supports within Modeler. OPNET supports two types

of attribute levels: node and global. When both attributes are defined for the same attribute entity,

node attributes take precedence over global attribute values. Node attributes are specific to a given



CHAPTER 7. SCALABLE NETWORK ARCHITECTURE FOR BROADBAND EMBEDDED
COMPUTING 150

Mulitcast Downstream Unicast Upstream

Figure 7.6: Multicast-unicast test configuration.

node instance, whereas global attributes are defined across all nodes within the simulation scenario.

As an example, the number of DOCSIS router interfaces is a node-level attribute. This attribute

enables one to control the number of downstream and upstream interfaces. An example of a global

attribute is the Ethernet Maximum Transmission Unit (MTU) size. In this case, all device nodes

are configured with the same Ethernet MTU. Global attributes relieve the user of repetitive effort

when configuring an OPNET simulation scenario.

Utilizing global attributes for configuring both the DOCSIS router and the device nodes within

simulation enables efficient set-up of a large broadband network of embedded devices. As a specific

example, to simulate a service provider remote-hub facility, the total number of device nodes in

the experimental OPNET scenario varies between 128 and 8K nodes. In this case, the OPNET

DOCSIS router model is configured to include six 5x20 RF line cards, or 30 downstream RF links

and 120 upstream RF links. Note that for any given number N of DOCSIS device nodes, the N

nodes are distributed evenly across all upstream RF links. For scenarios that require background

traffic, OPNET also supports the addition of a background traffic profile attribute. The traffic

attribute is a configurable global DOCSIS attribute. This attribute can be configured with a static

value or a value taken from a distribution function, applied to either downstream or upstream

communication channels.

A global attribute is also used to define communication flow mechanisms between server and de-

vice nodes. Two communication flow mechanisms are illustrated in Figures 7.6 and 7.7. Depending
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Unicast Downstream Unicast Upstream

Figure 7.7: Unicast-unicast test configuration.

on the experiment, global attributes are defined for multicast (downstream only) or unicast (down-

stream or upstream) topologies. The multicast-unicast case illustrated in Fig. 7.6 is based on the

multicast capabilities of the DOCSIS network or DSG, as previously defined, where an IP multicast

server sends a single copy of message data in the downstream to all device nodes concurrently. In

all cases, DOCSIS supports only unicast communications in the upstream flow, therefore multicast

may be leveraged only for downstream flows. In the second case illustrated in Fig. 7.7, unicast

communication flows are utilized in both downstream and upstream directions. In this case the

server is transmitting the same data N times, once to each device node. For unicast flows, network

connections may be persistent or non-persistent. Persistent connections are TCP/IP connections

between two devices that remain established for the life of a scenario execution. Conversely, non-

persistent connections are connections that are created and destroyed one or more times during

scenario execution. OPNET provides an attribute to control the connection persistence in the

device node model.

In addition to the required DOCSIS interface organization and communication flow model

configurations, OPNET models may be extended to contain a task-graph of computation and

communication transactions. OPNET models containing a definition of this type are referred to as

application models. Application models enable the simulation of task-graphs that capture process

completion times based on simulated communication flows and configurable compute-time values

that may be statically defined or taken from various distribution functions. Section 7.4 describes

the application models used in the chapter experiments.
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Figure 7.8: Experimental lab system configuration.

7.3.2 Lab System Environment

To evaluate the simulation environment accuracy and gain further insight into factors effecting

broadband embedded computing system performance, the 128 node experimental lab system from

Chapter 5 is utilized with the enhancement of a traffic-generation system to simulate additional load

on the DOCSIS broadband lab network. The traffic-generation system implementation supports the

generation of background downstream traffic to match the OPNET simulation environment traffic

profile. It consists of 16 additional STB nodes and a traffic generation server integrated into the 128

STB node experimental system to enable realistic test scenarios in the presence of DOCSIS traffic.

The block diagram of Fig. 7.8 illustrate the experimental lab system set-up from a DOCSIS physical

network perspective. The lab system is partitioned into four racks each containing 32 STBs used for

application model execution and 4 STBs to simulate an approximate 20Mb/s DOCSIS downstream
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traffic flow profile. The DOCSIS router contains two 2x8 DOCSIS RF line cards. Each line

card supports two downstream and eight upstream interfaces. As shown in Fig. 7.8, each rack is

wired with dedicated and independent links consisting of one downstream and four upstream RF

links. Multiple downstream and upstream links provide for improved traffic distribution, especially

for upstream flows where devices gain additional transmission opportunities through the DOCSIS

channel arbitration protocols (refer to Section 2.4.1.1). Each rack contains 32 STBs for application

model execution; an independent and single downstream RF link feeds each rack group of 32 STBs.

Similarly, an independent set of four upstreams RF links feeds each rack, thus one upstream RF

link is associated to each set of 8 STBs within the given rack.

Each rack also contains 4 traffic generation STBs (system total of 16 traffic generation STBs)

dedicated for experimental DOCSIS traffic scenarios. These 16 STBs share the same downstream

and upstream RF links used by the 128 STBs used for application model execution. A single server,

based on the Open MPI and OERTE infrastructure implementation from Chapter 5 is extended

to support multicast as well as unicast application delivery to execute experiments in both the

unicast and multicast experimental scenarios. In the multicast scenario, the application model test

server acts as a multicast IP source host in conjunction with DOCSIS DSG tunnels supporting

broadband multicast data delivery to all 128 STBs. Experiments that include background traffic

utilize a second server that generates a continuous approximately 20Mb/s data flow over the shared

upstream and downstream RF links to the 16 STBs described earlier.

A multi-threaded TCP/IP listener process has been developed to implement a 20Mb/s aggregate

downstream traffic flow. The TCP/IP listener is a server process that establishes 16 threads, with

each thread listening for an incoming STB connection request, one from each of the 16 STBs. The

server threads continuously process data-transfer requests from the 16 STB nodes at the rate of 10

requests per second per STB. In other words, each of the 16 server threads continuously sends a 16K

data buffer, 10 times per second. For example, using 16 STBs, a 20Mb/s downstream traffic profile

is achieved by each server thread, transferring 16,000 bytes/per-sec (20Mb/s = 16 threads x 16,000

bytes x 10 per/sec x 8 bytes bits/sec) spread across the 4 downstream RF channels. Each rack of

32 STB devices sustains a 5Mb/s background downstream traffic profile. The traffic generation is

started on each STB device prior to executing any application model experiments on the 128 node
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system. Traffic generation is then continuously maintained during the execution of lab experiments

whose scenario requires the presence of background traffic.

7.4 Experiments

Experiments consist of 24 independent tests that are performed across both the simulation and lab

environments described in Section 7.3. The first experiment consists of 16 tests (8 simulation and

8 lab tests) that are designed to evaluate message delivery performance in addressing the process

launch problem described in Section 7.1. The key experimental goals are: 1) understand under what

scenarios DOCSIS networks can be leveraged to optimize message delivery performance to a large

number of device nodes given various network conditions. 2) utilize experimental results to define

an implementation strategy for scalable broadband embedded computing runtime environments.

The 8 simulation tests utilize a task-graph representation for modeling the process launch and

execution of distributed application processes across N device nodes, where N varies from 128 to

8K. This model is referred to as the process launch-execution application model. The corresponding

8 lab tests utilize a MPI test application that emulates the process launch-execution model, but

is fully instrumented to capture timing information when executed across the lab environment.

In each set of process launch-execution model experiments, network attributes for communication

flow, background traffic, and connection persistence are varied under multicast-unicast or unicast-

unicast scenarios, generating all 8 test combinations for lab and simulation, respectively. To further

clarify, DOCSIS communication flows are tested using both multicast-unicast and unicast-unicast

configurations. For each communication flow, the impact of a continuous stream of 20Mb/s back-

ground downstream traffic is evaluated, with and without traffic. The methodology for generating

a background DOCSIS network traffic is described in Section 7.3. Finally, the effect of unicast

network connection persistence is evaluated for each communication flow with and without traffic.

Typically, applications establish network connections on-demand using the standard TCP/IP 3-way

handshake protocol. Network connections created in this manner are considered non-persistent con-

nections. For example, TCP/IP sockets in this mode are opened, utilized, then closed with each

network operation. However, persistent connections are those where all network connections are

pre-established and remain established during the lifetime of the network application process. In
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this case, TCP/IP 3-way handshakes are eliminated and the network initialization delay overhead

associated with opening and closing TCP/IP socket connections is minimized [110]. Persistent

and non-persistent connections are also referred to as prewired and not-prewired respectively. This

terminology is used throughout the reminder of this chapter.

The second experiment includes 8 tests, consisting of 4 simulation and 4 lab tests, based on

the execution of the parallel MSA algorithm presented in Section 4.5. An important goal of this

experiment is to: 1) compare the application execution performance results from simulation with

those taken from lab system execution in order to validate the accuracy of simulation results with

respect to those obtained through lab measurements, and 2) gain insight into a key open question

on the potential of scaling the execution of the parallel application across a large-scale broadband

embedded computing system. Each of the 4 simulation tests approximate the execution perfor-

mance of parallel MSA as the number of device nodes is increased, providing insight to this open

issue. The parallel MSA simulation and lab tests include 4 test combinations each: DOCSIS

multicast-unicast and unicast-unicast scenarios are evaluated with and without background traffic

generation. Prewired and not-prewired use-cases are not evaluated. The 4 lab tests utilize an

instrumented version of parallel ClustalW based on MPI that implements the parallel MSA algo-

rithm. The lab MSA test application is based on the same parallel ClustalW MSA implementation

discussed in Section 4.5. However, it is modified to generate application-level computational dura-

tions, network-transfer delays, and message sizes for various input sequence data sets. All results

are recorded for later use within simulation. The 4 simulation tests are based on an extension of

the basic process launch-execution model discussed previously for the first experiment that cap-

tures additional computation and communication operations necessary to accurately represent the

parallel MSA algorithm. Measurements from lab testing are back-annotated to the parallel MSA

application model in order to configure its attribute values for simulation.

The set of 24 tests comprising the process launch and parallel MSA applications experiments

fully characterize the most important message-delivery characteristics of managed DOCSIS broad-

band networks. In the following sections, both experimental models are described and experimental

results are presented.
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Figure 7.9: Generalized process launch-execution model.

7.4.1 Process Launch-Execution Application Model

The process launch-execution application model illustrated in Fig. 7.9 provides an equivalent task-

graph representation of a network application process launch and execution. The model utilizes

either multicast-unicast or unicast-unicast DOCSIS communication mechanisms, between the server

and n = 1..N embedded device nodes, as discussed in Section 7.2.1. Model notation includes the

use of lowercase n, which refers to an individual device node; whereas the use of uppercase N refers

to the total number of devices for a given test configuration.

The process launch-execution model provides three important attributes or timing parameters,

Texecn, Tackn, and Tcompletionn. Each timing attribute is equal to a message transfer time

duration associated with a variable-size message transmission between the server and a unique

device node. Timing attributes correspond to a single request-response communication operation.

Two additional model attributes shown in Fig. 7.9, Tlatency and Tcomputen, represent internal

time duration state within a given DOCSIS device node n. Tlatency is a measure of internal

runtime overhead or time taken to respond from receipt of a given Texecn message to initiating

the transmission operation of an acknowledgment message. Tcomputen provides a measure of

internal model computation. Tcomputen is a configurable attribute within simulation, while it is

a measured value during lab MPI test application execution. During lab execution of this model,



CHAPTER 7. SCALABLE NETWORK ARCHITECTURE FOR BROADBAND EMBEDDED
COMPUTING 157

Tcompute is measured before the MPI Init() function and includes the time to load and complete

the initialization of the MPI application. Measurement of Tcompute completes after MPI Finalize()

including the exit time of the MPI test application, and the additional time required to issue the

final Tcompletion operation.

Texecn Time for transferring message from server to DOCSIS client device node

n measured at client device node n.

Tlatency Internal model message processing overhead measured from receipt of

Texec message to transmission of acknowledgment message at DOCSIS

client device node.

Tackn Texecn time + Tlatency time + time for DOCSIS client device node n

to transmit acknowledgment message to server measured at server.

Tcomputen Computation time duration attribute representing process execution

time within DOCSIS client device node n.

Tcompletionn Texecn time + Tlatency time + Tcomputen time + time for DOC-

SIS client device node n to transmit a completion message to server

measured at server.

Table 7.1: Timing parameters for the process launch-execution model.

The process launch-execution application model parameters are summarized in Table 7.1. The

model is characterized by a sequence of 5 main steps:

1. The server node transmits (downstream using multicast or unicast flow types) a configurable

message size, corresponding to a process launch message, to all DOCSIS device nodes. Texecn

is defined then as the time duration required for a given node n to receive a launch message

sent by the server node;

2. Each node n initiates an upstream acknowledgment message to the server node after time

Tlatency from the instant it receives its Texecn message;

3. Tackn is defined as the time for node n to receive its launch message (Texecn duration), plus

Tlatency delay, plus the time required to transmit an acknowledgment message upstream and

received at the server node. This message is always a unicast communication flow;

4. Application process computation is modeled as Tcomputen duration within node n. This

includes any initialization and finalization overhead as would be the case under lab conditions;
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Attribute Simulation Lab

#Nodes 128,512,1K,2K,4K,8K 32,64,128

Texecn transmission message size (Bytes) 128,512,2k for k = 10..20 512,2k for k = 10..20

Tlatency 0us N/A

Tackn response message size (Bytes) 128 128

Tcomputen 10us N/A

Tcompletionn response message size (Bytes) 1K 1K

Table 7.2: Process launch-execution model attribute configuration.

5. A final completion message transmission is sent from node n to the server node to signal the

completion of one model cycle for node n. This final message is called Tcompletionn and is

defined as the total time from process launch-execution or Texecn to the time the completion

message is received at the server node from node n. Therefore, it is the sum of multiple time

durations or Tcompletionn = Texecn + Tlatency + Tcomputen.

In both the experimental simulation and lab execution case, individual results for Texecn,

Tlatency, Tackn, Tcomputen and Tcompletionn are collected. However, to evaluate the worst-case

performance behavior of the overall network topology, maximum measured values are defined as

TexecN , TackN , and TcompletionN . With this interpretation, 1) TexecN is the time duration

required for all N nodes to receive their process launch-execution message; 2) TackN is defined as

the time taken for all N nodes to deliver their acknowledgment messages as measured at the server

node; 3) TcompletionN is the completion of a launch-process execution cycle across all N nodes

as measured at the server node. Finally, to consider Tcomputen values across all N nodes, the

average of all Tcomputen values is computed for all N measured device nodes. This is denoted

Tcomputeavg.

7.4.2 Process Launch-Execution Application Model Experiments

The experiments for TexecN , TackN and TcompletionN are executed and measured 3 times, taking

the average, for each scenario with messages sizes and other initial conditions for the process

launch-execution application model attributes as specified in Table 7.2. Note that Tlatency for

this experiment is neglected and set to 0us for simulation. For lab tests, it is also assumed small
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and therefore neglected (indicated as non-applicable or N/A in Table 7.2). Tcomputen attribute

is set to 10us for simulation, and measured (indicated as N/A in Table 7.2) for lab experiments.

In each experimental scenario, TexecN , TackN , and TcompletionN times are measured under the

two 20 Mb/s background traffic profiles defined in Section 7.3. Both persistent (wired) and non-

persistent (not-prewired) connections are considered as well as multicast-unicast or unicast-unicast

communication flows described in Section 7.3. Simulation results are shown in appendix Figures A.1

through A.8. Lab results are shown in appendix Figures A.9 through A.16.

7.4.2.1 Process Launch-Execution Multicast-Unicast Results

An important result across both simulation and lab multicast-unicast scenario executions is the

near constant performance of multicast downstream communications performance for n = 1..N.

This result is observed as uniform TexecN time measurements independent of the number of device

nodes N in the corresponding experiment. Results for simulation are shown in appendix Figures A.1

through A.4. Lab execution results are shown in appendix Figures A.9 through A.12. The figures

show that the increase in TexecN time is consistent across both simulation and lab tests, as message

size increases, and remains constant as the number of nodes increases from n = 128 to 8K. TackN

and TcompletionN follow a linear increase as both message size and the number of device nodes

increases from n = 128 to 8K. This is due to the required unicast communication pattern which is

linear in n for all upstream communications. The amount of transmission time required is directly

proportional to message size (increasing data size and consequently number of transmissions) or

number of device nodes. Results for the no-prewired, without traffic, multicast-unicast experimental

simulation scenario are listed in Table 7.3. The table shows the uniform performance at .07ms in

each case for TexecN and the linear increase (45ms to 484ms at 128B message size as an example)

for unicast TackN and TcompletionN times where n varies between 128 and 8K device nodes. As

message size increases from 128 bytes to 1MB, all timing parameters increase in proportion to the

message size. We note negligible differences in simulated results between TackN and TcompletionN

as Tcompute is set to 10us within simulation.

To evaluate the change in TexecN , TackN , and TcompletionN times as the number of device

nodes increases from 128 to 8K, we take the ratio of the measured values at both N = 8K and

N = 128 device nodes. Ratios are computed for TexecN , TackN , and TcompletionN and listed
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#Nodes Msg Size TexecN (ms) TackN (ms) TcompletionN (ms)

128 128B .07 45 45

8K 128B .07 484 484

128 1MB 280 322 322

8K 1MB 287 716 724

Table 7.3: TexecN , TackN and TcompletionN time simulation measurements under multicast-

unicast, not-prewired no-traffic scenario.

Msg Size Texec8K/Texec128 (ms) Tack8K/Tack128 (ms) Tcompletion8K/Tcompletion128 (ms)

128B 1 11 11

1M 1 2 2

Table 7.4: TexecN , TackN and TcompletionN time ratios (case N=8K over N=128) under multicast-

unicast, not-prewired no-traffic simulation scenario.

in Table 7.4. TexecN ratio remains equal to 1 independently from message size, highlighting the

efficiency of multicast communications. In contrast, TackN and TcompletionN ratios equals 11

for 128 byte messages and 2 for 1MB messages respectively. This indicates that in comparison to

multicast communications, unicast upstream communications becomes less efficient as the number

of nodes increases. The ratio decreases from 11 to 2 as the message size increases from 128 bytes to

1MB. This also indicates that it is more efficient to transmit larger messages then smaller messages,

since 1MB messages only take twice as long to deliver as we increase the number of nodes from 128

to 8K. In contrast, 128 byte messages take 11 times as long for the same increase in device nodes.

This result is due to the additional DOCSIS protocol contention overhead as the number of device

nodes increase. In addition, there are fewer TCP/IP acknowledgments required for larger message

sizes in comparison to smaller messages. Therefore, it is more efficient to transmit larger messages

during unicast TCP/IP communications.

Lab results are shown in appendix Figures A.9 through A.12; graphs of TexecN , TackN and

TcompletionN are similar to simulation cases, but with overall higher time duration values respec-

tively. The difference in comparative performance results between simulation and lab execution

is a consequence of the DOCSIS broadband multicast network and MPI test application environ-

ment. Primarily: 1) data transmission reliability issues with the DOCSIS multicast delivery that
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Msg Size #Nodes TexecN (ms) TackN (ms) Tcomputeavg (ms) TcompletionN (ms)

512B

128 10 74 637 670

64 10 42 348 402

32 12 47 212 255

1MB

128 4363 4399 592 4981

64 4364 4400 377 4770

32 4365 4403 275 4635

Table 7.5: TexecN , TackN , Tcomputeavg, and TcompletionN time measurements for Lab execution

tests under multicast-unicast, not-prewired no-traffic scenario.

(a) without compensation factor (b) with compensation factor

Figure 7.10: Lab versus simulation TexecN multicast results with and without 10ms per-

transmission compensation factor.

require the addition of a small delay between transmissions to ensure reliable data delivery; 2) addi-

tional Tcomputeavg overhead due to the second-generation system (see Chapter 5) lab MPI runtime

environment that contributes additional time delays during MPI test application execution.

Impact on lab results due to STB multicast reliability. Initial lab testing exhibited data

loss during multicast transmission indicating the presence of data transmission reliability issues.

This may be due to two reasons: 1) there exists an intrinsic software architecture issue within the

test STB device networking stack where a time delay is required to transfer a message from the

network driver layer to the operating system TCP/IP stack. 2) since the STB software stack does

not provide a reliable multicast communication stack [5] as discussed previously, data integrity

is not assured. A number of tests conducted show that if a delay is implemented in the server

send operation for each transmission, data loss at the device node is eliminated. Any delay less
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than 10ms resulted in data loss at the device node. Therefore 10ms was chosen empirically as a

correction time factor to ensure reliable multicasting during lab tests. However, ensuring reliability

impacts network performance. This is confirmed by the longer Texec times observed in the lab test

results compared to simulation results.

In order to compare TexecN simulation results with lab measurements, simulation results for

TexecN are adjusted by applying a correction time factor. The correction time factor is computed

by simply multiplying the number of transmissions required for a given TexecN message size by

10ms and adding this to TexecN . The number of transmissions is approximated by dividing the

TexecN message size by the size of the DOCSIS packet PDU or 1280 bytes. To evaluate the impact

of the transmission delay compensation time factor on lab versus simulation accuracy, Figure 7.10

illustrates the change in performance differential with and without the 10ms per transmission

correct time factor. The left side of the figure illustrates the actual difference between simulation

and lab results, without network time compensation. The right side of Figure 7.10 shows a much

improved accuracy for lab-versus-simulation results once the 10ms per transmission compensation

time factor is included into the TexecN results.

Impact on lab results due to MPI system overhead. The MPI test application and

underlying MPI runtime environment require multiple MPI application and stack-level initialization

steps that are included in lab Tcomputen measurements. For example, required MPI libraries and

MPI initialization operations within MPI Init() (which is the first MPI executable statement for any

MPI based application) generate low-level MPI network stack operations between the STB client

devices and server. These upstream unicast requests add additional delays as a function of STB,

server, and network storage services (see the system architecture from Section 6.2). To illustrate

this point, Table 7.6 contains the average of all Tcomputen values or Tcomputeavg timing results

where N = 128, 64 and 32 lab STB device nodes when executing under the multicast-unicast, not-

prewired, no-traffic scenario corresponding to Figure A.9. For a given number of device nodes there

is a relative difference less than 9% in Tcomputeavg time duration when comparing the smallest and

largest TexecN message size. Tcomputeavg itself, however, increases with scaling from 32 to 128

device nodes. This is due to the additional unicast MPI test application initialization server and

storage requests as the number of STB device nodes increases. Results indicate an approximately

5% to 8% variation in Tcomputen values across STB device nodes for 32, 64 and 128 device
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#Nodes Msg Size Tcomputeavg (ms) Std Deviation (ms)

128 512B 637 26

128 1MB 592 24

64 512B 348 20

64 1MB 377 23

32 512B 212 21

32 1MB 275 13

Table 7.6: Lab measurements illustrating variation in Tcomputeavg.

nodes. Table 7.6 lists the standard deviation for typical results. Variation in Tcomputen may

be explained by systemic MPI initialization overhead for loading both MPI runtime environment

and libraries. STB nodes whose unicast requests complete their initialization process earlier have

lower Tcomputen values in comparison to those STB nodes that complete their requests later and

exhibit higher Tcomputen values. The larger STB Tcomputen values impact TcompletionN time

(worst case) because the process-launch execution cycle is not complete until the server receives

TcompletionN (final message from Tcompletionn).

Referring to appendix Figures A.9 through A.12 note that TackN and TcompletionN appear

nearly constant across all lab results. This effect is due to the lab environment where insufficient

number of nodes exist to measure linear performance characteristics as observed in TackN and

TcompletionN simulation results, particularly for unicast upstream communication flows. The

presence of traffic has minimal effect on both simulated and lab TexecN , TackN and TcompletionN

performance. The lack of contention in the presence of traffic is due to the abundant number of

DOCSIS downstream and upstream channels available. Recall from Section 7.3 that the DOCSIS

router configuration includes six 5x20 DOCSIS interfaces or 30 downstream and 120 upstream

channels matching a large broadband service provider configuration where the impact of DOCSIS

traffic is similarly minimized.

The performance for prewired communication (persistent network connections) scenarios im-

proves both TackN and TcompletionN time across simulation and lab environments over not-

prewired (non-persistent network connections or those created on-demand) scenarios. Table 7.7

compares prewired and not-prewired results taken from simulation and lab multicast-unicast ex-

periments. The effect of prewired topologies is indicated in TackN and TcompletionN columns,
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Environment Pre-Wired Msg Size TexecN (ms) TackN (ms) TcompletionN (ms)

Simulation
Y 512B .17 25 25

Y 1M 280 303 303

N 512B .2 44 44

N 1M 280 323 323

Lab
Y 512B 5 21 617

Y 1MB 8652 8670 9264

N 512B 10 74 670

N 1MB 4313 4399 4981

Table 7.7: Comparing prewired and not-prewired TexecN , TackN and TcompletionN time mea-

surements under multicast-unicast, no-traffic scenarios for N = 128 nodes.

#Nodes Msg Size TexecN (ms) TackN (ms) TcompletionN (ms)

128 128B 24 46 46

8K 128B 392 549 551

128 1MB 2690 2711 2711

8K 1MB 124016 124036 124036

Table 7.8: TexecN , TackN and TcompletionN time simulation measurements under unicast-unicast,

not-prewired no-traffic scenario.

where time values are higher for not-prewired cases as compared to prewired for equivalent mes-

sage sizes. This is expected as both TackN and TcompletionN communication flows are unicast

upstream flows, where any elimination of TCP/IP 3-way handshakes reduces the overhead associ-

ated to socket operations as described earlier in Section 7.4.

In summary, the analysis of the multicast-unicast experimental results indicates that the key

properties of multicast distribution are consistent between lab and simulation experiments. This

holds true despite differences in absolute timing results comparing the lab to simulation environ-

ments. For unicast upstream communications, prewired connections improve the overall TackN and

TcompletionN performance. The presence of background traffic within the lab and simulation ex-

periments is not a significant factor due to the contention free DOCSIS router configuration in both

environments.
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Msg Size Texec8K/Texec128 (ms) Tack8K/Tack128 (ms) Tcompletion8K/Tcompletion128 (ms)

128B 16 12 12

1M 46 46 46

Table 7.9: TexecN , TackN and TcompletionN time ratios (case N=8K over N=128) under unicast-

unicast, not-prewired no-traffic simulation scenario.

7.4.2.2 Process Launch-Execution Unicast-Unicast Results

Unicast-unicast scenarios consistently follow a linear performance curve for TexecN , TackN , and

TcompletionN timing measurements across all message sizes as N increases, in both simulation

and lab experiments. Results are shown in appendix Figures A.5 through A.8 for simulation and

Figures A.13 through A.16 for lab tests. A sample of measured values for TexecN , TackN and

TcompletionN for the scenario in Figure A.5 are listed in Table 7.8. A key result deduced from

the figures and Table 7.8 is the significant performance cost of unicast message delivery across

large numbers of device nodes for a given message size. Table 7.8 illustrates this across TexecN ,

TackN and TcompletionN . TexecN time for 128B communications increases from 24ms to 392ms,

a 16 times increase. The efficiency decreases even further for larger message sizes. For example

with 1MB message size, TexecN increases from 2690ms to 124016ms, a 46 times increase. Results

are comparable for each unicast communication as indicated in Table 7.8. The computed ratios

comparing 8K to 128 nodes for each case are listed in Table 7.9.

Simulation results shown in appendix Figures A.5 through A.8 indicate at n = 4096 nodes,

the presence of a positive inflection in the slope, where TexecN , TackN and TcompletionN time

durations increase faster above 4K nodes. This is due to DOCSIS contention effects from down-

stream and upstream TCP/IP acknowledgment traffic [90] when the topology size hits a threshold

for the given CMTS model configuration. This effect is reduced in pre-wired scenarios Figures A.7

and A.8. Here, TCP/IP 3-way handshakes are minimized by virtue of pre-established persistent

connections.

Appendix Figures A.5 through A.16 show the results for prewired versus not-prewired scenarios.

Prewired scenarios across both lab and simulation outperform not-prewired scenarios as expected.

In unicast-unicast scenarios, TcompletionN time is positively impacted when utilizing prewired

connections as protocol overhead is reduced in each model unicast direction (TexecN , TackN and
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#Nodes Msg Size Prewired TcompletionN (ms) Not-prewired TcompletionN (ms) Improvement

8K 128B 243 484 2.0

8K 1MB 496 724 1.5

4K 128B 133 258 1.9

4K 1MB 392 490 1.3

2K 128B 80 145 1.8

2K 1MB 345 396 1.1

1K 128B 58 93 1.6

1K 1MB 329 360 1.1

512 128B 46 74 1.6

512 1MB 318 341 1.1

128 128B 23 45 1.9

128 1MB 302 322 1.1

Table 7.10: Comparing unicast-unicast prewired versus not-prewired TcompletionN simulation

performance results.

#Nodes Msg Size TexecN with traffic (ms) TexecN without traffic (ms)

128 128B 25.4 24.3

128 1MB 2733 2690

8K 128B 396 392

8K 1MB 117981 124015

Table 7.11: Comparing unicast-unicast, not-prewired, TexecN time simulation measurements with

and without traffic.

TcompletionN ) for all DOCSIS devices nodes. Table 7.10 lists measured TcompletionN values

simulation comparing prewired to not-prewired. In each result, TcompletionN time is lower for

prewired test cases compared to not-prewired cases. We note that the improvement factor increases

as the number of device nodes increases and, conversely, it decreases as message size increases. This

result is consistent with the additional overhead cost incurred for TCP/IP session set-up relative to

both the number of device nodes and a reduction in amortized cost of this overhead as the amount

of data transmitted in increased.

The effect of traffic in all unicast-unicast experiments is small. For example, Table 7.11 illus-



CHAPTER 7. SCALABLE NETWORK ARCHITECTURE FOR BROADBAND EMBEDDED
COMPUTING 167

trates the impact of traffic for not-prewired simulation scenario for TexecN . Interesting, in the

case of 8K nodes, the presence of traffic may actually lead to a small improved performance. This

condition may occur when upstream traffic requests are randomly distributed in such a way that

the DOCSIS back-off algorithm reduces contention. Under these conditions, the DOCSIS scheduler

spreads out the upstream device-node requests over time such that contention effects are reduced

and overall bandwidth across all device nodes is increased. The minor impact of traffic in these

experiments is primarily due to production scale sizing of the DOCSIS CMTS model as configured

in simulation. That is, there are sufficient CMTS line cards (6 5x20 interfaces) to support the

upstream DOCSIS node transmission activity without high-contention due to traffic. Appendix

Figures A.6 and A.8 illustrate this comparison graphically for the model time attribute.

In summarizing the unicast-unicast experimental results, a key property of unicast communi-

cation is the linear degradation in measured performance as we increase the size of the network

and message length. Simulation and lab results are consistent. However lab results are further

impacted by differences in experimental model attribute values such as Tcomputen and overhead

associated to MPI system initialization as discussed in multicast-unicast experiments. Similar to

multicast-unicast scenarios, experimental results of prewired scenarios demonstrate positive per-

formance impact, particularly as we increase the number of device nodes. The improvement rate

decreases as the message size increases. In this experimental set-up, traffic generation was not a

significant factor. In the next section, efficiency of multicast-unicast is compared to unicast-unicast

communication flow scenarios.

7.4.2.3 Comparing Process Launch-Execution Multicast Versus Unicast Results

In this section, multicast and unicast communication flows are compared relative to number of

nodes, message size, delivery performance and efficiency. Results from experiments described in the

previous section are utilized to evaluate when it is best to utilize multicast or unicast communication

flows for message delivery.

Comparing multicast versus unicast message delivery performance and efficiency.

Table 7.12 compares downstream multicast versus unicast message delivery performance in terms

of TexecN time, for message distribution to N nodes, where the same message is delivered to each

node. For the same N, multicast, which has a constant time at nearly .07ms for 128B messages and
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#Nodes Msg Size Multicast TexecN (ms) Unicast TexecN (ms)

Not-Prewired

Unicast TexecN (ms)

Prewired

8K 128B .07 392 92

8K 1MB 286 124016 99883

4K 128B .07 209 42

4K 1MB 281 46038 46312

2K 128B .07 121 21

2K 1MB 280 22257 22199

1K 128B .07 72 10

1K 1MB 280 11174 11179

512 128B .07 53 5

512 1MB 280 5730 5719

128 128B .07 24 1.4

128 1MB 280 2690 2650

Table 7.12: Multicast versus unicast TexecN simulation performance results.

280-286ms for 1MB messages, is more efficient compared to unicast communications. Multicast

TexecN times remain nearly constant for any fixed message size independent of N, whereas unicast

increases linearly. Unicast prewired results indicate consistent improvement in comparison with

not-prewired results in each case.

Results for multicast and unicast TexecN for N = 128 and 8K nodes versus message size are

plotted in Fig. 7.11, illustrating multicast efficiency compared to unicast. Referring to the figure,

results are consistent with the values from Table 7.12. TexecN duration versus message size curves

(for N = 128 and 8K nodes) remain nearly constant (.07ms for 128B and 286ms for 1MB at

8K nodes) until message size grows to 1MB; unicast curve for N = 8K grows very quickly as the

message size increases towards 1MB. For example, at N=128 nodes TexecN is 2690ms for not-

prewired unicast case. TexecN increases to 124016ms at N=8K nodes; a 46X increase. For small

N, unicast and multicast are comparable. Note that multicast efficiency actually increases as the

number of nodes and the message size increases relative to unicast, as indicated by the widening

TexecN gap between multicast and unicast for N = 8K nodes.

If each device node requires a unique message, how does multicast delivery compare to unicast?
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Figure 7.11: Multicast versus unicast delivery performance for various message sizes (where all

messages are the same for all nodes).

Msg size/node Multicast TexecN (ms) Multicast Message Size Unicast TexecN (ms) Unicast Message Size

128 4.5 16KB 24 128B

8K 280 1MB 70 8K

1M 5000 128MB 2690 1MB

Table 7.13: Multicast versus unicast message delivery efficiency simulation for N = 128 nodes.

Msg size/node Multicast TexecN (ms) Multicast Message Size Unicast TexecN (ms) Unicast Message Size

128 287 1MB 392 128B

8K 22784 64MB 4619 8KB

Table 7.14: Multicast versus unicast message delivery efficiency simulation for N = 8K nodes.
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(a) (b)

Figure 7.12: Multicast versus unicast delivery efficiency where each node receives a unique message.

Is it more efficient to send a single large multicast message that clients filter their unique message,

compared to many smaller individual unicast messages? Simulation results in Tables 7.13 and 7.14

provide insight to answer these questions using TexecN time to evaluate delivery efficiency. Results

in Table 7.13 correspond as follows; column one is the effective unique message size per node for

each client, evaluating 128B, 8K, and 1MB per node. The next two columns include values for

multicast TexecN time corresponding to the transmitted TexecN message size in column three.

That is, TexecN message size is the total message delivered to 128 nodes, such that each node can

filter a unique 128B, 8K, and 1MB message respectively. Table 7.14 provides similar information,

but for N = 8K nodes. In analyzing both tables, the results indicate that only when the message size

is small, does multicast outperform unicast for delivery of individual unique messages per device.

Fig. 7.12 further illustrates the benefit of utilizing unicast delivery for unique message delivery

over multicast. The left-side figure shows the gap between multicast and unicast for 128 nodes,

increasing once the per-device message size exceeds 4KB. For larger number of nodes, the gap

occurs almost instantly with message sizes over 128B per node. This is illustrated on the right side

of Fig. 7.12.

Comparing multicast versus unicast process completion performance. TexecN perfor-

mance data indicate that multicast downstream transmission is optimal where single-copy message

delivery for large numbers of devices is required. Multicast-unicast offers an ideal solution for

addressing large-scale process or application launch-execution within distributed broadband com-
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#Nodes Msg Size Multicast-Unicast

TcompletionN (ms)

Unicast-Unicast

TcompletionN (ms)

Performance Ratio

128 128B 45 46 1

8K 128B 484 551 1.1

128 1MB 322 2711 8.4

8K 1MB 724 124036 171

Table 7.15: Comparing multicast-unicast and unicast-unicast TcompletionN simulation times under

not-prewired no-traffic scenarios.

puting environments. However, utilizing multicast-unicast under this scenario also improves the

overall completion time when compared to unicast-unicast flows where both message size and num-

ber of nodes increase (assuming equivalent TexecN message data and other model attributes such as

Tcomputeavg values for example). Simulation results for TcompletionN in Table 7.15 validate and

illustrate the overall improvement. For small message sizes there is negligible comparative improve-

ment in utilizing multicast-unicast as performance ratios equal 1.0 and 1.1 respectively (message

size is 128B). The TcompletionN performance ratio for multicast-unicast versus unicast-unicast in-

creases to 8.4 for 1MB message sizes when using N=128 device nodes. Reduction in TcompletionN

time, and hence overall process completion time, improves as the network increases in size. For

example, referring to Table 7.15, at N=8K device nodes and 1MB message size, the performance

ratio increases to 171; where TcompletionN for the multicast-unicast scenario is 724ms compared

to 124036ms for unicast-unicast scenario.

In summary, simulation results indicate a clear performance improvement when using multicast

downstream data delivery compared to unicast delivery. This improvement is directly proportional

to the number of device nodes and transmitted message size.

7.4.3 Parallel MSA Application Model

This section describes a second model that extends the process launch-execution model from Sec-

tion 7.4.1 to enable simulation of the parallel MSA application execution from Section 4.5. To simu-

late parallel MSA, the algorithm from Section 4.5 is converted into an equivalent task-graph model

representation. Fig. 7.13 illustrates the MSA task-graph model. Timing attributes Texecn, Tackn,

Tcompletionn and their overall (worst case) case versions, TexecN , TackN , and TcompletionN are
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Figure 7.13: Parallel MSA application model.

defined as previously in Section 7.4.1. Tlatency is now captured for each device node n and is de-

fined as Tlatencyn. The average value computed across all N device nodes is defined as Tlatencyavg.

Model attributes shown in Fig. 7.13 capture additional computation and communication operations

between the server and the N device nodes. Model notation and usage is as follows: Computation is

modeled at the server as a sequence of 5 compute cycles, labeled TS compute{1..5}, with interleaving

request and response message cycles between server and device nodes. In a similar fashion, device

node computation is represented as a sequence of 4 compute cycles, labeled TC compute{1..4} n, at the

nth device node. Worst-case device node computation (i.e. the time required for all device nodes

to complete a given computation cycle) across all device nodes is defined as TC compute{1..4} N .
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Communication flows from the server to individual device nodes are unicast and require 2 request

message cycles labeled Treq1 n and Treq2 n, illustrated in green in Fig. 7.13. Communication flows

from individual device nodes to the server are also unicast and require 2 response message cycles.

These messages are labeled Tresp1 n and Tresp2 n respectively, illustrated in blue in Fig. 7.13. The

parallel MSA algorithm includes multiple nested request and response communication cycles. In

this analysis, all request and response communication timing results are reported as worst-case, or

overall message communication times across all N device nodes. Worst-case overall request message

cycles are defined as Treq1 N and Treq2 N . Similarly, overall time values for device-node-to-server

response messages (worst-case response message operations time across all N device nodes to the

server) are labeled and reported as Tresp1 N and Tresp2 N , respectively. In cases where individual

request or response message times are reported, Treq1 n avg and Treq2 n avg indicate average time

for server-to-device request message-transmissions. Similarly, Tresp1 n avg and Tresp2 n avg indicate

average individual device-node-to-server message transmissions.

Request and response message sizes are defined as Treq1,2n msg size and Tresp1,2n msg size where

the shorthand notation corresponds to the first and second request or response messages between

the server and nth device node, respectively. Finally, average request or response message sizes

between server and device nodes across all nodes are defined as Treq1 msg size avg, Treq2 msg size avg

and Tresp1 msg size avg Tresp2 msg size avg, respectively.

As mentioned earlier, a final completion message, Tcompletionn, with a corresponding message

size Tcompletionn msg size, provides final acknowledgment for each device node process completion

to the server node. The Tcompletionn message is sent from each device node after TC compute4 n

completes. The model execution terminates at the server at the end of TS compute5 time. This

final server-side computation is initiated after the server receives the final Tcompletionn message

or TcompletionN (worst case or overall reported time). This final computation at the server marks

the completion of the overall model execution cycle.

Fig. 7.14 illustrates the mapping for the MSA task-graph model in Fig. 7.13 to the master-worker

computational pattern representing parallel MSA as described in Section 4.5. The algorithm is

based on the Mason implementation of ClustalW for execution on distributed memory parallel

systems using MPI [26; 32]. The parallel MSA algorithm and corresponding task-graph model

representation proceed through nine steps after initialization as follows:
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Figure 7.14: Parallel ClustalW MSA algorithm comparison to Parallel MSA application model.

1. The master host processor reads the input file containing K sequences and allocates a K ×

K distance matrix structure that is used to hold all optimal alignment scores between all

permutations of K sequences. The master also partitions the distance matrix by dividing

up the sequences among the N worker processors (device nodes) to distribute the workload,

network, and resource requirements during the alignment step. This step corresponds or takes

a time equal to TS compute1 in the MSA model task-graph.

2. The master sends all required sequences to the N worker processors based on the distance

matrix partitioning scheme computed in Step 1. Each processor has a fraction Kf = K/N
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of the total number of K sequences to align. The overall communication cycle time required

from server to all N device nodes is Treq1 N .

3. The N worker processors compute their
Kf ·(Kf−1)

2 alignments in parallel using the pairwise

alignment dynamic programming algorithm. This step corresponds to TC compute1 n for each

client. Pairwise computation for all N workers must complete before proceeding to the

next MSA algorithm step. Worst-case pairwise completion time across all N device nodes is

TC compute1 N . Since over 96% (see Section 4.5) of the MSA algorithm is spent in this com-

putation step, TC compute1 N has an important impact on overall parallel MSA performance.

4. All worker processors send their alignment results back to the master in parallel. The overall

communication cycle time required from all N devices nodes to the server is Tresp1 N . The

average message size sent from device nodes to the server is Tresp1 msg size avg.

5. After receiving all scores and completing the distance matrix the master builds the guide tree.

The MSA application model represents this computational step as TS compute2.

6. The master computes and sends an alignment order along with the respective sequences

required for progressive alignment to all worker processors. The overall communication cycle

time required from server to all N device nodes is Treq2 N . The average message size sent

from the server to all N device nodes is Treq2 msg size avg.

7. All worker processors perform progressive alignment in parallel. This computation step occurs

at or takes TC compute3 n in the MSA application model.

8. All worker processors send their partial multiple alignments back to the master in parallel.

This message cycle corresponds to Tresp2 N . The average message size sent from all N device

nodes to the server is Tresp2 msg size avg. After this step, each device node completes its

execution during the final computation stage TC compute4 n. For lab experiments, this phase

corresponds to MPI finalization.

9. The master progressively completes the remaining multiple alignment pairs to produce the

final result. This final server computation step is defined as TS compute4.
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Attribute Simulation Lab

#Nodes 128,512,1K,2K,4K 32,64,128

Texecn transmission message size (Bytes) 87078 87078

Tackn response message size (Bytes) 128 128

Tcompletionn response message size (Bytes) 1K 1K

Table 7.16: MSA model message size attribute settings.

The server and device node initialization time is not included in the MSA algorithm execution

time. However, the initialization time duration is captured in the MSA application model as

TS compute0 and TC compute0 n computation phases respectively. Additionally, some computation

phases represent wait states durations, typically while some communication tasks complete on

the server or device nodes. In these cases, phases are indicated in Fig. 7.14 as Waiting. Model

termination occurs at the conclusion of the final server computation in Step 9. In this final phase,

the server waits for a TcompletionN message indicating that all device nodes have sent their final

message. At this point the MSA application model has completed a full execution cycle.

7.4.4 Parallel MSA Application Model Experiments

This section describes experiments to evaluate broadband embedded computation and communica-

tion performance trade-offs by analyzing the execution of the parallel MSA algorithm across lab and

simulation environments. The application model described in Section 7.4.3 supports parallel MSA

simulation, whereas the lab system executes the parallel ClustalW MPI MSA application. Experi-

ments are performed across lab and simulation environments to confirm the accuracy of simulation

in comparison to results derived from the lab system. Simulation is used to evaluate large-scale

application launch performance and broadband network scalability. Results are then utilized in

simulation to examine the scaling potential of broadband embedded computing for executing dis-

tributed parallel computing applications across large-scale broadband network infrastructures. The

experimental environment is based on the same simulation and lab system configuration described

in Section 7.3.

The experiments consist of 4 parallel MSA simulation test scenarios and 4 parallel MSA lab

test scenarios using 7 DNA input sequences for each test. Seven sequences are exactly the same
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as those defined in Section 4.5. A sequence is defined by the length and base pair encoding Sx-Ly,

that denotes a data set of x DNA sequences with y base pairs (e.g. S100-L1500 means “100 DNA

Sequences with 1500 base pairs”). Average sequence length is denoted Lavg. Simulation and lab

system experiments consist of tests to measure the performance impact of multicast-unicast and

unicast-unicast DOCSIS communication flows under traffic and no-traffic test scenarios. Therefore,

simulation and lab experimental scenarios include a total of 4 test combinations as follows: 1)

multicast-unicast with and without traffic, and 2) unicast-unicast with and without traffic. In both

simulation and lab experiments, each test is repeated 3 times and the average results reported.

Parallel MSA application model attributes are defined in Section 7.4.3. Values for Texecn,

Tackn and Tcompletionn message size attributes are defined in Table 7.16. Texecn message size is

fixed and corresponds to the actual ClustalW MPI application binary image size. TcompletionN

defines the completion of the parallel MSA model execution corresponding to the MSA sequence

generation. Simulation experiments make use of lab results including computation and commu-

nication message sizes measured from lab tests. Measurements from lab execution are averaged,

then utilized to predict important attribute values for various N. The predicted attribute values are

then back-annotated to the simulation scenario model attributes corresponding to the equivalent

model attributes in Fig. 7.13. To evaluate the impact of DOCSIS network performance in compar-

ison to device node computation, communication and computation results from lab execution and

simulation are summarized in the following sections.

7.4.4.1 Parallel MSA Launch-Execution and Completion Time Lab Results

Results for TexecN and TcompletionN from parallel MSA application model lab execution across

128, 64 and 32 device nodes are shown in Tables 7.17 and 7.18 respectively. Table 7.17 presents

TexecN and TcompletionN time measurements for multicast-unicast and unicast-unicast scenarios

under the no-traffic scenario. Table 7.18 presents the results for the same set of experiments

executed in the presence of traffic.

TexecN results are consistent and uniform averaging 369ms multicast delivery time performance

as the number of device nodes is increased from 32 to 128. Averaging 680ms across all experiments,

the delivery time TexecN for unicast is nearly twice as long as the delivery time for multicast. This

confirms the results of earlier process launch-execution experiments from Section 7.4.2.1, where
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#Nodes Input Sequence Multicast-Unicast

TexecN (ms)

Multicast-Unicast

TcompletionN (ms)

Unicast-Unicast

TexecN (ms)

Unicast-Unicast

TcompletionN (ms)

128

S100-L1500 370 390512 633 391275

S200-L300 369 110776 629 112631

S300-L200 369 44123 624 44721

S500-L200 368 207330 624 207979

S200-L500 368 154016 620 154862

S500-L1100 368 2327106 626 2327044

S1500-L100 368 1267784 621 1276006

64

S100-L1500 370 558804 613 561195

S200-L300 369 209471 623 212313

S300-L200 369 65967 618 65037

S500-L200 368 378900 615 381729

S200-L500 368 258018 633 258834

S500-L1100 369 4323279 619 4319816

S1500-L100 369 1828766 608 1835764

32

S100-L1500 371 1035962 623 1037729

S200-L300 370 277618 638 278815

S300-L200 369 101951 619 103218

S500-L200 368 592751 653 589761

S200-L500 368 464835 605 465778

S500-L1100 370 6681769 636 6677896

S1500-L100 370 2287596 612 2278596

Table 7.17: Parallel MSA Lab results for TexecN and TcompletionN no-traffic scenario.

multicast message delivery outperformed unicast message delivery for any given message size. Lab

results also confirm that multicast delivery provides higher performance (less time) for parallel

MSA application delivery compared to the unicast based approach. The TexecN variation across

N (128, 64, and 32 device nodes) for either multicast-unicast or unicast-unicast is small at less

than 1%. Indeed, as a consequence of the small lab network environment, measured results are

similar for both traffic and non-traffic scenarios. The average measured Tlatencyavg across all

multicast-unicast tests is 41ms. However, the average measured Tlatencyavg increases to 57ms

for unicast-unicast tests due to added device node network I/O overhead associated to unicast

operations. Specifically, additional time is required within the lab STB test device nodes during

socket open and close operations in the unicast-unicast scenario.
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#Nodes Input Sequence Multicast-Unicast

TexecN (ms)

Multicast-Unicast

TcompletionN (ms)

Unicast-Unicast

TexecN (ms)

Unicast-Unicast

TcompletionN (ms)

128

S100-L1500 370 389292 680 392737

S200-L300 370 110926 685 112816

S300-L200 369 40845 672 41894

S500-L200 369 207088 656 208738

S200-L500 368 153384 678 155165

S500-L1100 368 2327639 687 2328387

S1500-L100 369 1264625 677 1267905

64

S100-L1500 370 558731 661 565196

S200-L300 370 209616 686 211724

S300-L200 371 64595 692 66877

S500-L200 371 379358 680 381902

S200-L500 371 259292 675 259867

S500-L1100 372 4321019 673 4323933

S1500-L100 371 1837264 672 1836102

32

S100-L1500 371 1036113 695 1037047

S200-L300 370 277788 677 279052

S300-L200 370 102553 701 105391

S500-L200 370 585142 677 592398

S200-L500 369 466109 664 467842

S500-L1100 371 6673171 676 6678858

S1500-L100 370 2289438 702 2292539

Table 7.18: Parallel MSA Lab results for TexecN and TcompletionN traffic scenario.

TcompletionN times are consistent across all experiments with TcompletionN decreasing (per-

formance improving nearly linearly) as the number of device nodes increases. TcompletionN results

in Tables 7.17 and 7.18 show a small improvement for multicast-unicast cases over unicast-unicast

results. This improvement is primarily due to application launch-execution efficiency impact from

lower TexecN , Tlatencyavg values and internal device node overhead.

Results are shown in appendix Figures A.17 through A.20 with additional results for TackN

included. As expected, TackN values are higher compared to TexecN yet uniform across all N. In

the traffic scenario test case, results indicate a linear increase in TackN at N = 128 nodes. This is

consistent with the previous results from Section 7.4.2.2 where TackN as unicast operation begins



CHAPTER 7. SCALABLE NETWORK ARCHITECTURE FOR BROADBAND EMBEDDED
COMPUTING 180

Input Sequence Multicast-Unicast Speedup Unicast-Unicast Speedup

S100-L1500 2.7/2.7 2.7/2.6

S200-L300 2.5/2.5 2.5/2.5

S300-L200 2.3/2.5 2.3/2.5

S500-L200 2.9/2.8 2.8/2.8

S200-L500 3.0/3.0 3.0/3.0

S500-L1100 2.9/2.9 2.9/2.9

S1500-L100 1.8/1.8 1.8/1.8

Table 7.19: Lab speedup results for multicast-unicast and unicast-unicast with no-traffic/traffic

scenarios.

to increase linearly as the number of device nodes increases with slightly higher TackN values under

lab traffic scenarios.

7.4.4.2 Parallel MSA Execution Time Speedup Lab Results

Parallel MSA execution speedup results for both traffic and no-traffic lab tests are shown in Ta-

ble 7.19 (shown as no-traffic/traffic values). Results show a near linear speedup as the number of

device nodes increases from 32 to 128. Parallelization speedup is computed as the ratio of measured

TcompletionN values using 32 device nodes (or Tcompletion32) divided by TcompletionN measure-

ments using 128 device nodes (or Tcompletion128). Speedup is comparable in all cases and varies

between 1.8 and 3.0. Multicast-unicast speedup is comparable and consistent to unicast-unicast

speedup measurements from the experiments in Section 4.5. Similarly there is a small difference

in results due to traffic between multicast-unicast and unicast-unicast test scenarios. This is con-

sistent with the small difference of less than 1% variation in TcompletionN values presented in

Section 7.4.4.1. This small difference in results is due to the parallel MSA application implementa-

tion, which utilizes unicast communication flows (between server and device nodes as illustrated in

Fig. 7.14) during program execution. This comprises the majority of parallel MSA execution time.

7.4.4.3 Parallel MSA Communications Lab Results

Lab measurements for overall communication cycle time results are shown in Tables 7.20 and 7.21.

All attribute values in Tables 7.20 and 7.21 correspond to the parallel MSA task-graph model

attributes described in Section 7.4.3. Lab results are shown for 128, 64, and 32 device nodes for
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#Nodes Input Sequence Treq1 N (ms) Tresp1 N

(ms)

Treq2 N (ms) Tresp2 N

(ms)

128

S100-L1500 1140 98108 45 86803

S200-L300 1185 55521 54 17403

S300-L200 1136 14741 87 8190

S500-L200 1195 81967 82 10852

S200-L500 1556 48650 99 21785

S500-L1100 1347 992582 89 189224

S1500-L100 1262 243294 185 44622

64

S100-L1500 698 112116 45 85176

S200-L300 675 123393 53 17301

S300-L200 659 24404 49 7050

S500-L200 687 175341 72 11044

S200-L500 681 80255 98 21627

S500-L1100 849 1924671 70 193066

S1500-L100 787 574168 135 38604

32

S100-L1500 394 255615 44 88916

S200-L300 380 128884 42 18029

S300-L200 382 35148 44 4903

S500-L200 417 228577 54 17326

S200-L500 368 143938 47 22729

S500-L1100 543 2188748 77 206722

S1500-L100 509 544015 117 38878

Table 7.20: Parallel MSA Lab overall request-response communication cycle time results.

each input sequence, and executed under the multicast-unicast, no-traffic scenario. Table 7.20 lists

overall communication cycle time measurements (Treq1 N and Treq2 N ) corresponding to request

cycles from server to device nodes across all sequence tests. Overall response message cycle times

(Tresp1 N and Tresp2 N ) from devices nodes to the server are also shown in Table 7.20. Corre-

sponding message sizes associated to each of the request and response message phases are shown

in Table 7.21.

Results show that Treq1 N increases by an average factor of 2.7X and Treq1 msg size avg message

sizes decrease an average of 2.0X, as the number of device nodes varies between 32 to 128. As

an illustration, results for S100-L1500 taken from Tables 7.20 and 7.21 show Treq1 N increasing

from 394ms to 1140ms as the number of device nodes increases from 32 to 128. Correspondingly,
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Treq1 msg size avg decreases from 36859 to 18834 bytes. Treq1 N time increases are due to the time

required by the server node to distribute partitioned sequence data over an increasing number of

unicast connections between server and devices nodes as N increases. These results are consistent

with the unicast-unicast process launch-execution results from Section 7.4.2.2 where transmission

time increased linearly with N for a given message size. Results for Treq2 N follow a similar trend

as Treq1 N . However, Treq2 N increases by a factor of only 1.3X due to greater variability in

Treq2 msg size avg message sizes across all sequence tests. For example, Treq2 msg size avg message

sizes decrease by only a factor of 1.1X for S100-L1500. In comparison, Treq2 msg size avg message

sizes decrease by a factor of 4.0X for S1500-L100. Results from Tables 7.20 and 7.21 confirm that

Treq2 N values are impacted by message-size variation across input sequence tests. This is due to

the greater communication cost impact from message size increases relative to the impact from

increasing the number of lab device nodes from 32 to 128.

Response message timing results for Tresp1 N and Tresp2 N are shown in Table 7.20. Both

Tresp1 N and Tresp2 N generally increase as the number of device nodes decreases from 128 to 32

but at different rates. To illustrate, values for Tresp1 N increase by a factor of 4.0X as N decreases

for test input S1500-L100 and 3.3X for test input S100-L1500. In comparison, Tresp2 N values

increase by only a factor of 1.1X across N for S100-L1500 and 4.0X for sequence test S1500-L100.

Except for the possible effects of DOCSIS upstream communication, the behavior of Tresp1 N and

Tresp2 N is similar to Treq1 N and Treq2 N where variation in message sizes impact transmission

performance. Specifically, the combination of message size and DOCSIS upstream contention ef-

fects (both influenced by message size and the number of device nodes) are contributing factors

to the performance of the communication from device node to server. The effect of contention

in downstream server to device node request messages is not a significant factor as discussed in

Section 2.4.1.1. As the number of nodes are increased, message sizes generally decrease, because

the total data-set is partitioned across additional device nodes. However, the effects of DOCSIS

upstream contention also increases. These effects can be observed from results in Table 7.20 and

7.21 using S100-L1500 as an example: Tresp1 N increases from 98108ms to 255615ms or a factor of

2.6X as we decrease N from 128 to 32 device nodes. At the same time, Tresp1 msg size avg message

sizes increase by a factor of 3.3X (223 bytes to 728 bytes). In comparison, Tresp2 N increases only

from 86803ms to 88916ms or a factor of 1.02 while Tresp2 msg size avg message sizes increases by only
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#Nodes Input Sequence Treq1 msg size avg

(Bytes)

Tresp1 msg size avg

(Bytes)

Treq2 msg size avg

(Bytes)

Tresp2 msg size avg

(Bytes)

128

S100-L1500 18834 224 14296 43948

S200-L300 8298 728 5938 17153

S300-L200 5721 1224 2566 7550

S500-L200 13572 3968 6139 16987

S200-L500 12902 624 6661 18209

S500-L1100 47871 4224 25551 66741

S1500-L100 25036 32040 19887 52674

64

S100-L1500 26636 360 14296 43948

S200-L300 11310 1520 6582 19008

S300-L200 7999 2400 4123 12121

S500-L200 18550 8280 12255 33892

S200-L500 17122 1368 7901 21589

S500-L1100 66088 8648 50998 133137

S1500-L100 33903 68120 39609 104893

32

S100-L1500 36859 728 16044 49246

S200-L300 16871 2600 13142 37875

S300-L200 11492 4488 8186 24060

S500-L200 26928 15128 24364 67287

S200-L500 25296 2400 15706 42937

S500-L1100 95114 16128 101586 264653

S1500-L100 48547 127448 78620 208018

Table 7.21: Parallel MSA Lab execution request-response message size results.

a factor of 1.1. In the case of Tresp1 N , both message size and upstream contention impact perfor-

mance. However, since Tresp1 msg size avg message sizes are smaller compared to Tresp2 msg size avg,

upstream contention is the more significant factor. In comparison, since Tresp2 msg size avg message

sizes are much larger, the effect of message size on Tresp2 N is greater on overall performance, even

though the relative difference in message size changes is small across 128 and 32 nodes.

Parallel MSA request-response message size lab results. Table 7.21 shows the message

size results associated to each Parallel MSA unicast communication operation shown in Table 7.20.

For any given test input consisting of K sequences, the total amount of message data transferred

during Treq1 N cycles, is approximately equal to the number of K sequences multiplied by average

sequence length. As mentioned, results show that message size variations follow similar trends to
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Input Sequence TC compute1 32 (ms) TC compute1 64 (ms) TC compute1 128 (ms)

S100-L1500 928898 455482 285416

S200-L300 254509 186764 87180

S300-L200 90866 52315 28355

S500-L200 541050 335122 225791

S200-L500 432893 226585 121608

S500-L1100 6400948 4058831 2067877

S1500-L100 1536862 1070978 501753

Table 7.22: Parallel MSA lab results for alignment computation phase.

message delivery time measurements in Table 7.20. As the number of nodes increases from 32 to

128, Treq1 msg size avg size generally decreases, since the message data is partitioned and spread

across more available device nodes. Treq1 msg size avg is also directly proportional to the size and

length of the test input sequence data, delivered to device nodes during the Treq1 N communication

phase. Both Treq1 N and Treq1 msg size avg are higher for sequence inputs that either contain a larger

number of sequences (S1500-L100), or have a longer sequence length (S500-L1100). In comparison,

test inputs that contain less sequences or sequences that are shorter in length (S300-L200) exhibit

lower Treq1 N values and smaller Treq1 msg size avg message sizes. Results for Treq2 msg size avg follow

a similar trend as Treq1 msg size avg. The Treq2 msg size avg message sizes increase as we decrease the

number of device nodes.

To summarize, consistent with results from process launch-execution experiments, results of

executing parallel MSA across 128 STB device nodes confirm the trend that unicast communication

flows follow a linear performance curve as the number of device nodes and message sizes increase.

The actual performance achieved is a function of the number of device nodes and associated message

sizes, that in the case of MSA, are determined by the size of the input sequence.

7.4.4.4 Parallel MSA Computation Time Lab Results

Table 7.22 shows parallel MSA computation results for TC compute1 N corresponding to the time

required for the overall alignment computation phase for N = 32, 64, and 128 device nodes, re-

spectively. Results are for the multicast-unicast, no-traffic lab scenario. Since 96% of all parallel

MSA computation (see Section 4.5) is spent in Step 3 (pairwise alignment computation phase),

only results for TC compute1 N are reported. The remaining parallel MSA model computation at-
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Rank Input Sequence (Lavg)2 (Bytes) #Alignments

per-Device

Node

Computation Time

per-Alignment

(ms/Bytes2)

TC compute1 32 (ms)

1 S500-L1100 615597 4032 .0028 6400948

2 S1500-L100 18851 31862 .0028 1536862

3 S100-L1500 2473700 182 .0023 928898

4 S500-L200 49240 3782 .0031 541050

5 S200-L500 287725 600 .0027 432893

6 S200-L300 116896 650 .0037 254509

7 S300-L200 29998 1122 .0029 90866

Table 7.23: Alignment computation values for N = 32 device nodes.

tributes and corresponding results do not significantly impact the completion time results. The

measurements in Table 7.22 are ranked from highest to lowest TC compute1 N values. Table 7.22 also

includes a column labeled Lavg
2, containing values of average sequence length squared. Lavg

2 is a

measure of the average number of operations required to align two sequences and corresponding

data structure size.

As the number of device nodes varies from 32 to 128, the compute time decreases by 3.3 times for

the longest sequence input test (S100-L1500) and 3.1 times for the sequence input test (S1500-L100)

with the largest number of sequences. The performance improvement is due to the distribution of

computational work across additional device nodes, each performing a smaller subset of the total

MSA computation. As the input test is varied, either in number of sequences or their length,

there is a corresponding impact on the total computation required for performing MSA. This is

observed in the ranking of sequence test inputs by TC compute1 N results, where the three highest

TC compute1 N values are associated to sequence inputs S500-L1100, S1500-L100, and S100-L1500

respectively. The lowest two TC compute1 N values are associated to sequence inputs S200-L300

and S300-L200 respectively. Results show that computational time increases in direct relation

to the combination of total number of sequences and their average length Lavg. As the number

of sequences increase for a given test input, the table shows the number of pairwise alignments

assigned to each node also increases. The number of sequences for each device node to process is

directly proportional to
Kf ·(Kf−1)

2 , or approximately the square of the fraction of total sequences

Kf assigned to a given device node. TC compute1 N values are highest for test inputs with the
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largest number of sequences, except for those cases where Lavg
2 (average sequence length squared)

are highest. The computational sensitivity to Lavg is due to the MSA algorithm itself, where each

pairwise alignment computation requires Lavg
2 operations.

Table 7.22 lists the average computation time required for a device node to process a single

alignment operation between two sequences. Results were computed using N = 32 device nodes

to evaluate computation under worst-case conditions since under this scenario each device node is

required to complete the largest number of computations for each sequence test input. Alignment

computation results are computed by dividing the measured TC compute1 N (or total alignment

computation time for all sequences assigned to the device node) by the product of Lavg
2 and number

of alignments assigned per device node. This product is a measure of the total work performed

by a given device node. The average alignment compute time, defined CA, across all test inputs

is 0.0027ms/Bytes2 with 0.0014 ms/Bytes2 variation between highest and lowest measured values.

This result is consistent across all sequence test inputs, and is due to the reciprocal relationship

exhibited among the sequence test inputs; where those with larger values for Lavg (more work) also

contain less number of sequences in the test input (less work).

In summary, lab results from parallel MSA testing confirm the benefit of multicast delivery for

distributed application launch compared to unicast based application delivery, validating the gen-

eralized process launch-execution model results presented in Section 7.4.2.2. Parallel MSA speedup

is consistent with earlier lab experiments from Section 4.5, where results show comparable MSA

completion time performance improvement as the number of device nodes is increased. Measure-

ments of device node alignment computation show that overall MSA execution time is sensitive to

both the number of test input sequences and their average length.

7.4.4.5 Large-Scale Parallel MSA Simulation

This section describes the methodology used to configure OPNET parallel MSA model attributes

for simulating parallel MSA execution across a large-scale broadband network of up to 4K device

nodes. The parallel MSA model from Fig. 7.13 requires server and device node attribute definitions

prior to simulation. Lab measurements from Section 7.4.4.3 and 7.4.4.4 are utilized to define both

server and device node model attribute values. Parallel MSA server model attribute values are

dependent on sequence test inputs and the number of device nodes. Since parallel MSA server
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#Nodes Input Sequence #Alignments

per-Device

Node

Predicted

TC compute1 N

(ms)

Predicted

Treq1 msg size avg

(Bytes)

Predicted

Tresp1 msg size avg

(Bytes)

128

S100-L1500 56 369333 22019 224

S200-L300 182 56722 8889 728

S300-L200 306 24474 5889 1224

S500-L200 992 130230 13758 3968

S200-L500 156 119670 12874 624

S500-L1100 1056 1733182 50214 4224

S1500-L100 8010 402585 24439 32040

4K

S100-L1500 6 39571 6291 24

S200-L300 12 3740 2051 48

S300-L200 12 960 1039 48

S500-L200 42 5514 2663 168

S200-L500 12 9205 3218 48

S500-L1100 42 68933 9415 168

S1500-L100 272 13671 4394 1088

Table 7.24: Predicted MSA simulation model attribute values for N = 128 and 4K.

computation is a small percentage (less than 4%) of the total parallel MSA completion time, server

model attributes are configured using measured 128 device node lab results directly.

Parallel MSA simulation attributes for device nodes contain both fixed and variable attribute

values. Fixed attributes contain static values that are independent of the number of sequences

or device nodes, and do not change during simulation. Variable attributes contain values that

depend on both sequence test input data, and the number of device nodes N. Fixed attribute val-

ues associated with parallel MSA process-launch and execution are defined in Table 7.16. Variable

attributes associated with parallel MSA algorithm computation at the device node and communica-

tions between server and device nodes include: TC compute1 N , Treq1 msg size avg, Tresp1 msg size avg,

Treq2 msg size avg, and Tresp2 msg size avg. A simple predictive model is developed to define values

for each of these computation and communication attributes.

Predicting parallel MSA computation. Parallel MSA device node computation is predicted

based on the lab results from Sections 7.4.4.3 and 7.4.4.4 as well as results from Datta [26;

32]. These results show that the majority of parallel MSA computation occurs during parallel

MSA algorithm Steps 3 corresponding to TC compute1 N time. Worst-case computation for each
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device node is therefore predicted as TC compute1 N = CA ×Lavg
2 × #alignments per device node,

where CA is defined as the average computation required per alignment operation in milliseconds.

From Section 7.4.4.4, CA is calculated and equal to .0027 for N = 32 device nodes. The alignment

computation factor CA can be thought of as the approximate time required for a device node

to compute a single pairwise alignment. Lavg
2 defined previously in Section 7.4.4.4 refers to the

average input sequence length squared. When Lavg
2 is multiplied by the number of alignments per

device node, the product Lavg
2 × #alignments represents the total amount of computational work

to perform on the given device node. Computational accuracy is compared with lab measurements

for N = 32 nodes. Average TC compute1 N accuracy is within ±10% across all test inputs for the

predicted simulation model values versus the actual lab measurements.

Predicting parallel MSA communications. In addition to device node computation, simu-

lation attribute values for parallel MSA request and response message sizes must be configured for

each experimental scenario. With communication message sizes defined, simulation can generate

individual request timing results for Treq1 n avg and Treq2 n avg as well as overall forms Treq1 N

and Treq2 N defined in Section 7.4.3. Recall from Section 7.4.3 that the overall timing result

refers to the time duration for a complete communication request or response cycle across N de-

vice nodes. Similarly, individual response timing results for Tresp1 n avg and Tresp2 n avg, along

with overall forms Tresp1 N and Tresp2 N respectively, are obtained through simulation. Values for

the MSA communication attribute Treq1 msg size avg are predicted based on the product of Lavg

and the number of sequences Kf sent to each device node. Recall Kf is approximately K to-

tal sequences divided by the number N of available device nodes. Tresp1 msg size avg is predicted

based on the number of alignments processed from each device node or approximately Kf
2. Both

Treq1 msg size avg and Tresp1 msg size avg can be computed without any knowledge other than the

total number of sequences in the test input. The accuracy of the attribute values for message

sizes Treq1 msg size avg and Tresp1 msg size avg is based on the analysis of simulation. Predicting at-

tribute values for Treq2 msg size avg and Tresp2 msg size avg is more challenging since they cannot be

calculated directly from the input test sequence properties. In this case, a worst-case approach is

taken, where attribute values are configured for all N by utilizing measured Treq2 msg size avg and

Tresp2 msg size avg values from the 128 device node lab results. Utilizing message size results for 128

device nodes results in an upper bound on message sizes values for N as it approaches 4K device
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nodes. Results for Treq2 N and Tresp2 N are worst-case under these assumptions but consistent

across all N devices.

For similar reasons, the accuracy of Tresp1 N and Tresp2 N as well as Treq1 N and Treq2 N is

impacted as a result of two additional effects. First, server and device node computational time

attribute error is introduced for N >128 nodes. This is a result of utilizing attributes values for

TS compute{1..5} and TC compute{1..4} directly from N = 128 lab measurements. Secondly, variances

in communication times exist simply from typical network packet loss and TCP/IP retransmission

effects. For these reasons, simulation results for average individual timing attributes Treq1 n avg,

Treq2 n avg,Tresp1 n avg, and Tresp2 n avg are reported. Individual timing results measure the average

communication time between server and device nodes, and provide a lower bound on the commu-

nication costs. With both an upper and lower bound in communication performance, simulation

provides very useful results in evaluating large-scale broadband DOCSIS performance.

Table 7.24 lists the computed values for various predicted model attributes for N = 128 and

4K device nodes. These values suggest significant scaling potential as the number of device nodes

increases from 128 to 4K, even under the worst-case assumptions previously described. For example,

as the number of device nodes increases from 128 to 4K, the number of alignments per device node

decreases for each sequence test input case. Values for TC compute1 N also decrease. Consequently,

the amount of computation required per device node decreases as N increases. Similarly, the average

amount of message data Treq2 msg size avg and Tresp2 msg size avg that must be transferred decreases

as N increases from 128 to 4K during the pairwise alignment communication phases. These values

are consistent with those measured from Section 7.4.4.3.

7.4.4.6 Parallel MSA Launch-Execution and Completion Time Simulation Results

Results for TexecN and TcompletionN from parallel MSA application model simulation execution

across 128 and 4K device nodes are shown in Tables 7.25 and 7.26 respectively. Table 7.25

presents TexecN and TcompletionN time measurements for multicast-unicast and unicast-unicast

scenarios under the no-traffic scenario. Table 7.26 summarizes the timing results for the same set

of experiments executed in the presence of traffic.

TexecN results show uniform multicast performance averaging 24ms for multicast delivery as we

increase the number of device nodes from 128 to 4K in both traffic and no-traffic scenarios shown
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#Nodes Input Sequence Multicast-Unicast

TexecN (ms)

Multicast-Unicast

TcompletionN (ms)

Unicast-Unicast

TexecN (ms)

Unicast-Unicast

TcompletionN (ms)

128

S100-L1500 24 384007 396 375041

S200-L300 24 109846 397 109371

S300-L200 24 45814 398 50170

S500-L200 24 267629 396 202748

S200-L500 24 150201 398 150031

S500-L1100 24 2268941 397 2271284

S1500-L100 24 1246176 395 1252049

4K

S100-L1500 23 115847 4037 123535

S200-L300 23 32419 4024 36356

S300-L200 23 21170 4036 26496

S500-L200 23 55094 4029 58149

S200-L500 23 39367 4037 45033

S500-L1100 23 334009 4026 350339

S1500-L100 23 780543 4032 784438

Table 7.25: Parallel MSA simulation results for TexecN and TcompletionN no-traffic scenario.

#Nodes Input Sequence Multicast-Unicast

TexecN (ms)

Multicast-Unicast

TcompletionN (ms)

Unicast-Unicast

TexecN (ms)

Unicast-Unicast

TcompletionN (ms)

128

S100-L1500 24 372532 423 385382

S200-L300 24 109672 430 111996

S300-L200 24 46011 431 50259

S500-L200 24 270857 425 203598

S200-L500 24 151944 425 152035

S500-L1100 24 2286755 417 2227447

S1500-L100 24 1249449 423 1259953

4K

S100-L1500 24 115974 4093 127552

S200-L300 23 32390 4101 36427

S300-L200 23 21165 4104 26698

S500-L200 23 55119 4093 58290

S200-L500 23 37968 4102 45033

S500-L1100 24 334275 4081 350410

S1500-L100 23 792039 4089 784535

Table 7.26: Parallel MSA simulation results for TexecN and TcompletionN traffic scenario.
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in Tables 7.25 and 7.26. However, unicast TexecN delivery time increases 10 times between 128

and 4K devices. As shown in Table 7.25, unicast TexecN averages 396ms at 128 device nodes and

averages 4032ms for 4K device nodes. Results for traffic scenarios shown in Table 7.26 are similar.

Simulation results confirm the earlier process launch-execution experiments from Section 7.4.2.1,

where multicasting outperforms unicast based message delivery for any given message size. Simu-

lation results confirm that multicasting provides higher performance (less time) for parallel MSA

application delivery compared to the unicast based approach. TexecN variation across N (128

through 4K) for either multicast-unicast or unicast-unicast is consistent with lab results and small

at less than 1%. Results from Tables 7.25 and 7.26 show that there is no significant impact due

to background traffic profiles within simulation. This is consistent with lab results since both lab

and simulation traffic configurations are similar as defined in Section 7.3. Tlatencyavg values are

configured as lab using 41ms for multicast-unicast tests and 57ms for unicast-unicast tests.

TcompletionN time results are consistent across all experiments with TcompletionN decreasing

(performance improving nearly linearly) as the number of device nodes increases. TcompletionN

results in Tables 7.25 and 7.26 show an improvement for multicast-unicast cases over unicast-

unicast results as the number of device nodes increases to 4K. This is primarily due to improved

process launch-execution efficiency impact from lower TexecN in the multicast-unicast scenarios

and the negative impact of higher TackN values in unicast-unicast scenarios.

All simulation results for TexecN , TackN and TcompletionN are illustrated graphically in Fig-

ures A.21 through A.24. TexecN is uniform for all N in the multicast-unicast scenarios, and

increases linearly for the unicast-unicast scenarios. TackN values are higher compared to TexecN

as expected and increases linearly as the number of device nodes increases. In the traffic scenario

test case, results indicate a further increase in TackN as the number of device nodes increases. This

is consistent with the previous results from Section 7.4.2.2 where TackN as a unicast operation be-

gins to increase linearly as the number of device nodes increases, with slightly higher TackN values

under lab traffic scenarios. TcompletionN performance for all 7 input sequence tests are shown. As

the number of device nodes increase, TcompletionN performance improves linearly. However, the

improvement is greatest up to 512 device nodes, while the rate of improvement decreases as the

number of nodes is increased up to 4K. This effect indicates either: 1) a limit on the available data

parallelism beyond 512 device nodes for the given set of input sequence tests, or 2) that the commu-
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Rank Input Sequence Multicast-Unicast Speedup Unicast-Unicast Speedup

1 S500-L1100 6.5/6.7 6.4/6.3

2 S500-L200 4.9/4.8 3.5/3.4

3 S200-L500 3.9/3.8 3.4/3.2

4 S200-L300 3.4/3.5 2.9/2.9

5 S100-L1500 3.1/3.2 2.9/2.9

6 S300-L200 2.4/2.3 1.8/1.5

7 S1500-L100 1.6/1.6 1.6/1.6

Table 7.27: Simulation speedup results for multicast-unicast and unicast-unicast with no-

traffic/traffic scenarios.

nication overhead (especially upstream unicast communication flows) is limiting the TcompletionN

performance improvement rate as the number of device nodes increases, relative to computation.

To summarize key results of this section: 1) Results are consistent with simulation results

from Section 7.4.2.2 confirming the performance advantage of multicast over unicast for large-scale

network application delivery. 2) The impact of upstream unicast communication, especially as the

number of upstream connections increases in direct relation to the number of device nodes confirms

the cost associated with unicast communication flows. The performance impact is primarily due

to upstream DOCSIS contention effects as discussed in Section 7.4.2.2 resulting in a linear time

decrease in message delivery performance.

7.4.4.7 Parallel MSA Execution Time Speedup Simulation Results

Parallel MSA simulation speedup results for both multicast-unicast and unicast-unicast scenarios,

with traffic and without are listed in Table 7.27. Speedup improvement is defined as the ratio of

MSA execution times calculated by dividing Tcompletion4K (4K device nodes) by Tcompletion128

(128 device nodes). Average speedup varies between 1.6 and 6.7 depending on the sequence test

case. Results are comparable across traffic and non-traffic cases. Results suggest that DOCSIS

unicast communications overhead has significant impact on speedup. This can be illustrated by

analyzing the S1500-L100 test case whose speedup ranks lowest at 1.6 across all test scenarios.

S1500 contains the largest set of input sequences (1500) and, therefore, requires the longest time

duration (number of alignments is proportional to square of number of sequences in input) for device

node Tresp2 N responses. S1500-L100 also requires the least amount of device node computation



CHAPTER 7. SCALABLE NETWORK ARCHITECTURE FOR BROADBAND EMBEDDED
COMPUTING 193

#Nodes Input Sequence Treq1 N (ms) Tresp1 N (ms) Treq2 N (ms) Tresp2 N (ms)

128

S100-L1500 6179 285448 164 103595

S200-L300 6132 87205 1342 19663

S300-L200 6123 28381 3859 8896

S500-L200 6158 225830 26541 14434

S200-L500 6169 121639 1259 26108

S500-L1100 6338 2067930 29502 222725

S1500-L100 6203 501890 712658 41844

4K

S100-L1500 6311 43169 150 103476

S200-L300 6118 4647 1337 19700

S300-L200 6109 1408 3860 8955

S500-L200 6127 7233 26536 14450

S200-L500 6228 10534 1256 26144

S500-L1100 6492 75108 29480 222618

S1500-L100 6260 19035 712637 41664

Table 7.28: Parallel MSA simulation overall request-response communication cycle time results.

with an average sequence length of 100. The remaining 5 input tests in Table 7.27 show speedup

improvements that average between 2.4 and 4.9. These input tests differ in speedup by one 1, and

contain sequences that exhibit reciprocal properties in terms of both number and average length

of sequences relative to one another. For example, S300-L200 and S200-L300 have speedups of 2.4

and 3.4, respectively. S200-L500 and S500-L200 have speedups of 3.9 and 4.9, respectively. These

results suggest that there exists an optimal balance between the length and number of sequences

such that speedup results are maximized. The largest speedup improvement occurs in test input

S500-L1100 with an average speedup of 6.7 across all scenarios. This suggests that as the number

of device nodes is increased, speedup improvement gain is optimized for input tests that contain

both a large number of sequences and, simultaneously, a longer average length.

Finally, multicast-unicast scenarios show a small speedup improvement compared to unicast-

unicast scenarios. This may be explained due to the higher efficiency of multicast-unicast during

launch-execution compared to unicast-unicast as we increase the number of device nodes. This

result is consistent with similar results from Section 7.4.2.2, where it was shown that TcompletionN

time is positively impacted in the multicast delivery scenario.
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#Nodes Input Sequence Treq1 n avg (ms) Tresp1 n avg (ms) Treq2 n avg (ms) Tresp2 n avg (ms)

128

S100-L1500 86 36 16 169

S200-L300 38 36 8 101

S300-L200 29 37 1 76

S500-L200 60 57 6 101

S200-L500 62 36 7 102

S500-L1100 212 56 24 234

S1500-L100 108 144 21 191

4K

S100-L1500 217 167 2 167

S200-L300 23 165 3 163

S300-L200 14 163 2 173

S500-L200 29 166 1 167

S200-L500 122 168 3 167

S500-L1100 366 170 2 173

S1500-L100 164 167 2 166

Table 7.29: Parallel MSA simulation individual request-response communication cycle time results.

7.4.4.8 Parallel MSA Communications Simulation Results

Parallel MSA simulation request and response communication results are shown in Tables 7.28 and

7.29 for multicast-unicast, no-traffic experimental scenarios. The tables report overall communi-

cation nested cycles and individual or single transmission times between server and device nodes,

respectively. Experiments are executed for both traffic and no-traffic scenarios with no significant

difference (less than 3%) noted in results. Results for unicast-unicast experiments are also compa-

rable to the results in Tables 7.28 and 7.29: They are not reported because they differ by less than

1%. The lack of difference between multicast-unicast and unicast-unicast scenarios is due to the

common unicast model communication flows during the parallel execution of the MSA algorithm.

Request communication cycles. Referring to Table 7.28, Treq1 N and Treq2 N overall request

times for downstream communications (from server to all N device nodes) show a small change as

the number of device nodes increase from 128 to 4K. This is due to two reasons:

1. Treq1 msg size avg and Treq2 msg size avg message sizes decrease as the number of device nodes

increase, which tends to offset one another. For a given number of K sequences to distribute

among N device nodes, the corresponding Treq1 msg size avg and Treq2 msg size avg message sizes

decrease as N increases. For example using results of S100-L1500, as we increase the number
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of devices nodes from 128 to 4K, Treq1 msg size avg message sizes decrease from 18834 bytes

to 6291 bytes or a factor of 3X. For S1500-L100, Treq1 msg size avg message sizes decrease

from 25036 bytes to 4394 bytes or a factor of 5.7X. Under the same test cases, message size

reduction factor is even higher for Treq2 msg size avg with results for S100-L1500 computed as

47X and S1500-L100 equal to 52X respectively.

2. As described in Section 7.4.4.5, simulation accuracy is impacted when utilizing lab experiment

values within simulation. The impact occurs for all timing simulations where N is greater

than 128 device nodes.

To better evaluate actual device node to server transmission time communication performance,

Table 7.29 shows results for individual average timing values Treq1 n avg and Treq2 n avg. Individual

request-response timing results show the average time required to transmit a single message between

server and device nodes. Referring to the table values, note that message delivery time trends

upward as we increase the number of device nodes from 128 to 4K, especially for larger sequence

test cases S100-L1500, S200-L500, S500-L1100, and S1500-L100. As an example from Table 7.29,

S100-L1500 increases from 86ms to 217ms as we vary between 128 and 4K device nodes. This is

consistent with results from Section 7.4.2.2 where unicast message transmission time increases in

direct relation to any increase in message size for a given number of device nodes. Results for

Treq1 n avg and Treq2 n avg are averaged across all server to device node transmissions. Standard

deviation is 4 ms.

Response communication cycles. Results for overall upstream communications (device

nodes to server) are characterized by simulation timing values for Tresp1 N , and Tresp2 N , corre-

sponding to response message delivery time across all N device nodes to the server. Results for

Tresp1 n avg and Tresp2 n avg are reported in Table 7.29 to evaluate the communication performance

of individual device node to server node transmission time. These results indicate that Tresp1 N

performance improves as we increase the number of device nodes, especially when the number

of input test sequences is large. For instance, in test input S1500-L100, Tresp1 N decreases from

501890ms to 19035ms as the number of device nodes vary from 128 to 4K. This is a factor of 26X

improvement in performance. Tresp1 N improvement is due to two main reasons:

1. As we increase the number of device nodes from 128 to 4K, computation time at each node
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is shorter resulting in a reduction in time required, or turn-around time per device node to

complete all N device node transmissions. Lower turn-around time is directly related to a

reduction in computation time as N increases. The reduction in device node computation is

determined by the number of alignments per device node or Kf
2. The number of alignments

processed per device node decreases as the number of device nodes increase.

2. As the message size Tresp1 msg size avg decreases, (S100-L1500 response message size is 224

bytes for 128 device nodes versus 24 bytes for 4K device nodes) there is simply less message

data per device node to transmit to the server. Results show that Tresp1 N is impacted by

increases in average sequence length as well as number of sequences. This is illustrated by the

transmission time required for large sequence input test cases S100-L1500, S500-L1100, and

S1500-L100. Individual timing results Tresp1 n avg show a significant increase in transmission

time as N varies between 128 and 4K. Using S100-L1500 as an example, Tresp1 n avg increases

by a factor of 4.7X (167ms versus 36ms) as the number of device nodes increase from 128 to

4K. Standard deviation is 16 for 128 device nodes and 113 for 4K device nodes. The large

variation in standard deviation is due to the impact of DOCSIS upstream contention effects.

Results for Tresp2 N indicate that overall response cycle time remains uniform across 128 and

4K device nodes, increasing or decreasing as the sequence alignment problem varies in both number

and length of sequence inputs. This result is similar to Treq1 msg size avg, where the message size

for Tresp2 msg size avg also decreases as we increase N. However, for Tresp2 msg size avg, the reduction

factor is approximately 47X across all sequence test inputs. The concurrent decrease in message

size and increase in number of nodes offset one another resulting in a uniform set of Tresp2 N values

for all N. Individual results shown in Table 7.29 support this. Simulation values show uniform

variation in Tresp2 n avg across N device nodes. Tresp2 n avg standard deviation is computed as

48ms for 128 device nodes and 114ms for 4K device nodes. Both Tresp1 n avg and Tresp2 n avg values

vary considerably, which is consistent with a large standard deviation. These results further confirm

the impact of DOCSIS upstream contention effects and experiments in Section 7.4.2.2. The large

variation in results does not impact interpretation of key results, however. Results in Tables 7.28

and 7.29 are consistent within a constant factor for all Parallel MSA simulation measurements.
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#Nodes S100-L1500 S200-L300 S300-L200 S500-L200 S200-L500 S500-L1100 S1500-L100

128 1.85/1.96 1.51/1.55 1.12/1.05 1.24/1.26 1.48/1.47 2.07/2.06 .32/.32

512 1.36/1.36 1.02/1.02 .62/.62 .58/.58 1.05/1.06 1.21/1.23 .12/.12

1024 1.29/1.29 .87/.88 .56/.48 .40/40 .96/.96 1.05/1.07 .08/.08

2048 1.41/1.38 .85/.86 .46/.46 .32/.32 .94/.94 1.14/1.11 .05/.05

4096 1.37/1.36 .84/.83 .41/.41 .28/.28 .93/.93 1.07/1.08 .04/.04

Table 7.30: Computation/Communication ratio for simulation multicast-unicast results for no-

traffic/traffic scenarios.

#Nodes S100-L1500 S200-L300 S300-L200 S500-L200 S200-L500 S500-L1100 S1500-L100

128 1.75/1.76 1.59/1.55 1.15/.92 1.14/1.12 1.56/1.41 2.01/2.04 .33/.32

512 1.35/1.36 1.02/1.03 .73/.73 .58/.58 1.04/1.04 1.21/1.21 .12/.12

1024 1.31/1.28 .89/.89 .62/.62 .39/.39 .95/.95 1.05/1.05 .08/.08

2048 1.36/1.36 .86/.86 .61/.60 .31/.31 .94/.93 1.08/1.09 .05/.05

4096 1.36/1.36 .84/.84 .57/.57 .27/.27 .93/.93 1.08/1.08 .04/.04

Table 7.31: Computation/Communication ratio for simulation unicast-unicast results for no-

traffic/traffic scenarios.

This is because all attribute value configurations including predicted values are uniformly applied

across all experiments.

To summarize this section, parallel MSA communication simulation results indicate that re-

quest and response message times are highly dependent on the number of nodes and message size

variations. This is consistent with experiments from Section 7.4.2.2. Simulation results show that

transmission times increase as the number of nodes increases, especially for larger messages. Up-

stream communications are further impacted by variability introduced by DOCSIS scheduling and

contention effects. These effects become increasingly impactful as the number of nodes are increased.

7.4.4.9 Comparing Parallel MSA Computation Versus Communication Ratios

To gain additional insight into parallel MSA scaling potential, computation and communication

simulation results are used to compute computation-to-communication ratios. Computation-to-

communication ratios for multicast-unicast experiments are shown in Table 7.30. Similarly, ratio

values for unicast-unicast experiments are shown in Table 7.31. Each table indicates both no-traffic

and traffic scenarios (indicated as no-traffic/traffic in tables). Overall, resulting ratio values are
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comparable for both multicast-unicast and unicast-unicast tables as well as traffic and no-traffic

scenarios.

Results shown in both tables confirm previous results from Sections 7.4.4.7 and 7.4.4.8: the

impact of communications increases as the number of device nodes increases. From Section 7.4.4.8,

results for Tresp1 N and Tresp2 N showed that upstream communications had the largest impact on

overall performance. Therefore, upstream unicast device node-to-server messaging contributes the

most to the communications component of the computation-to-communication ratio. A key result

is that all ratio values decrease as N increases for each parallel MSA experiment. For example, the

ratio for S1500-L100 in Table 7.30 decreases from .32 to .04 as we increase from 128 to 4K device

nodes. However, experiments where the average sequence length is considerable longer (S100-L1500

and S500-L1100), the ratio decrease is much smaller as the amount of computation overcomes the

communication overhead as reflected in the table ratio values. For example, ratio values for S100-

L1500 in Table 7.30 decrease from 1.85 to only a minimum of 1.29 at 1024 device nodes. Since

S100-L1500 requires higher computation during the MSA device node alignment phase, and there

are 100 input sequences, the resulting computation-to-communication ratio increases at 4K device

nodes to 1.37.

The ratio results from Tables 7.30 and 7.31 further confirm the analysis in Section 7.4.4.7: op-

timizing parallel MSA speedup requires consideration of input problem size (number of sequences)

and computational complexity (average length of sequences) in relation to the computational ca-

pabilities, and number of device nodes within the communications network.

7.4.4.10 Comparing Parallel MSA Simulation Versus Lab Results

A comparison of lab and simulation parallel MSA execution completion times for both multicast-

unicast and unicast-unicast, no-traffic scenarios for N = 128 device nodes is shown Fig. 7.15. Lab

and simulation results are very similar, within 10% accuracy across all sequence input tests. The

high degree of accuracy is due to the majority of computation time during the device node pairwise

alignment phase or TC compute1 N . Additionally, model attribute values across lab and simulation

are essentially equivalent further improving upon simulation accuracy. Results in Fig. 7.15 illus-

trate the accuracy of simulation versus lab results confirming simulation methods for evaluating

scalability and potential of large-scale broadband embedded computing systems.
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(a) Multicast-unicast scenario (b) Unicast-unicast scenario

Figure 7.15: Comparison of Lab versus simulation parallel MSA completion time results.

Fig. 7.15 also illustrates any differences between the multicast-unicast and unicast-unicast sce-

narios as shown on the left and right sides of the figure. Results show no significant completion

time improvement between multicast-unicast and unicast-unicast parallel MSA launch-execution

phases. This suggests that short running application processes benefit greater from multicast based

launch methods compared to long running application processes. However, from Section 7.4.2 and

7.4.4.6, application process execution through multicasting is optimal over unicast methods over-

all. Therefore, for any size process launch-execution, there is potential improvement of launch

throughput where many application processes must be initialized and launched concurrently. This

experimental work is outside the scope of this dissertation and is part of future research.

In concluding this section, parallel MSA lab versus simulation completion time results are

similar, demonstrating the accuracy of the parallel MSA simulation in comparison to real world

parallel MSA execution. This confirms the validity of utilizing simulation to explore the capabilities

of large-scale broadband networks for broadband embedded computing.

7.4.5 Scalable Network Architecture For Broadband Embedded Computing

Results from Sections 7.4.2.1 and 7.4.4 show the performance advantages of multicasting over uni-

cast communication mechanisms, especially as the number of device nodes increase. This confirms

the feasibility of implementing scalable runtime systems that efficiently manage, distributed process

launch-execution across millions of device nodes by utilizing multicasting technologies. Broadband

multicast-unicast network architectures are key in the implementation of heterogeneous Cloud sys-
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Figure 7.16: Scalable broadband network architecture based on DOCSIS multicast.

tems based on broadband embedded computing that leverage distributed computing technologies

such as MPI and Map-Reduce.

Fig. 7.16 illustrates the architecture for a multicast-unicast network infrastructure instance typ-

ical in a large service provider Cloud data-center and remote-hub facility. Recall from Section 2.4.2

that remote-hub facilities are geographically dispersed, and contain numerous DOCSIS routers

required to delivery network services to users. The figure represents one instance of a Cloud com-

puting facility containing a single multicast server system. For example, the multicast server may

provide runtime launch-execution services described in Section 5.4.2 to deliver, through multicast-

ing, applications to tens of thousands of devices. Each multicast server is associated to one or more
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DOCSIS routers shown in Fig. 7.16. The DOCSIS router converts multicast messages received

over gigabit Ethernet or fiber interfaces to DOCSIS based DSG multicast messages over broadband

RF media. Distribution over the broadband network (described earlier in Section 7.2.1) across

multiple multicast DSG tunnel interfaces (indicated as Interface Bundle 1 and Interface Bundle) is

shown in Fig. 7.16. The DOCSIS router associates one or more multicast DSG tunnels to physical

interfaces within each router. Each router interface feeds from 1 to 20 RF nodes as described in

Section 2.4.2. Through this partitioning, multicast scalability is achieved as represented in the

lower portion of Fig. 7.16 as numerous multicast network flows from router and received at all

device nodes. In Chapter 8, the described network architecture is utilized to propose a complete

heterogeneous Cloud system based on large-scale broadband embedded computing.

7.5 Related Works

There is extensive work in the analysis of broadband communication networks that focus on distri-

bution of video and audio, as well as performance characteristics as they relate to voice-over-IP ser-

vice delivery. Harte et al., describes multicast methods for optimal transmission of video and audio

content to many broadband receivers [44]. Shah et al., contributes a study to analyze DOCSIS phys-

ical layer performance, identifying performance improvements through protocol enhancements [89;

109]. Harte et al., analyzed the impact to TCP/IP application performance due to various factors

such as congestion and number of nodes [90; 20]. Similar to Harte et al., DOCSIS performance is

evaluated through lab and simulation, however this chapter presents simulation results up to 8K

nodes and experiments that enable the analysis of parallel application execution across a broadband

network. Futher, this work places greater emphasis on measuring the communications performance

specific to application distribution over broadband DOCSIS networks for broadband embedded com-

puting. Finally, while prior related work for DOCSIS performance evaluation is based on DOCSIS

1.1 standard experimentation [89; 109]. This work is the first extensive experimental study involv-

ing application distribution across a large number of DOCSIS devices nodes in conjunction with

DOCSIS 2.0 simulation and system environments.
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7.6 Summary

This chapter examined two key communication methods, multicasting and unicast, for broadband

network computing. Experimental models based on process launch-execution, and a real world par-

allel application (Multiple Sequence Alignment) are tested through simulation and lab execution.

The comparative analysis of results from lab experiments and simulation confirm that multicas-

ting is the optimal communication method for large-scale data delivery. This result is confirmed

across small and large message sizes and as the number of broadband devices is increased up to

8K devices. Results also suggest that multicasting improves the overall completion time for short-

running application processes because it minimizes the launch initialization overhead, thus allowing

the overall network of devices to begin computation almost immediately. However, it is also shown

that in cases where messages are unique for each device, unicast communication methods excel

over multicast for all sizes, except for very small messages. This leads to the conclusion that mul-

ticasting is best utilized for implementing runtime environments that manage application process

distribution, and unicast for cases where unique messages must be transmitted to device nodes.

Numerous applications require unicast communications flows. Experimental execution and simu-

lation of parallel MSA confirmed the performance impact due to unicast message size, number of

device nodes, and DOCSIS contention effects. Therefore, practical heterogeneous Cloud systems

built utilizing broadband networks require a mixture of both multicast and unicast communication

methods, where the particular method utilized is selected to minimize total communication costs.

Future work shall further optimize communication costs associated to broadband embedded com-

puting applications by utilizing policy based management of network traffic. The DOCSIS standard

discussed in Section 2.4.1.3 provides mechanisms for establishing traffic priorities among multiple

unicast communication flows. Finally, an architecture for multicast-unicast based communications

over DOCSIS was described for implementing a broadband embedded computing system. This will

be leveraged in Chapter 8 as the broadband network architecture for implementing a highly-scalable

heterogeneous Cloud system utilizing broadband embedded computing.
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Chapter 8

Heterogeneous Cloud Systems Based

On Broadband Embedded Computing

8.1 Introduction

Chapters 5 and 6 presented experimental systems that support the message passing computational

model using Open MPI, and the MapReduce computational model using Hadoop. Both experimen-

tal system platforms demonstrated a unique heterogeneous systems implementation that combines

traditional data-center class compute cluster servers with distributed embedded devices. Chapter 7

provided an in-depth analysis of the broadband communication characteristics of a DOCSIS net-

work of embedded devices. Results confirmed the need for communication mechanisms for optimal

massive-scale distributed process launch-execution - a key challenge to overcome in the implementa-

tion of any large-scale heterogeneous computational system with millions of computational devices.

Chapter 7 also presented results to optimize embedded devices communications with data-center

servers such as those found in centralized Cloud facilities.

Service provider systems such as MSOs manage heterogeneous environments consisting of thou-

sands of data-center class servers, peta-bytes of storage, high-performance fiber-optic, and intercon-

nection networks that integrate large-scale broadband networks with millions of embedded devices.

These embedded devices will continue to expand in variety, increase in number, performance and

decrease in size as technology continues to advance.

Based on previous chapters, a proposed service provider architecture for heterogeneous Cloud
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Figure 8.1: Large-scale MSO service provider Cloud.

systems utilizing broadband embedded computing is presented in this chapter. The architecture

leverages key results from the experimental systems built and tested in Chapters 5 and 6, which

described how to implement scalable heterogeneous computing by integrating broadband embed-

ded devices with centrally managed compute clusters. The system network architecture is based

on results from Chapter 7, where experiments confirmed optimal scenarios for scalable distributed

runtime environments and data distribution across broadband networks. A description of four pro-

posed heterogeneous Cloud application scenarios that leverage broadband embedded computation

concludes the chapter.
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8.2 Scalable Broadband System Architecture

Fig. 8.1 illustrates the architecture of a typical MSO service provider system capable of supporting

8 million embedded devices. A typical system is highly distributed with one or more regional data-

center Cloud facilities providing managed Cloud services. This includes distribution of multimedia

content, storage, home security, health monitoring, and IP network data to multiple broadband-

connected device types as shown at the right of the figure. In Fig. 8.1 three regional data-centers are

illustrated that provide distribution of multimedia content and data to 60-70 remote-hub facilities.

Each remote-hub facility contains 5-20 DOCSIS routers that provide broadband connectivity for

100K to 250K broadband devices. Data-centers and remote-hub facilities are all interconnected

with high-bandwidth fiber that utilizes dense wavelength division multiplexing (DWDM) switch

technologies (up to 1Tb/s communications links). Remote hubs are connected using fiber-optic

cable to RF translation devices called nodes. Nodes are passive devices that convert between a

fiber-optic network and an RF broadband cable network that residential and business broadband

devices attach to. In addition to residential connected devices, MSO service providers also offer

large-scale WiFi connectivity through thousands of WiFi access points to each of the remote-hub

facilities. In this manner, MSO providers are capable of offering a rich mix of content and network

services from their own data-center Cloud and those of other service provider Clouds through

peering agreements. Due to its hierarchical structure, the broadband system architecture is highly

scalable and can support millions of devices. As an example, shown in Fig. 8.1, eight million

broadband connected devices are supported as follows. Each node or RF cable section supports

approximately 400 consumer embedded devices. A typical MSO service provider may have 320

nodes or more throughout their service region that may span hundreds or thousands of miles

in diameter. Each remote-hub supports approximately 128K homes or access points. Assuming

approximately 65 remote-hubs, the system scales as 400×320×65 or approximately 8 million devices

as illustrated in Fig. 8.1.
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Figure 8.2: Remote hub unit as an instance of runtime environment scalability.

8.3 Scalable System Architecture for Cloud Systems Based on

Broadband Embedded Computing

In order to implement a system architecture for broadband embedded computing that supports

millions of devices, scalable methods for distributed process management and communications is

required. In addition, standardized runtime libraries that support distributed programming models

such as MPI and MapReduce must be implemented on both data-center and embedded devices.

MPI and MapReduce represent one class of distributed programming models for execution across a

heterogeneous Cloud system. However, other models of distributed computation are also possible

as discussed in Section 2.2.
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Chapter 5 described a scalable runtime system called Open Embedded Runtime Environment or

OERTE that supports process life cycle management for distributed embedded systems. OERTE

supports, but is not limited to, process launch and execution of MPI and MapReduce applications

across a broadband system with millions of embedded devices. OERTE achieves high scalability

by virtualizing the embedded device nodes into the runtime environment space of standard data-

center runtime systems such as the ORTE system [18]. Through this virtualization model, Cloud

computing clusters can be expanded to a much larger heterogeneous Cloud of both data-center

servers and embedded devices. Using OERTE, a Cloud server complex can launch processes across

the Cloud cluster and the millions of embedded devices concurrently within seconds. Section 5.4.2

describes in detail the implementation of the OERTE system consisting of server and client soft-

ware components. To support heterogeneous computation in a distributed environment, runtime

libraries must be available across both data-center and embedded devices software environments.

Chapters 5 through 7 described MPI and MapReduce implementations that support distributed

programming models for heterogeneous computation, and confirmed multicasting as the most effi-

cient mechanism for application launch-execution across N device nodes. In the proposed scalable

system architecture, multicasting is integrated into the OERTE software architecture to solve the

process-launch execution problem for managing execution of applications across large-scale broad-

band embedded computing systems. Communications performance of the multicasting OERTE

server is discussed in the parallel MSA lab experiments in Section 7.4.4.1. Fig. 8.2 illustrates

an instance of a single remote-hub with connection back to the Cloud data-center and OERTE

multicasting process launch-execution runtime management server. In Fig. 8.2, each remote-hub

supports 128K broadband devices that are partitioned across 8 DOCSIS routers where each router

supports 16K devices. The 8 routers are aggregated across a single high-performance LAN switch

that interfaces directly with the DWDM fiber switch. In the proposed architecture, each Cloud

data-center has multiple OERTE servers supporting the respective population of remote-hubs as-

sociated to a given data-center. Based on the MSO broadband system described in Section 2.4.2,

an 8 million device system would result in approximately 65 OERTE servers spread across the 3

regional data-centers. As illustrated in Fig. 8.1, multiple remote-hubs correspond to a given Cloud

data-center facility. Indeed, MSO system scalability is based on the multi-level partitioning that

exists between Cloud data-centers and remote-hub facilities.
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Figure 8.3: Heterogeneous Cloud system architecture utilizing broadband embedded computing.

Fig. 8.3 illustrates the system and network architecture view of the proposed heterogeneous

Cloud system. In Fig. 8.3, each regional data-center is shown with multiple OERTE servers mapped

to one or more remote-hub instance across the dedicated sub-network connection detailed in Fig. 8.2.

The OERTE server is also connected to the Linux data-center cluster through a second high-

performance network. Fig. 8.3 illustrates how these multiple regional data-center Clouds, are

interconnected over a DWDM backbone.

To implement a heterogeneous Cloud system based on broadband embedded computing, the

system and network architecture must supports a number of key properties, including:

1. Device heterogeneity.
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Figure 8.4: Service Provider heterogeneous Cloud system.

2. Scalability supporting millions of nodes.

3. Distributed and geodiverse.

4. Support low-latency communication network among all data-centers and broadband con-

nected embedded devices.

5. Support for scalable distributed runtime environments and models of computation such as

Message Passing and MapReduce.

The proposed broadband service provider system is illustrated in Fig. 8.4. The system architec-

ture exhibits each of the key properties listed above. The system is heterogeneous since it contains
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both data-center Linux servers and embedded devices with the capability to integrate wireless

devices through distributed network connected access points. It is highly distributed supporting

millions of embedded devices and access-point connections across a managed network backbone

spanning long distances. The system network is based on 1Tb/s DWDM fiber technology of-

fering both high-performance and low-latency communications. To accomplish geo-diversity and

fault-tolerance, the communications infrastructure is fully connected with multiple DWDM fiber

backbone connections to each regional data-center. Finally, software frameworks for distributed

programming and runtime management of processes enable the execution of Cloud applications.

In the proposed system, standard distributed models of computation such as MPI and MapReduce

have been implemented to evaluate the feasibility of distributed Cloud computing applications.

8.4 Heterogeneous Cloud Application Scenarios Utilizing Broad-

band Embedded Computing

In this section I propose a number of novel heterogeneous Cloud system application scenarios that

can leverage broadband embedded computation. Each scenario includes a proposed architecture

that illustrates heterogeneous computation across centralized data-center servers and broadband

embedded devices utilizing the methods described in previous chapters.

8.4.1 Big Data Mining and Processing

When applied to the processing of large-scale, peta-byte data sets, in data-mining and analytics

applications Cloud computing is commonly referred to solving the problem of Big Data. Chapter 1

presented the explosion of Big Data applications primarily as a result of the growth in the number

of users of mobile and other embedded devices at the network edge. Embedded devices at the

network edge connect to centralized Cloud infrastructures across wireless and broadband networks.

Broadband service provider systems support millions of embedded devices at the network edge in

the form of set-top boxes, tables, home-gateways and other network attached intelligent devices.

Utilizing methods for broadband embedded computing, centralized Cloud data-center processing

for Big Data applications may be augmented using distributed computation at the network edge to

increase Big Data computational performance and throughput. Chapter 6 described a broadband
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(a)

(b)

Figure 8.5: Broadband System for Big Data: (a) Basic Block; (b) Cloud System Architecture
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embedded computing system for MapReduce computation based around the Hadoop system that

may be applied to the implementation of a heterogeneous Cloud systems platform for Big Data

computing.

As an example of a typical data-mining application, the left side of Fig. 8.5 illustrates a basic

heterogeneous Cloud system block composed of a single Hadoop cluster and various embedded

devices executing Map and Reduce processes. The right side of Fig. 8.5 expands this basic block

to a large-scale heterogeneous Cloud system architecture described in Section 8.2. In this scenario,

multiple Cloud data-centers are executing Hadoop tasks across millions of broadband connected

embedded devices. The system is efficient since data generated at the network edge may be directly

processed by the embedded devices, prior to further computation in the centralized Cloud system.

The Cloud system is fully heterogeneous as computation is shared across both the centralized

Cloud data-center servers and the broadband embedded devices. Cloud services are delivered as

either PaaS or IaaS and accessed by client applications from the centralized data-center clusters.

The augmentation enabled by the broadband embedded computing system is fully transparent and

hidden from the client application devices.

8.4.2 Cloud Recommendation System

A second scenario is shown in Fig. 8.6 illustrating an architecture for anonymously generating

consumer recommendations. The system is a heterogeneous Cloud system based on broadband

embedded computing and MPI. Delivery of consumer recommendations is provided in a software

as-a service (SaaS) model to third-party content delivery systems that consume the service for

the personalization of content as illustrated at the top of the figure. Consumer recommendations

are computed individually and locally on each embedded device in an inherently parallel manner.

A centralized server manages both the broadband embedded computation and data operations

using distributed MPI collective operations. Distributed recommendation process management is

provided using a customized Open MPI runtime framework such as the OERTE described in Sec-

tion 5.4.2. Individual consumer preference profiles are processed independently on the broadband

embedded devices as shown on the right-end side of Fig. 8.6. Embedded device software performs

both sensory and analytical processing that is transmitted using collective MPI operations to the

centralized Cloud server for final processing and service delivery. Note that since computation is
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Figure 8.6: Recommendation System Architecture.

local to each consumer device, personal data can be transformed into non-personal data that may

be then processed in the centralized Cloud infrastructure anonymously. Therefore content providers

can personalize their services to consumers based on heterogeneous Cloud system computation with-

out any knowledge of the consumers. This example highlights an advantage of heterogeneous Cloud

systems architecture where distributed computation may be leveraged to support applications that

require protection of sensitive information.

8.4.3 Network Intrusion Detection System

Standard security deployments such as firewalls, patched operating systems and password protec-

tion are limited in their effectiveness because of the evolving sophistication of intrusion methods.

For instance, distributed network attacks are increasingly capable of breaking through infrastruc-

ture entry points [87]. Intrusion Detection Systems (IDS) are designed to combat these attacks. A
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network-based IDS monitors data-traffic data from computers and other devices such as routers or

gateways that are normally subject to attacks. However, millions of computer devices that utilize

broadband networks for Internet access are potential sources of attacks, supporting growing interest

in IDS systems that include broadband network systems.

A network based IDS works by matching data-traffic contents against a known attack profile,

also known as a signature. A signature-based implementation approach utilizes various comparison

methods that share implementation similarities with the MSA application discussed in Section 4.5.

Both methods apply pattern matching to align one or more data-sets or signatures optimally. Coull

et al. [23], modified the pair-wise sequence alignment phase to align sequences of system commands

instead of sequences of DNA. The resulting score indicates how similar two command sequences

are to one another as part of a strategy for detecting anomalous behavior. This same approach

may be used to compare a known network signature with an anomalous one representing any

number of network based attacks. For example, a TCP SYN flood attack represents a common

denial-of-service (DOS) network attack where a target system is exhausted of resources leading to

a disruption or reduction of service or even a crash. Typically one or more attacking hosts fake

their source Internet addresses and generate numerous TCP SYN requests (the TCP SYN request

is the first request of the standard TCP 3-way handshake required during a connection request

between a client and server) to a target system. The attacking clients then ignore any responses

from the target server, resulting in target server resource depletion and eventual loss of service. An

IDS system based on broadband embedded computing is shown in Fig. 8.7. The figure illustrates a

possible architecture for implementing a heterogeneous Cloud system for IDS PaaS service delivery

to one or more service providers [97]. The system operates as follows. A centralized IDS master

controller maintains a signature repository of attack scenarios which are distributed to multiple

IDS embedded control systems located in each remote-hub facility. Each IDS embedded control

system manages a portion of the broadband network and associated set-top embedded devices that

are utilized for network monitoring. Multiple IDS embedded control systems partition the network

into smaller, more manageable units. Fig. 8.7 illustrates three independent broadband networks,

10.4.x, 10.3.x and 10.2.x, that are monitored for sources of network attacks to a centralized server

complex connected to all three networks. The set-top devices continuously monitor the broadband

network and execute a signature MSA comparison algorithm. This algorithm matches an attack
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Figure 8.7: System architecture for a broadband network Intrusion Detection System.

scenario (in this case TCP SYN flood attack represented as TTTTA) with outgoing network traffic

from potential attack computers coexisting on the set-top network. The figure shows resulting

positive alignment scores corresponding to two attack hosts #2 and #5. These scores are sent to

the master IDS controller which generates an alarm delivered as a Cloud web service to subscribing

clients. A powerful aspect of this architecture lies in the use of broadband embedded computing to

monitor and analyze multiple networks simultaneously by leveraging millions of embedded devices

which act collectively as a single distributed network analyzer. The ability to execute parallel MSA

across a large-scale broadband network of embedded devices as described in Chapter 5 enables the

detection of distributed denial-of-service attacks (DDOS) and coordinated-attack scenarios across

multiple networks concurrently. As a heterogeneous Cloud service, multiple service provider Cloud

systems may coordinate among one another, providing a fully distributed IDS system that is capable

of detecting network attacks originating over vast geographical areas.
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(a)

(b)

Figure 8.8: Predictive Broadband Plant Monitoring: (a) Physical Network; (b) Heterogeneous

Cloud Monitoring Architecture
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8.4.4 Broadband Plant Monitoring

As a final example, I propose a system to predict physical broadband network degradation through

the use of broadband embedded computing in conjunction with a centralized Cloud data-center

infrastructure.

To proactively manage network degradation is an important service provider goal, as any re-

duction in physical network system robustness impacts negatively the customer experience. For

example, faulty broadband network components, such as the RF nodes discussed in Section 2.4.2,

impair streaming video quality or computer network access performance. In the worst case, com-

plete interruption of service is possible. The top of Fig. 8.8 illustrates the relationship between

broadband network impairments and cable system nodes (shown as green or red rectangles) relative

to a hypothetical centralized Cloud data-center. Homes connected to green nodes are operational.

A red dot within a given home indicates some impairment. In the case of a home with a red dot

connected to a green node, the impairment is local to the home. e.g. the issue is within the home.

However, faulty nodes (indicated in red) represent an impairment effecting homes that reside over

a larger contiguous geographical area. In the example of Fig. 8.8, all nodes shown in red are faulty,

along with the homes connected to the corresponding node.

A system architecture that predicts which geographical regions will likely suffer an impairment

from one or more faulty broadband components is illustrated at the bottom of Fig. 8.8. The sys-

tem operates as follows. Broadband embedded devices continuously monitor physical networks

simultaneously capturing STB chip-level video and network error counters. Counter values are

utilized in the computation of probability statistics, such as forward error correction rates that

provide evidence of an emerging network impairment. The system utilizes broadband embedded

computation to generate the continuous stream of probabilities for Cloud processing. These are

indicated in the figure as P(FECn)1..x, where the nth embedded device computes and transmits

1..x probability values to the centralized Cloud data-center systems. Referring to the bottom of

Fig. 8.8, the centralized Cloud utilizes Hadoop and MapReduce processing to organize the embed-

ded device data into a format that can be processed by a machine learning system. The system

architecture presented in Chapter 6 describes methods to implement the Hadoop and MapReduce

system illustrated in Fig. 8.8. The actual impairment prediction is computed within the Cloud

server by a machine learning subsystem that accesses the HBASE database of sorted probability
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values computed during the MapReduce phase. In this example, a Bayesian Network machine

learning processor, illustrated as a Simple Bayesian Network, is used to predict the probability

that a given broadband network node is likely to suffer an impairment.The resulting prediction

statistics are then used by field operational teams to perform any necessary plant repairs.

8.5 Related Works

The evolution towards heterogeneous Cloud computing emerged from the use of GPU coproces-

sors alongside traditional blade server systems [24] to augment overall Cloud system processing

capabilities. However, the diversity of heterogeneous Cloud systems and applications is expanding.

This trend is acknowledged by Bonomi et al. with the work on Fog computing [16] and further

illustrated through numerous application examples such as those from vehicle, robotic, WSN, and

mobile Cloud computing [83; 21; 84; 29].

Similar to Fog computing, this chapter presented the use of embedded computing resources

at the network edge. However, unlike Fog computing and the other related works, this chapter

presents an architecture based on the implementation of real heterogeneous computing systems [98;

79]. Examples are then proposed that demonstrate a new class of heterogeneous Cloud applications

that are unique to large-scale broadband service providers.

8.6 Summary

I presented a system and network architecture that supports the implementation of a heterogeneous

Cloud system based on broadband embedded. The overall architecture achieves massive scale,

based on the replication of multiple facilities called remote-hubs and data-centers, effectively par-

titioning the massive system into many smaller subsystems. Remote-hubs contain edge networking

elements that provide physical network connectivity between embedded devices and regional data-

center server systems. The regional data-centers are all interconnected over very high-performance

fiber-optic networks. The integration of data-center system clusters with broadband embedded

devices results in the creation of a new form of heterogeneous cloud systems architecture. The

OERTE software is developed enabling heterogeneous Cloud software execution across data-center

and embedded devices. OERTE virtualizes the embedded platform runtime environment into the
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equivalent data-center software platform. The resulting distributed computing framework enables

the execution of heterogeneous Cloud applications across both data-center servers and broadband

embedded devices using standard distributed programming models such as MPI and MapReduce.

The heterogeneous Cloud system platform supports the development of a new class of distributed

applications reflecting the emergence of distributed broadband embedded devices sharing network

connectivity with data-center systems and other connected devices. Finally, four examples of

proposed heterogeneous Cloud applications are described. The application scenarios range from

personalized consumer experiences to operational systems for intrusion detection and network mon-

itoring, demonstrating the potential capabilities of heterogeneous Cloud systems when combined

with broadband embedded computation.
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Chapter 9

Conclusions and Future Work

The goal of my research has been to investigate and develop methods that extend the emerging class

of heterogeneous Cloud systems by integrating the concept of broadband embedded computing. To

support this thesis, my dissertation research entailed the investigation and implementation of funda-

mental contributions required to implement a heterogeneous Cloud system based on the utilization

of a typical broadband embedded system. Two heterogeneous computer system platforms based

on MPI and MapReduce were built that leverage broadband embedded computation. Broadband

embedded computing experiments utilized the service provider STB, an embedded device that is

deployed in very large numbers, and, therefore, is representative of the envisioned system scale of fu-

ture heterogeneous Cloud systems. Numerous experiments were completed including the execution

of real-world bioinformatics, image rendering, standard communication benchmarks, and extensive

network simulation that validate the thesis and in some cases expose its limitations. To demon-

strate the utility of my thesis goals, a fully scaled, service provider heterogeneous Cloud system

was presented and a number of real-world applications of my vision were described. Throughout

the dissertation research, a number of challenges that indicate performance limitations or scala-

bility concerns were identified. Contributions that overcome these challenges were discussed and

implemented, whereas others are left as opportunities for future work. Based on the summary of

results, the evidence is conclusive that heterogeneous Cloud systems based on broadband embedded

computing are not only feasible, but can be implemented across a compelling set of use-cases. In

concluding this dissertation, the following sections summarize key contributions, results and future

work.
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9.1 Contributions

In support of my thesis goals, this dissertation includes the following contributions:

• The definition of broadband embedded computing as the useful and practical execution

of application processes on service provider embedded devices across managed broadband net-

works to computationally augment and extend the taxonomy of heterogeneous Cloud systems

platforms.

• The quantitative demonstration of the feasibility of broadband embedded com-

puting through the development of an experimental system to measure available computa-

tional, memory, network and device uptime characteristics over an extensive period of time.

Results show that typical service provider broadband embedded devices operate continuously

up to 30 days at a time, and utilize a small fraction of application processor and network

resources. Processor resources consume less than 50% utilization, while network bandwidth

utilization is less than 1%.

• The implementation of a first-generation heterogeneous system utilizing broadband

embedded computing and based on MPI to experimentally validate the composition of

broadband embedded devices and centralized Linux cluster servers. Experiments validated

both the feasibility of a heterogeneous Cloud systems platform based on broadband embedded

computing and the scaling potential through the execution of the ClustalW MSA algorithm.

Experiments exposed scaling challenges inherent to a data-center class runtime environment

that is not optimized for executing applications across a large-scale distributed embedded

system. The suitability of the standard MPI software platform associated with resource-

constrained embedded devices was investigated.

• The implementation of a second-generation system for broadband embedded computing based

on Open MPI that introduces a novel virtualization model for embedded devices en-

abling scalable launch and execution of MPI applications. The new system enables

the implementation of large-scale runtime systems, and process lifecycle management across

millions of devices. The virtualization system leads to the development of the Open Em-

bedded Runtime Environment or OERTE. To overcome limitations discovered in the
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first-generation system, additional contributions include the development of an optimized

Open MPI library for resource constrained embedded devices that is fully compat-

ible with the standard Open MPI library for interoperability with centralized Cloud system

data-center servers. Extensive experiments including multiple workloads such as MSA, ray-

tracing, and IMB communication benchmarks are carried out to validate the contributed

system architecture and software frameworks.

• A broadband embedded computing system for MapReduce utilizing Hadoop ex-

tends the contributed software framework to enable the integration of broadband embedded

devices that support Java into the ubiquitous MapReduce Cloud service delivery model. A

key contribution includes a method for porting the Hadoop Java software system to

the embedded device to overcome the incompatibility between embedded and en-

terprise JVM environments. MapReduce execution on broadband embedded STB devices

produce consistent experimental results across both Linux and embedded devices. However,

network and I/O experimental results show performance issues with the Hadoop MapReduce

execution and replication environment under broadband network systems, suggesting an area

of optimization.

• A quantitative analysis of broadband network characteristics to determine: 1) the

design of a highly-scalable application process launch and execution runtime sys-

tem, and 2) optimal broadband communication patterns during application exe-

cution, given message size, and communication flow characteristics. Both lab and

simulation experiments confirm the optimal properties of multicasting versus unicast message

delivery.

• The architecture for a highly-scalable heterogeneous Cloud system based on broad-

band embedded computing for service providers is described and illustrated. To demon-

strate the potential of the system, four application scenarios are described to motivate future

work.
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9.2 Future Work

While the dissertation introduced and covered a range of key topics enabling the implementation

of a variety of heterogeneous Cloud system architectures, a number of challenges and emerging

applications open up several research opportunities.

Optimized communication libraries. Chapter 7 confirmed ideal scenarios for leveraging

multicast versus unicast message delivery. Communication libraries that underly both MPI and

MapReduce runtime management systems as well as collective message operations can be opti-

mized for additional performance. How to best utilize adaptive techniques that take advantage of

multicasting and unicast message delivery characteristics within a broadband network environment

remains an open problem.

Replication and fault-tolerance. In systems like Hadoop MapReduce, data block fault-

tolerance is achieved through a replication protocol that results in a chained communication pattern.

In a broadband environment this results in performance degradation proportional to the number

of replications as all communications must traverse through the centralized broadband router. An

open question is how to improve performance if a unicast graph model of the replication pattern

can be transformed into a set of multicast operations. The MapReduce framework inherently

provides fault-tolerance. However, MPI is prone to failure in the presence of communication or

system errors. This is especially true when executing MPI applications within distributed embedded

system. Consequently, the addition of fault-tolerant MPI frameworks for distributed embedded

systems is an open area of research.

Broadband network quality-of-service. Broadband networks support multiple layers of

quality-of-service (QoS) in order to control traffic utilization. Runtime systems that operate across

broadband networks as well as high-priority collective operations can achieve higher performance

through the use of QoS facilities. Opportunities exist in refactoring the underlying MPI and

MapReduce communication system to support QoS mechanisms to further improve the performance

of broadband embedded computing systems.

Cloud middleware and service delivery models. Distributed computing frameworks such

as MPI and MapReduce represent the lowest levels of infrastructure within a given Cloud computing

platform. Generally, Cloud services are offered at higher levels of abstraction in order to offer

SaaS and PaaS services at the complexity of Web based applications. High-level Cloud platform
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extensions to the frameworks described in Chapters 5 and 6 are logical next steps. How to develop a

fully transparent and abstract service interface that is consistent with a larger population of clients

is one goal. Longer term, future work that includes integrating frameworks such as Openstack [71]

would provide better interoperability between heterogeneous and non-heterogeneous Cloud systems.

Heterogeneous Cloud Systems and Embedded IoT Computing. Perhaps the most

interesting and important area of future work includes the study of new heterogeneous Cloud

applications and systems in the context of the emerging Internet-of-Things. A challenge exists in

balancing the delegation of computation between the centralized Cloud data-center and devices at

the network edge. Solving this open research area will enable service providers to enhance their

managed networks to support, not millions, but billions of devices through a variety of broadband,

wireless access points and emerging network technologies.
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Appendix A

Broadband Network Experimental

Results

This appendix includes results of all broadband network process launch-execution and parallel MSA

experiments presented in Chapter 7.

Process launch-execution experimental results for simulation are illustrated in Figures A.1

through A.8. Corresponding lab results are illustrated in Figures A.9 through A.16. Results are

reported for the following scenarios: multicast-unicast and unicast-unicast scenarios, with/without

traffic, and for both prewired/not-prewired connections.

Parallel MSA test results are also shown for both lab and simulation. Parallel MSA lab results

are illustrated in Figures A.17 through A.20. Simulation results are illustrated in Figures A.21

through A.24. Test scenarios for parallel MSA include: multicast-unicast and unicast-unicast

scenarios, with and without traffic.
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(b) TexecN (c) TackN (d) TcompletionN

Figure A.1: Multicast-unicast, not-prewired, no-traffic simulation scenarios.

(b) TexecN (c) TackN (d) TcompletionN

Figure A.2: Multicast-unicast, not-prewired, traffic simulation scenarios.

(b) TexecN (c) TackN (d) TcompletionN

Figure A.3: Multicast-unicast, prewired, no-traffic simulation scenarios.

(b) TexecN (c) TackN (d) TcompletionN

Figure A.4: Multicast-unicast, prewired, traffic simulation scenarios.
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(b) TexecN (c) TackN (d) TcompletionN

Figure A.5: Unicast-unicast, not-prewired, no-traffic simulation scenarios.

(b) TexecN (c) TackN (d) TcompletionN

Figure A.6: Unicast-unicast, not-prewired, traffic simulation scenarios.

(b) TexecN (c) TackN (d) TcompletionN

Figure A.7: Unicast-unicast, prewired, no-traffic simulation scenarios.

(b) TexecN (c) TackN (d) TcompletionN

Figure A.8: Unicast-unicast, prewired, traffic simulation scenarios.
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Figure A.9: Multicast-unicast, not-prewired, no-traffic lab scenarios.
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Figure A.10: Multicast-unicast, not-prewired, traffic lab scenarios.
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Figure A.11: Multicast-unicast, prewired, no-traffic lab scenarios.
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Figure A.12: Multicast-unicast, prewired, traffic lab scenarios.
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Figure A.13: Unicast-unicast, not-prewired, no-traffic lab scenarios.
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Figure A.14: Unicast-unicast, not-prewired, traffic lab scenarios.
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Figure A.15: Unicast-unicast, prewired, no-traffic lab scenarios.

32 64 96 128
0

2000

4000

6000

8000

10000

12000

Te
xe

c(
m

s)

#Nodes

Message Size
 512
 1K
 2K
 4K
 8K
 16K
 32K
 64K
 128K
 256K
 512K
 1MB

(b) TexecN

32 64 96 128
0

2000

4000

6000

8000

10000

12000

Ta
ck

(m
s)

#Nodes

Message Size
 512
 1K
 2K
 4K
 8K
 16K
 32K
 64K
 128K
 256K
 512K
 1MB

(c) TackN

32 64 96 128
0

2000

4000

6000

8000

10000

12000

Tc
om

p(
m

s)

#Nodes

Message Size
 512
 1K
 2K
 4K
 8K
 16K
 32K
 64K
 128K
 256K
 512K
 1MB

(d) TcompletionN

Figure A.16: Unicast-unicast, prewired, traffic lab scenarios.
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Figure A.17: Parallel MSA multicast-unicast, no-traffic lab scenarios.
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Figure A.18: Parallel MSA multicast-unicast, traffic lab scenarios.
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Figure A.19: Parallel MSA unicast-unicast, no-traffic lab scenarios.
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Figure A.20: Parallel MSA unicast-unicast, traffic lab scenarios.
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Figure A.21: Parallel MSA multicast-unicast, no-traffic simulation scenarios.
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Figure A.22: Parallel MSA multicast-unicast, traffic simulation scenarios.
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Figure A.23: Parallel MSA unicast-unicast, no-traffic simulation scenarios.
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Figure A.24: Parallel MSA unicast-unicast, traffic simulation scenarios.
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