
Clemson University
TigerPrints

All Dissertations Dissertations

12-2015

Downstream Bandwidth Management for
Emerging DOCSIS-based Networks
Gongbing Hong
Clemson University, hgb.bus@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Hong, Gongbing, "Downstream Bandwidth Management for Emerging DOCSIS-based Networks" (2015). All Dissertations. 1579.
https://tigerprints.clemson.edu/all_dissertations/1579

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1579&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1579&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1579&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1579&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1579&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1579?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1579&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Downstream Bandwidth Management for Emerging
DOCSIS-based Networks

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Gongbing Hong

December 2015

Accepted by:

Dr. James Martin, Committee Chair

Dr. Brian Dean

Dr. Feng Luo

Dr. James Westall

Abstract

In this dissertation, we consider the downstream bandwidth management in the

context of emerging DOCSIS-based cable networks. The latest DOCSIS 3.1 standard for

cable access networks represents a significant change to cable networks. For downstream,

the current 6 MHz channel size is replaced by a much larger 192 MHz channel which

potentially can provide data rates up to 10 Gbps. Further, the current standard requires

equipment to support a relatively new form of active queue management (AQM) referred

to as delay-based AQM. Given that more than 50 million households (and climbing) use

cable for Internet access, a clear understanding of the impacts of bandwidth management

strategies used in these emerging networks is crucial. Further, given the scope of the change

provided by emerging cable systems, now is the time to develop and introduce innovative

new methods for managing bandwidth.

With this motivation, we address research questions pertaining to next generation

of cable access networks. The cable industry has had to deal with the problem of a small

number of subscribers who utilize the majority of network resources. This problem will

grow as access rates increase to gigabits per second. Fundamentally this is a problem on

how to manage data flows in a fair manner and provide protection. A well known perfor-

mance issue in the Internet, referred to as bufferbloat, has received significant attention

recently. High throughput network flows need sufficiently large buffer to keep the pipe full

and absorb occasional burstiness. Standard practice however has led to equipment offering

very large unmanaged buffers that can result in sustained queue levels increasing packet

latency. One reason why these problems continue to plague cable access networks is the

ii

desire for low complexity and easily explainable (to access network subscribers and to the

Federal Communications Commission) bandwidth management.

This research begins by evaluating modern delay-based AQM algorithms in down-

stream DOCSIS 3.0 environments with a focus on fairness and application performance ca-

pabilities of single queue AQMs. We are especially interested in delay-based AQM schemes

that have been proposed to combat the bufferbloat problem. Our evaluation involves a

variety of scenarios that include tiered services and application workloads. Based on our

results, we show that in scenarios involving realistic workloads, modern delay-based AQMs

can effectively mitigate bufferbloat. However they do not address the other problem related

to managing the fairness.

To address the combined problem of fairness and bufferbloat, we propose a novel

approach to bandwidth management that provides a compromise among the conflicting

requirements. We introduce a flow quantization method referred to as adaptive bandwidth

binning where flows that are observed to consume similar levels of bandwidth are grouped

together with the system managed through a hierarchical scheduler designed to approximate

weighted fairness while addressing bufferbloat. Based on a simulation study that considers

many system experimental parameters including workloads and network configurations, we

provide evidence of the efficacy of the idea. Our results suggest that the scheme is able to

provide long term fairness and low delay with a performance close to that of a reference

approach based on fair queueing. A further contribution is our idea for replacing ‘tiered’

levels of service based on service rates with tiering based on weights. The application of our

bandwidth binning scheme offers a timely and innovative alternative to broadband service

that leverages the potential offered by emerging DOCSIS-based cable systems.

iii

Dedication

This dissertation is dedicated to my beloved wife for your unconditional love, en-

couragement, unwavering support and endless sacrifice, and to my two wonderful boys for

all you have to suffer and endure for the last several years when dad had to be absent from

various activities of yours. You are my motivation to the life yet to come. This dissertation

is also dedicated to our extended families on both sides of mine and my wife’s. Your love

and support have helped me to reach this milestone in my life.

To my earthly late father, now in heaven, and my mother, still thriving in her late

eighties and surprising one of my sons with her ability of climbing a fruit tree to get him

fresh fruit (you should have let your grandson do that himself, mom!), may this work of

your son’s continue to make both of you proud. Although you are illiterate living in one of

the most remote villages in China, you have the vision and have sacrificed so much to send

one of your sons to the farthest place on earth in study and life.

iv

Acknowledgments

First and foremost I would like to thank my advisor, Dr. Jim Martin, for his guid-

ance, motivation, and vision throughout my studies. Without his direction the work pre-

sented in this dissertation is simply impossible. From a more personal side, I also like to

thank him for his extraordinary patience. He has served as a role model for me.

I would also like to thank Dr. Brian Dean and Dr. Feng Luo for serving on my

committee. I was fortunate to have the opportunity to take Dr. Dean’s Advanced Data

Structures course. It was a very hard course but at the same time was also an eye-opener

for me. It taught me to look at a problem sometimes from a very unusual perspective. I

had to spend tremendous amount of time on this course. At the end it turned out to be a

great course absolutely worth taking. On top of that, Dr. Dean is such an inspiring teacher

for us to have and enjoy.

I would especially like to thank Dr. Mike Westall, also a member of the committee.

I have had the privilege to work with him closely. I simply cannot thank him enough for

his willingness to share his knowledge, experience, and ideas. He always amazed me with

those of his ideas. There was one time I was made speechless after he suggested a much

simpler and better alternative approach to a problem I was awkwardly addressing. Simply

put, everything he touches, it immediately shines.

Lastly I would like to thank Dr. Mark Smotherman, who used to be the Director

of Graduate Study when I got enrolled into the PhD program. He received me with great

warmth when I was invited for a visit before I came to Clemson.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . x

List of Listings . xi

1 Introduction . 1
1.1 Research Motivation . 2
1.2 Research Direction . 4
1.3 Problem Formulation and Contributions . 5
1.4 Dissertation Outline . 8

2 Background . 9
2.1 Bandwidth Management . 9
2.2 Review of Related Work . 11
2.3 Overview of DOCSIS Operation . 24

3 System Description . 29
3.1 System Model . 29
3.2 Simulation Model . 39

4 Evaluation of Single-Queue Management Approaches 47
4.1 Experimental Setup and Experiment Definitions 48
4.2 Throughput Fairness and Application Performance 51
4.3 Implications of Service Rate Management 67
4.4 Management of Unresponsive Flows . 70
4.5 Summary of the Results . 71

5 Approximate Fair Scheduling Using Adaptive Bandwidth Binning . . . 74

vi

5.1 Adaptive Bandwidth Binning and Implementation 74
5.2 Experimental Setup and Experiment Definition 89
5.3 Results and Analysis for Single Tier Environment 92
5.4 Results and Analysis for Multi Tier Environment 101

6 Conclusions and Future Work . 116
6.1 Concluding Remarks . 117
6.2 Future Work . 119

Bibliography . 121

vii

List of Tables

3.1 Different Allocations (Mbps) For Three Tiered Flows Under Different Tiering
Models . 37

4.1 Experiment Definition . 50
4.2 Experiment BASE TCP Throughput: Mean / Stddev / Sum (Mbps) 52
4.3 Experiment BASE TCP Loss Rate (Percentage): Mean / Stddev 52
4.4 Experiment BASE TCP RTT: Mean / Stddev 52
4.5 Experiment BASE 9 FTP Flow 5 Run Average / 95% Confidence Interval . 54
4.6 Experiment BASE DT 5 Run Average / 95% Confidence Interval 54
4.7 Throughput of 11 Individual FTP Flows . 56
4.8 JFI of BASE with Same Path RTT . 57
4.9 MMR of BASE with Same Path RTT . 57
4.10 Experiment BASE VoIP Isolation Performance (Mean Latency / Mean Loss

Rate (Percentage) / R-Value) . 59
4.11 Experiment HAS Throughput Efficiency . 61
4.12 FTP and HAS Average Throughput and Allocation Bias 61
4.13 HAS Performance Metrics (videoPlaybackRate / adaptationRate) 63
4.14 Web Response Time / Standard Deviation (seconds) 66
4.15 TIER Flow Average Throughput Allocation (Mbps) 69
4.16 TIER Flow Average Throughput Allocation (Mbps) with 4-channel Bonding

Group . 69

5.1 UDP Flow Throughput (Mbps) . 86
5.2 Experiment Definition . 91
5.3 Experiment BASE TCP Throughput: Mean / CoV / Sum (Mbps) 95
5.4 Experiment BASE TCP RTT: Mean / Stddev 96
5.5 Experiment BASE VoIP Isolation Performance (Mean Latency / Mean Loss

Rate (Percentage) / R-Value) . 96
5.6 ABB Dynamic Behavior for BASE . 97
5.7 Experiment ME1 Flow Throughput (Mbps) 98
5.8 Experiment ME1 Flow Average RTTs (second) 99
5.9 ABB Dynamics with Experiment ME1 . 99
5.10 Experiment ME2 Flow Throughput (Mbps) 100
5.11 Experiment ME2 Flow Average RTTs (second) 100
5.12 ABB Dynamics with Experiment ME2 . 100
5.13 Experiment ME3 Flow Throughput (Mbps) 101

viii

5.14 Experiment ME3 Flow Average RTTs (second) 101
5.15 ABB Dynamics with Experiment ME3 . 102
5.16 Experiment TierG Flow Throughput Mean / CoV / Sum (Mbps) 103
5.17 Experiment TierG Flow RTT Mean / Stddev 103
5.18 Experiment TierG VoIP Isolation Performance (Mean Latency / Mean Loss

Rate (Percentage) / R-Value) . 105
5.19 Experiment TierM Flow Throughput Mean / CoV / Sum (Mbps) 107
5.20 Experiment TierM Flow RTT Mean / Stddev 107
5.21 Experiment TierM VoIP Isolation Performance (Mean Latency / Mean Loss

Rate (Percentage) / R-Value) . 108
5.22 ABB Dynamic Behavior for TierG . 108
5.23 ABB Dynamic Behavior for TierM . 108
5.24 Flow Throughput by Tiers for Experiment UDP 109
5.25 ABB Dynamics with Experiment UDP . 110
5.26 Application Flow Throughput by Types and Tiers for Experiment TAPPG 111
5.27 HAS Performance By Tiers for Experiment TAPPG: Video Play Rate (Mbps)

/ Average Adaptation Count Per Hour . 112
5.28 Application Flow Throughput by Types and Tiers for Experiment TAPPC 113
5.29 HAS Performance By Tiers for Experiment TAPPC: Video Play Rate (Mbps)

/ Average Adaptation Count Per Hour . 113
5.30 Application Flow Throughput by Types and Tiers for Experiment TAPPR 115
5.31 HAS Performance By Tiers for Experiment TAPPR: Video Play Rate (Mbps)

/ Average Adaptation Count Per Hour . 115
5.32 Web Performance for All APP Experiment Variants: Web Response Time

(Seconds) / Stddev . 115

ix

List of Figures

1.1 DOCSIS System Architecture . 2

2.1 Ranges of Complexity of Various Bandwidth Management Methods 12

3.1 Reference Bandwidth Management Model 29
3.2 Current DOCSIS Downstream Bandwidth Management Approach 31
3.3 Approximate Fair Scheduling Using Adaptive Bandwidth Binning 32
3.4 Simulation Network Model . 40
3.5 Operation of Token Bucket . 41

4.1 Experiment BASE throughput fairness results. 55
4.2 BASE fairness results for 7 FTP flows with varied RTT ranges. 58
4.3 WEB Simulation Average FTP Throughput 66
4.4 WEB Simulation WRT Results for Varied Object Sizes 67
4.5 TIER simulation results with CoDel (1 Tier-2 flow competing with 9 Tier-1

flows) . 68
4.6 Experiment UDP Results with PIE . 70

5.1 Example simulation showing how the ABB scheme works (UDP case) . . . 86
5.2 Addressing packet reordering issue by bin plugging. 88
5.3 Experiment BASE throughput fairness results. 93
5.4 Experiment BASE throughput fairness results over time. 94
5.5 Experiment TierG weighted throughput fairness results. 104
5.6 Experiment TierM weighted throughput fairness results. 106
5.7 TAPPG - Bin occupancy in percentage of time for each tier and traffic type 111
5.8 TAPPR - Bin occupancy in percentage of time for each tier and traffic type 114

x

List of Listings

5.1 Data Structures . 75
5.2 Enqueue routine . 78
5.3 Enqueue routine . 79
5.4 Optimize routine . 81

xi

Chapter 1

Introduction

Cable access network is one of the dominant broadband access network technolo-

gies. The Data Over Cable Service Interface Specification (DOCSIS) defines the operations

of cable access broadband networks. Such networks traditionally use standard cable TV

channels for data transfers between home / small business users and the Internet.

The evolution of cable network technology is at an intriguing crossroad. Traditional

broadcast video is converging with Internet video broadcast. Multiple system operators

(MSOs) must engineer their access networks to competitively support both traditional video

broadcast service and broadband Internet access. This task is challenging because of the

rapid evolution of technology and customer demands from both worlds. In the video broad-

cast domain, system operators must provide access to a mix of hundreds of standard and

high definition television channels along with video-on-demand services. In the broadband

access domain, standards are rapidly evolving to provide ever increasing data rates to end

users.

Figure 1.1 illustrates how a DOCSIS-based cable network bridges between a home

network and the Internet. In the middle of the figure DOCSIS network uses either a coaxial

cable or a hybrid fiber-coaxial cable (HFC) to provide a two-way communication that at

the end provides a transparent bi-directional transfer of Internet Protocol (IP) traffic.

On the left side of the figure, a home or small office network is connected to the cable

network through a user device called Cable Modem (CM). CMs are connected to a head-end

1

......

DOCSIS Network for

Broadband Access
Backoffice NetworkHome Network

Cable

Modem

CMTS

Hybrid fiber-coaxial

network

Coaxial cable

Coaxial cable

Fiber optic

cable MSO’s Services and

Applications

(e.g, Internet, IPTV,

VOD)

The

Internet

Content providers

Applications and

Services

(e.g. Internet Video)

Provider Network

Figure 1.1: DOCSIS System Architecture

device, called Cable Modem Termination System (CMTS), which control the access of the

CMs to the DOCSIS-based cable network. The DOCSIS MAC protocol is used to establish

the connections between the CMTS and the CMs. The CMTS is then connected to the

Internet through a backoffice network of a cable operator. The backoffice network is the

standard TCP/IP based network.

1.1 Research Motivation

In this research we consider the downstream bandwidth management problem that

arises with emerging DOCSIS-based access networks. While bandwidth management is an

established research area, the context of the issue is rapidly changing.

Broadband access networks based on the latest DOCSIS 3.1 (D3.1) are enabling

Gbps bandwidth to our homes. Broadband network operators however have never managed

such high bandwidth broadband networks in the past. Existing management methods are

showing their limits. Given the new context, it is vital to study and develop new ways for

bandwidth management to ensure successful deployments of the emerging high bandwidth

broadband networks.

This work is motivated by several recent developments in both research and network

communities. First, cable networks, the dominant broadband access technology in North

America, are transitioning to the D3.1 standard [9]. By replacing the standard 6 MHz

2

channel with channels up to 192 MHz, the number of households with Gbps access in the

United States will increase dramatically. This can potentially lead to a significant increase

in average service rates available to subscribers. The Federal Communications Commission

(FCC) has recently redefined broadband service as one with a minimum speed of 25 Mbps

downstream and 3 Mbps upstream respectively [25]. With Gbps channel speed, DOCSIS

cable networks will be well positioned to support the new broadband service definition.

Second, current network engineering practices involving the use of network devices

that utilize large unmanaged network buffers have been identified as problematic. This

issue, generally referred to as bufferbloat, has sparked renewed interest in active queue

management (AQM) [34]. Bufferbloat results in persistently high queue levels leading to

large and sustained packet latency. Large packet latency has significant negative impact

over many interactive and delay sensitive applications that now proliferate in the Internet.

The network community has identified the importance of reducing queueing delay in

the latest RFC 7567 [4] recommending the use of AQM. The idea of delay-based AQM has

been recently proposed. AQM algorithms such as CoDel [73, 72] and PIE [77, 75] implement

a pro-active loss process designed to maintain a statistical packet latency target. The latest

DOCSIS cable standards reflect this direction. D3.1 requires cable modems to support

PIE AQM to manage the upstream queue. For downstream, the cable modem termination

system (CMTS) is required to use a published AQM algorithm by default (although it can be

disabled if so chosen by network providers). As the deployment of D3.1 is likely to occur over

several years, the current DOCSIS 3.0 (D3.0) standard has been revised to recommend the

immediate use of delay-based AQM. Although AQM has been widely studied and deployed

(e.g., the Random Early Detection AQM algorithm is available in nearly every modern

networking device), it has not been widely used. The AQM requirements for DOCSIS will

likely lead to the first large scale use of AQM to enhance the performance of the network.

3

1.2 Research Direction

The research presented in this dissertation focuses on DOCSIS-based cable networks

providing Internet access. Current practice involves the use of large unmanaged buffers with

simple first-come-first-served (FCFS) scheduling. Network operators use pricing-based con-

trol models to provide higher end service in terms of service tiers, which allow network

operators to limit the subscribers to a maximal usage and to better engineer their net-

works. The issues related to managing subscriber traffic based on consumption have a long

contentious history. A significant backdrop for our research is the observation that D3.1

can potentially make significantly higher service rates available to subscribers.

With the D3.1 deployment imminent, we explore and evaluate a new bandwidth

management scheme for emerging DOCSIS cable networks. We believe the focus of the

bandwidth management in a network is fundamentally about achieving fairness and low

queueing delay. To provide focus, we limit our study to downstream cable scenarios.

The research is divided into two phases. The first phase focuses on evaluating

the effectiveness of modern delay-based AQM schemes to manage fairness and application

performance in realistic, single or bonded channel downstream DOCSIS 3.0 cable network

scenarios. We consider scenarios that involve different service tiers, where different cable

users are provisioned with different service rates.

The second phase of our research develops and evaluates a new innovative bandwidth

management approach. We introduce our idea first by identifying our original design goals:

1. The scheme should provide predictable latency property consistent with that of mod-

ern delay-based AQMs such as CoDel to address the bufferbloat problem

2. The scheme should provide predictable service levels consistent with service tiers pur-

chased by subscribers. One reasonable goal is to approximate the standard practice

of weighted max-min fair allocation [46].

3. The scheme must reflect a conscious compromise between fairness and algorithmic

4

complexity over a broad range of network scenarios and diverse workloads.

4. The scheme should exhibit high system efficiency in terms of bandwidth utilization.

5. The scheme should require minimal configuration parameter settings. The community

has learned that complicated tuning required by any scheme hinders the acceptance

of such scheme.

We introduce a novel packet scheduling method we refer to as adaptive bandwidth

binning (ABB). ABB maintains a small number of queues, referred to as bins. Flows with

similar consumption levels are quantized into a number of flow groups corresponding to the

number of bins in use. Packets from the flows in the same group are then aggregated into

the same bin. Bins are assigned weights according to the flows they hold. An outer sched-

uler serves the bins in a weighted deficit round-robin (WDRR) [87] manner. The algorithm

adapts to changing workloads by periodically remapping flows to bins when flow consump-

tion levels change. By normalizing recent bandwidth consumption with flow weights, we

extend ABB to support weighted bandwidth binning which can be used to implement service

tiering where tiers are defined by weights.

1.3 Problem Formulation and Contributions

Scheduling and queue management disciplines are fundamental to computer net-

working and have been studied from many different perspectives. Research includes work

in areas related to packet scheduling, buffer management, congestion control, and a wide

range of topics surrounding how networks can provide services that meet targeted perfor-

mance levels. In spite of this body of knowledge, large scale networks such as the Internet

still suffer from many known problems including bufferbloat, TCP round trip time (RTT)

unfairness, and vulnerability to unresponsive flows [34, 73, 31, 29, 32, 82].

It has been established that TCP suffers from a mutlitude of problems. For example,

TCP’s end-to-end congestion control mechanism does not sufficiently enforce fairness for a

number of common scenarios [60]. Examples include the scenario where long RTT flows

5

competing with short RTT flows and the scenario where flows based on unresponsive UDP

competing with flows based on TCP. The Internet was originally designed by assuming a

‘dumb’ network with ‘smart’ endpoints. This design likely is the reason why TCP/IP and

the Internet have flourished. However, the design strategy has clear shortcomings with

respect to performance and reliability. In spite of the enormous amount of research over

the last 40 years, there has not been a significant change to the underlying service model

provided by the Internet. These issues have led to notable events where service providers

felt forced to manage traffic to “protect paying customers from others who don’t share so

well” [60].

Economic factors have led to the current service tiering model in terms of individ-

ually imposed maximum subscriber service rates. With the current service tiering model,

network operators identify a discrete set of available subscriber service rates, called service

tiers, for users to choose from. A network operator then uses regulators to limit subscribers

achieved service rates from exceeding their prescribed max service rates.

The current standard practice is for all packets, after they are eligible for transmis-

sion following the regulator process, to be managed using a single aggregate queue with

a simple FCFS scheduler and managed with simplest drop-tail (DT) queue management

technique. While simple to implement and inexpensive, the scheme is known to suffer from

the fairness issue mentioned earlier. While the use of regulators provides a mechanism that

allows service providers to have an economic framework for establishing service tiers, the

approach blurs network functions such as traffic shaping and rate limiting with congestion

control and traffic management. If a network operator implements a service tiering model

based solely on service rates enforced by the regulator process, without further support of

more sophisticated packet scheduling such as weighted fair queueing, as we show in our

prior work [38], the allocation outcomes will not match the service levels that are alluded to

by the service tiers during the time of congestion. Further, we show that the known issues

related to bufferbloat lead to unpredictable results. The Internet community is addressing

the bufferbloat problem with delay-based AQMs. However our prior work [38] has shown

6

that the use of single queue delay-based AQMs does not help addressing the unfairness issue

but instead exacerbates the issue.

We address the combined problem of fairness and bufferbloat in modern DOCSIS-

based cable access networks with a low complexity / cost solution. While the majority of

CMTS equipment in use in the United States supports advanced scheduling techniques such

as weighted fair queueing (WFQ) and most likely a wide range of other approximations of

fair queueing (FQ) as well, it appears that such advanced schemes are not widely used.

Although we do not know why they are not used, we do know they come at high complexity

and/or high cost. For example, the work needed may be more than O(1) per packet, per-

flow queueing may be required, dynamic queue creation / deletion, or a large number of

queues may be required to provide fairness, etc. The cable community would like to have

available other options that represent a compromise between complexity, cost, invasiveness,

and robust performance. In addition, it is likely that network operators may move towards a

network function virtualization strategy where the small number of large traditional CMTS

nodes are replaced by lighter-weight devices that might be deployed on demand.

The contributions of this research are two-fold. First, with large deployment of AQM

imminent for DOCSIS-based networks, our evaluation of the modern single-queue delay-

based AQMs provides timely feedback to the community concerning how delay-based AQM

schemes are able to manage fairness and application performance in realistic downstream

cable network scenarios. To the best of our knowledge, the two papers [57, 38] that have been

published based on this work are the first that consider the impact of queue management

on the dominant Internet applications such as Internet streaming based on HTTP-based

Adaptive Streaming (HAS). Second, while the idea of using two queues to separately carry

high bandwidth application flows (referred to as ‘elephants’) and much larger number of

low bandwidth flows (referred to as ‘mice’) has been proposed, we are the first to evaluate

an adaptive bandwidth binning scheme that provides approximate weighted fairness with

low complexity and cost.

7

1.4 Dissertation Outline

This dissertation is organized as follows. In Chapter 2, we review background ma-

terials on the scheduling and queueing disciplines relevant to this research. We also sum-

marize related work in the area. In Chapter 3, we present our system model and simulation

model. We also discuss related metrics used in evaluating various bandwidth management

approaches. In Chapter 4, we provide detailed analysis on the effectiveness of recent delay-

based single-queue AQM schemes applied to downstream traffic in cable access networks.

Our simulation framework utilizes realistic scenarios including FTP, VoIP, web, and HAS.

We present a new bandwidth management scheme based on a multi-queue AQM approach

in Chapter 5. We provide detailed results and analysis on how effective the scheme is able

to approximate weighted fairness and provide low delays in various scenarios. We conclude

our work with a summary of results in Chapter 6.

8

Chapter 2

Background

The background materials pertaining to this research fall into several areas. We

first introduce the general concept of bandwidth management. We then review the related

research covering packet scheduling and queue management techniques. These are followed

by the introduction of DOCSIS. Additional background materials, when relevant, will be

included in the chapters that follows.

2.1 Bandwidth Management

Subscriber bandwidth management is one of the core management tasks of the access

network and is at the center of much of the change happening in broadband access. The

fairness model inherent in the Internet, which is fairness based on ‘TCP fairness’ [29], is

arguably outdated as it was based on assumptions that are decades old. It is well known

that the allocation of Internet resources depends on the end-to-end round trip time as well as

host TCP configuration and implementation. Applications are free to utilize parallel TCP

connections to compete for more bandwidth. For these reasons, along with the economics

surrounding broadband access, the access networks such as DOCSIS cable networks have

historically used supplemental bandwidth management procedures. One such example is

Comcast’s protocol-agnostic congestion management system [64].

An attribute of bandwidth management is the granularity of information used as

part of the management feedback loop. The information can be extremely granular (e.g.,

9

based on type of application) or based on limited information (e.g., based on bandwidth

consumed). The issue is a touchy subject with government policy makers (who need to

ensure that network operators do not implement monopolistic practices) and with the public

(who will likely become enraged if they find out that certain applications are purposely

treated unfairly). While there is no consensus on exactly how shared resources should be

managed, there is agreement that bandwidth management must be done.

There are several broad dimensions to bandwidth management including service

models, scope, and locations. An additional dimension of concern to this research is the

time scale of control. Bandwidth management can operate at different time scales. The

range of mechanisms for this dimension includes the following:

Microseconds Packet scheduling disciplines determine which packets get serviced

when a link becomes idle. Packet queue management policies are implemented at this time

scale as well.

Milliseconds End-to-end congestion control algorithms such as the ones sup-

ported by TCP stacks manage how a flow reacts to signs of network congestion.

Seconds-Minutes-hours Traffic management methods such as routing algorithms

modify the allocation of resources based on control procedures that use relatively large time

scales.

Days or weeks Admission control and capacity planning methods operate at very

large time scale to ensure that the network is adequately provisioned to meet throughput

and delay requirements.

A broadband access network likely requires bandwidth management operating at all

time scales. Due to the inherent complexity of bandwidth management and due to some-

times unseen underlying interactions between the different levels of bandwidth management,

10

it is often difficult to know which management schemes and their respective configurations

are the best choice.

2.2 Review of Related Work

A tremendous amount of research has been published in the area of resource al-

location. Seminal results exist for systems that assume connection oriented networks. It

has been shown that guaranteed delay bounds can be provided in such networks by packet

scheduling combined with rate limiting [96]. So one front focuses on regulating traffic at

the source through traffic shaping or rate limiting. Leaky bucket algorithm [91] is one such

mechanism that can control the bandwidth allocated to a source while simultaneously reg-

ulate the burstiness of the traffic. TCP end-to-end flow control [43] is another mechanism

now ubiquitously implemented at the endpoints of a TCP connection. This mechanism

regulates the sending rate of a connection via a dynamically sized congestion window. The

window sizing is characterized by an exponential increase before a congestion threshold is

reached and an additive increase/multiplicative decrease afterwards. Such control results

in so called TCP fairness that inspires the requirement of ‘TCP friendliness’ for implemen-

tation of new protocols [29].

In connectionless networks such as packet switched networks that are based on

best effort service model, neither traffic regulation nor TCP end-to-end flow control are

sufficient to provide latency or throughput guarantees. Bandwidth management through

packet scheduling and queueing disciplines has been explored.

At the heart of bandwidth management is how packets should be managed in the

queues and scheduled. According to Keshav [46], there exists two orthogonal components

to a scheduling discipline. The first component decides which packet gets serviced next at

a congested link through a packet scheduling algorithm. The second component deals with

how packets are queued through a queue management scheme.

Packet scheduling disciplines are often designed to provide fairness. The widely

accepted fairness criterion is max-min fairness. An allocation is max-min fair if it is not

11

Number of Queues

AFCD
AFD
Spike-detecting
CoDel, PIE
CHOKe
BLUE
RED
DT

FCFS

Single Few Multi

(S)FQ-CoDel
Stocastic Fair
BLUE

MQFQ
SFQ

Per-flow

FRED
FQ+CoDel

GPS
WFQ
FRR
SRR
TSFQ
BSFQ
SCFQ
DRR

- Schemes in italics are queue management schemes
- Schemes in bold are packet scheduling schemes
- Schemes underlined are diff-serv type of schemes
- Circled area is where our scheme operates

C
o

m
p

le
xi

ty

Simplest

Most
Complex

RD
RED with
 In / Out
ABE

SplitBuff
MultiBuff

Figure 2.1: Ranges of Complexity of Various Bandwidth Management Methods

possible to increase the rate allocated to any user in the system without decreasing the

rate allocated to any other user who is receiving an already lower or equal rate [51]. On

the other hand, queue management techniques have been explored to provide low queueing

latency for packets. Queueing latency for a packet is given by the duration between the

packet entering and leaving a queue.

Among various conflicting objectives of the schemes, tremendous amount of research

has explored ways to reduce complexity and cost while maintaining desired properties such

as good fairness and low latency in the network. Figure 2.1 provides a number of schemes

developed over decades and their relative complexity to each other. The schemes are given

in the categories of packet scheduling and queue management. We will discuss several of

the schemes depicted in the figure with details later.

In the literature complexity has been looked at from various angles depending on

the focus of a particular research. It has been used to describe various complications related

to algorithms, data structures, implementation, etc.:

• Algorithmic related complexity. For example, the amount work required per packet

12

[87], which can range from O(n) to O(1), where n is the number of flows to be

scheduled. The number of operations needed per packet [63] must be minimized to

support high speed networks.

• Number of queues / bins (aggregate queues) required. Some scheduling schemes re-

quire per-flow queueing. For n flows, n queues are required. Queues are dynamically

created and destroyed as flows come and go. Such schemes are complex and not scal-

able. Other schemes require multiple queues [63]. The number of queues (k) required

is independent of n. It is expected that k < n. These schemes are more scalable

and less expensive. In the extreme case, schemes such as FCFS require only a single

queue, which makes it simple and inexpensive to implement.

• State information required [78, 76, 54]:

– Per-flow state information required

– Per-flow state not required or stateless

In the remainder of the section, we review the related work from the perspectives of

packet scheduling and queue management. We include a brief review of research presented

in the context of Internet differentiated service (diff-serv) as well.

2.2.1 Packet Scheduling

Packet scheduling deals with selecting which packet among the packets queued at a

congested link to be sent next through the link. The simplest packet scheduling algorithm

is FCFS. It employs only a single queue for all flows. Incoming packets are queued and

transmitted in the order they arrive at the queue. FCFS is very simple and efficient. Thus

it is still widely used in the Internet. However, it cannot distinguish packets among different

flows. Thus FCFS does not provide any protection or fairness. Instead it rewards flows with

faster packet transmitting rates. Given limited queue space, a misbehaving flow can block

other flows from accessing the queue for indefinite amount of time.

13

To address the problems with FCFS, researchers in the past developed many packet

scheduling algorithms that maintain individual flow states in one way or another. As orig-

inally defined by Nagle [67] and then developed by many others, FQ is a class of packet

scheduler algorithms that schedule data packets at congested links to provide max-min fair-

ness and protection by maintaining a separate queue for each flow. These algorithms can

be broadly divided into two categories: time-stamp based and frame or round-robin (RR)

based algorithms.

An ideal fair queueing algorithm is generalized processor sharing (GPS) [79] based

on a fluid flow model. It assumes the traffic is infinitely divisible. Thus GPS can serve

an infinitesimally small amount of data to each backlogged flow within any finite time

interval. GPS therefore can provide ideal flow isolation and fairness. Another similarly ideal

fair queueing algorithm considers serving flows in a bit-by-bit round-robin (BR) fashion

[17]. While the two scheduling algorithms provide perfect max-min fairness, neither is

implementable in a packet-switched network where packets are not infinitely divisible or

transmitted bit-by-bit. However, they do provide the performance basis for comparing

other more practical approximations of the fair queueing algorithms.

Since a packet must be transmitted in its entirety in a packet-switched network,

researchers have developed a number of packet-by-packet versions of the scheduling algo-

rithms that approximate GPS. By emulating GPS in background, weighted fair queueing

(WFQ) [17] maintains a virtual time clock and calculates a virtual timestamp or service tag

for each packet under GPS. WFQ then selects the packet with the smallest service tag for

next transmission opportunity.

While WFQ provides close approximation to GPS, it is computationally complex

to emulate GPS behind the scene. The complexity of WFQ is dominated by the virtual

timestamp computation for each packet, which requires O(n) time where n is the number

of flows. To address the complexity problem with WFQ, Golestani developed a self-clocked

fair queueing (SCFQ) scheme [35]. Instead of using the virtual time derived from GPS

system for the calculation of service tags for each incoming packet, SCFS uses the service

14

tag of the packet currently receiving service as an estimate of the system virtual time. This

significantly simplifies the computation of packet service tags while still maintains near

optimal performance.

All time-stamp based scheduling algorithms must select a packet of the smallest

service tag among the head packets of all flows. This comes at a cost of O(log(n)) work

per packet due to service tag sorting, where n is the number of packet flows. This selection

process dominates the complexity of SCFQ. The Leap Forward Virtual Clock (LFVC) [88]

algorithm further reduces the sorting complexity to O(log log n) by coarsening the service

tags calculated according to Virtual Clock (VC). This reduced complexity requires the use

of a fairly complicated data structure called Van Emde Boas tree. LFVC solves the fairness

problem in VC by temporarily moving oversubscribed flows into a low priority holding

area. A flow is oversubscribed if the service tag of its head packet exceeds the system

clock by a threshold. The threshold is formulated as “throughput condition”, which, when

met, guarantees throughput bound. The concept is based on parents disciplining their

misbehaving children by temporarily removing their privileges until their behaviors improve.

Frame-based approach, on the other hand, divides time into frames and packets

are sent within those frames. Frame-based approach avoids the sorting bottleneck of a

timestamp based approach and achieves low complexity of O(1). An example of frame

based approach is strict round-robin [67]. Each flow uses a queue for incoming packets.

Scheduler then polls each flow queue in a cyclic order and serves one packet at a time on

any encountered non-empty queues. However this scheme is unfair if packet sizes vary.

Deficit round-robin (DRR) [87] is a scheme that addresses the varying packet size

issue by maintaining a deficit count for each flow. At the beginning of each round, active

flows are given a quota in unit of bits that is added to the deficit counts. Once a packet

from a flow is selected for service, the deficit count of the flow is deducted by the size of

the packet in bits. As long as the deficit count is enough for sending out another packet at

the head of the queue, packets from the flow will continue to be sent out. Unused portion

of the deficit count carries over to next round. Round-robin based schedulers operate at a

15

time scale on the order of a ‘round time’. That is the amount of time to serve each flow

before returning to the first flow in the set of flows. The actual amount of a ‘round time’

varies depending on a number of factors such as the number of flows to be served and the

link speed.

Timestamp sorting and per-flow queueing requirement can complicate the packet

scheduling especially in a system that has to deal with large number of flows. Various

scheduling algorithms have been proposed to reduce such complications through quantiza-

tion. In the literature (e.g., [23]), the term quantization has been used to describe various

schemes that classify flows based on certain quantities with or without using bins (or sub-

queues) to aggregate packets from different flows belonging to the same flow class. We

assume quantization refers to a technique that groups flows based on a particular attribute

of the flows and/or the packets. Example attributes include flow weight, packet size, or

simply a hash. Binning refers to a technique with which packets from a group of flows are

aggregated into a sub-queue called bin to be scheduled FCFS. Quantization reduces the

complexity related to scheduling such as timestamp sorting while binning helps reduce the

number of queues required and simplifies scheduling. Quantization can be combined with

binning to reduce the number of queues required as the end result is multiple flows are

aggregated into a desired number of bins.

Bin sorting fair queueing (BSFQ) [10] combines the technique of quantization with

binning. Quantization is applied in the virtual time space, which is divided into equal

intervals (such as ∆ = 20) called bins (e.g., [0,∆]). When a packet arrives, the virtual

timestamp for the packet is calculated with the same method as used by SCFQ. Packets

with close timestamps that fall into the same bin are queued in the bin in FIFO order

and then serviced FCFS to achieve O(1) low complexity. The scheduler starts with the

current bin [t, t+ ∆] corresponding to virtual clock time t. Once all packets in current bin

are transmitted, the virtual clock increments by ∆ and the scheduler moves onto next bin

[t+ ∆, t+ 2∆]. So at a macro time scale of ∆, the packets are transmitted approximately

according to their timestamps. When ∆ is large, BSFQ degrades into FCFS. When ∆

16

is small, it operates similar to SCFQ, resulting better fairness and delay property. But

the amount of state information increases. Finding a proper ∆ to use can be a complex

compromise among several tradeoffs.

Using quantization, stratified round-robin (SRR) [81] improves DRR over its delay

bound property to be independent of the number of flows. Using an exponential grouping

scheme, SRR “stratifies” flows into different weight classes (or groups). The scheduling is

then organized into two levels: inter-class scheduling and intra-class scheduling. The inter-

class scheduling is responsible for scheduling intervals to different flow classes while the

intra-class scheduling uses DRR to schedule flows within a class. By combining the ideas

of both timestamp based scheduling and round-robin scheduling, fair round-robin (FRR)

[95] scheduling uses the same exponential grouping scheme but improves the worst-case

fairness property over SRR. It shares the same scheduling structure of SRR by using two

level scheduling. The inter-class scheduling is based on timestamps of each flow class. Due

to the number of classes being small, the complexity is acceptable even with GPS emulation.

Intra-class scheduling uses a modified DRR scheme. As with DRR, both SRR and FRR

require per-flow queuing.

Tiered service fair queueing (TSFQ) [23] is another quantization based scheme.

TSFQ is timestamp based scheduler with a O(1) time complexity. Arriving packets are

assigned timestamps using an efficient virtual time function (similar to what is used by

SCFQ). To reduce the timestamp sorting bottleneck, TSFQ first quantizes flows based on

flow weights (associated with service tiers) and then within a service tier further quantizes

flows based on packet size. The assumption is that traffic is not likely to have arbitrary

weights as often serviced at a number of service levels, flows are thus able to be grouped into

a limited number of flow classes according to their weights (or service tiers), where flows in

the same class have same weight. Within the same class, flows are further quantized into

a number of token queues based on the sizes of their head packets for efficient timestamp

sorting. Note this quantization is done using the sizes of head packets of the flows, flows

are thus expected to be quantized into different token queues at different time. A limited

17

number of token queues for each class are only needed due to the fact that IP packet sizes

exhibit a few modes and majority of packets fall into one of those modes. Similar to SRR

and FRR, TSFQ uses two levels of scheduling. The intra-class scheduler selects which flow

to be served first within that class by looking at the limited number of token queues. This

can be done within constant time. The inter-class scheduler then picks which class to be

served based on the minimum timestamp of the limited number of tier classes. TSFQ also

requires per-flow queueing and needs to maintain per-flow state.

Stochastic fair queueing (SFQ) [63] is a binning scheme. It uses a hash function to

randomly quantize flows into a limited, fixed number of bins. The number of bins to be used

is irrespective of the number of flows. The bins are scheduled round-robin. It can be viewed

as a probabilistic variant of fair queueing. Due to its use of the limited number of bins,

some flows will likely collide and be mapped to the same bin. Good fairness is only possible

with the use of a fairly large number of bins such as at the order of thousands or more.

To avoid the same set of flows continuously colliding on the same bin, SFQ periodically

perturbs the hash function so that flows that collide at one time will less likely collide at

another time. SFQ does not handle flow weights. Multiple queue fair queueing (MQFQ)

[33] is a scheme similar to SFQ but MQFQ uses more than one hash function to map a

flow to multiple queues (bins). Then each flow has the option to queue its packets on the

shortest queue associated with the flow. Since packets from the same flow under MQFQ

can be queued on multiple bins at any time, MQFQ has to deal with packet reordering

issue all the time. While on the surface, this can be avoided by always placing the packet

on the shortest queue mapped to a flow. But the exact identification of the shortest queue

depends on a few factors such as the deficit counts of the queues. Extra effort is required

to avoid packet reordering.

In terms of the complexity as described early in the section, we summarize the above

schemes as below:

• Per-flow queue required: WFQ, SCFQ, DRR, SRR, FRR, TSFQ

18

• Per-flow state required (but not per-flow queue): BSFQ

• Quantization used: SRR, FRR, TSFQ, BSFQ, SFQ

• Binning used: SFQ, BSFQ, FCFS

2.2.1.1 Diff-serv Scheduling

Besides the scheduling algorithms mentioned above and largely for best-effort data

traffic, there have been a class of scheduling algorithms developed for types of traffic pro-

viding guaranteed services or differentiated services [96, 20].

Differentiated services represents the extensions to TCP/IP and the Internet archi-

tecture required to provide an alternative service to the best effort datagram service. These

scheduling algorithms are aimed to provide quality of service (QoS). The system model

assumes traffic is marked by the generating host or on entry to a diff-serv managed network

requesting a specific diff-serv behavior.

Despite tremendous efforts that have been made in the past to get the Internet to

provide support for QoS through differentiated services (this is evident by the existence of

more than a dozen of RFCs on diff-serv), the Internet still largely delivers only one type

of service (that is best-effort). Teitelbaum et al. explained this in a paper titled “Why

Premium IP Service Has Not Deployed (and Probably Never Will)” [89]. For this reason,

there has been a focus shift to make best-effort service to provide relative QoS [41].

The diff-serv research that is of more relevance to our direction are the approaches

that require a network monitor to classify a flow as being within its traffic specification

(‘in spec’) or as having violated its specification. In the former, packets in the flow might

be marked as operating within its profile or as out of its profile in the latter. The packet

scheduling at routers would map the traffic marked as ‘in spec’ to an appropriate diff-serv

service. For example, RED with In and Out [11] assumes a service allocation profile is

associated with each flow. Two queues are needed to offer two levels of service assurances.

Each queue uses RED preferentially drop packets that are marked ‘in’ or ‘out’ of its profile.

19

A few diff-serv schemes address the different requirements of flows in terms of low

latency or high throughput. Alternative best effort (ABE) [41] assumes packets are marked

as either green or blue. By using two queues, routers guarantee green packets with a low

delay bound. But during congestion, green packets are more likely to be dropped than blue

packets. A rate-delay (RD) network service differentiation scheme [80] is proposed to give

the user an opportunity to choose between low delay and high throughput. A RD router

uses two queues to support such services.

There have been several recent papers that describe ideas that treat ‘elephant’ flows

and ‘mice’ flows differentially based on observed behaviors at the scheduler. MultiBuff [66]

is a scheme that is proposed to isolate short flows for low delays and long flows for high

throughputs into different buffers in a data center network environment. SplitBuff [42] is a

scheme that isolates flows of different RTTs into multiple buffers of varying sizes to provide

low delays for short RTT flows and high throughput for long RTT flows.

2.2.2 Queue Management

The simplest buffer management scheme, DT, drops arriving packets when the queue

has reached the configured maximum capacity. There are well known problems that arise in

certain situations involving DT. RFC 7567 [4] identifies four major drawbacks of this simple

scheme: 1) Full queues, which can cause significantly long packet delays. 2) Lock-out, in

which situation one flow can monopolize queue space, starving others. 3) Mitigating the

impact of packet bursts, which can disrupt the TCP control loop and reduce performance of

flows. 4) Control loop synchronization characterized by all TCP flows holding back nearly

at the same time causing network resource under utilized.

AQM has long been considered the appropriate solution to these issues. The Ran-

dom Early Detection (RED) algorithm [32] manages a queue by randomly dropping packets

in a manner in which the random drop rate is dynamically adjusted based on an average

queue size estimate and a configured maximum allowed drop rate (referred to as maxp).

Most RED implementations offer the ‘gentle’ option where the drop rate increases linearly

20

from maxp to 1 once the average queue level exceeds the target queue size [82, 28]. While

RED is widely available, it is not widely used. It has been shown that the average queue de-

lay with RED is sensitive to traffic loads and to parameter settings [62, 54]. Adaptive RED

(ARED) is a simple extension to RED that further adapts the random drop process such

that the average queue level tracks a target queue level [30]. This adaptation is performed

periodically. We refer to this parameter as the control interval . Due to the difficulty in

choosing the appropriate set of parameters for RED, RFC 7567 no longer recommends the

use of (A)RED.

Feng et al [27] indicated that queue length is a wrong congestion indicator to use.

Instead, they proposed BLUE active queue management that uses packet loss and link

idle event to adapt the mark/drop probability. BLUE requires little or no tuning. To

isolate unresponsive flows, Feng et al further proposed stochastic fair blue (SFB) to identify

unresponsive flows to be rate-limited. How such flows should be limited is not clear.

Long delay associated with bloated buffer is a much larger issue with many ap-

plications. CoDel [73] and PIE [77] are two recent delay-based AQMs to directly tackle

the delay associated with bloated buffer. Both AQMs proactively drop packets to ensure

average packet queueing delay remains less than a configured latency target. We refer to

this as the target delay parameter. Both AQMs expose a second configuration parameter

analogous to the control interval of ARED that defines the time scale of control.

CoDel’s delay estimate is based on a per packet latency monitor. PIE’s delay esti-

mate is based on an estimate of the recent departure rate at the queue. The two AQMs both

tolerate infrequent bursts of traffic. However, the details of the burst control mechanisms

differ and are described in [73] and [77] respectively.

The PIE algorithm performs early packet drops as packets arrive at the queue.

The CoDel algorithm, as originally proposed in [73, 71] performs early packet drops as

queued packets are serviced. The DOCSIS vendor community has expressed concern in

implementing a head-drop AQM such as CoDel in a CM due to complications with hardware

buffer control logic. This is likely to be true in other low cost network devices such as

21

Ethernet switches or WiFi APs.

2.2.2.1 AQM with Fairness

AQMs that do not distinguish between traffic flows drop packets from all flows

indiscriminately with same probability resulting unfair sharing of the link capacity. AQMs

involving per-flow accounting or the use of multiple queues have been proposed to address

the combined problem of fairness and bufferbloat.

Flow random early detection (FRED) [54] is a modified RED that uses per-flow

accounting to impose different drop rate on each flow. Several schemes attempted to further

reduce the complexity of flow-based AQMs through approximation. CHOKe [78] is an AQM

that discriminately drops more packets from a flow that sends more packets than is allowed

by its fair share to approximate fair bandwidth allocation. However, CHOKe does not

directly maintain per-flow states. Instead the information is implicitly extracted from the

queue it manages (without much accuracy). When a new packet arrives, CHOKe randomly

picks a packet from the queue. If the two packets belong to the same flow, the packet

drop probability for the packet(s) of the flow is made higher. Improving over CHOKe,

approximate fair dropping (AFD) [76] further expands the idea. AFD uses a small shadow

buffer to keep recent packet headers (insertion and deletion implied). It also uses a flow

table based on hash table to hold just enough flow information for the limited number of

recent active flows in the shadow buffer. AFD can potentially provide more accurate flow

information than CHOKe resulting in more accurate and granular bandwidth management.

There is clearly a cost associated with maintaining the flow table and shadow buffer per

packet.

Delayed-based AQMs that also address fairness issues have been proposed. Approximated-

fair controlled-delay (AFCD) queueing [94] is a single queue AQM that blends AFD and

CoDel to achieve fairness based on per-flow accounting information. With AFCD, per-flow

delay targets are calculated to adjust for flow sending rates. A flow whose sending rate

exceeds its fair share will be controlled using a shorter delay target compared to other flows

22

so that more packets can be drop from such flow to signal the flow to reduce its sending

rate.

FlowQueue-CoDel [36] is a multiple queue AQM that blends a modified DRR packet

scheduler with CoDel managing each queue to simultaneously address fairness and bufferbloat.

FlowQueue-CoDel is referred to as FQ-CoDel. FQ-CoDel uses a fixed number of queues

irrespective of the number of flows. An implementation of FQ-CoDel for ns2 is called SFQ-

CoDel [70]. Broadly the combination of any FQ scheduler based on per-flow queues with

CoDel can also likely be called FQ-CoDel. We identify this class of scheduling as FQ+CoDel

in Figure 2.1 to avoid any confusion. (S)FQ-CoDel stochastically hashes incoming packets

into a fixed number of queues (bins) based on packet headers. The bins share a fixed-size

common buffer and are scheduled with a modified DRR. Each queue is separately managed

by CoDel but with a common delay target. (S)FQ-CoDel is shown to be very fair while

maintaining delay target consistent to that of CoDel. But it does not provide weighted

fairness when flows are weighted. (S)FQ-CoDel has been actively evaluated [47, 93]. A

Linux implementation is also available [22].

AQM, as summarized in [4], provides these advantages for responsive flows: 1)

reduced number of packets dropped by network devices; 2) lower delay for interactive ser-

vices; 3) preventing buffer lock-out behavior by ensuring there will almost be a buffer for

an incoming packet; 4) reduced probability of control loop synchronization.

2.2.3 Summary of Related Work

The issues surrounding packet scheduling and buffer management are perhaps the

most widely studied issues in networking. We have been motivated particularly by the

following directions:

1. Low complexity packet schedulers that approximate fair queueing through quantiza-

tion, which defines a hierarchical scheduling framework. The framework involves an

inner scheduler that maintains fairness among flows within the same bin and an outer

scheduler that maintains fairness across bins.

23

2. Combined scheduling and buffer management schemes such as (S)FQ-CoDel and

AFCD.

Fundamental to assessing the performance such as fairness, latency, and system

efficiency is the choice of time scale. The crux of the problem centers on identifying the

time scales of interest. Fair queueing based on GPS maintains fairness for any infinitesimal

time scale. Approximations of FQ loosen the time scale of fairness to times based on a single

packet transmission time, a round-robin ‘round’, and possibly many RTTs control feedback

loops potentially require. AQM schemes that maintain a small amount of state relax the

time scale to the amount of time it takes to identify and differentiate the elephants from the

mice. The intuition behind these schemes is that the vast majority of traffic over relatively

short time scales (e.g., minutes) can be classified as either an elephant or a mouse.

Our direction assumes time scales of fairness similar to that of AQMs with state

information. But we attempt to improve the accuracy of the fairness outcome by assuming

that subscriber bandwidth management requires more fairness granularity than just iden-

tifying elephants or mice. As illustrated in Figure 2.1, our direction is positioned roughly

between AFD/AFCD and (S)FQ-CoDel (this assumes a scenario that involves a single tier).

When compared to AFD/AFCD, we seek to provide better fairness (more than just sepa-

rating elephants and mice). When compared to (S)FQ-CoDel, the proposed scheme reduces

complexity and cost with the use of just a few aggregate queues (bins). We do not intend

to provide short-term fairness as (S)FQ-CoDel does. We focus more on fairness over large

time scale such as tens of seconds.

2.3 Overview of DOCSIS Operation

The Data Over Cable Service Interface Specification [8] is a set of protocols and

standards developed by Cable Television Laboratories (CableLabs) to facilitate the delivery

of Internet services over traditional Cable TV networks.

DOCSIS system uses shared medium cable as its physical layer. At customers’

premises, cable modems (CMs) are attached to the cable. Their access to the cable medium

24

is controlled by a device called Cable Modem Terminating System or CMTS at the cable

operator’s plant. Modern cable networks involve a hybrid fiber-coaxial infrastructure that

establishes the connection with a DOCSIS MAC operating between the CMTS and the

CMs.

Data packets flow between the CMTS and the CMs through so called channels that

are each shared by multiple CMs. A CMTS manages multiple channels simultaneously. The

most widely deployed version of the standard, DOCSIS 3.0, uses 6 MHz (or 8 MHz in certain

regions) of bandwidth for the shared downstream channel and up to 6.4 MHz of bandwidth

for the shared upstream channel. The 6 MHz downstream channel supports physical layer

data rates up to 42.88 Mbps (55.62 Mbps in 8 MHz regions) and the upstream channel

supports data rates up to 30.72 Mbps. Packets sent over the downstream channel are broken

into 188 byte MPEG frames each with 4 bytes of header and a 184 byte payload. Prior

to DOCSIS 3.0, CMs were limited to a single downstream channel and a single upstream

channel (although, for the purposes of load balancing, the CMTS could dynamically change

a CM’s downstream or upstream channel assignment). DOCSIS 3.0 allows a CM to support

multiple downstream or upstream channels. A bonding group is a set of channels that

specific subscriber traffic can use. A downstream service group is the complete set of

channels that can potentially reach a CM. A bonding group is a specific subset of channels

from the service group assigned to carry subscriber traffic.

Downstream channels employ time division multiplexing for sharing. A downstream

scheduler at the CMTS manages the allocation of bandwidth among competing service

flows. A DOCSIS service flow is a transport service that provides unidirectional transport

of packets. A service flow consists of one or more TCP/IP connections terminating at

a specific CM. Service flow traffic may be shaped and prioritized based on QoS traffic

parameters associated with the flow. For downstream, the service parameters that define

a service flow include priority, settings for rate shaping and limiting (sustained traffic rate,

traffic burst size), a minimum reserved traffic rate, a peak traffic rate, and target latency.

The standard does not specify how a specific scheduling implementation should differentially

25

treat traffic from different priority levels.

The upstream channel is time division multiplexed with transmission slots referred

to as mini-slots. Permission to transmit data in a block of one or more mini-slots must

be granted to a CM by the CMTS. The CMTS grants mini-slot ownership by periodically

transmitting a frame called the MAP on the downstream channel. In addition to ownership

grants, the MAP also typically identifies some mini-slots as contention slots in which CMs

may bid for quantities of future mini-slots. To minimize collisions in the contention slots, a

non-greedy backoff procedure is employed. When a CM has a backlog of upstream packets

it may also “piggyback” a request for mini-slots for the next packet at the tail of the current

packet.

2.3.1 DOCSIS 3.1

The latest development to DOCSIS is the DOCSIS 3.1 standard. To achieve its

ultimate goal of supporting 10 Gbps downstream and 1 Gbps upstream network capacity,

DOCSIS 3.1 allows cable operators allocate spectrum differently from before and make

efficient use of the bandwidth. DOCSIS 3.1 adds a new physical layer that uses wideband

orthogonal frequency division multiplexing (OFDM) channels downstream and orthogonal

frequency division multiple access (OFDMA) channels upstream. Unlike a traditional QAM

channel fixed at a width of 6 or 8 MHz with a single carrier, an OFDM channel can be

configured to occupy a spectrum from 24 MHz up to 192 MHz in the downstream, which is

composed of a large number of subcarriers that each is 25 kHz or 50 kHz apart. Similarly

OFDMA channels are also multicarrier channels of 25 kHz or 50 kHz subcarriers. An

OFDMA channel can occupy a spectrum up to 96 MHz. Due to the use of many subcarriers

in an upstream channel, multiple CMs on the same upstream channel can now send data

packets to CMTS simultaneously on different subcarriers. The new scheme now enables a

very large data pipe through the use of only a single channel.

Other significant changes include new adaptive modulation and coding, and higher

QAM modes. At physical layer a new FEC coding called low-density parity-check (LDPC)

26

code is defined and higher QAM modulation (from 1024 to 4096) is allowed. These changes

provide more efficient use of the spectrum.

At the downstream MAC to PHY convergence layer, DOCSIS 3.1 no longer uses

MPEG-2 as an intermediary and now allows MAC packets to be encoded into codewords

directly. This allows IP data packets to be encapsulated more efficiently.

At the MAC layer, DOCSIS 3.1 continues to support channel bonding. This feature

now allows the bonding of OFDM / OFDMA channels leading to high capacity with just

a few channels bonded. In addition, it allows the mix bonding of the legacy single-carrier

channels and the OFDM / OFDMA channels, where an OFDM / OFDMA channel is treated

like a single-carrier channel.

DOCSIS 3.1 clearly spells out that it requires AQM to reduce the buffering latency

in CM and CMTS. This requirement is perhaps one of its most visible requirements. It

has a goal of improving responsiveness for applications and quality of experience for users.

CMTS must support a default AQM scheme. However, the exact AQM scheme to be used

for CMTS is not specified by DOCSIS. This opens the door for CMTS vendors to come up

with innovative schemes. On the contrary, CM must support the PIE AQM algorithm [77].

By default, AQM must be enabled.

2.3.2 Review of DOCSIS Related Work

Early work on bandwidth management of DOCSIS networks is well represented by

Droubi [21] and Kuo [50]. The focus was on packet scheduling. Droubi et al. proposed

a CMTS scheduling mechanisms for downstream and upstream transmissions and studied

their performance for delivering QoS. The scheduling algorithm in use was SCFQ. Kuo

et al. proposed a scheduling service and bandwidth allocation algorithm for upstream

flows. Representative literature on DOCSIS simulation and performance models include

[59, 84, 85].

Most of the early research focused on upstream bandwidth allocation algorithms.

This is because the downstream scheduling prior to DOCSIS 3.0 was relatively trivial. With

27

the introduction of channel bonding feature in DOCSIS 3.0, downstream packet scheduling

is no longer trivial. Nikolova et al. proposed two DRR based multi-channel downstream

packet schedulers to support rate based services [74]. Moser et al. studied downstream

fair packet scheduling and dynamic load balancing in channel bonded networks [65, 37]. In

DOCSIS 3.1, AQM has become one focus in the management of DOCSIS networks. White

et al. studied the latest CoDel AQM and its performance in comparison to simple drop-tail

scheme in a simulated DOCSIS 3.0 environment [92].

In summary emerging DOCSIS systems are going through significant changes. Fu-

ture systems will involve Gbps access speed and delay-based AQMs. These developments

collectively represent systems that have not been studied by the academic community.

28

Chapter 3

System Description

In this chapter, we lay out foundations of the research from a systems perspective.

We first present a conceptual system model, including our definition of fairness. We then

present our simulation model for the experiments and analysis. We further introduce the

traffic models used in the simulation and the performance metrics used in the analysis.

3.1 System Model

In this section, we first present a reference bandwidth management model. The

model is inherently complex. We then introduce a low complexity approximation for the

model. How the model is applied to DOCSIS is also discussed.

3.1.1 Reference Bandwidth Management Model

..
. .

..
..

. .
..

..
. .

..
..

. .
..

Output
Link

Packets
departing

Sc
h

ed
u

le
r

Packets
arriving

λ1

λn

λi

1
w

i
w

n
w

C

1
f

i
f

n
f

1
r

i
r

n
r

Per-flow queues

Figure 3.1: Reference Bandwidth Management Model

29

Figure 3.1 shows the reference bandwidth management model based on fair queueing.

At time t, there are n flows {fi, 1 ≤ i ≤ n} with an arriving rate λi respectively sharing a

total bandwidth of C. The flows are scheduled with a weighted fair queueing scheduler that

requires one queue per flow. Each flow fi is assigned a weight wi. The bandwidth allocated

to each flow should be in proportion to its weight. Let B be the set of backlogged flows. A

flow is backlogged if it has packets to send at the time. If fi is backlogged, the bandwidth

or service rate it should receive is given by:

ri =
wi∑

fj∈B wj
C

Over a heterogeneous set of active flows, the reference model will lead to allocations

that are weighted max-min fair.

3.1.1.1 Application to DOCSIS

In the literature, the term flow generally means a stream of IP packets that col-

lectively form an end-to-end communication session uniquely identified using a 5-tuple IP

packet header information (the source/destination IP address and port number plus pro-

tocol number). We refer to this definition of a flow as an IP flow. A DOCSIS service flow

represents any number of IP flows that terminate at a specific CM and that are treated in

aggregate according to the service and QoS definitions for the service flow. For example, a

CM by default is provisioned with 2 service flows, one for all downstream best effort traffic

and one for all upstream traffic. To support telephony, a CM might have two additional

service flows provisioned allowing the system to meet specified QoS requirements assigned

to the service flows. In the work presented in this dissertation, we assume all downstream

and upstream traffic associated with a CM map to the two default service flows. When we

use the term flow, we assume the DOCSIS perspective meaning a flow represents one or

more IP flows.

Applying the above bandwidth management model to DOCSIS, weights for individ-

30

..
. .

..
..

. .
..

Output Queue

Output
Link

Packets
arriving

Packets
departing

..
. .

..
..

. .
..

Queue Management

Sc
h

ed
u

le
r

Regulator

Regulator

Regulator

λ1

λn

λi

μ1

μi

μn

φ1

φi

φn

C

1
f

i
f

n
f

Figure 3.2: Current DOCSIS Downstream Bandwidth Management Approach

ual flows can be set to match the different levels of service subscribers paid for. Given the

current practice of the service tier definition being in terms of individual imposed maximum

subscriber service rates, the weights can be simply set to be in proportion to the service

rates.

The reference bandwidth management model is inherently complex due to its use

of one queue per flow. To lower the complexity, current cable systems often reduce the

model to the use of a single queue and use regulators to enforce the individual maximum

subscriber service rates. This results in a bandwidth management approach as illustrated

in Figure 3.2.

In the figure, each flow fi is individually regulated to not exceed a maximum service

rate φi. Network operators often identify a discrete set of available maximum service rates

for users to choose from. Let Φ = {ϕj , 1 ≤ j ≤ p} be the set of service rates, where p

represents the number of the service tiers offered. Each flow fi is then regulated to have a

departure rate µi ≤ φi ∈ Φ. The DOCSIS standard specifies a token bucket is to be used

to provide rate shaping and limiting. In this dissertation, we assume the term service rate

is the maximum sustained traffic rate described in the standard.

With this approach, all packets irrespective of which flows they are from, after

they are eligible for transmission following the regulator process, are managed using a

single aggregate queue with a simple FCFS scheduler. The buffer management technique

often used for the aggregate queue is the simplest DT scheme. More sophisticated active

31

queue management schemes including the delay-based AQMs may or may not be used.

The support for service tiering depends on the use of the regulators which impose a max

subscriber service rate for each flow individually. Due to the use of FCFS scheduler, this

management approach does not support flow weights and therefore does not guarantee the

bandwidth allocated to fi to be ri.

We call this service model the conventional service tiering model, based on our

current understanding of standard practice for cable networks. In this service model, the

network utilizes service rates for rate limiting and shaping with the resulting regulated

traffic to be aggregated and managed by a single queue scheduled FCFS. The model does

not use flow weights and therefore does not provide weighted allocation. The bandwidth

allocated to any flow is subject to its max service rate.

3.1.2 Approximate Fair Bandwidth Management Model

Due to the complications associated with the use of per-flow queues in the reference

bandwidth management model, we present an alternative bandwidth management model

that intends to approximate weighted fair allocation.

..
.

..
.

..
.

..
.

Packets

arriving
Output

Link

Packets

departing

S
ch

e
d

u
le

r

..
.

..
.

1

k

..
.

..
.

..
.

..
.

λ1

λn

λi

C
la

ss
if

ie
r

Monitor

C

1
f

i
f

n
f

,< >
i
f j

Bins

1F

1
w

i
w

n
w

1 1
, bω

kF

,
k k
bω

1
R̂

ˆ
k
R

, 20, ,t τ τ= …

Figure 3.3: Approximate Fair Scheduling Using Adaptive Bandwidth Binning

Figure 3.3 illustrates the idea of the approximate fair bandwidth management model.

The model only uses a fixed number of k bins where k is irrespective of n and it is expected

32

to be a small number. Let τ be a time interval called reclassification interval. At time

t = 0, τ, 2τ, 3τ, . . ., fi is (re-)mapped to bin j by a mapping <fi, j>. The classifier in the

model generates such mapping Mt = {<fi,mt
i>, (1 ≤ i ≤ n) ∧ (mt

i ∈ {1, 2, .., k})} for all

flows. At each interval time t, the set of flows mapped to bin j is F t
j = {fi, <fi, j> ∈Mt}.

Note at each reclassification interval time t, Mt can change. This may result in the

changes of F t
j (1 ≤ j ≤ k) due to flows being remapped (or reclassified). Which bin j flow

fi is mapped to at t is controlled by a quantization method based on a novel approach we

refer to as adaptive bandwidth binning (ABB). Let bj be the bandwidth consumption cap

for bin j (1 ≤ j ≤ k). Without losing generality, let bj < bj+1 so that bins are arranged

in increasing order in terms of bandwidth consumption caps. Let b0 = 0 and bk = C.

The range of bandwidth consumption level for bin j is then between bj−1 and bj . Let r̂ti

be the moving average consumption rate of fi, calculated using the flow consumption rate

samples from the past intervals, at time t. Flow fi is mapped to bin j if bj−1 <
r̂ti
wi
≤ bj

and the mapping generated by the classifier for fi at time t is <fi, j>.
r̂ti
wi

is said to be

the normalized flow consumption rate of fi at time t. In this way, flows of the similar

normalized consumptions are classified into the same bin. When r̂ti changes over time as

often the case in the real system, fi is likely to be remapped to a different bin at next

reclassification interval time according to the adaptive bandwidth binning scheme. This

results in the changes of the mapping Mt periodically. Flows are remapped and the system

adapts to the changing flow consumption level. Exactly how bj is assigned to bin j and how

packet scheduling is carried out are given in the algorithms in Chapter 5.

The flows in the approximate model are scheduled with a two-level packet scheduling

framework. Flows in the same F t
j of bin j are scheduled by an intra-bin scheduler. Each

bin uses a single aggregate queue and therefore the intra-bin scheduler in use is FCFS. The

bins {j, 1 ≤ j ≤ k} are scheduled with an inter-bin scheduler (also called outer scheduler).

The outer scheduler can be any weighted fair queueing scheduler. The weight for each bin

j is given by ωt
j =

∑
fi wi where wi is the weight of fi ∈ F t

j . When F t
j changes at t, ωt

j also

changes.

33

Several mechanisms play a role in the model to approximate fair scheduling over a

time span that covers multiple reclassification intervals. The first mechanism is bandwidth

binning described in the previous paragraphs. The intuition behind the idea is that flows

that consume similar levels of bandwidth in the recent past are likely to continue to exhibit

similar behavior in the next scheduling interval. If this proves to be not true, or if the

flows within a bin do not compete fairly, the flows consuming more than the fair share of

the flows in the bin will likely be mapped to a different bin in the future. This adaptive

control ensures that a flow is serviced by the set of bins such that it receives approximately

its fair share of available bandwidth over time scales of multiple scheduling intervals. The

final necessary mechanism is the outer scheduler that ensures each active bin j receive a

fair share in proportion to ωt
j . Let R̂t

j be service rate bin j receives at t. Assume every

flow in F t
j of bin j is backlogged and the intra-bin scheduler is able to provide weighted fair

allocation for flows in the same bin, the service rate flow fi in F t
j receives is:

rti =
wi

ωj
R̂t

j

Assume all flows in the system are backlogged. Let W be the sum of all flow weights, and

we have:

R̂t
j =

ωj

W
C

Then we have:

rti =
wi

ωj
R̂t

j =
wi

W
C

This is the expected allocation for fi under the reference bandwidth management model.

Note the above analysis is only intended to show how bandwidth is allocated to the

flows through the bins. It is not correct without those unrealistic assumptions. In a real

system, flows are not always backlogged. The service rates for the bins and the flows can

change at any time depending the workload at the time. The intra-bin FCFS scheduling

cannot provide weighted fair allocation. These factors, along with protocol effects that can

34

include unforeseeable TCP dynamics, will lead to an allocation that only approximates fair

scheduling over multiple reclassification intervals.

The approximate bandwidth management model lowers the complexity by using a

small number of bins, each managed using FCFS, and removes the complications associated

with the use of per-flow queues. The complexity of the outer scheduler based on DRR is

O(1).

The approximate model exposes a number of interesting research questions. For

example, how will it meet the design goal as given earlier in the Introduction? What is the

best operating region in terms of the system parameter choices? As given in Figure 2.1,

the design tradeoff is relaxed fairness with lower complexity (as compared with approxima-

tions to FQ). The optimal number of bins is an interesting issue. It is likely that shorter

reclassification interval produces better approximation but at the same time increases cost.

A compromise for a reclassification interval to be on the order of seconds is appropriate as

our simulation study indicates.

3.1.2.1 Application to DOCSIS

We now apply the approximate bandwidth management model to DOCSIS system.

Each flow is first classified into a bin among the k bins. Flows that are classified to the

same bin are aggregated to use a single aggregate queue and scheduled FCFS. The bins

will be scheduled with weighted DRR scheduler as the number of bins to be scheduled is

small and the scheduler is simple to implement. To support the periodical remapping of

flows, a timer with the interval set to τ should be used to trigger the reclassification process

based on adaptive bandwidth binning. To address the bufferbloat problem, the bins will be

managed by CoDel.

The conventional service tiering model supports service tiers defined in terms of

individually imposed max service rates through the regulator process. It does not use flow

weights. The allocation is unweighted except each allocation is subject to the max service

rates. During the time of congestion, it cannot provide better allocations for flows of higher

35

tiers. This is apparently undesirable for high end users who paid more.

With the low complexity / cost approximate bandwidth management model, we

now define a new service tiering model that allows us to add back the flow weights and offer

a better tiered service.

In the context of DOCSIS downstream management, the flow weights are assigned

in proportion to the tiered service quality levels a subscriber purchases. The conventional

service tiering model can map its service tiers based on max service rates to a number of

service quality levels without the explicitly specified service rates. Without losing generality,

let min{wi, 1 ≤ i ≤ n} = 1. We assume:

• A flow fi subscribed to basic level of service in term of bandwidth allocation is given

a weight wi = 1. The flow is a Tier1 flow.

• A flow fj subscribed to two times better level of service than the basic level of service

is given a weight wj = 2. The flow is a Tier2 flow.

• A flow fk subscribed to X times better level of service than the basic level of service

is given a weight wk = X > 1. The flow is a TierX flow.

For example, a backlogged Tier4 flow should obtain twice the allocation of a backlogged

Tier2 flow and 1/2 of the allocation of a backlogged Tier8 flow.

Note this new tiering model has similarities and differences from the conventional

tiering model as currently used by service providers. This new tiering model continues to

support pricing-based economic model. However this new tiering model clearly specifies

what level of services the flows should receive relative to each other no matter whether the

system is during the period of congestion or not. Thus the bandwidth allocation under the

new tiering model should become more predictable. For example, a higher tier flow should

always be expected to receive more bandwidth than a lower tier flow during the time of

congestion.

The new tiering model does not impose a hard-set max service rate for any flow

and thus allow such flow to have access to a high percentage of the channel capacity when

36

Table 3.1: Different Allocations (Mbps) For Three Tiered Flows Under Different Tiering
Models

Max Subscriber Service Rate / Tier 8 / Tier1 16 / Tier2 32 / Tier4

Allocation Per Conventional Tiering Model 8 13.5 13.5

Allocation Per New Tiering Model 5 10 20

the system is not loaded. We think this is important for D3.1 network to achieve its full

potential. This noticeable difference moves the bandwidth management in DOCSIS cable

systems towards a more work-conserving scheme. The new tiering model does not preclude

the use of max service rates for the flows either. For example, when rate limiting is desired,

a system wide max service rate φ (e.g., φ = C/2 or C/5) may be enforced for all flows to

protect the network from overly aggressive flows. We do not consider this option.

To illustrate the differences in the bandwidth allocation between the conventional

and the new tiering models, we use the following example. Assume we have 3 flows that

have sufficient demands to overload the system and are assigned to 3 tiers respectively.

They share a total channel capacity of 35 Mbps. In the context of conventional tiering

model, the 3 tiers are defined in terms of max subscriber service rates of 8, 16, and 32 Mbps

respectively. The allocation is unweighted but subject to the max service rate caps. In the

context of the new tiering model, the 3 tiers are defined in terms of relative service quality

levels (Tier1, Tier2, and Tier4) and thus are given the weights of 1, 2, and 4 respectively.

The allocation is weighted without rate caps.

Table 3.1 shows the different allocations of 35 Mbps among three tiered flows under

the two different tiering models. As we can see, under the conventional tiering model, the

two higher tiered flows are allocated the same bandwidth during the time of congestion. This

is unfair to the subscriber who pays more to subscribe to the highest tier. The allocation

under the new service tiering model better reflects the levels of service different subscribers

purchase.

37

3.1.3 Defining and Assessing Fairness

In the context of bandwidth management, we assess only the throughput fairness in

contrast to latency or jitter fairness, which is the focus of other work such as WF2Q [7].

Defining fairness is challenging as the term has unique meaning in different contexts.

As mentioned in the Background Chapter, the issue requires the time scales of interest to

be identified. For packet scheduling based on approximations of fair queueing (e.g., WFQ

[17], SCFQ [35]), fairness is assessed on packet transmission time scales. For example, in

[86], a metric defined as the difference of services received by any two active flows during an

arbitrary time interval is used to assess fairness of a scheduling discipline. For a scheduling

discipline to be fair the metric must be a small constant that does not depend on the size

of the time interval. In other words this metric states that fairness is defined by the worst

case difference in the service received by any two active flows over any time interval.

In a scheduling environment that is based on single queue AQM such as AFD [76]

and AFCD [94] that attempt to isolate the elephants from the mice, the definition of fairness

is significantly relaxed. A measure such as Jain’s Fairness Index (JFI) [44] computed based

on hundreds of seconds are common.

JFI is a widely used assessment of how achieved resource allocation differs from

the desired outcome. It is computed as follows. Suppose there are n competing flows.

Let xi = Ti/ri where Ti is the achieved throughput of the i-th flow and ri is the expected

outcome. The JFI is defined as:

JFI(x) =

[∑n
i=1 xi

]2
n
∑n

i=1 x
2
i

, xi ≥ 0 (3.1)

Another similar fairness index is called min-max ratio, which is defined as:

MMR(x) =
mini{xi}
maxi{xi}

, xi ≥ 0 (3.2)

Both indexes range from 0 to 1, with ideal fairness represented by a value of 1.

38

We assume that max-min fair throughput allocation criterion is the desired fair-

ness objective. It has been shown that packet scheduling algorithms that implement close

approximations of fair queueing, such as DRR packet scheduling [86], can achieve max-min

fairness. In recent work [37], we have shown that DRR packet scheduling also achieves

max-min fair allocation in downstream D3.0 bonded channel environments when no chan-

nel is assigned to more than one bonding group at a time. In our work, we assume fairness

is based on very large time scales of multiple seconds or minutes. Such large time scale is

reasonable and acceptable in practice.

For our simulation study, we primarily use JFI and MMR to quantify fairness in

achieved throughput among competing flows. The standard deviation (Stddev) and coeffi-

cient of variation (CoV) are also occasionally used. Their definitions are those of standard

mathematical definitions which we do not intend to repeat.

3.2 Simulation Model

The research is simulation based. We carry out all our studies in a simulated DOC-

SIS 3.x cable environment on the ns-2 platform [1]. In prior work, we have developed an

ns-2 based simulation model for DOCSIS [59].

3.2.1 Simulated Network

Figure 3.4 illustrates the simulation network model used in our studies. We model a

single DOCSIS MAC domain in which one CMTS interacts with a number of CMs. In the

D3.0 case, the model assumes channels that offer downstream and upstream physical layer

data rates of 42 and 30 Mbps respectively. For D3.1, we assume the physical layer data rates

of 1 Gbps and 100 Mbps for downstream and upstream channels respectively. Each CM

represents a subscriber who, in practice, might have multiple TCP/IP devices interacting

with a variety of Internet services. However, in the experiments described below, each CM

hosts a single IP data flow. Various link speeds and delays in the figure can be configured

to model Internet path diversity.

39

DOCSIS 3.x
Downstream and

Upstream Channels

Cable
Modems

VoIP Client,
WRT Client

FTP Clients,
Web Clients

Router

Upstream Scheduler

..
.

Downstream Scheduling

CMTS

Router

Router

VoIP Server,
WRT server

FTP
Servers

Other
Servers..

. .
..

Flow uncongested path delays / RTTs configurable

..
.

..
.

Regulator

CM Request for
Upstream

 bandwidth

MAP Messages

..
. .

..
..

. .
..

Figure 3.4: Simulation Network Model

The scheduling and queue management algorithms are located in the Downstream

Scheduling component of Figure 3.4. Exactly how many scheduler queues to be used are

determined by individual scheduler and queue management disciplines. For example, for

DRR, there is a dedicated queue for each flow. But for CoDel with FCFS scheduler, all

flows are served through a single shared FIFO queue.

The simulation network model also includes a regulator to support the conventional

service tiering model based on a maximum sustained service rate (or simply as the service

rate). The regulator can be either enabled or disabled.

Packets for a service flow from the Internet can be regulated at the regulator to a

maximum service rate through the use of a token bucket (Figure 3.5). Tokens are placed

in a token bucket with fixed capacity at a constant rate. For example, for a flow rate to be

controlled at r bits/second, tokens will be added to the bucket at r tokens/second. When

the token bucket is full, extra tokens will spill over and disappear. Packets from a flow

first arrive at a packet queue (token bucket queue). Packets arriving at a full queue will

be discarded. When sent, a packet of n bits will consume an equal amount of n tokens.

The system only sends out packets when enough tokens are available in the bucket. With

appropriate settings the mechanism limits the rate of the flow going into the DOCSIS

network to be at around the rate of tokens entering the token bucket.

Our implementation of the token bucket for DOCSIS flows supports the following

40

Tokens are placed
at a constant rate

Token bucket
(fixed-size)

Packets To Network

Packet Queue
(fixed size)

Match and Transmit

Figure 3.5: Operation of Token Bucket

three parameters:

Token Rate This gives the constant rate at which tokens are placed into the

token bucket. It is the target service rate of a flow.

Token Bucket Size This is the capacity of the token bucket (in bits).

Token Bucket Queue Size This is the size of the token bucket queue in num-

ber of packets. It is the maximum number of packets a token bucket can

buffer.

All of these parameters can be individually configured through simulation scripts.

3.2.2 Traffic Models and Performance Metrics

Our simulation experiments involve workloads consisting of a number of traffic types

such as FTP, HAS, web, exponential on/off, and CBR traffic. Other than HAS, the traffic

models we use are those provided in the ns2.

Besides some common performance metrics such as throughput and packet delay,

we also use a number of performance metrics introduced below. Other specific metrics, only

used in relevant context, will be covered where they are used.

3.2.2.1 HAS traffic model for ns2

As described in Sandvine’s most recent Internet traffic report [83], Internet video

streaming, commonly known as HTTP-based Adaptive Streaming or HAS, consumes more

41

than 50% of the downstream bandwidth delivered to fixed access end points. HAS is an

application layer protocol based on HTTP that utilizes TCP at transport layer.

The interaction between a HAS client (i.e., the player) and server has been estab-

lished in recent academic research [3, 2, 39, 45]. In a HAS system, video and audio content

is encoded and made available at servers located either at the content provider’s facilities

or distributed to locations in the Internet by a content delivery network provider. Multiple

representations of the content are created that reflect a range of possible encoded bitrates

corresponding to different levels of video quality and subsequently different levels of band-

width consumption. While the range of bitrates is continually being extended, the literature

suggests that a bitrate range of 0.50 Mbps to 5.0 Mbps is reasonable [3, 40, 16]. The client

requests portions of the content in chunks referred to as segments. A segment size between

2 and 10 seconds is reasonable [40, 58]. The client maintains a playback buffer that serves

to compensate for the jitter in the traffic arrival process. The literature suggests that a

playback buffer capacity ranging from 60 to 240 seconds is reasonable [40, 58].

The HAS adaptation algorithm, which determines the video quality for the next

segment requested by the client, is an active research topic. Initial ideas explored capacity-

based approaches where the client monitors the rate of arriving video traffic and selects the

quality level based on a prediction of the available TCP bandwidth [3, 52, 55, 90, 2, 53].

If the client predicts that available bandwidth might decrease over the next segment time

interval, it requests a lower quality segment. If the prediction suggests that conditions are

improving the client will ‘switch-up’ and request a higher quality segment. Other research,

however, suggests that it is difficult for HAS to reliably predict available TCP bandwidth

[2, 15, 68, 53]. In addition to variability of available bandwidth due to competing traffic

in the network or from changing wireless channel conditions, rate-limited applications can

induce pathological behaviors due to complex dynamics between the application and TCP’s

congestion control algorithm [39]. The use of buffer-based adaptation has been suggested

to avoid the issues [40].

Evaluating a particular HAS design is challenging due to the many factors that

42

impact an end user’s perceived quality [19, 18, 5]. While the issue of assessing HAS quality

of experience is intense study, the literature does suggest that the following measures are

useful for evaluating HAS [19, 69, 2, 45, 48]:

• videoPlaybackRate: Attributes of the stream such as the resolution, pixel density,

frame rate as well as end device capabilities all determine the base quality of the

video stream. This measure represents the average bitrate of the stream based on

the rate (in Mbps) at which data is dequeued from the playback buffer. If the video

player stalls, samples are not recorded.

• adaptationRate: It has been shown that frequent adaptations and sudden changes to

video quality are distracting [13, 69]. This metric counts the number of adaptations

that occur during the simulation time. The measure is normalized to represent the

rate of adaptations per hour.

• rebufferTime: Buffer stalls have a significant impact on perceived quality [19, 48].

Based on the ratio of total time the player is stalled to the stream duration, this

measure represents the percentage of time that the player is stalled.

• applicationBias: The system should provide fair allocation. We focus primarily on the

fairness allocated to groups of flows. This measure computes the percentage above or

below the expected max-min fair allocation.

We have developed a HAS traffic model for ns2. The HAS client issues an HTTP

request to the HAS server for the next segment of video content. The client specifies the

video quality of the segment. The HAS server receives the request and simply sends the

amount of data based on the requested segment size and quality using the same TCP

connection. Data that arrive at the client are placed in the client’s playback buffer. When

the session starts, the client requests back-to-back segments to fill the playback buffer to

a configured level (2 segments by default). Once this threshold is reached, the client video

player starts and consumes one segment of video data at a time.

43

When the video player requires a new segment and the playback buffer holds less

than one segment of video data, the player moves to a stall state where it remains until

a configured number of segments arrive (2 segments by default). The client adaptation

algorithm is based on a previously published capacity-based adaptation algorithm [55].

Each time the client issues a new segment request, it computes the ratio (µ as defined

in equation 3.3) of the time required to play a segment (referred to as the media segment

duration or MSD) to the download time of the previous segment (referred to as the segment

fetch time or SFT).

µ =
MSD

SFT
(3.3)

The algorithm switches to the next higher quality level if

µ > 1 + ε (3.4)

where ε is defined as

ε = max

{
bri+1 − bri

bri
, ∀i = 0, 1, . . . , n− 1

}
. (3.5)

The bri represents the encoded bitrate of the i’th representation where brn represents

the highest bitrate.

The algorithm assumes there is insufficient capacity for the next segment at the

current quality level and switches to a lower quality rendition if

µ < γd. (3.6)

where γd is a threshold that determines the sensitivity of the algorithm to observed network

congestion. We used the recommended value of 0.67. The adaptation will potentially

switch down multiple quality levels to match the next request to an estimate of available

44

bandwidth. The new bitrate is the highest bitrate for which

bri < µbc (3.7)

where bc represents the bitrate of the current segment.

The client supports a configured maximum playback buffer size. The client will not

issue a new segment request once the buffer is full. As pointed out in recent work, this

algorithm can be improved through more careful selection of γd and by computing µ based

on multiple SFT samples [56]. However, for the research presented in this paper, we chose

to use a simple published adaptation algorithm. The objective of the HAS experiment is to

explore the impacts of different buffer management strategies on HAS performance.

3.2.2.2 VoIP performance metric

To assess the impact that high bandwidth applications might have on low band-

width, latency sensitive flows, we establish a VoIP performance monitor between a server

node and a cable modem. A ‘talker’ located on the VoIP server node (in Figure 3.4) sends

a stream of UDP traffic in a manner similar to a G.711 session to a ‘listener’ located on

the CM labeled VoIP client. We estimate the call quality (referred to as the R-value) using

the technique described in [12]. The R-value ranges from 0 to 100. Toll quality requires an

R-value of 70 or higher. The model assumes that two 10 ms ‘chunks’ of digitized voice data

are sent in an IP packet (of size 238 bytes) every 0.020 seconds.

3.2.2.3 Web performance traffic generator and metric

The web traffic model is based on well understood behaviors of web browsing users

[6, 14]. The ns2 simulation package provides extensive support for web traffic models. The

model includes a set of web servers and web browsing users. A variable number of CMs are

configured as web clients. Based on empirically derived distributions, these CMs periodically

issue HTTP GET requests to randomly selected servers. The model is parameterized by

45

user think times and web object sizes derived from heavy-tailed Pareto distributions.

We add an additional designated client and server application flow whose response

times are captured to obtain the Web Response Time (WRT) metric. The designated client

issues an HTTP GET and the server replies by transferring a configured amount of data

(referred to as the WRT object size) for each iteration. The time between iterations is also

configurable. The client computes the response time (referred to as a web response time

or WRT) associated with the request. The WRT client repeatedly downloads the WRT

object from the WRT server. Each iteration results in a WRT sample. At the end of the

simulation we compute the average WRT statistic.

46

Chapter 4

Evaluation of Single-Queue Management Approaches

For the first phase of our study, we focus on evaluating the performance of modern

delay-based AQM schemes in downstream DOCSIS 3.0 cable environment that employs a

single queue bandwidth management approach. With the potential large deployment of

AQM imminent for DOCSIS 3.0, our analysis provides timely feedback to the community

concerning how delay-based AQM can manage bandwidth allocation fairness and application

performance in realistic, single or bonded channel downstream DOCSIS 3.0 cable network

scenarios.

We set to address the following questions that are key to the broadband network

community concerning the ability of delay-based AQM in managing bandwidth for fairness

and application performance:

1. How effectively do CoDel and PIE support fairness and application performance in

realistic cable network scenarios?

2. Are there undesirable side effects when the AQM interacts with tiered service levels?

3. How effectively do the schemes isolate responsive traffic from unresponsive flows?

This chapter contains significant portion of the text as published in [38] and is

organized as follows. In Section 4.1, we introduce the experimental setup and experiment

definitions used for our analysis. In the next three sections, each section addresses one of

the three questions posed above. First, we evaluate how effectively each AQM maintains

47

throughput fairness and application performance in scenarios that do not involve service

rate limits. Next, we analyze the interaction of service rate management with AQM. Finally,

we evaluate the ability of AQM to protect responsive flows from unresponsive ones.

4.1 Experimental Setup and Experiment Definitions

We analyze several scenarios using varying numbers of downstream application flows

including FTP, VoIP, web, and HAS video streams using the simulation network model given

in Figure 3.4. The simulated client sides of these applications run on nodes attached to

cable modems. The simulated servers run on nodes located outside the cable network. The

cable network end point of each simulated flow is attached to a unique cable modem.

To model Internet path diversity, we set the propagation delays of the application

server access links to different values. The range of uncongested path round trip times

varies from 30 ms to 130 ms. This captures the inherent variability that subscriber flows

might experience with respect to the physical distance between communication endpoints.

In the simulations that are presented, all data packets are 1500 bytes with the

exception of VoIP packets which are 238 bytes. The bandwidth delay product of a round

trip path consisting of heterogeneous links is properly computed as the bit rate of the

bottleneck link multiplied by the path RTT. Assuming a data rate of 38 Mbps, fixed packet

size of 1500 bytes and RTT of 130 ms, the bandwidth-delay product is 411 packets.

Maximum buffer capacities at the simulated routers and the CMTS are set large

enough to ensure that, in the absence of AQM, all TCP senders can always have the full

bandwidth delay product of unacknowledged packets in the pipeline. The maximum buffer

capacity at the CMTS, referred to as the QUEUE CAPACITY is set to 2048 packets.

The maximum buffer capacity at all other routers is set to twice the QUEUE CAPACITY.

The QUEUE CAPACITY is sufficiently large that it is no factor in packet drops for any

schedulers employing AQM. For all but the HAS workloads the ns2 TCP simulation was

configured as follows:

• TCP: TCP/Sack (ns2 TCP agent: Agent/TCP/Sack1).

48

• Maximum window/cwnd: 10000 segments.

• Initial window: 2 segments

• Delayed ACK mean interval: 100ms

• Maximum segment size: 1460 bytes

• Number of segment arrivals required to trigger an ACK: 2

For the HAS experiment, the ns2 Agent/TCP/FullTCP/Sack was used for both FTP and

HAS. The TCP configuration used the parameters shown above.

In all simulations, we verified that the upstream channel was never congested. Up-

stream traffic was limited to ping replies, TCP acknowledgments, and HTTP GET requests.

The behavior of the AQM schedulers is obviously strongly dependent on their con-

figuration parameters. The ARED drop algorithm is dependent on the target queue level,

which in our simulation is derived from the QUEUE CAPACITY. CoDel and PIE depend

on the target delay.

The round trip latency experienced by packets under deficit round robin and drop

tail scheduling is strongly dependent on the QUEUE CAPACITY. The packet drop rate is

also dependent, to a lesser degree, on QUEUE CAPACITY. We employ the recommended

default settings for all schedulers except as noted.

We map the three motivating questions posed in the introduction of the Chapter to

three sets of experiments:

Set 1 We examine fairness and application performance resulting from the use

of the AQM schemes under investigation.

Set 2 We explore implications of the use of different service tiers.

Set 3 We examine the ability of the schemes to deal with unresponsive flows.

Table 4.1 identifies five experiments that are presented in this paper. Set 1 consists of three

different workloads while sets 2 and 3 each consist of a variation on the BASE workload of

49

set 1. To better evaluate the effectiveness of the recently proposed schemes, CoDel and PIE,

we compare their performance with three non-AQM techniques and one older approach to

AQM.

Table 4.1: Experiment Definition

Set Experiment Summary

1 BASE Varies the number of competing downstream FTP flows along
with a low bitrate VoIP flow for different simulation runs; no
service rate limit.

HAS Same as BASE except adding five HAS flows

WEB Runs 5 FTP flows with varied number of web flows ranging
from 10–80

2 TIER Same as BASE except: 1) Setting a service rate of 6 Mbps for
all flows (referred to as Tier-1 flows); 2) Adding one additional
competing FTP flow with a service rate of 12 Mbps. We refer
to this flow as a Tier-2 flow.

3 UDP Same as BASE except adding a 12 Mbps downstream UDP
flow (starts at 500 seconds, stops at 1500 seconds). No service
rate limit.

We compare modern delay-based AQMs (CoDel and PIE) against a number of queue

managers including DT and ARED. DRR using per-flow queues are also included for refer-

ence purpose.

The DT queue manager employs a single queue with FCFS scheduling discipline that

drops packets arriving to a full queue. The DT queue capacity is set to QUEUE CAPACITY

(2048) full size packets.

DT20 is also a FCFS drop-tail queue manager but configured in a way to be more

comparable to CoDel and PIE. Its queue capacity is constrained to 65 full size packets which

corresponds to a maximum queuing delay of approximately 20 ms, the target queuing delay

for our CoDel implementation. The DT20 queue manager is used in the BASE experiment

to assess the benefits that accrue from the additional complexity of CoDel and PIE.

The DRR queue manager employs one queue per flow and deficit round robin

scheduling. Capacity of each queue is set to one-tenth of the capacity of the DT queue.

Thus the total queue size is comparable. DRR is known to provide max-min fair allocation

of channel capacity. Thus, results pertaining to throughput sharing and fairness are not

50

of particular interest. Interest in packet loss rate and impact on latency sensitive traffic

motivates the inclusion of DRR results.

The ARED queue manager is a simple extension to RED that adapts maxp such

that the average queue level tracks a target queue level. We used the recommended target

of (minth + maxth)/2. Configuration parameters are based on recommendations from [30].

The minth and maxth thresholds are the QUEUE CAPACITY divided by 20 and by 2

respectively. The control interval parameter is 0.50 seconds. The initial setting of maxp is

0.10.

The original CoDel description recommends a target delay parameter set to 0.005

seconds [73]. We determined that a setting of 0.020 seconds provided more predictable

results in our scenarios, especially in scenarios that involved a small number of high speed

TCP flows. The interval parameter is set to 0.100 seconds. The original CoDel algorithm

proactively drops packets at dequeue time. Due to potential implementation issues of

head dropping raised by DOCSIS community, we implemented a tail drop variant of CoDel

where packets are proactively dropped at enqueue time. Our implementation is based on

an ns2 tail-drop variant of CoDel contributed by CableLabs. PIE is another delay-based

AQM and is described in [77]. The D3.1 specification [9] provides recommended algorithm

configuration settings for a CM running PIE. We use the default settings described in [77]

for the algorithm run on CMTS. We set the target delay parameter to 0.020 seconds and

the Tupdate (frequency of update) parameter to 0.030 seconds. The max burst parameter is

0.100 seconds. The internal burst control parameters, α and β, are set to 1.25 and 0.125

respectively.

4.2 Throughput Fairness and Application Performance

In this section we describe the results of the three experiments shown in Table 4.1

as set 1. The objective of the BASE experiment is to evaluate the effectiveness of the

AQM schemes with respect to bandwidth utilization, throughput fairness and isolation of

low bandwidth flows having low latency requirements.

51

Table 4.2: Experiment BASE TCP Throughput: Mean / Stddev / Sum (Mbps)

#FTPs 1 3 5 7 9 11

DRR 37.4 / 0.00 / 37.4 12.5 / 0.00 / 37.4 7.5 / 0.00 / 37.4 5.3 / 0.00 / 37.4 4.2 / 0.00 / 37.4 3.4 / 0.00 / 37.4

DT 37.4 / 0.00 / 37.4 12.5 / 1.86 / 37.4 7.5 / 0.86 / 37.4 5.3 / 0.69 / 37.4 4.2 / 0.86 / 37.4 3.4 / 0.69 / 37.4

DT20 36.3 / 0.00 / 36.3 12.3 / 1.60 / 37.0 7.4 / 1.24 / 37.1 5.3 / 1.39 / 37.1 4.1 / 1.62 / 37.0 3.4 / 1.62 / 36.9

ARED 37.4 / 0.00 / 37.4 12.5 / 1.37 / 37.4 7.5 / 0.99 / 37.4 5.3 / 0.86 / 37.4 4.2 / 0.86 / 37.4 3.4 / 0.81 / 37.4

CoDel 36.8 / 0.00 / 36.8 12.5 / 1.61 / 37.4 7.5 / 1.52 / 37.4 5.3 / 1.45 / 37.4 4.2 / 1.21 / 37.4 3.4 / 1.04 / 37.4

PIE 36.2 / 0.00 / 36.2 12.4 / 1.95 / 37.3 7.5 / 1.58 / 37.4 5.3 / 1.47 / 37.4 4.2 / 1.35 / 37.4 3.4 / 1.25 / 37.4

Table 4.3: Experiment BASE TCP Loss Rate (Percentage): Mean / Stddev

#FTPs 1 3 5 7 9 11

DRR 0.004 / 0.000 0.010 / 0.001 0.014 / 0.002 0.017 / 0.001 0.021 / 0.001 0.025 / 0.004

DT 0.017 / 0.000 0.016 / 0.017 0.020 / 0.025 0.021 / 0.042 0.016 / 0.022 0.015 / 0.032

DT20 0.007 / 0.000 0.050 / 0.005 0.097 / 0.020 0.141 / 0.029 0.189 / 0.020 0.245 / 0.018

ARED 0.002 / 0.000 0.013 / 0.003 0.022 / 0.001 0.035 / 0.004 0.048 / 0.004 0.063 / 0.005

CoDel 0.005 / 0.000 0.024 / 0.001 0.049 / 0.002 0.075 / 0.004 0.098 / 0.005 0.121 / 0.012

PIE 0.006 / 0.000 0.028 / 0.001 0.055 / 0.002 0.081 / 0.004 0.111 / 0.007 0.137 / 0.004

4.2.1 BASE simulation results

Experiment BASE employs a varying number FTP flows ranging from one to eleven

along with a single VoIP flow. The flows compete for a total available bandwidth of 38 Mbps.

The simulation time for each simulation is 2000 seconds. The VoIP performance metric

flow starts at time 0.0 seconds. Each simulated FTP flow starts at a random time within

the range of 0.0 to 2.0 seconds and has a unique uncongested path RTT. The path RTTs

increase with the number of flows. For i ∈ {0, 1, .., 10}, the path RTT of flowi is 30+10i ms.

Therefore, the average uncongested RTTs for the 6 load levels with {1, 3, .., 9, 11} FTP flows

are 30, 40, 50, 60, 70 and 80 ms.

Table 4.4: Experiment BASE TCP RTT: Mean / Stddev

#FTPs 1 3 5 7 9 11

DRR 0.073 / 0.000 0.182 / 0.006 0.291 / 0.011 0.399 / 0.016 0.508 / 0.020 0.617 / 0.025

DT 0.527 / 0.000 0.571 / 0.009 0.599 / 0.017 0.614 / 0.025 0.627 / 0.027 0.630 / 0.033

DT20 0.039 / 0.000 0.051 / 0.008 0.061 / 0.014 0.071 / 0.020 0.080 / 0.026 0.090 / 0.032

ARED 0.075 / 0.000 0.094 / 0.008 0.107 / 0.014 0.119 / 0.020 0.130 / 0.026 0.140 / 0.031

CoDel 0.041 / 0.000 0.057 / 0.008 0.068 / 0.014 0.079 / 0.020 0.089 / 0.026 0.100 / 0.031

PIE 0.039 / 0.000 0.054 / 0.008 0.066 / 0.014 0.077 / 0.020 0.088 / 0.026 0.098 / 0.031

52

4.2.1.1 Bandwidth Utilization

Table 4.2 summarizes the throughput achieved by the FTP flows. The total through-

put was 37.4 Mbps in all but eight of the thirty-six simulations run. Throughput is

marginally less for CoDel and PIE when the number of flows is small because the limited

amount of buffering can cause the TCP pipeline to stall and, when combined with a small

number of flows, loss of throughput results. Aggregate throughput for DT20 never reaches

37.4, demonstrating that the more complex queue management algorithms of CoDel and

PIE do provide value. When a sufficient number of flows are active, all queue management

mechanisms except DT20 produce the same aggregate bandwidth utilization.

The standard deviation reflects the magnitude of the variation in the throughput

achieved by the competing flows. Since DRR is known to be max-min fair, the absence

of variation is to be expected. For the other queue management techniques, the variation

is proportional to the number of flows and inversely proportional to queue capacity. A

more detailed analysis of the factors underlying the variation in observed throughput will

be presented in the discussion of fairness.

Table 4.3 shows the mean and standard deviation of the loss rate experienced by

the FTP flows for each simulation. The lost rates are expressed as a percentage and peak

at only 0.245% (Approximately 25 packets out of every 10000 are lost.) We conclude that

in all cases TCP is adapting very well to the available bandwidth and buffer space. Not

surprisingly, marginal increases in loss rate are again proportional to the number of flows

and inversely proportional to queue capacity. When the number of flows exceeds one, DT20

produces significantly higher loss rates than CoDel and PIE. As pointed out in [49], it is

possible to tune the parameters of RED (or ARED in our case) to match the behavior of

CoDel and PIE, as long as the channel’s bit rate stays constant. However, in the presence of

adaptive modulation and dynamic channel bonding in networks such as wireless or DOCSIS

3.1, ARED, as currently defined, would not be able to maintain a target queue delay.

Table 4.4 shows the average RTT experienced by the TCP packets of the FTP flows.

53

Table 4.5: Experiment BASE 9 FTP Flow 5 Run Average / 95% Confidence Interval

Scheme RTT (seconds) Loss Rate Throughput (Mbps)

DRR 0.5077 / (0.5067, 0.5087) 0.0210 / (0.0201, 0.0218) 4.158 / (4.157, 4.158)

DT 0.6255 / (0.6229, 0.6281) 0.0206 / (0.0182, 0.0229) 4.158 / (4.157, 4.158)

DT20 0.0802 / (0.0801, 0.0802) 0.1904 / (0.1862, 0.1945) 4.111 / (4.110, 4.112)

ARED 0.1296 / (0.1295, 0.1297) 0.0484 / (0.0477, 0.0491) 4.157 / (4.157, 4.158)

CoDel 0.0895 / (0.0894, 0.0895) 0.0986 / (0.0977, 0.0995) 4.157 / (4.156, 4.158)

PIE 0.0876 / (0.0875, 0.0877) 0.1088 / (0.1079, 0.1097) 4.156 / (4.155, 4.157)

Table 4.6: Experiment BASE DT 5 Run Average / 95% Confidence Interval

#FTPs RTT (seconds) Loss Rate Throughput (Mbps)

1 0.5052 / (0.4802, 0.5302) 0.0172 / (0.0171, 0.0173) 37.397 / (37.379, 37.415)

3 0.5810 / (0.5682, 0.5938) 0.0178 / (0.0160, 0.0197) 12.473 / (12.470, 12.476)

5 0.5977 / (0.5904, 0.6049) 0.0190 / (0.0155, 0.0225) 7.484 / (7.482, 7.485)

7 0.6116 / (0.6036, 0.6196) 0.0231 / (0.0141, 0.0321) 5.346 / (5.345, 5.347)

9 0.6234 / (0.6174, 0.6294) 0.0195 / (0.0174, 0.0216) 4.158 / (4.157, 4.158)

11 0.6312 / (0.6285, 0.6340) 0.0224 / (0.0139, 0.0308) 3.402 / (3.402, 3.402)

The reported RTT is the sum of the inherent path delay and the queuing delay. For the 11

flow case, the mean inherent path delay is 80 ms. Therefore, mean queuing delay can be

inferred by subtracting 80 ms from the values shown in the 11 flow column. We observe that

PIE, CoDel, and DT20 maintain RTT values consistent with the target of 20 ms. ARED’s

queue latency ranges from 45 ms to 60 ms as the number of competing flows increase.

The DT results show a constantly high RTT regardless of the number of competing

flows. Since the maximum allowed TCP window is configured to be larger than the queue

capacity, the queue length is limited only by the QUEUE CAPACITY.

The DRR results reflect individual queue capacities that are 1/10 of the QUEUE CAPACITY.

Therefore, when there are n flows with full queues, DRR queuing delay is the sum of the

inherent path delay and n×QUEUE CAPACITY / 10.

We briefly consider the statistical accuracy of the results associated with the BASE

experiment. We ran five independent replications with nine active TCP flows. The 95%

confidence intervals for the average throughput, loss rate, and RTT are shown in Table 4.5.

The widths of the confidence intervals were no more than 0.002 Mbps for throughput for

54

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 2 4 6 8 10

F
ai

rn
es

s
(J

F
I)

Number of Flows

DRR
DT
DT20
ARED
CoDel
PIE

(a) Jain’s Fairness Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10

F
ai

rn
es

s
(M

M
R

)

Number of Flows

DRR
DT
DT20
ARED
CoDel
PIE

(b) Min-Max Ratio

Figure 4.1: Experiment BASE throughput fairness results.

all queue management schemes and no more than 0.2 ms in RTT for all three AQMs.

Given the synchronization and lockout issues that are associated with DT, we ran

the DT simulation 5 times with different random seeds and involving different numbers of

FTP flows. The results are given in Table 4.6.

55

Table 4.7: Throughput of 11 Individual FTP Flows

Scheme Throughput (Mbps) Mean/Stddev

Max-min fair 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45 3.45

DRR 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 / 0.0

DT 3.8 2.5 3.9 2.8 3.3 2.5 3.0 4.0 3.4 3.8 4.4 3.4 / 0.6

DT20 6.8 5.6 4.6 3.9 3.2 2.8 2.4 2.2 1.9 1.8 1.7 3.4 / 1.7

ARED 5.0 4.6 4.0 3.8 3.4 3.0 3.0 2.8 2.8 2.6 2.4 3.4 / 0.8

CoDel 5.9 4.8 4.1 3.7 3.3 3.1 2.8 2.6 2.5 2.4 2.2 3.4 / 1.1

PIE 6.0 5.0 4.2 3.8 3.5 3.1 2.8 2.6 2.3 2.1 2.0 3.4 / 1.3

Uncongested RTT (ms) 30 40 50 60 70 80 90 100 110 120 130

4.2.1.2 Throughput fairness in the BASE experiment

Figure 4.1 shows the throughput fairness results. These results are consistent with

the standard deviation values previously discussed. The JFI results confirm that DRR is

approximately max-min fair. The figure also shows that at high loads DT20 exhibits the

highest level of unfair allocation. CoDel and PIE are significantly fairer but still worse than

the others. Furthermore, it is apparent that unfairness is increasing with the number of

flows for all queue management schemes other than DRR.

We ran additional ARED, CoDel and PIE simulations extending the number of

competing flows to 50 and we observed the fairness continue to deteriorate. The JFI results

for ARED, CoDel, and PIE with 50 competing flows were 0.75, 0.60, and 0.62 respectively.

Nevertheless, the underlying cause of the unfairness is not the increase in the number

of flows per se. Instead, it is primarily a function of the disparity in uncongested RTTs.

Table 4.7 shows the throughput of each of the individual FTP flows for an 11 flow experiment

in one BASE simulation. The uncongested path RTTs for individual flows are given in the

bottom row. It can be seen in this table that the achieved throughput for an individual flow

under AQM management is inversely proportional (in a non-linear way) to its path RTT.

This is in agreement with the model proposed by Mathis [61]. TCP/RTT unfairness

is in large measure to the fact that achieved throughput depends on factor of 1/RTT. The

result is that TCP flows having shorter RTT paths can starve longer path flows of buffer

56

Table 4.8: JFI of BASE with Same Path RTT

#FTPs 1 3 5 7 9 11

DRR 1.00 1.00 1.00 1.00 1.00 1.00

DT 1.00 0.96 0.97 0.95 0.99 0.98

DT20 1.00 1.00 1.00 1.00 1.00 1.00

ARED 1.00 1.00 1.00 1.00 1.00 1.00

CoDel 1.00 0.99 1.00 1.00 1.00 1.00

PIE 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.9: MMR of BASE with Same Path RTT

#FTPs 1 3 5 7 9 11

DRR 1.00 1.00 1.00 1.00 1.00 1.00

DT 1.00 0.66 0.61 0.50 0.75 0.63

DT20 1.00 0.93 0.96 0.89 0.92 0.92

ARED 1.00 0.86 0.95 0.91 0.88 0.92

CoDel 1.00 0.83 0.95 0.94 0.95 0.93

PIE 1.00 0.92 0.92 0.96 0.92 0.92

resource at a bottleneck. Each DRR flow has a dedicated amount of buffer resource, and

this completely eliminates buffer starvation of one flow by another. The DT flows have a

large QUEUE CAPACITY shared buffer resource which mitigates the effect. Because of the

parameters chosen, the ARED flows also had more effective buffer capacity (as evidenced

by their longer RTTs) than did CoDel and PIE and therefore less unfairness due to buffer

contention.

To confirm the conjecture that buffer contention was the root cause of the unfairness,

we ran additional simulations (these results are not shown) with the target delay parameter

for CoDel and PIE set to a value commensurate with observed ARED queuing delays. The

fairness results are consistent with those of DT and ARED.

To further explore the effect of path diversity on fairness, we ran a modified BASE

simulation with all FTP flow paths set to the 80 ms mean RTT of the original BASE

simulation. The fairness results are given in Table 4.8 and Table 4.9. Except for DT, the

fairness results for all schemes improve across all workloads. In addition, the allocation is

not shown to be less fair as the workload increases when RTT does not vary.

57

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 40 60 80 100 120 140

F
ai

rn
es

s
(J

F
I)

RTT Range - Difference Between Lowest and Highest RTTs (ms)

DRR
DT
DT20
ARED
CoDel
PIE

(a) Jain’s Fairness Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 60 80 100 120 140

F
ai

rn
es

s
(M

M
R

)

RTT Range - Difference Between Lowest and Highest RTTs (ms)

DRR
DT
DT20
ARED
CoDel
PIE

(b) Min-Max Ratio

Figure 4.2: BASE fairness results for 7 FTP flows with varied RTT ranges.

We then ran another modified BASE simulation where we kept the number of FTP

flows fixed at 7 and varied the RTT range. The mean RTT was fixed at 100 ms and

individual RTTs differed by step where step ∈ {5, 10, 15, 20, 25}. For example, when step =

5, the individual RTTs are {100, 95, 105, 90, 110, 85, 115}. Therefore, the total RTT range

for each experiment is 6× step.

The results as shown in Figure 4.2 clearly indicate that the AQMs under investiga-

tion become less fair as the range of RTTs widens. We conclude path RTT diversity has an

58

Table 4.10: Experiment BASE VoIP Isolation Performance (Mean Latency / Mean Loss
Rate (Percentage) / R-Value)

#FTPs 1 3 5 7 9 11

DRR 0.045 / 0.000 / 93.1 0.046 / 0.000 / 93.1 0.046 / 0.000 / 93.1 0.046 / 0.000 / 93.1 0.046 / 0.000 / 93.1 0.047 / 0.000 / 93.1

DT 0.541 / 0.000 / 41.2 0.577 / 0.012 / 36.4 0.594 / 0.011 / 34.1 0.599 / 0.017 / 33.4 0.602 / 0.019 / 33.0 0.596 / 0.002 / 33.9

DT20 0.054 / 0.000 / 92.9 0.056 / 0.092 / 92.4 0.056 / 0.098 / 92.4 0.056 / 0.064 / 92.6 0.056 / 0.060 / 92.6 0.056 / 0.048 / 92.7

ARED 0.089 / 0.005 / 92.0 0.100 / 0.016 / 91.7 0.103 / 0.028 / 91.6 0.105 / 0.032 / 91.5 0.106 / 0.057 / 91.4 0.106 / 0.062 / 91.4

CoDel 0.056 / 0.001 / 92.9 0.062 / 0.059 / 92.4 0.064 / 0.080 / 92.3 0.065 / 0.110 / 92.2 0.065 / 0.163 / 91.9 0.066 / 0.231 / 91.6

PIE 0.054 / 0.008 / 92.9 0.060 / 0.029 / 92.6 0.062 / 0.054 / 92.5 0.063 / 0.071 / 92.4 0.064 / 0.131 / 92.1 0.064 / 0.160 / 92.0

adverse impact on throughput fairness under AQM.

4.2.1.3 Flow isolation

Having addressed the impact of AQM on overall throughput and fairness we now

turn to flow isolation. We do this by analyzing the behavior of the simulated simplex VoIP

stream that is sent in parallel with the FTP transfers of the BASE experiment. The stream

is sent from a source outside the cable network to a sink attached to a simulated cable

modem, and it is implemented as a simulated UDP flow in which two 10 ms ‘chunks’ of

digitized voice data are sent every 20 ms in an IP packet of size 238 bytes.

The results are summarized in Table 4.10. The latency is average one-way latency

experienced by the simulated VoIP packets. The mean loss rate experienced by the VoIP

flow is of the same order of magnitude as those of the FTP flows which are shown in table

Table 4.3. As would be expected, the VoIP loss rates under AQM are generally larger than

the higher bandwidth FTP flows. It is also the case that the disparity between FTP and

VoIP loss rates is consistently larger for CoDel than it is for PIE. Furthermore, DT20 yields

lower loss rates and higher R-values than either CoDel or PIE across the board. The reasons

for these disparities are yet to be fully understood.

The R-value for DT drops quickly from 41 to 33 as the number of competing FTP

flows increases from 1 to 11. The main factor contributing to the poor R-values is the large

latency experienced by the VoIP flow with DT managed queues. DT20, followed by CoDel

and PIE, provides the lowest VoIP packet delays.

In additional simulations we found that the R-value remains reasonably high. When

59

the number of competing FTP flows was increased from 50 to 90, the R-values varied from

about 88 to 69 for ARED, CoDel, and PIE with slight differences.

4.2.2 HAS simulation results

We evaluate HAS video performance under different AQM schemes when the video

streams are subject to competing greedy FTP flows. Experiment HAS involves five HAS

flows along with a varied number of FTP flows for different simulation runs. As previously

noted, TCP throughput is inversely proportional to path RTT. To make the HAS and FTP

allocation results more comparable, the mean uncongested path RTTs of the HAS flows

and of the FTP flows are set to 80 ms in all experiments. The five HAS flows have path

RTT’s of {80, 70, 90, 60, and 100 ms}. The path RTT of the first FTP flow is also 80 ms,

and when additional flows are added, the path RTTs follow a similar pattern as that of the

HAS flows.

For the results presented in this paper, we used the following configuration settings:

• Playback buffer capacity: 240 seconds.

• Segment size: 4 seconds.

• Set of bitrate representations (in Mbps): {0.5, 1.0, 2.0, 3.0, 4.0, 5.0}

• TCP specific configuration: we use the ns2 simulator’s TCP/FullTCP/Sack model

with similar settings to those used in the other experiments described in this paper.

During the startup phase, the client makes back-to-back requests until the buffer

threshold (2 segments) is reached. The client then enters a steady state where it periodically

(every segment time) issues a new segment request. As an example, consider an uncongested

scenario involving a single HAS flow and no FTP flows. Once the HAS client reaches steady

state, it requests a maximum quality segment (which is 2.5 Mbytes) every 4 seconds which

corresponds to the maximum bit rate of 5.0 Mbps that HAS is configured to consume. Now

suppose that the new segment arrives 1.07 seconds after the request is sent. Then ε is

60

4/1.07 = 3.74 and thus the estimated available capacity is 5.0 × 3.74 or 18.7 Mbps. This

capacity estimate underestimates the actual available capacity (38 Mbps) by more than a

factor of two. The estimate is low in part because the TCP stack resets the TCP congestion

window after the application has been idle for one retransmission timeout period (which

happens each on/off cycle). This is a known issue with rate-limited applications [39, 68, 24].

Table 4.11: Experiment HAS Throughput Efficiency

#FTPs DRR DT ARED CoDel PIE

1 88% 76% 88% 83% 84%

3 96% 96% 96% 94% 94%

5 96% 96% 96% 95% 95%

7 96% 96% 96% 95% 95%

9 96% 96% 96% 95% 96%

11 96% 96% 96% 95% 96%

Table 4.12: FTP and HAS Average Throughput and Allocation Bias

(a) FTP Flow Average Throughput

#FTPs DRR DT ARED CoDel PIE

1 8.59 (0.5%) 8.60 (78.2%) 8.59 (2.8%) 8.17 (23.8%) 7.89 (12.4%)

3 6.22 (36.6%) 7.07 (55.3%) 5.90 (29.9%) 5.48 (23.4%) 5.13 (15.4%)

5 4.36 (19.8%) 5.40 (48.1%) 4.32 (18.7%) 4.10 (13.4%) 3.98 (10.2%)

7 3.37 (11.0%) 4.34 (42.9%) 3.46 (14.0%) 3.34 (10.7%) 3.26 (7.8%)

9 2.82 (8.4%) 3.34 (28.4%) 2.88 (10.7%) 2.79 (8.1%) 2.77 (6.8%)

11 2.37 (4.2%) 2.89 (26.9%) 2.46 (8.1%) 2.43 (7.5%) 2.45 (7.6%)

(b) HAS Flow Average Throughput

#FTPs DRR DT ARED CoDel PIE

1 4.99 (-0.2%) 4.07 (-15.6%) 4.95 (-0.9%) 4.69 (-6.3%) 4.83 (-3.5%)

3 3.55 (-22.0%) 3.04 (-33.2%) 3.73 (-17.9%) 3.82 (-14.0%) 4.03 (-9.3%)

5 2.92 (-19.8%) 1.89 (-48.1%) 2.96 (-18.7%) 3.13 (-13.4%) 3.24 (-10.2%)

7 2.57 (-15.4%) 1.21 (-60.0%) 2.44 (-19.6%) 2.57 (-14.9%) 2.69 (-10.9%)

9 2.21 (-15.0%) 1.27 (-51.2%) 2.10 (-19.3%) 2.21 (-14.6%) 2.28 (-12.3%)

11 2.07 (-9.2%) 0.93 (-59.1%) 1.87 (-17.9%) 1.88 (-16.6%) 1.89 (-16.8%)

Table 4.11 shows the percentage utilization of the downstream channel for each

61

experiment. The results show that in all cases except for simulations involving 5 HAS

flows and 1 FTP flow, the channel utilization is at least 94%. CoDel and PIE exhibited a

utilization 1-2% lower than that of ARED and DRR.

It is challenging to create meaningful throughput fairness comparisons between the

HAS and FTP workloads for several reasons. First, the maximum application layer de-

mand of each HAS application is self-limited to 5.0 Mbps while each FTP application has

unbounded application layer demand. Second, when congestion occurs HAS responds by

further reducing its application layer demand while FTP does not. Furthermore, when few

FTPs are active, the applications can interact with AQM in such a way that considerably

less than full utilization of the 38 Mbps downstream channel is actually achieved. Finally,

there are unwanted dynamics between HAS and TCP control algorithms. Nevertheless,

comparing the average FTP flow allocation and the average HAS flow application to what

one would expect from a max-min fair allocation does provide insight in these dynamics.

The average throughput for FTP and HAS applications as well as the applicationBias

is shown in Table 4.12. For all buffer management schemes, the throughput achieved by

both FTP and HAS decreased as the number of competing flows increased.

The applicationBias metric is the percentage above or below the max-min fair al-

location of the bandwidth that was actually consumed in the experiment (as opposed to

the nominal channel bandwidth of 38 Mbps.) The expected max-min fair allocation for a

HAS flow is based on a demand of 5 Mbps, which is the highest HAS encoded video bitrate.

Using the low congestion scenario (1 FTP flow and 5 HAS flows) as an example, Table 4.11

indicates that the consumed bandwidth under DRR is 88.3% of the 38 Mbps. The max-min

fair allocation of the 33.5 Mbps actually consumed under DRR is 5 Mbps for HAS and 8.55

Mbps for FTP. Consumed bandwidth under CoDel was significantly lower and max-min fair

allocation is 5 Mbps for HAS and 6.6 Mbps for FTP. For the CoDel results the actual FTP

throughput was 8.17 Mbps and the average HAS throughput was 4.69 Mbps. The HAS

applicationBias is (4.69 − 5.00)/5.00 or −6.3%. For the scenario involving 5 FTP and 5

HAS flows, under CoDel, the bandwidth actually consumed is 36.1 Mbps. So the max-min

62

fair allocation is 3.6 Mbps for all flows. In this case, for CoDel, the HAS applicationBias is

(3.1− 3.6)/3.6 or −13%.

In all cases the allocation favored FTP. The results indicate that only DRR consis-

tently improved the HAS allocation outcome as the network became congested. For PIE

and CoDel, the allocation outcome actually became worse (i.e., applicationBias experienced

by HAS flows grew further negative) as the load increased.

Table 4.13: HAS Performance Metrics (videoPlaybackRate / adaptationRate)

#FTPs 1 5 11

DRR 4.7 / 9 2.8 / 5 2.0 / 3

DT 3.7 / 32 1.9 / 56 0.9 / 53

ARED 4.7 / 35 2.9 / 91 1.8 / 150

CODEL 4.4 / 50 3.0 / 165 1.8 / 216

PIE 4.6 / 44 3.1 / 101 1.8 / 154

Table 4.13 indicates the HAS performance metrics. The rebufferTime results (not

shown) was 0 in all simulations. The results show that AQM significantly improves HAS

performance compared to DT based on the videoPlaybackRate metric. Among the three

AQMs, the videoPlaybackRate results were very similar. The results suggest that CoDel

leads to higher HAS adaptationRate than the other AQMs. We have observed that PIE

is less tolerant of bursts and consequently during times of heavy congestion does maintain

the target queue latency generally more reliably than CoDel. We conjecture that differ-

ences in the AQM’s burst tolerance behavior contribute to the observed difference with the

adaptationRate metric. However, it is likely that changing AQM configuration parameters

would alter the behavior. Therefore, further study is required before we can draw any

conclusions.

The absence of rebuffering events is largely due to relatively static workloads (a small

number of established TCP flows) and to a large playback buffer capacity. In additional

simulations not included in the paper, we run the scenarios using a version of HAS that

does not adapt. Instead, the client always requests highest quality segment (we refer to this

63

algorithm as max-always). The videoPlaybackRate in all cases is 5.0 Mbps which represents

the highest quality. In this scenario, all buffer management schemes exhibit frequent stalls.

The CoDel and PIE rebufferTime results were similar with the percentage of time spent

stalled ranging from 0% (with 5 HAS and 1 FTP flow) to 53% of the time (with five HAS

and 11 FTP flows).

The work in [39] shows that HAS is prone to a ‘spiral down’ effect where it is possible

for a HAS flow to be ‘beaten down’ by competing greedy TCP application flows. In this

situation, the HAS flow is likely to remain at the lowest bitrate quality level to oscillate

across the lowest quality levels. In our results, the applicationBias metric shows evidence

that aspects of this effect are present. Primarily due to relatively well behaved dynamics,

the system does not suffer the full spiral-down effects observed in [39].

4.2.3 WEB simulation results

The experiment WEB explores the impact of the different queue management

schemes in scenarios that involve a mix of downloads of web objects of varying size and

FTP traffic. Five greedy FTP flows are run in parallel with a varied number of simulated

web flows. For five FTPs, the uncongested RTTs are 30, 40, 50, 60, 70 (as in the BASE).

The number of web flows ranges from 10 to 80, and for the web flows, the uncongested

RTTs cycle in the same pattern as: 30, 40, 50, 60, 70, 30, 40, 50, 60, 70,

The parameters of the web traffic model, derived from [26], include user and session

attributes designed to reproduce the variability inherent in web traffic. The web sessions

start randomly within the first second of the simulation. The inter-page time is set to a

Pareto distribution with mean and shape equal to 5 and 2.0 respectively. The objects per

page is set to Pareto distribution with mean and shape equal to 4 and 1.2 respectively. The

inter-object time is set to Pareto distribution with mean and shape equal to 0.5 and 1.5

respectively. The object size in KB is set to Pareto distribution with mean and shape equal

to 20 and 1.5. Both of these sets of parameters produce distributions with infinite variance.

Therefore, it is difficult to obtain repeatable estimates of statistics such as mean response

64

time with simulations of practical duration.

It should be noted that web models such as the one from ns2 no longer properly

characterize the traffic generated by browsing commercial web sites. The objects at such

sites typically contain many embedded links to different advertising sites that are not co-

located with the primary page. The objects loaded via the embedded links commonly

contain a mix of text, images, audio, video, and possibly even additional embedded links.

Modeling traffic of this type is well beyond the scope of this paper. The ns2 web model

is designed to model browsing of a non-commercial document collection in which the user

may download citations, abstracts, or full text of scientific papers of various sizes. While

the web traffic models may have changed over time, the inherent on/off, heavy tailed nature

of the aggregate web traffic should still hold.

Therefore, as described in Section 3.2.2.3, the WRT metric reflects the response

time experienced by an additional designated web client in requesting and receiving a web

object of a particular size. By default, the WRT object size is 20 KB, and the think time

before the next request is issued is 10 seconds. The range of uncongested path RTTs for

both the web browsing flows and the competing FTP flows is between 30 and 70 ms. The

designated flow for which the WRT metric is computed has an uncongested path RTT of

50 ms which is the mean of the RTTs of the competing traffic.

Figure 4.3 shows the average throughput achieved by FTP flows as the number of

web browsing flows increases from 10 to 80. Although not shown, the mean bandwidth

demand of a single web flow is 0.13 Mbps and the total observed bandwidth consumption

of the web flows ranges from 1.3 to 10.3 Mbps for all schedulers except DT. In a max-min

fair allocation of the available 38 Mbps, each web flow should receive its entire demand

and the 5 FTP flows should divide the remainder. It can be observed in Figure 4.3 that

this is approximately the case for all schedulers except DT. For example, when there are 80

web flows, the web flows consume an average of 0.129 Mbps and the 5 FTP flows consume

approximately 5.2 Mbps each. This indicates that the 36.3 Mbps of consumed bandwidth

is fairly divided between the web and FTP traffic.

65

 3

 4

 5

 6

 7

 8

 10 20 30 40 50 60 70 80

A
ve

ra
ge

 F
T

P
 T

hr
ou

gp
u

t (
M

bp
s)

Number of Competing Web Flows

DRR
DT
ARED
CODEL
PIE

Figure 4.3: WEB Simulation Average FTP Throughput

Table 4.14: Web Response Time / Standard Deviation (seconds)

#Web Flows 10 20 30 40 50 60 70 80

DRR 0.173 / 0.062 0.172 / 0.060 0.175 / 0.059 0.175 / 0.060 0.178 / 0.060 0.178 / 0.061 0.181 / 0.062 0.178 / 0.062

DT 2.414 / 0.622 2.416 / 0.626 0.737 / 0.407 2.439 / 0.596 1.116 / 0.872 0.662 / 0.266 1.023 / 0.780 0.905 / 0.702

ARED 0.213 / 0.079 0.209 / 0.079 0.206 / 0.070 0.208 / 0.081 0.208 / 0.097 0.209 / 0.093 0.210 / 0.097 0.208 / 0.095

CoDel 0.173 / 0.076 0.174 / 0.098 0.171 / 0.059 0.174 / 0.077 0.174 / 0.085 0.173 / 0.077 0.173 / 0.075 0.176 / 0.091

PIE 0.173 / 0.096 0.173 / 0.097 0.172 / 0.095 0.174 / 0.116 0.179 / 0.117 0.176 / 0.103 0.171 / 0.103 0.177 / 0.111

The DT allocation of slightly more than 6 Mbps to the FTP flows demonstrates the

well known result that with unmanaged queues greedy flows prevent less greedy ones from

obtaining their fair shares.

Table 4.14 provides the WRT results for the experiment. As shown, AQM schemes

are able to support a range of low bandwidth web flows with consistently low web response

time. TCP slow-start requires multiple RTTs before the 20 KBytes of data is successfully

received by the WRT client. As the number of web flows increase, there is significant

increase in WRT only with the DT queue manager.

In a separate WEB experiment, we explore how the different queue management

techniques might impact the web response times as the WRT object size increases. The

scenario involves 5 FTP flows that compete with 50 web flows based on the web traffic

model. Unlike the previous WRT experiment, we vary the WRT web object size from 32

KBytes to 2048 KBytes. The WRT results are shown in Figure 4.4. As expected, the web

66

 0

 2

 4

 6

 8

 10

 12

 14

 32 64 128 256 512 1024 2048

W
eb

 R
es

po
ns

e
T

im
e

(s
ec

on
ds

)

Web Object Size (KB)

DRR
DT
ARED
CODEL
PIE

Figure 4.4: WEB Simulation WRT Results for Varied Object Sizes

response time increases along with the web object size. The best mean response time was

obtained by DRR, and the worst by DT. DT response was also quite sensitive to stochastic

effects. In one test, five independent replications of the DT simulation produced mean

response times of 6.8, 8.9, 8.2, 6.7, and 6.2 seconds. In contrast, the mean response times

produced by ARED, CoDel, and PIE had small variation.

4.3 Implications of Service Rate Management

The objective of the TIER experiments is to explore the impact of the different

queue management schemes on subscribers having different maximum service rates. A

varying number of Tier-1 FTP flows, each having a service rate of 6 Mbps, compete with a

single Tier-2 FTP flow having a service rate of 12 Mbps on a single downstream channel. The

uncongested path RTT of the Tier-2 flow is set to 80 ms which is also the mean uncongested

RTT of the Tier-1 flows. Individual RTTs of adjacent Tier-1 flows vary according to the

pattern {80, 70, 90, 60, 100, . . . }.

Figure 4.5 illustrates the observed behavior of nine Tier-1 flows competing with

the single Tier-2 flow under CoDel scheduling. The Tier-1 FTP flows run for the entire

simulation time of 2000 seconds, but the Tier-2 flow is active only from time 500 to 1500

67

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Simulation Time (Seconds)

CODEL

During the interval 500 - 1500 seconds:

Tier 1 flow throughput mean/std: 3.49/0.59

Tier 2 flow throughput mean/std: 3.77/0.72

Tier 1 FTP Flow (selected)
Tier 2 FTP flow

Figure 4.5: TIER simulation results with CoDel (1 Tier-2 flow competing with 9 Tier-1
flows)

seconds. Each data point plotted represents measured throughput during an interval of ten

seconds. The Tier-1 flow with 80 ms uncongested RTT is shown in red, and the Tier-2

flow in blue. During the time period when the Tier-2 flow is active, the throughput of

the selected Tier-1 flow and Tier-2 flow are 3.49 Mbps and 3.77 Mbps respectively, and

the Tier-2 flow displays higher variability. The weighted max-min fair allocation is 3.45

Mbps for the Tier-1 flows and 6.9 Mbps for the Tier-2 flow. The unweighted max-min fair

allocation is 3.8 Mbps for all flows. These results illustrate that single queue AQM will not

support differentiated service that intends to allocate more bandwidth for flows at higher

tiers. Whether or not this outcome is desirable, depends on one’s perspective. From the

perspective of the Tier-2 customer, this is clearly an undesirable outcome and conversely

so for the Tier-1 customer.

The second TIER experiment is designed to show the allocation to the different

tiers achieved by the different queue management schemes. A varying number of Tier-1

flows compete with a single Tier-2 flow for the entire simulation.

Table 4.15 summarizes the average allocation achieved by all Tier-1 flows and the

allocation achieved by the Tier-2 flow. Simulations involving 1 and 3 competing Tier-1 flows

are not shown as these reflect uncongested conditions, and the expected tiered allocations

68

Table 4.15: TIER Flow Average Throughput Allocation (Mbps)

Tier-1 FTP Flows 5 7 9 11

Tier (Mbps) 6 12 6 12 6 12 6 12

Max-min fair 6.0 8.0 4.75 4.75 3.8 3.8 3.17 3.17

Weighted max-min fair 5.4 10.8 4.2 8.4 3.45 6.9 2.9 5.8

DRR 5.9 7.8 4.7 4.7 3.7 3.7 3.1 3.1

DT 5.9 8.1 4.5 6.0 3.5 5.5 3.1 3.3

ARED 5.7 8.7 4.7 4.8 3.7 3.8 3.1 3.0

CoDel 5.8 7.9 4.6 5.4 3.7 3.7 3.1 2.9

PIE 5.7 8.4 4.6 4.8 3.7 3.7 3.1 2.8

are achieved in all cases.

As expected, DRR provides an unweighted max-min fair allocation. DT consistently

allocates more bandwidth to the Tier-2 flow. The AQMs support tiered allocation in a load

dependent way. As the load increases, the average flow bandwidth allocation by various

AQMs for both tiers converges approximately to unweighted max-min fair allocation. In the

case of 11 Tier-1 flows, all AQMs allocate less bandwidth than its max-min fair share to

the Tier-2 flow. This anomaly is due to the non-linear nature of the RTT penalty. Recall

that the Tier-1 throughput is the average of flows having uncongested RTTs ranging from

30 to 130 ms while the Tier-2 throughput is that of a single flow.

Table 4.16: TIER Flow Average Throughput Allocation (Mbps) with 4-channel Bonding
Group

Tier-1 FTP Flows 5 7 9 11

Tier (Mbps) 24 48 24 48 24 48 24 48

Max-min fair 24 32 19 19 15.2 15.2 12.7 12.7

DRR 23.7 31.7 18.7 18.8 15.0 15.0 12.5 12.5

DT 23.1 34.6 18.0 24.2 14.3 20.9 12.0 17.5

ARED 23.2 34.0 18.4 21.4 15.2 13.5 12.5 12.5

CoDel 23.1 31.3 18.5 20.0 15.1 14.1 12.6 11.5

PIE 22.9 33.1 18.5 20.2 15.1 14.3 12.6 10.9

DOCSIS 3.0 supports channel bonding to provide fat data pipes. A bonding group

as deployed in the field often involves 4 to 8 downstream channels bonded together. Such fat

pipes can support higher service rates and tiers. We run TIER with a 4-channel bonding

69

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 500 1000 1500 2000

T
hr

ou
gh

pu
t (

M
bp

s)

Simulation Time (Seconds)

PIE

Mean = 11.9

Sum of All FTP Flows
Unresponsive UDP Flow

Figure 4.6: Experiment UDP Results with PIE

group. We set the Tier-1 service rate to 24 Mbps and the Tier-2 service rate to 48 Mbps.

To adjust for the increased bandwidth-delay product, we increase the QUEUE CAPACITY

and TCP window size by a factor of 4. Again for the uncongested scenarios (i.e., those

involving 1 and 3 competing Tier-1 flows), our simulation results show each flow receives a

throughput equal to its service rate. For congested scenarios, Table 4.16 shows the results

of this simulation. The results show that our previous conclusions for the single channel

case still hold for the channel bonding case.

4.4 Management of Unresponsive Flows

To evaluate how effectively the AQM schemes under investigation manage unrespon-

sive flows, experiment UDP runs a varying number of FTP flows along with an unresponsive

UDP CBR flow. Figure 4.6 illustrates the results using PIE queue management in a UDP

simulation in which 9 FTP flows compete with an unresponsive UDP CBR flow for a total

available bandwidth of 38 Mbps. The UDP flow was configured to send 1500 byte packets

at a constant rate of 12 Mbps during the time period 500 to 1500 seconds of the 2000 second

simulation. No service rate limitations were imposed. As shown, the unresponsive flow was

70

allocated almost its total demand of 12 Mbps by PIE and the FTP flows were allocated

the remaining bandwidth. For all other schemes, only DRR correctly allocates equal share

(about 3.7 Mbps) to all flows during the time period when the UDP flow was active. The

results for DT, ARED, and CoDel were very similar to the PIE result shown in Figure 4.6.

We conclude that single queue management schemes including the AQM schemes

evaluated here are not effective in preventing unresponsive flows from consuming more

bandwidth than their fair shares during the time of congestion.

4.5 Summary of the Results

The focus of the first phase has been upon the effects of downstream queue manage-

ment in a DOCSIS cable environment. We have considered workloads consisting of FTP,

HAS, web browsing, and unresponsive UDP traffic. Our analysis also considered scenarios

with and without imposition of service rate limits. We explored fairness and application

performance obtained with four single queue packet scheduling disciplines: FCFS drop tail

(DT), Adaptive RED (ARED), CoDel, and PIE. We also included results obtained with

multi-queue DRR as a reference point for our analysis.

The clearest result is the undesirability of the use of drop tail queue management

in conjunction with a large unmanaged buffer pool. The effects of the resulting bufferbloat

included poor flow isolation, very high latency, and unpredictable allocation of bandwidth

to competing flows.

Our ARED results differ from CoDel and PIE in large part due to our choice of

parameter settings. For all AQMs, we attempted to use recommended settings. Neverthe-

less, it is possible to configure ARED to behave in a manner similar to CoDel and PIE

when channel capacity is known a priori and not subject to changes due to factors such as

adaptive modulation or dynamic changes to channel bonding groups.

Below we summarize the conclusions of this phase by addressing the three motivating

questions raised at the beginning of the chapter:

1. How effective are CoDel and PIE in realistic cable network scenarios?

71

The schemes are quite effective at maintaining the target queue delay. This in turn

provides isolation between responsive flows in the scenarios we explored. Both CoDel

and PIE exhibited similar results in all of the experiments, and even as the level of

congestion became very high, both were able to provide strong flow isolation.

All schemes except DRR are shown to not allocate bandwidth fairly in the presence

of heterogeneous RTTs. However, the principal cause of the unfairness is TCP’s well

known bias toward short-RTT connections. Nevertheless, delay-based AQMs such as

CoDel and PIE are particularly sensitive to the RTT induced unfairness issue when

compared to other queue management schemes that allow sustained large queues.

When a buffer bloated queuing point causes 100’s of milliseconds of packet delay, the

fairness outcome of competing TCP flows that might have uncongested path delays

of a fraction of this are less sensitive to TCP RTT-based unfairness. When delay-

based AQM removes ‘bufferbloated’ queues, differences in uncongested path delays

have more of an impact on TCP performance. Nevertheless, it should be noted that

throughput fairness is not a primary objective of delay-based AQMs.

2. Are there undesirable side effects when AQM interacts with tiered service levels?

We observed a range of behaviors among the AQM schemes. When different service

tiers compete for bandwidth during periods of the congestion, the impact upon tiered

service is dependent upon the severity of the congestion. When the system is not

loaded or slightly loaded, the AQMs do allocate more bandwidth to the higher service

tier flows. As the load continues to increase, we see that the allocations for different

tier flows tend to converge. As congestion increases, a higher tier flow can be more

aggressively targeted by an AQM scheme because the regulator allows its packets to

reach the queue at a higher rate than those of the lower tier.

3. How effectively do the schemes isolate responsive traffic from unresponsive flows?

An inherent problem with the single queue schemes is that they cannot effectively

manage unresponsive flows. This is a huge challenge network operators have to ad-

72

dress.

Our results of this phase suggest that there is a trade-off involved with single queue

management mechanisms between the goals of managing fairness and managing application

performance. Current practice tends to favor application performance over fairness. This

may not be acceptable in emerging converged broadcast networks where a larger percentage

of subscribers view content from video-on-demand providers located in the Internet. For

example, our results indicate that content providers that physically locate content closer to

the subscriber might be allocated a larger share of access network resources (during periods

of congestion) compared to a content provider that does not locate content at the access

network. While this result is common to all buffer management methods, delay based AQM

exacerbates this issue in certain circumstances primarily because bufferbloat effects served

to mask the issue. Moving forward, we address some of these problems with a multiple

queue solution that can also meet the constraints of CMTS vendors.

73

Chapter 5

Approximate Fair Scheduling Using Adaptive Band-

width Binning

In this chapter, we present the design, implementation, and performance evalua-

tion of a low complexity approach to managing bandwidth that addresses the combined

problem of fairness and bufferbloat for DOCSIS. We present detailed performance study

of the scheduler in both D3.0 and D3.1 environments. The chapter is organized as fol-

lows. In Section 5.1, we present our adaptive bandwidth binning scheme that implements

the approximate bandwidth management model introduced in Chapter 3. In Section 5.2,

we introduce the experimental setup and experiment definitions used for the analysis of

this phase. The last two sections provide our results and analysis targeted for single tier

environment and multi-tier environment respectively.

5.1 Adaptive Bandwidth Binning and Implementation

As described earlier, adaptive bandwidth binning (ABB) quantizes flows based on

their observed bandwidth consumption normalized by flow weights. Flows classified to the

same bin will be scheduled based on FCFS. Each bin is implemented as a single aggregate

queue which is managed by CoDel. Bins are then scheduled by weighted DRR. The weight

of each bin is set to the sum of weights of the flows classified into this bin.

We maintain each flow’s bandwidth consumption using the standard exponential

74

moving average formula. The current level of consumption for each flow is calculated with

the flow’s consumption rate samples obtained from each past reclassification interval. The

α parameter for the formula is set to 0.4.

The scheme uses k bins for the scheduling of n flows. The system design parameters

are:

• Number of bins (k): k should be a small fixed number that is usually much smaller

than the number (n) of flows

• reclassification interval (τ): this is the time interval of periodical flow reclassification.

We recommend it is set at time scale of seconds

Parameters for CoDel such as target delay and control interval are those given in [73, 72].

We justify the scheme as follows. A CMTS already monitors service flows [64]. So

the bandwidth consumption aspect of the scheme does not add extra complexity. Tiering is

naturally handled by having control decisions based on recent consumption normalized by

flow weights. Binning is used to avoid per-flow queueing. The approach has low complexity.

5.1.1 Data Structures

Our implementation is for ns-2 and follows the structure of SFQ-CoDel [70]. It uses

a few data structures: bins and flows, described in Listing 5.1.

Listing 5.1: Data Structures

// bin structure

struct bindesc {

queue *q_; // underlying FIFO queue

int index; // bin ID (array index)

double bi; // Value of bi (consumption threshold)

double weight; // bin weight

// Dynamic state used by CoDel algorithm

75

double first_above_time_; // when we went (or will go) continuously above

target for interval

double drop_next_; // time to drop next packet (or when dropped last)

int count_; // how many drops we’ve done since the last time we

entered dropping state.

int dropping_; // = 1 if in dropping state.

int deficit_; // for rounding on bytes

int newflag; // newly active bin

int on_sched_;

bindesc* prev;

bindesc* next;

};

// flow state

struct flowstat {

double bw; // bandwidth consumed

int binid; // id of bin the flow is classified to

int weight; // flow weight

int alloced; // internal flag

};

// main data structure

struct ABBCoDelAQM {

bindesc bin_[k]; // k bins

bindesc* binsched_; // active bin list

flowstat flow[n]; // array of n flows

// Static state (user supplied parameters)

double target_; // target queue size (in time, same units as clock)

double interval_; // width of moving time window over which to compute min

// Dynamic state used by CoDel algorithm

double first_above_time_; // when we went (or will go) continuously above

76

target for interval

double drop_next_; // time to drop next packet (or when we dropped last)

int count_; // how many drops we’ve done since the last time

// we entered dropping state.

int dropping_; // = 1 if in dropping state.

int maxpacket_; // largest packet we’ve seen so far

int mtu_max_;

int curlen_; // the total occupancy of all bins in packets

int maxbinid_; // id of bin with the most pkts

int quantum_; // for rounding by bytes

};

The main data structure ABBCoDelAQM contains an array of a fixed number of

k bins (sub-queues) used to queue incoming packets from n different flows. As in (S)FQ-

CoDel, there is a global limit on the number of packets the bins can hold but not a limit

per bin. In other words, bins share a common buffer of certain size.

All bins are managed by CoDel separately. Hence the state variables for the CoDel

state machines for the individual bins are given in the bindesc structure. But all CoDel

state machines maintain a common CoDel delay target and use the same CoDel control

interval given in the main data structure. Note the packet queueing latency is measured in

CoDel by the time a packet enters one of the bins until the time the packet leaves that bin.

So even though the packet is in a bin that is not currently being scheduled, it continues to

accrue its queueing latency. When the packet is scheduled, this queueing latency is used to

compare with the common delay target.

As defined in the structure, a dynamically adjusted weight variable is associated

with each bin. A few other state variables are useful for scheduling. For example, the

deficit and the number bytes queued. Each bin i (1 ≤ i ≤ k) uses a single value bi that

defines the bandwidth range of the bin. Without losing generality, let bi < bi+1 so that bins

are arranged in increasing order in terms of consumption levels. Let b0 = 0 and bk = C,

77

where C is the channel capacity. The range of bandwidth consumption level for bini is then

(bi−1, bi].

The main data structure ABBCoDelAQM also contains a varying number of n flows,

which is defined by flowstat structure. The structure contains the information that tracks

the bandwidth consumed by the flow, the ID of the bin the flow is classified to, and the

static flow weight. The ID of the bin associated with a flow may change from one control

interval to another when the flow is remapped.

5.1.2 Operations

The ABB scheme asynchronously performs two operations: enqueue and dequeue.

The enqueue operation handles the task of inserting a newly arrived packet into one of the

bins (sub-queues). The dequeue operation deals with picking (scheduling) which packet

for service when channel is available for transmission. The code for the two operations is

almost identical to that of SFQ-CoDel except weights are accounted for inter-bin WDRR

scheduling. The scheme also periodically performs a third operation that optimizes the

system, reclassifies flows into bins, and adjust bin weights to maintain fairness. The period

that controls the third operation is given by the reclassification interval.

5.1.2.1 The enqueue operation

The pseudocode for enqueue, which is almost identical to that of SFQ-CoDel except

weights are considered, is given in Listing 5.2:

Listing 5.2: Enqueue routine

// on arrival of packet ‘pkt’

Enqueue (pkt):

i f no more buffer space left:

maxbinid_ = FindLongestBin()

tail drop a packet from bin_[maxbinid_]

78

i = ExtractFlow(pkt) // flow ID

bid = flow[i].binid

enqueue(bin_[bid], pkt)

// add new active bin to the schedule

i f binsched_ == NULL:

// new active bin is the only active one

binsched_ = bin_[bid]

bin_[bid].newflag = 1

bin_[bid].on_sched_ = 1

bin_[bid].deficit_ = quantum_ * bin_[bid].weight

else i f bin_[bid].on_sched_ == 0:

// if bin was not on the schedule,

InsertBin(binsched_, bin_[bid]) // insert new bin to schedule before old

bins but after other new bins

bin_[bid].newflag = 1

bin_[bid].on_sched_ = 1

bin_[bid].deficit_ = quantum_ * bin_[bid].weight

The enqueue operation takes O(1) time because, given only a limited number bins

in use, finding longest bin in terms of most packets queued and inserting newly active bin

to the schedule both take constant time. Finding flow ID by hashing packet header [87] and

adding a packet to the tail of a queue also take constant time.

5.1.2.2 The dequeue operation

The pseudo code for dequeue, almost identical to that of SFQ-CoDel except bin

weight is accounted for, is given in Listing 5.3:

Listing 5.3: Enqueue routine

// when channel becomes idle or is free

Dequeue():

do:

79

// find a ready bin

b = binsched_

while b is empty:

nb = b.next

remove b // b is taken off from binsched_

b = nb

while b.deficit_ <= 0:

b.deficit_ += quantum_ * b.weight

b = b.next

while b is empty:

b = b.next

binsched_ = b

b.newflag = 0

// set up to do CoDel for bin b

first_above_time_ = b.first_above_time_

drop_next_ = b.drop_next_

count_ = b.count_

dropping_ = b.dropping_

pkt = ... // run CoDel on bin b to dequeue a packet

while pkt == NULL

// save CoDel state for bin b

b.count_ = count_

b.first_above_time_ = first_above_time_

b.drop_next_ = drop_next_

b.dropping_ = dropping_

b.deficit_ -= pkt.size

80

The do-while loop in the dequeue code takes O(1) time to finish due to the limited

number of bins in use. The do-while is guaranteed to terminate because the dodequeue, one

of the routines used by CoDel, safeguards against dropping all packets to leave the channel

idle. Thus, the dequeue routine overall takes O(1) time to finish.

5.1.2.3 The Optimize operation

The pseudo code for the optimizing routine is given in Listing 5.4. When a timer

set with the reclassification interval τ is triggered periodically, the Optimize routine is run

to reclassify flows into different bins should the consumption levels of the flows change. The

routine also assigns consumption range for each bin and adjusts bin weights according to

the weights of the flows classified to the bins.

Listing 5.4: Optimize routine

// Let C be the channel capacity

// Let k be the number of bins

// Let totalWeight be the sum of the weights of all flows

Optimize():

// remove inactive flows from threshold calc

for each flow f:

i f f.bw is less than (such as 50 kbps):

f.alloced = 1

else:

f.alloced = 0

// calc bin bandwidth consumption threshold

for i = 1 .. k-1:

lw = 0.0 // sum of weights of unalloc’ed flows

lbw = C // bandwidth left for alloc

for each flow f:

i f f.alloced:

81

lbw -= f.bw

else:

lw += f.weight

bin_[i].bi = lbw / lw

for each flow f:

i f f.bw / f.weight <= bin_[i].bi:

f.alloced = 1

bin_[k].bi = C

// calc bin weights and reclassify flows

for i = 1 .. k:

bin_[i].weight = 0

for each flow f:

for i = 1 .. k:

i f f.bw / f.weight <= bin_[i].bi

f.binid = i

bin_[i].weight += f.weight

break

In the pseudocode, to calculate the bandwidth consumption level thresholds for

the bins, we use a method that is loosely based on finding the max-min fair allocation

for aggregate groups of flows. We call this method the max-min fair breakpoint guided

approach, which we will describe in detail below. With this approach, a series of max-

min fair breakpoints are calculated in the increasing order and the bi, (1 ≤ i ≤ k) are

set accordingly to those increasing max-min fair breakpoints. In the pseudocode, to avoid

skewing the calculation for the first max-min fair breakpoint, as a preprocessing step, we also

try to remove any inactive (or low consumption) flows from the calculation. The suggested

threshold for low consumption is 50 or 100 kbps, which should cover low consumption flows

such as VoIP.

We use a simple (and unrealistic) example to illustrate the approach and what max-

min fair breakpoints are. Based on known individual flow demands in terms of bandwidth

request, the process we often use to calculate the max-min fair share bandwidth generates

82

a series of estimated max-min fair share values which we call max-min fair breakpoints.

For example, for a capacity of 40 Mbps and six flows having demands of 4, 6, 7, 8, 9,

and 10 Mbps respectively, the first max-min fair breakpoint is 40/6 = 6.7. With this

breakpoint, the demands of the first two flows are completely satisfied with excess of 2.7

and 0.7 respectively, which must be evenly distributed among the four remaining flows.

This leads to the calculation of next max-min fair breakpoint. In this case, the remaining

capacity is 30 Mbps for the rest of 4 flows. The next breakpoint is thus 30/4 = 7.5 and

the demand of the third flow is satisfied with excess of 0.5. Again this leads to the third

max-min fair breakpoint calculation 23/3 = 7.7, which is below either demand of the rest

of the 3 flows. So the rest of the 3 flows can only receive maximum 7.7 Mbps bandwidth

without excess. The calculation thus stops with a max-min fair share of 7.7.

Since in a real system there is no way to know the flow demands a priori or measure

the demands, our algorithm takes the actual achieved throughput of the flows at the moment

in lieu of the flow demands for the max-min fair breakpoint calculation. This is not a

problem as the goal is to separate flows based on their consumption levels. The breakpoints

calculated this way turned out to naturally separate flows into a few consumption levels.

Using a data sample extracted from one of the simulations, we now show how the

bin thresholds are set based on the breakpoints calculated at that time. For this example,

we ran 6 flows sharing a channel capacity of 38 Mbps. The bandwidth consumption was 4.0,

6.0, 6.4, 7.4, 6.4, and 6.9 for the 6 flows respectively. The total consumption is 37.1 Mbps,

which should always be lower than the channel capacity. This is where the calculation based

on actual consumption differs from the calculation based on known flow demands, whose

total can well exceed the channel capacity. Based on the actual consumption data, the

first max-min fair breakpoint is 38/6 = 6.3. With this breakpoint, the first two flows are

said to be “allocated” with excess. This leads to the calculation of our next max-min fair

breakpoint of 28/4 = 7. With the new breakpoint, the rest of the flows except the fourth

flow are said to be “allocated” again with excess. So the calculation continues with the

third breakpoint being (28− 6.4− 6.4− 6.9)/1 = 10.3. With this breakpoint, all flows are

83

said to be “allocated” and the calculation ends. Based on these breakpoints, if using 3 bins,

the bin thresholds will be set to 6.3, 7, and 38 respectively. The threshold for the last bin is

always set to the capacity irrespective of if we have a max-min fair breakpoint for the last

bin. This is to ensure that any flows that are not classified to other bins will be classified

to the last bin. In the Optimize routine, to deal with inactive or very low bandwidth flows

that may skew the calculation for the first breakpoint resulting in the need of more bins,

we explicitly exclude these flows from the calculation.

With this approach, flows that consume more bandwidth will be isolated to higher

bins from flows consuming less bandwidth. The Optimize routine further adjusts the bin

weights depending on how many flows (and their weights) are classified to each bin. In the

above example where flows have equal weight of 1, the weights for the 3 bins are set to 2, 3,

and 1 respectively. The bin weights support the use of a weighted inter-bin DRR scheduler

to ensure weighted fair allocation among the sets of flows classified to different bins. With

the proper bin weight settings, flows in different bins will likely be forced to equalize their

bandwidth consumption during next interval to maintain fairness. For example, if the set

of 2 flows in bin 1 together consume 1/3 of the total bandwidth and the set of 3 flows in

bin 2 consume one half, the fourth flow classified into bin 3 cannot consume more than 1/6

of the total bandwidth, reducing its consumption from 7.4 to 6.3.

Although the operation runs with a complexity of O(n), where n is the number of

flows, it runs fairly infrequently only for each reclassification interval, which is at the time

scale of seconds. Since the work needed for scheduling is defined as number of steps needed

per packet [87], this operation does not affect the amount of work needed, which remains

at O(1).

5.1.3 An Illustrative Example

In this example, we run six UDP CBR flows 1-6 sourced at 4, 6, 7, 9, 11, 13 Mbps

respectively sharing a channel capacity of 38 Mbps. The total demand of the flows is 50

Mbps. The expected max-min fair allocation is thus {4, 6, 7, 7, 7, 7}.

84

For the ABB scheme to approximate fair allocation, in general, flows 1-3 with lower

demand (and certainly lower consumption) should be classified to lower bins to be guaran-

teed their fair share whereas flows 4-6 with higher demand (and possibly higher consump-

tion) should be classified to higher bins so that they will not be able to unfairly grab a

lion share of the bandwidth. Due to the possible fluctuation in consumption over time, it

is possible for middle ranged flows such as flows 4 and 5 to jump from one bin to another.

But overall such flows should stay in lower bin for more time if it consumes relatively less

bandwidth or vice versa.

Figure 5.1 shows a snapshot (between 500 and 532 seconds) of the flows residing in

different bins over time under ABB scheme with 2 bins. Each sub-plot is for one flow. The

smooth curves in the figure show the flow consumption rate changes over time. The square

waves show a flow being moved from one bin to another. For example, at 501 second, flows

1-3 were classified into bin 1. Flows 4-6 were classified to bin 2. Therefore the weights for

the bins were set to 3 and 3 respectively. At second 503, flow 3 consumed 6.6 Mbps and

was reclassified to bin 2. But flow 4 was reclassified to bin 1 since its consumption at the

moment dropped to 6.1 Mbps.

As clearly seen in this case, the ABB scheme was able to correctly classify flows

into proper bins. The two flows that consumed below the estimated fair share were always

classified into bin 1 to be guaranteed its share. The demand of flow #3 was right around

the estimated fair share. It is shown the flow mostly resided in bin 1 and occasionally went

to bin 2. Flow #4 spent more of its time in bin 2 than in bin 1 because of its slightly higher

consumption than flow #3. Flows #5 and #6 always resided in bin 2 due to their higher

demands and consumptions.

At the end of 1000 second simulation, the throughput of the flows under the approach

with different number of bins are given in Table 5.1, where ABB with k bins are specified

as ABB-k. We also calculated the per-flow bin switch rates as the ratio of total number bin

switches over the total maximum possible bin switches. The bin switch rates of the scheme

using 2–5 bins are 0.23, 0.43, 0.42, and 0.42 respectively.

85

 1

 2

 3

 4

 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 0

 5

 10

 15

 20

 25

B
in

 #

F
lo

w
 r

at
e

(M
bp

s)

Simulation Time (seconds)

Flow 1 (bins) Flow 1 (consumption)

 1

 2

 3

 4

 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 0

 5

 10

 15

 20

 25

B
in

 #

F
lo

w
 r

at
e

(M
bp

s)

Simulation Time (seconds)

Flow 2 (bins) Flow 2 (consumption)

 1

 2

 3

 4

 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 0

 5

 10

 15

 20

 25

B
in

 #

F
lo

w
 r

at
e

(M
bp

s)

Simulation Time (seconds)

Flow 3 (bins) Flow 3 (consumption)

 1

 2

 3

 4

 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 0

 5

 10

 15

 20

 25

B
in

 #

F
lo

w
 r

at
e

(M
bp

s)

Simulation Time (seconds)

Flow 4 (bins) Flow 4 (consumption)

 1

 2

 3

 4

 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 0

 5

 10

 15

 20

 25

B
in

 #

F
lo

w
 r

at
e

(M
bp

s)

Simulation Time (seconds)

Flow 5 (bins) Flow 5 (consumption)

 1

 2

 3

 4

 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
 0

 5

 10

 15

 20

 25

B
in

 #

F
lo

w
 r

at
e

(M
bp

s)
Simulation Time (seconds)

Flow 6 (bins) Flow 6 (consumption)

Figure 5.1: Example simulation showing how the ABB scheme works (UDP case)

Table 5.1: UDP Flow Throughput (Mbps)

Flow #1 #2 #3 #4 #5 #6 JFI

CBR Rate 4 6 7 9 11 13

Max-min fair 4 6 7 7 7 7

ABB-1 2.9 4.3 5.0 6.5 7.9 9.4 0.937

ABB-2 3.9 5.9 5.9 6.5 6.4 7.5 0.995

ABB-3 3.8 5.8 5.9 6.5 6.9 7.2 0.996

ABB-4 3.8 5.8 5.9 6.5 6.9 7.2 0.996

ABB-5 3.8 5.8 5.9 6.5 6.9 7.2 0.996

86

5.1.4 Addressing the Packet Reordering Issue

For the most part, packets from a flow classified to a bin will be queued and sent in

chronicle order under the ABB scheme. However, since periodically flows are reclassified,

some flows unavoidably will be moved to new bins and unsent old packets from such flows

may be left queued in their previous bins. Therefore old and new packets from the same

flow in different bins can be sent out of order. The number of packet left behind should be

limited in proportion to the target delay of CoDel if the queue length is well under control.

Then under the same assumption, if the target delay is 20 ms and the reclassification interval

is set to 1 second, the impact of potential packet reordering is estimated to be no more than

0.02/1 = 2%. Although the potential impact does not look very significant, the issue likely

has some negative effect over the TCP performance.

The same packet reordering problem exists with other schedulers such as SFQ when

periodical perturbation of the hash function is performed. The problem was not raised and

addressed in [63]. However the SFQ code in Linux kernel rehashes the old packets whenever

perturbation occurs. The rehashing involves moving packet from one bin to another and

inserting packets in chronicle order. This can be quite costly. The FQ-CoDel code in the

Linux kernel, on the other hand, does not do perturbation and therefore avoids the need of

rehashing. This of course comes at the expense of possibly less throughput for flows that

collide. The odds of such collision are discussed in [36] and potential collisions are accepted.

We address the out-of-order issue with a low complexity solution that completely

eliminates the need of moving packets around. Figure 5.2 shows the basic idea of the

solution using three bins as an example. First packets are scheduled normally from the bins

(Figure 5.2(a)). At each flow reclassification, if any flow switches bins, all bins are ‘plugged’

(Figure 5.2(b)). The ‘plugs’ serve the purpose of dividing the already-queued old packets

from the incoming new packets that continue to be queued normally. The old packets from

all bins will continue to be scheduled normally until one of the plugs reaches the head of

its bin. From this time on, any bin that has its plug at its head is temporarily suspended

87

Scheduler

(a)

Scheduler

Scheduler Scheduler

(b)

(c) (d)

Figure 5.2: Addressing packet reordering issue by bin plugging.

88

from scheduling (Figure 5.2(c)). In other words, the plug stops the new packets on the bin

from being sent ahead of any old packets that are yet to be sent. This ensures no packets

will be sent out of order. The temporary scheduling suspension of a bin is until the plugs

of all bins reach their bin heads (Figure 5.2(d)). At this time, all plugs are removed and

the bins return to normality to be scheduled normally again.

Between the time the first plug hits its bin head and the bin has at least one

packet after the plug and the time all plugs hit their bin heads, there is a period of time

during which normal bin scheduling is temporarily disrupted. We call such period of time

disruption time. For example, in the above illustrative example with six UDP flows, the

total disruption time was 84.7 seconds through 1000 second simulation for the approach

using 3 bins. This is equivalent to about 8.5% overall disruption. With unresponsive UDP

flows, CoDel’s burst tolerance can lead to higher queue level and imbalanced bins. We will

see, with TCP flows, the disruption is consistent with our earlier estimation and well under

control.

5.2 Experimental Setup and Experiment Definition

The experimental setup for this phase is similar to that of the first phase as given

in Section 4.1. We carry out all our studies in a simulated DOCSIS 3.x cable environment.

The simulation network model was illustrated in Figure 3.4. For the downstream scheduling

component in the figure, we compare a number of scheduling schemes including single-queue

CoDel and SFQ-CoDel to our ABB scheme. We use DRR-CoDel as a reference. DRR-CoDel

is a scheme that combines DRR scheduler with CoDel managing each of the DRR’s per-flow

queues. The DRR scheduler in use is weighted unless otherwise specified. The single-queue

CoDel is adapted from an open source tail-drop variant of CoDel for DOCSIS. SFQ-CoDel

is adapted from [70] to work in our DOCSIS simulation framework. As indicated earlier,

SFQ-CoDel is an implementation of FQ-CoDel [36] for ns2. ABB is properly implemented

in our simulation framework. The pseudo code was described in previous section.

Our analysis covers several scenarios using varying numbers of downstream appli-

89

cation flows including FTP, VoIP, exponential on/off, web, and HAS video streams. The

simulated client sides of these applications run on nodes attached to cable modems. The

simulated servers run on nodes located outside the cable network. The cable network end

point of each simulated flow is attached to a unique cable modem.

To model Internet path diversity, the propagation delays of the application server

access links are experimental parameters. In each set of experiments, we maintain consistent

path RTTs (either using same RTTs for all flows or maintaining same average RTTs among

classes of flows). The maximum buffer size setting can have significant impact on results for

queue managers other than delay-based AQMs. But for delay-based AQM, the max buffer

size setting is less significant as long as the buffer size is large enough to accommodate

occasional bursts. In the following we set the max buffer size at CMTS for delay-based

AQM to allow maximum 150 ms queueing delay should the queue reach its full capacity.

In the simulations presented, all data packets are 1500 bytes with the exception

of VoIP packets which are 238 bytes. The bandwidth delay product of a round trip path

consisting of heterogeneous links is properly computed as the bit rate of the bottleneck link

multiplied by the path RTT. Assuming fixed packet size of 1500 bytes and RTT of 100

ms, the bandwidth product is 8333 packets and 350 packets for D3.1 data rate of 1 Gbps

and D3.0 data rate of 42 Mbps respectively. We set the max buffer size to be 32768 for

1 Gbps channel and 4096 for 42 Mbps channel at all routers. Maximum buffer capacities

at the simulated routers are set so large to ensure that, in the absence of AQM, all TCP

senders can always have the full bandwidth delay product of unacknowledged packets in

the pipeline. The maximum buffer capacity at CMTS is set to 11875 packets for 1 Gbps

D3.1 channel or 457 packets for 42 (38) Mbps D3.0 channel. The settings are equivalent to

a 150 ms max standing queue.

The ns2 TCP simulation was configured as follows:

• TCP: TCP/Sack (ns2 TCP agent: Agent/TCP/Sack1).

• Maximum window/cwnd: 10000 segments (for D3.0 channel) or 65536 segments (for

D3.1 channel).

90

• Initial window: 2 segments

• Delayed ACK mean interval: 100 ms

• Maximum segment size: 1460 bytes

• Number of segment arrivals required to trigger an ACK: 2

For workload involving HAS, the ns2 Agent/TCP/FullTCP/Sack was used for HAS. The

rest of the TCP configuration used the same parameters shown above.

We decompose our analysis into two components. One set of experiments, shown

in Table 5.2, is designed for each component. First, we set our analysis in a single-tier

environment with the current D3.0 channel speed. The focus is to answer how well the

scheme is able to address TCP RTT unfairness and to provide flow isolation and good

latency property. We also explore the dynamic behavior of the scheme adapting to changing

workload and the possible impact of such adaption. Second, we set the analysis in a multi-

tier environment with 1 Gbps D3.1 channel speed. We focus on answering how well the

scheme is able to provide weighted fairness based on flow tiers and to provide flow isolation

with respect to unresponsive UDP flows. We also explore how well the scheme is able to

operate with more realistic traffic workload involving FTP, HAS, and web flows.

Table 5.2: Experiment Definition

Set Experiment Summary

Single Tier BASE For different simulation runs, varies the number of competing down-
stream FTP flows along with a low bitrate VoIP flow. Used to assess
performance over different workloads.

ME Runs a mix of small mice and large elephant flows to assess the
stability of the approach.

Multi Tier TIER Similar to BASE except that adding a number of Tier2 and Tier4
flows for different runs. Used to assess performance in a tiered envi-
ronment.

UDP Runs 11 FTP flows per tier at Tier1, Tier2, and Tier4. Each tier
also runs one UDP/CBR flow sourced at 50 Mbps. Used to assess
UDP flow isolation performance.

APP Runs 10 FTP, 30 web, and 60 HAS flows with different configurations
to assess application performance.

For CoDel, we configure the target delay to be 0.020 seconds. The original CoDel

91

recommends a target delay of 0.005 seconds. We determined that a setting of 0.020 seconds

provided more predictable results in our scenarios, especially in scenarios that involved a

small number of high speed TCP flows. The interval parameter is set to 0.100 seconds.

Following the recommendation, SFQ-CoDel is configured to use 1024 bins as in the original

code. For ABB, we ran the experiments with a small number of bins (2, 3, and 4 in most

cases). The reclassification interval is set to 1 second.

We present the results from our simulation studies in the next two sections. Each

section corresponds to each set of experiments in Table 5.2.

5.3 Results and Analysis for Single Tier Environment

In this section we present the results of the single tier set of experiments shown in

Table 5.2. The objective of this set of experiments is to evaluate the effectiveness of the

ABB scheme in providing fairness and delay performance.

The ABB results are obtained from using 2, 3, and 4 bins respectively. They are

referred to as ABB-2, ABB-3, and ABB-4 below. Unless otherwise specified, the reclassifi-

cation interval is set to 1 second. For this set of simulations, the simulation time is set to

2000 seconds unless otherwise specified.

5.3.1 BASE Simulation Results

Experiment BASE employs a varying number of FTP flows ranging from three to

eleven along with a single low bit rate VoIP flow. The flows compete for a total available

bandwidth of 38 Mbps. The VoIP performance metric flow starts at time 0.0 seconds. Each

simulated FTP flow starts at a random time within the range of 0.0 to 2.0 seconds and has a

unique uncongested path RTT. All simulation runs use the same average uncongested RTTs

of 80 ms. But different FTP flows are set to different uncongested path RTTs according to

this pattern {80, 70, 90, 60, 100, . . . }.

Figure 5.3 shows the throughput fairness results from five simulation runs with

different number of FTP flows. In general, the fairness from all schemes in comparison is

92

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 3 4 5 6 7 8 9 10 11

F
ai

rn
es

s
(J

F
I)

Number of Flows

SFQ-CoDel
CoDel
ABB-2
ABB-3
ABB-4
DRR-CoDel

(a) Jain’s Fairness Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 3 4 5 6 7 8 9 10 11

F
ai

rn
es

s
(M

M
R

)

Number of Flows

SFQ-CoDel
CoDel
ABB-2
ABB-3
ABB-4
DRR-CoDel

(b) Min-Max Ratio

Figure 5.3: Experiment BASE throughput fairness results.

shown to get worse as the number of flows increases. As shown in our prior work [38], this

is primarily a function of the disparity in the uncongested path RTTs. It is known as TCP

RTT unfairness.

DRR-CoDel fairness results show that DRR-CoDel is able to provide fairness close

to max-min fairness. With results not shown, DRR with bloated buffer is max-min fair.

The results show SFQ-CoDel has almost identical fairness results to that of DRR-CoDel.

This is not surprising as in this case the number of bins SFQ-CoDel is configured to use far

93

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

Ja
in

's
 F

ai
rn

es
s

In
de

x
(J

F
I)

Simulation Time (seconds)

ABB-2
ABB-3
ABB-4
CoDel

(a) Jain’s Fairness Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

M
in

-M
ax

 R
at

io
 (

M
M

R
)

Simulation Time (seconds)

ABB-2
ABB-3
ABB-4
CoDel

(b) Min-Max Ratio

Figure 5.4: Experiment BASE throughput fairness results over time.

exceeds the number of flows in all runs such that the chance of collision is slim. But with

more flows running, the fairness of SFQ-CoDel can be quite different. The single-queue

CoDel is shown to be much less fair especially with wider RTT disparities. Overall the

long term fairness of the ABB scheme is very close to that of SFQ-CoDel and DRR-CoDel.

Occasionally we see that ABB scheme with 3 and 4 bins provides slightly better long term

fairness than DRR-CoDel. With the use of more bins, ABB scheme in general is able to

better address the RTT unfairness issue.

94

Table 5.3: Experiment BASE TCP Throughput: Mean / CoV / Sum (Mbps)

#FTPs 3 5 7 9 11

DRR-CoDel 12.1 / 0.03 / 36.4 7.4 / 0.04 / 37.0 5.3 / 0.05 / 37.2 4.1 / 0.06 / 37.3 3.4 / 0.07 / 37.4

SFQ-CoDel 12.2 / 0.03 / 36.5 7.4 / 0.03 / 37.1 5.3 / 0.04 / 37.2 4.1 / 0.05 / 37.3 3.4 / 0.06 / 37.4

ABB-2 12.1 / 0.04 / 36.3 7.4 / 0.04 / 36.9 5.3 / 0.06 / 37.3 4.2 / 0.07 / 37.4 3.4 / 0.09 / 37.4

ABB-3 12.1 / 0.05 / 36.4 7.4 / 0.04 / 37.0 5.3 / 0.04 / 37.2 4.2 / 0.06 / 37.4 3.4 / 0.07 / 37.4

ABB-4 12.1 / 0.05 / 36.4 7.4 / 0.04 / 37.0 5.3 / 0.04 / 37.2 4.2 / 0.05 / 37.4 3.4 / 0.06 / 37.4

CoDel 12.1 / 0.19 / 36.3 7.4 / 0.24 / 37.2 5.3 / 0.28 / 37.4 4.2 / 0.31 / 37.4 3.4 / 0.36 / 37.4

Figure 5.4 shows the throughput fairness results over time for the run of nine FTP

flows under the ABB schemes configured with 2, 3, and 4 bins. We also show the fairness

results from CoDel for comparison purpose. The throughput samples were taken every 30

seconds. As shown, the fairness over time is close to that of long term fairness in Figure 5.3

with slight variations. For other runs of different number of FTP flows, the results not shown

are similar. The results also suggest that the ABB scheme is able to provide reasonable

fairness over a time scale that is an order of magnitude higher than the reclassification

interval.

Table 5.3 summarizes the throughput results by the FTP flows under different

schemes. With results not shown, DRR with bloated buffer achieves the best total through-

put of 37.4 Mbps in all runs. When compared to DRR with bloated buffer, the total

throughput achieved by all schemes under investigation is less in the runs of fewer flows.

Once the number of flows increases, total throughput of various schemes gets close to that of

DRR with bloated buffer. When compared to the DRR-CoDel, the total throughput results

from the ABB scheme with 3 and 4 bins are shown to be the same or occasionally higher.

This suggests that the ABB scheme provides good utilization of the channel capacity. The

coefficient of variation (CoV) values are consistent with Figure 5.3.

Table 5.4 shows the average RTT experienced by the TCP/FTP packets. The

average RTT includes the inherent path delay plus the queueing delay. Subtracting the

inherent average uncongested path RTT of 80 ms, the values meet the target delay of 20 ms

set for CoDel. As the number of flows increases, the RTT variations increase. This reflects

our varied settings of the uncongested RTTs for different flows. Again, the ABB schemes

95

Table 5.4: Experiment BASE TCP RTT: Mean / Stddev

#FTPs 3 5 7 9 11

DRR-CoDel 0.087 / 0.008 0.088 / 0.013 0.088 / 0.019 0.089 / 0.024 0.091 / 0.030

SFQ-CoDel 0.088 / 0.008 0.088 / 0.013 0.087 / 0.019 0.088 / 0.024 0.089 / 0.029

ABB-2 0.087 / 0.007 0.088 / 0.013 0.090 / 0.018 0.092 / 0.023 0.094 / 0.028

ABB-3 0.087 / 0.007 0.087 / 0.013 0.088 / 0.018 0.090 / 0.023 0.092 / 0.029

ABB-4 0.087 / 0.007 0.087 / 0.013 0.088 / 0.018 0.089 / 0.024 0.091 / 0.029

CoDel 0.092 / 0.008 0.095 / 0.014 0.098 / 0.020 0.100 / 0.026 0.101 / 0.032

Table 5.5: Experiment BASE VoIP Isolation Performance
(Mean Latency / Mean Loss Rate (Percentage) / R-Value)

#FTPs 3 5 7 9 11

DRR-CoDel 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.039 / 0.000 / 93.3

SFQ-CoDel 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3

ABB-2 0.040 / 0.001 / 93.2 0.040 / 0.001 / 93.2 0.041 / 0.000 / 93.2 0.043 / 0.001 / 93.2 0.045 / 0.005 / 93.1

ABB-3 0.040 / 0.000 / 93.2 0.040 / 0.000 / 93.2 0.040 / 0.000 / 93.2 0.041 / 0.001 / 93.2 0.043 / 0.000 / 93.2

ABB-4 0.040 / 0.000 / 93.2 0.040 / 0.000 / 93.2 0.040 / 0.001 / 93.2 0.041 / 0.000 / 93.2 0.043 / 0.004 / 93.1

CoDel 0.050 / 0.055 / 92.8 0.053 / 0.111 / 92.4 0.055 / 0.138 / 92.3 0.057 / 0.157 / 92.1 0.059 / 0.200 / 91.9

are not shown to diverge from providing good delay performance.

In the BASE experiment, a simulated simplex VoIP stream is used to assess the

capability of the schemes in isolating low bit rate flows from greedy ones. Table 5.5 provides

the results. The latency is one-way average latency experienced by the VoIP packets with

uncongested path RTT of 80 ms, the average uncongested RTT of the FTP flows running

in parallel.

All schemes are shown to provide similarly good R-value. The ABB scheme is able

to provide comparably close latency performance with extremely low loss rates to that of

DRR-CoDel and SFQ-CoDel. The clearest result is single-queue CoDel has longer latency

and higher loss rates. This suggests multi-queue AQMs can provide better flow isolation

capability than single queue CoDel.

Table 5.6 provides results of this experiment on the dynamic behavior of the ABB

scheme. The results provide per-flow bin switches and the rate of such switching. The rate

of the switches is calculated by the actual number of switches observed divided by the max

number of potential switches. For example, given 3 flows, 2000 second total simulation

96

Table 5.6: ABB Dynamic Behavior for BASE

#FTPs 3 5 7 9 11

Number of Bin Switches (rate)

ABB-2 1213 (0.20) 2668 (0.27) 4059 (0.29) 5718 (0.32) 7266 (0.33)

ABB-3 1543 (0.26) 4338 (0.43) 6772 (0.48) 8393 (0.47) 10268 (0.47)

ABB-4 1514 (0.25) 4381 (0.44) 7280 (0.52) 10055 (0.56) 12045 (0.55)

Disruption Time (ratio)

ABB-2 2.7 (0.001) 7.2 (0.004) 10.9 (0.005) 12.5 (0.006) 12.3 (0.006)

ABB-3 4.1 (0.002) 8.0 (0.004) 11.3 (0.006) 13.2 (0.007) 16.1 (0.008)

ABB-4 3.8 (0.002) 8.2 (0.004) 11.3 (0.006) 13.8 (0.007) 16.8 (0.008)

time, and one second reclassification interval, the maximum number of switches is 3×2000.

So the rate of the switches is 1213/6000 = 0.20. The results also provide the disruption

time and ratio from our solution addressing packet reordering issue due to bin switches.

The ratio is calculated by the actual disruption time divided by the total simulation time.

As the number of flows increases, the rate of per-flow bin switches goes up reflecting the

wider RTT gaps among the flows and the scheme’s responsiveness to the workload changes.

The disruption time and ratio remain to be very low showing that our solution to resolve

packet reordering issue works well as workload increases.

We caution that the rate of flow bin switches is not an indicator of system instability.

The ability of the scheme in approximating long term fairness is built upon the idea of having

flows switch bins by responding to the changes of flow consumption levels. So a reasonably

high switching rate can be a healthy indicator that the system is operating properly when

the system is loaded. This is especially true in the case of greedy TCP flows. Due to TCP

being responsive, TCP flows are likely operating around their fair share, moving back and

forth among a few bins. In this case, the legitimate concern is how such switches can cause

disruption in terms of the above disruption time and ratio measurements. The above results

show in the case of TCP flows the system gives rise to very little disruption.

97

Table 5.7: Experiment ME1 Flow Throughput (Mbps)

Scheme FTP (mean / CoV / sum) On-off (mean / CoV / sum) Total

DRR-CoDel 4.12 / 0.02 / 16.47 0.53 / 0.08 / 19.15 35.63

SFQ-CoDel 4.24 / 0.03 / 16.95 0.51 / 0.09 / 18.45 35.41

ABB-2 4.31 / 0.06 / 17.26 0.52 / 0.07 / 18.60 35.86

ABB-3 4.28 / 0.04 / 17.12 0.50 / 0.11 / 17.91 35.03

ABB-4 4.17 / 0.03 / 16.68 0.51 / 0.07 / 18.35 35.04

CoDel 4.60 / 0.27 / 18.40 0.51 / 0.10 / 18.53 36.93

5.3.2 ME Simulation Results

The set of ME experiments is used to evaluate the throughput fairness among long-

lived greedy “elephant” flows in the presence of large number of short-lived on-off “mice”

traffic flows under the ABB scheme. We are also interested in the dynamic behavior of the

scheme with this type of traffic load.

The first variant, called ME1, runs 36 exponential on/off TCP flows with an average

rate of 500 kbps. The overall demand is thus 18 Mbps. The on/off time ratio is 1/3 with

on time drawn between 2 and 4 seconds randomly in uniform distribution. ME1 also runs

4 TCP/FTP flows sourced from 4 separate FTP servers. For a 38 Mbps channel capacity,

the expected max-min fair allocation for the FTP flows is 5 Mbps. All flows have their

uncongested path RTTs set to the same 80 ms. We also set the FTP server link speeds to

5, 10, 20, and 1000 Mbps to see if the diverse server links that exist in the Internet may

have any impact over the bandwidth allocations.

Table 5.7 provides the throughput results of ME1. When compared to schemes such

as DRR-CoDel and SFQ-CoDel, the FTP throughput CoV values for ABB-2, ABB-3, and

ABB-4 are all similarly small. This suggests that the ABB scheme is able to maintain

similarly good fairness under this type of traffic load. It does not appear that the FTP

server access link speeds have significant impact over the bandwidth allocation as long as

the access link speeds are above the fair bandwidth share of a flow. CoDel is shown to be

much less fair with a much larger CoV. The total throughput under ABB is also comparable

to that of DRR-CoDel and SFQ-CoDel. This shows that the ABB scheme is able to provide

98

Table 5.8: Experiment ME1 Flow Average RTTs (second)

Scheme FTP (mean / stddev) On-off (mean / stddev) Overall Mean

DRR-CoDel 0.094 / 0.013 0.084 / 0.000 0.085 / 0.005

SFQ-CoDel 0.092 / 0.011 0.083 / 0.000 0.084 / 0.005

ABB-2 0.097 / 0.011 0.086 / 0.001 0.087 / 0.005

ABB-3 0.095 / 0.010 0.083 / 0.000 0.084 / 0.005

ABB-4 0.094 / 0.010 0.083 / 0.000 0.084 / 0.005

CoDel 0.096 / 0.005 0.094 / 0.000 0.094 / 0.002

Table 5.9: ABB Dynamics with Experiment ME1

Scheme Number of Bin Switches (rate) Disruption Time (ratio)

ABB-2 5045 (0.06) 8.2 (0.004)

ABB-3 6160 (0.08) 6.2 (0.003)

ABB-4 7224 (0.09) 6.5 (0.003)

reasonable channel utilization. We noticed that the average throughput for the exponential

on-off flow is slightly above the targeted average rate of 500 kbps. In a separate experiment

with just three exponential on-off flows, we observed similar result. This is likely attributed

to the ns2 implementation of the exponential on-off traffic generator. For example, the use

of integer division in calculating mean packet inter-arrival time interval in our case results

in a shorter interval value. This should cause the actual generated traffic slightly above the

targeted average rate.

The RTT information for ME1 is given in Table 5.8. Similar to that of DRR-CoDel

and SFQ-CoDel, the average RTT for the on-off mice flows under ABB is lower than the

average RTT for the FTP flows. On the contrary, single queue CoDel does not provide a

lower average RTT for the mice flows. This indicates that the ABB scheme, like DRR-CoDel

and SFQ-CoDel, is able to provide better flow isolation than CoDel.

The dynamic behavior of ABB in terms of flow bin switches and disruption time

in ME1 is shown in Table 5.9. The low switching rate is due to the scheme being able to

isolate the mice flows on the first bin for majority of the time without much switching.

The low disruption time and ratio show that the bin switches in this scenario causes little

disruption and the scheme behaves well.

99

Table 5.10: Experiment ME2 Flow Throughput (Mbps)

Scheme FTP (mean / CoV / sum) On-off (mean / CoV / sum) Total

DRR-CoDel 4.54 / 0.02 / 18.17 0.10 / 0.04 / 18.47 36.65

SFQ-CoDel 4.56 / 0.01 / 18.25 0.10 / 0.04 / 18.48 36.73

ABB-2 4.69 / 0.06 / 18.76 0.10 / 0.04 / 18.43 37.19

ABB-3 4.63 / 0.01 / 18.54 0.10 / 0.04 / 18.48 37.02

ABB-4 4.63 / 0.01 / 18.51 0.10 / 0.04 / 18.50 37.01

CoDel 4.67 / 0.23 / 18.68 0.10 / 0.04 / 18.41 37.09

Table 5.11: Experiment ME2 Flow Average RTTs (second)

Scheme FTP (mean / stddev) On-off (mean / stddev) Overall Mean

DRR-CoDel 0.100 / 0.025 0.092 / 0.000 0.092 / 0.004

SFQ-CoDel 0.096 / 0.014 0.090 / 0.000 0.090 / 0.002

ABB-2 0.102 / 0.014 0.090 / 0.000 0.091 / 0.003

ABB-3 0.097 / 0.011 0.090 / 0.000 0.090 / 0.002

ABB-4 0.096 / 0.010 0.090 / 0.000 0.090 / 0.002

CoDel 0.097 / 0.005 0.102 / 0.000 0.102 / 0.001

The second variant, called ME2, is similar to ME1 except it runs 180 exponential

on/off TCP flows with an average rate of 100 kbps. The on/off time intervals are set to 2

and 3 seconds respectively. The results for ME2 are similar to that of ME1. The detailed

data are given in Table 5.10 and Table 5.11 and Table 5.12.

The third variant, called ME3, runs 90 low rate exponential on/off TCP flows with

an average rate of 100 kbps and 90 middle rate exponential on/off TCP flows with an

average rate of randomly drawn between 300 – 600 kbps. The 4 FTP flows are set the same

as the other two variants. Due to the large number of middle rate flows involved along with

the 4 greedy FTP flows, ME3 is a highly congested scenario.

The throughput and RTT results are given in Table 5.13 and Table 5.14 for ME3.

Table 5.12: ABB Dynamics with Experiment ME2

Scheme Number of Bin Switches (rate) Disruption Time (ratio)

ABB-2 42 (0.00) 0.1 (0.000)

ABB-3 2244 (0.01) 6.1 (0.003)

ABB-4 2846 (0.01) 6.5 (0.003)

100

Table 5.13: Experiment ME3 Flow Throughput (Mbps)

Scheme
FTP

(mean / CoV / sum)
Low On-off

(mean / CoV / sum)
Mid On-off

(mean / CoV / sum) Total

DRR-CoDel 0.31 / 0.00 / 1.24 0.10 / 0.04 / 9.24 0.30 / 0.01 / 27.07 37.55

SFQ-CoDel 0.32 / 0.01 / 1.29 0.10 / 0.05 / 9.23 0.30 / 0.16 / 27.02 37.54

ABB-2 0.30 / 0.02 / 1.21 0.10 / 0.04 / 9.23 0.30 / 0.01 / 27.02 37.45

ABB-3 0.30 / 0.03 / 1.21 0.10 / 0.04 / 9.22 0.30 / 0.01 / 26.95 37.38

ABB-4 0.30 / 0.01 / 1.21 0.10 / 0.05 / 9.21 0.30 / 0.01 / 26.93 37.36

CoDel 0.18 / 0.57 / 0.72 0.10 / 0.04 / 9.23 0.31 / 0.03 / 27.56 37.51

Table 5.14: Experiment ME3 Flow Average RTTs (second)

Scheme
FTP

(mean / stddev)
Low On-off

(mean / stddev)
Mid On-off

(mean / stddev) Overall Mean

DRR-CoDel 0.145 / 0.001 0.127 / 0.001 0.153 / 0.003 0.140 / 0.013

SFQ-CoDel 0.123 / 0.001 0.101 / 0.012 0.124 / 0.004 0.113 / 0.015

ABB-2 0.117 / 0.002 0.108 / 0.000 0.115 / 0.001 0.112 / 0.004

ABB-3 0.120 / 0.003 0.107 / 0.001 0.118 / 0.001 0.113 / 0.006

ABB-4 0.119 / 0.003 0.107 / 0.000 0.116 / 0.001 0.112 / 0.005

CoDel 0.129 / 0.011 0.120 / 0.001 0.112 / 0.001 0.117 / 0.005

For the throughput results, we can see that the ABB scheme is fair similarly to DRR-CoDel

and SFQ-CoDel. Both FTP flows and middle rate on/off flows obtain similar average

throughput. On the other hand, CoDel is not shown to be fair as it does not provide good

isolation between different classes of flows. It allows middle rate on/off flows to obtain

higher average throughput than FTP flows as it targets high bandwidth FTP flows with

more packet losses when all flows share a single queue. The RTT results are similar to that

of ME1 and ME2. Greedy FTP flows have higher RTTs and mice flows have lower RTTs.

It is expected in the highly congested scenario the ABB scheme will exhibit a high

degree of dynamics in terms of bin switches. The results given in Table 5.15 confirm the

fact. However, the overall disruption these switches caused remains to be low.

5.4 Results and Analysis for Multi Tier Environment

We report the results for the set of experiments from Table 5.2 designed for the multi-

tier environment in this section. The channel capacity is set to 1 Gbps and the available

101

Table 5.15: ABB Dynamics with Experiment ME3

Scheme Number of Bin Switches (rate) Disruption Time (ratio)

ABB-2 73880 (0.20) 22.5 (0.011)

ABB-3 106564 (0.29) 38.9 (0.019)

ABB-4 117082 (0.32) 40.3 (0.020)

bandwidth is about 948 Mbps. The multi-tier set of experiments is designed to evaluate the

effectiveness of the ABB scheme in providing weighted fairness. Unless otherwise specified,

the reclassification interval of ABB is set to 1 second. For this set of experiments, all

simulation times are set to 1000 seconds unless otherwise specified.

5.4.1 TIER Simulation Results

The TIER experiment is similar to the BASE experiment in purpose but involving

the tiered service quality levels. All experiments involve TCP/FTP flows in three tiers

(Tier1, Tier2, and Tier4 with a weight of 1, 2, and 4 respectively). A single VoIP flow at

Tier1 is also included. We ran two variants of the experiments.

The first variant of the TIER experiment is called TierG. It runs a varying number

(11 – 55) of FTP flows at Tier1. For both Tier2 and Tier4, a single FTP flow is used for

all runs. All flows are set to have the same RTT of 80 ms.

Figure 5.5 shows the weighted throughput fairness results from five simulation runs

with different number of FTP flows. As shown, the ABB scheme especially for the config-

urations with 3 and 4 bins is shown to be close to DRR-CoDel in terms of approximating

weighted fairness. It is expected that neither SFQ-CoDel (not shown) or CoDel is able

to provide weighted fairness. The average tiered flow throughput is given in Table 5.16.

The ABB scheme is able to provide high utilization of the channel capacity as the total

throughput of the ABB scheme is comparable to others. The average RTT information is

given in Table 5.17. The ABB scheme is shown to maintain similar queueing delay for all

flow tiers. The VoIP performance for the single VoIP flow is given in Table 5.18. Again the

ABB scheme is able to provide similar performance to that of DRR-CoDel.

102

Table 5.16: Experiment TierG Flow Throughput Mean / CoV / Sum (Mbps)

#FTPs (T1) 11 22 33

Tier/Sum T1 T2 T4 Sum T1 T2 T4 Sum T1 T2 T4 Sum

DRR-CoDel 55.6 / 0.0 111.0 210.1 933.0 33.6 / 0.0 66.2 129.3 934.5 24.1 / 0.0 47.4 92.7 933.8

ABB-2 59.3 / 0.1 102.3 179.3 933.6 34.9 / 0.0 56.1 110.0 934.3 24.7 / 0.0 41.6 76.3 934.6

ABB-3 57.8 / 0.0 107.4 190.4 933.6 34.3 / 0.0 61.8 119.2 934.6 24.4 / 0.0 45.1 83.3 934.6

ABB-4 57.9 / 0.0 108.9 186.7 932.9 34.0 / 0.0 64.1 122.4 934.5 24.3 / 0.0 45.0 86.6 934.6

CoDel 68.8 / 0.1 85.1 91.1 933.3 39.1 / 0.1 34.3 39.0 934.2 26.7 / 0.1 25.0 27.4 934.2

#FTPs (T1) 44 55

Tier/Sum T1 T2 T4 Sum T1 T2 T4 Sum

DRR-CoDel 18.7 / 0.0 36.9 73.4 934.3 15.4 / 0.0 30.0 59.3 934.4

ABB-2 19.1 / 0.0 32.6 61.0 934.8 15.6 / 0.0 27.8 48.5 934.9

ABB-3 19.0 / 0.0 34.8 64.6 933.4 15.5 / 0.0 28.6 53.6 934.9

ABB-4 18.9 / 0.0 35.0 66.9 934.8 15.5 / 0.0 28.8 55.5 934.8

CoDel 20.3 / 0.1 20.8 20.0 934.4 16.4 / 0.1 16.6 15.9 934.3

Table 5.17: Experiment TierG Flow RTT Mean / Stddev

#FTPs (T1) 11 22 33

Tier T1 T2 T4 T1 T2 T4 T1 T2 T4

DRR-CoDel 0.088 / 0.000 0.089 0.090 0.091 / 0.000 0.091 0.091 0.092 / 0.000 0.093 0.092

ABB-2 0.092 / 0.001 0.089 0.088 0.094 / 0.001 0.088 0.087 0.094 / 0.001 0.088 0.086

ABB-3 0.089 / 0.001 0.087 0.088 0.090 / 0.000 0.087 0.087 0.091 / 0.001 0.088 0.087

ABB-4 0.088 / 0.000 0.087 0.088 0.089 / 0.000 0.087 0.087 0.090 / 0.001 0.088 0.088

CoDel 0.099 / 0.000 0.099 0.099 0.101 / 0.000 0.100 0.100 0.101 / 0.000 0.101 0.101

#FTPs (T1) 44 55

Tier T1 T2 T4 T1 T2 T4

DRR-CoDel 0.094 / 0.000 0.094 0.094 0.095 / 0.001 0.096 0.095

ABB-2 0.095 / 0.001 0.088 0.086 0.095 / 0.001 0.090 0.085

ABB-3 0.092 / 0.003 0.088 0.086 0.092 / 0.001 0.088 0.087

ABB-4 0.091 / 0.000 0.088 0.088 0.091 / 0.000 0.089 0.088

CoDel 0.102 / 0.000 0.102 0.102 0.102 / 0.000 0.102 0.102

103

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 15 20 25 30 35 40 45 50 55

F
ai

rn
es

s
(J

F
I)

Number of Flows

CoDel
ABB-2
ABB-3
ABB-4
DRR-CoDel

(a) Jain’s Fairness Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 15 20 25 30 35 40 45 50 55

F
ai

rn
es

s
(M

M
R

)

Number of Flows

CoDel
ABB-2
ABB-3
ABB-4
DRR-CoDel

(b) Min-Max Ratio

Figure 5.5: Experiment TierG weighted throughput fairness results.

The second variant of the TIER experiment is called TierM. This variant is struc-

tured differently from the first one. For different runs, it runs the same number of FTP

flows but with a different mix of FTP flows in all three tiers. For the five runs, the mixes

of numbers of flows in each tier are:

1. T1 / T2 / T4 = 13 / 11 / 11

2. T1 / T2 / T4 = 25 / 5 / 5

104

Table 5.18: Experiment TierG VoIP Isolation Performance (Mean Latency / Mean Loss
Rate (Percentage) / R-Value)

#FTPs (T1) 11 22 33

DRR-CoDel 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3

ABB-2 0.039 / 0.000 / 93.3 0.039 / 0.004 / 93.2 0.039 / 0.008 / 93.2

ABB-3 0.039 / 0.000 / 93.3 0.039 / 0.006 / 93.2 0.039 / 0.002 / 93.3

ABB-4 0.038 / 0.000 / 93.3 0.039 / 0.008 / 93.2 0.039 / 0.004 / 93.3

CoDel 0.055 / 0.006 / 92.8 0.057 / 0.030 / 92.7 0.058 / 0.058 / 92.6

#FTPs (T1) 44 55

DRR-CoDel 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3

ABB-2 0.039 / 0.006 / 93.2 0.039 / 0.002 / 93.2

ABB-3 0.039 / 0.004 / 93.2 0.039 / 0.004 / 93.2

ABB-4 0.039 / 0.002 / 93.3 0.039 / 0.008 / 93.2

CoDel 0.058 / 0.104 / 92.3 0.058 / 0.138 / 92.2

3. T1 / T2 / T4 = 5 / 25 / 5

4. T1 / T2 / T4 = 5 / 5 / 25

5. T1 / T2 / T4 = 20 / 10 / 5

These mixes represent a spectrum of workloads with some being more heavy than others.

All flows are still set to have the same RTT of 80 ms and the simulation time remains to

be 1000 seconds.

Figure 5.6 provides the weighted throughput fairness results from the five simulation

runs of TierM. Again as shown, the ABB scheme especially for the configurations of 3 and 4

bins provides close approximation of weighted fairness to that of DRR-CoDel. The average

tiered flow throughput for TierM is given in Table 5.19. The small CoV values suggest that

the fairness within the same tier is great under this workload where all flows having the

same RTT. Among the five runs, the worst approximation of the weighted fairness comes at

the run #4, which has the most number of Tier4 FTP flows running. It represents the most

imbalanced and congested scenario. From the throughput results, the ABB scheme again

is able to provide high utilization of the channel capacity. The average RTT information is

given in Table 5.20. The VoIP performance for the single VoIP flow is given in Table 5.21.

105

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5

F
ai

rn
es

s
(J

F
I)

Run No.

CoDel
ABB-2
ABB-3
ABB-4
DRR-CoDel

(a) Jain’s Fairness Index

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

F
ai

rn
es

s
(M

M
R

)

Run No.

CoDel
ABB-2
ABB-3
ABB-4
DRR-CoDel

(b) Min-Max Ratio

Figure 5.6: Experiment TierM weighted throughput fairness results.

We can draw the similar conclusions from the RTT and VoIP results as those in the TierG.

Finally we provide the results of the ABB dynamic behavior for the two variants of

the TIER experiment in Table 5.22 and Table 5.23. The disruption time remains to be low

in all cases, showing the scheme works well with TCP flows.

106

Table 5.19: Experiment TierM Flow Throughput Mean / CoV / Sum (Mbps)

#FTPs 13 11 11 35 25 5 5 35

Tier/Sum T1 T2 T4 Sum T1 T2 T4 Sum

DRR-CoDel 12.0 / 0.0 23.7 / 0.0 47.0 / 0.0 934.1 17.1 / 0.0 33.9 / 0.0 67.2 / 0.0 934.4

ABB-2 16.9 / 0.0 23.7 / 0.0 41.3 / 0.0 934.6 19.7 / 0.0 31.6 / 0.0 56.7 / 0.0 934.8

ABB-3 14.2 / 0.0 23.9 / 0.0 44.3 / 0.0 934.5 18.6 / 0.0 32.8 / 0.0 61.3 / 0.0 934.7

ABB-4 13.6 / 0.0 24.0 / 0.0 45.0 / 0.0 934.5 18.1 / 0.0 33.5 / 0.0 62.9 / 0.0 934.6

CoDel 27.4 / 0.1 25.9 / 0.1 26.6 / 0.1 934.4 26.6 / 0.1 27.3 / 0.1 26.4 / 0.0 934.3

#FTPs 5 25 5 35 5 5 25 35

Tier/Sum T1 T2 T4 Sum T1 T2 T4 Sum

DRR-CoDel 12.6 / 0.0 25.0 / 0.0 49.3 / 0.0 934.2 8.2 / 0.0 16.4 / 0.0 32.5 / 0.0 934.4

ABB-2 17.7 / 0.0 25.2 / 0.0 43.0 / 0.0 934.5 16.4 / 0.1 19.7 / 0.0 30.2 / 0.0 934.7

ABB-3 15.5 / 0.0 25.1 / 0.0 45.8 / 0.0 934.6 12.2 / 0.0 17.8 / 0.0 31.4 / 0.0 934.6

ABB-4 14.3 / 0.0 25.1 / 0.0 46.9 / 0.0 934.5 10.6 / 0.0 17.2 / 0.0 31.8 / 0.0 934.5

CoDel 23.6 / 0.1 27.5 / 0.1 25.8 / 0.1 934.3 26.0 / 0.1 28.2 / 0.1 26.5 / 0.1 934.0

#FTPs 20 10 5 35

Tier/Sum T1 T2 T4 Sum

DRR-CoDel 15.7 / 0.0 31.2 / 0.0 61.6 / 0.0 934.5

ABB-2 19.2 / 0.0 28.8 / 0.0 52.6 / 0.0 934.7

ABB-3 17.4 / 0.0 30.4 / 0.0 56.4 / 0.0 934.7

ABB-4 16.9 / 0.0 30.7 / 0.0 57.9 / 0.0 934.7

CoDel 26.7 / 0.1 26.3 / 0.1 27.6 / 0.0 934.3

Table 5.20: Experiment TierM Flow RTT Mean / Stddev

#FTPs 13 11 11 25 5 5

Tier T1 T2 T4 T1 T2 T4

DRR-CoDel 0.092 / 0.000 0.092 / 0.000 0.092 / 0.000 0.092 / 0.000 0.092 / 0.000 0.092 / 0.000

ABB-2 0.100 / 0.000 0.093 / 0.001 0.088 / 0.001 0.097 / 0.001 0.090 / 0.001 0.087 / 0.000

ABB-3 0.095 / 0.000 0.089 / 0.000 0.086 / 0.000 0.093 / 0.001 0.088 / 0.000 0.086 / 0.000

ABB-4 0.094 / 0.001 0.089 / 0.000 0.087 / 0.000 0.091 / 0.000 0.088 / 0.000 0.087 / 0.000

CoDel 0.101 / 0.000 0.101 / 0.000 0.101 / 0.000 0.101 / 0.000 0.101 / 0.000 0.101 / 0.000

#FTPs 5 25 5 5 5 25

Tier T1 T2 T4 T1 T2 T4

DRR-CoDel 0.092 / 0.000 0.093 / 0.000 0.093 / 0.000 0.091 / 0.000 0.092 / 0.000 0.093 / 0.000

ABB-2 0.100 / 0.000 0.094 / 0.001 0.088 / 0.000 0.101 / 0.000 0.098 / 0.000 0.090 / 0.001

ABB-3 0.096 / 0.001 0.090 / 0.001 0.086 / 0.000 0.099 / 0.000 0.092 / 0.000 0.087 / 0.000

ABB-4 0.095 / 0.000 0.090 / 0.000 0.088 / 0.000 0.097 / 0.000 0.091 / 0.000 0.088 / 0.000

CoDel 0.101 / 0.000 0.101 / 0.000 0.101 / 0.000 0.101 / 0.000 0.101 / 0.000 0.101 / 0.000

#FTPs 20 10 5

Tier T1 T2 T4

DRR-CoDel 0.092 / 0.000 0.093 / 0.000 0.093 / 0.000

ABB-2 0.098 / 0.001 0.090 / 0.001 0.087 / 0.001

ABB-3 0.093 / 0.001 0.088 / 0.001 0.086 / 0.000

ABB-4 0.092 / 0.001 0.088 / 0.000 0.087 / 0.000

CoDel 0.101 / 0.000 0.101 / 0.000 0.101 / 0.000

107

Table 5.21: Experiment TierM VoIP Isolation Performance
(Mean Latency / Mean Loss Rate (Percentage) / R-Value)

#FTPs
(T1:T2:T4)

13:11:11 25:5:5 5:25:5 5:5:25 20:10:5

DRR-CoDel 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3 0.038 / 0.000 / 93.3

ABB-2 0.039 / 0.004 / 93.2 0.039 / 0.004 / 93.2 0.039 / 0.004 / 93.2 0.039 / 0.004 / 93.2 0.039 / 0.002 / 93.3

ABB-3 0.039 / 0.002 / 93.3 0.039 / 0.006 / 93.2 0.039 / 0.002 / 93.3 0.038 / 0.010 / 93.2 0.039 / 0.006 / 93.2

ABB-4 0.039 / 0.006 / 93.2 0.039 / 0.004 / 93.3 0.039 / 0.004 / 93.3 0.038 / 0.000 / 93.3 0.039 / 0.008 / 93.2

CoDel 0.058 / 0.082 / 92.4 0.058 / 0.060 / 92.5 0.058 / 0.056 / 92.6 0.058 / 0.046 / 92.6 0.058 / 0.078 / 92.5

Table 5.22: ABB Dynamic Behavior for TierG

#FTPs 11 22 33 44 55

Number of Bin Switches (rate)

ABB-2 1855 (0.14) 4595 (0.19) 7152 (0.20) 9286 (0.20) 12385 (0.22)

ABB-3 2486 (0.19) 5554 (0.23) 9001 (0.26) 12564 (0.27) 16374 (0.29)

ABB-4 2590 (0.20) 6059 (0.25) 10263 (0.29) 14445 (0.31) 19216 (0.34)

Disruption Time (ratio)

ABB-2 6.9 (0.007) 10.0 (0.010) 10.9 (0.011) 11.1 (0.011) 11.1 (0.011)

ABB-3 6.0 (0.006) 7.2 (0.007) 8.1 (0.008) 9.0 (0.009) 9.0 (0.009)

ABB-4 5.3 (0.005) 6.8 (0.007) 7.8 (0.008) 8.4 (0.008) 8.7 (0.009)

Table 5.23: ABB Dynamic Behavior for TierM

#FTPs
(T1:T2:T4)

13:11:11 25:5:5 5:25:5 5:5:25 20:10:5

Number of Bin Switches (rate)

ABB-2 5946 (0.17) 5971 (0.17) 6799 (0.19) 6854 (0.20) 6189 (0.18)

ABB-3 8428 (0.24) 8958 (0.26) 8707 (0.25) 8243 (0.24) 8719 (0.25)

ABB-4 10257 (0.29) 10514 (0.30) 10067 (0.29) 9734 (0.28) 10426 (0.30)

Disruption Time (ratio)

ABB-2 9.6 (0.010) 10.1 (0.010) 10.3 (0.010) 9.7 (0.010) 10.0 (0.010)

ABB-3 6.7 (0.007) 7.2 (0.007) 7.3 (0.007) 6.4 (0.006) 7.0 (0.007)

ABB-4 6.5 (0.007) 7.1 (0.007) 7.3 (0.007) 6.3 (0.006) 7.0 (0.007)

108

Table 5.24: Flow Throughput by Tiers for Experiment UDP

Scheme FTP-T1 UDP-T1 FTP-T2 UDP-T2 FTP-T4 UDP-T4 Total

DRR-CoDel 11.15 12.64 22.12 25.07 43.68 49.28 933.3

ABB-2 13.19 49.32 20.64 49.32 37.51 49.32 932.7

ABB-3 10.97 48.84 20.35 48.84 39.91 49.33 930.6

ABB-4 10.69 37.94 20.99 39.04 41.66 49.29 933.0

ABB-5 11.02 32.49 21.35 38.51 41.52 49.28 933.1

CoDel 23.24 49.31 24.31 49.33 23.79 49.32 932.7

5.4.2 UDP Simulation Results

The UDP experiment is designed to assess the performance of the ABB scheme in

isolating unresponsive high bandwidth UDP flows. Our prior work showed that single queue

schemes fail to provide UDP isolation. We set to answer if the ABB scheme with its use of

multiple queues is able to provide better protection from unresponsive UDP flows.

The experiment is set up with three flow tiers: Tier1, Tier2, and Tier4. Each tier

runs 11 FTP flows. In addition, each tier also has a single high bandwidth UDP flow sourced

at 50 Mbps. All flows have the same uncongested path RTT of 80 ms.

Table 5.24 provides both FTP and UDP flow throughput results for each tier. In

the FTP case, the throughput is the average of that 11 flows at each tier. As expected,

DRR-CoDel provides nearly optimal UDP isolation. CoDel does not provide UDP isolation

at all.

When compared to single queue CoDel, ABB with both 2 and 3 bins also do not

provide adequate UDP isolation but the allocations to the FTP flows in different tiers are

approximately more weighted fair. It takes ABB with 4 bins to start providing some degree

of UDP isolation. Note this scenario involves three UDP flow tiers. To provide good UDP

flow isolation, ideally the three tiered high speed UDP flows each need to be isolated into its

own bins. A minimum of 4 bins are needed with one extra bin for the TCP flows. Otherwise

when a FTP flow gets into the same bin with a UDP flow, the UDP flow will “win” over

the FTP flow in terms of bandwidth allocation. Considering TCP flow dynamics, an extra

109

Table 5.25: ABB Dynamics with Experiment UDP

Scheme Number of Bin Switches (rate) Disruption Time (ratio)

ABB-2 6413 (0.18) 8.6 (0.009)

ABB-3 6260 (0.17) 15.8 (0.016)

ABB-4 7956 (0.22) 42.7 (0.043)

ABB-5 9451 (0.26) 40.8 (0.041)

bin should help by serving as a buffer between the TCP flows and the UDP flows. We

confirmed this by running ABB with 5 bins in this case. The throughput results for ABB

with 5 bins are also given in the above table and show a huge improvement over ABB with

4 bins in providing UDP flow isolation.

In terms of ABB dynamics, the results are given in Table 5.25. With the number of

TCP flows involved, the bin switching rate is not low and is consistent with that of TierG

and TierM with similar number of TCP flows running. One noticeable difference between

the disruption time of this experiment and others is the relatively higher disruption time

ratios in the case of 4 and 5 bins. This is due to the large disparity in queue lengths among

the bins. A bin with unresponsive high bandwidth UDP flow will likely build up its queue

while a bin with only responsive TCP flows maintains short queue length under CoDel.

5.4.3 APP Simulation Results

The APP experiment is designed to run more realistic traffic including FTP, HAS,

and web. Our objective is to evaluate application performance in various workloads. We

are particularly interested in knowing if the ABB scheme is able to provide benefit to higher

tier application flows when system is loaded.

The first variant, called TAPPG, runs a total 100 flows. They are 30 web flows and

20 HAS flows at Tier1, 20 HAS flows at Tier2, 20 HAS flows at Tier4, and 10 FTP flows at

Tier4. So there are 60 HAS flows running in total. For the Gbps channel speed, the HAS

video bit rate representations are set to 1.5, 3.0, 6.0, 9.0, 12.0, and 15.0 Mbps. All flows

are set to have the same uncongested path RTT of 80 ms. Table 5.26 provides the average

110

Table 5.26: Application Flow Throughput by Types and Tiers for Experiment TAPPG

Scheme FTP HAS-T1 HAS-T2 HAS-T4

DRR-CoDel 27.17 6.17 10.65 15.16

ABB-2 19.48 9.80 11.04 14.84

ABB-3 22.18 8.17 10.42 15.57

ABB-4 23.05 7.60 10.54 15.52

CoDel 21.54 11.38 11.43 11.59

FTP and HAS flow throughputs. For HAS, it gives average HAS flow throughput by tiers.

The throughput results show that CoDel, which does not support weighted alloca-

tion, gives no benefit to HAS users for subscribing to high tiers. Tier aware DRR-CoDel

does allocate more bandwidth for higher tier HAS flows than lower tier HAS flows. The

ABB scheme is able to approximate the allocations of DRR-CoDel, supporting the economic

model behind tiered service quality levels.

 0

 20

 40

 60

 80

 100

 120

FTP-T4 HAS-T1 HAS-T2 HAS-T4 WEB-T1

P
er

ce
nt

ag
e

of
 B

in
 O

cc
up

an
cy

Traffic Type and Tier

Bin 1 Bin 2 Bin 3 Bin 4

Figure 5.7: TAPPG - Bin occupancy in percentage of time for each tier and traffic type

To provide insight over how the ABB scheme allocates more throughput to higher

tier HAS flows, we calculated the percentage of time for each tier and type of traffic spent in

111

Table 5.27: HAS Performance By Tiers for Experiment TAPPG:
Video Play Rate (Mbps) / Average Adaptation Count Per Hour

Scheme HAS-T1 HAS-T2 HAS-T4

DRR-CoDel 5.71 / 15.0 9.46 / 13.0 13.44 / 18.1

ABB-2 8.58 / 131.2 10.13 / 61.6 13.28 / 31.9

ABB-3 7.25 / 106.7 9.81 / 61.6 13.94 / 19.2

ABB-4 7.04 / 74.5 9.76 / 55.1 13.87 / 17.0

CoDel 10.23 / 131.9 10.54 / 110.7 10.46 / 116.3

each bin. Under ABB-4, the results are given in Figure 5.7. For example, Tier4 HAS flows

spent 74.8% of time in bin 1, 19.9% of time in bin 2, 3.5% of time in bin 3, and 1.8% of time

in bin 4. As we can see, due to their low demand for bandwidth, web flows were placed in

bin 1 (the lowest bin in terms of bandwidth consumption) all the time. Among the three

HAS tiers, the HAS flows of higher tier were placed in the lower bins for longer time to

receive better bandwidth allocation. As the FTP flows of Tier4 consume more bandwidth

than the HAS flows at the same tier, the FTP flows spends relatively less time in bin 1 so

that the demand of HAS flows is guaranteed.

Table 5.27 provides the HAS performance results. Under CoDel, the video play rate

and adaption count for HAS flows at different tiers are similar, defeating the purpose of

subscribing to a higher tier. For DRR-CoDel that supports tiered scheduling, HAS flows

at higher tier are able to achieve better HAS performance in terms of better play rate with

low adaption count. The ABB scheme, similar to DRR-CoDel, offers better HAS video play

rate and lower adaption count than CoDel. DRR-CoDel is seen to have lowest adaptation

counts. This is expected for schemes that provide better short-term fairness (weighted or

unweighted). As a result of that, flows under these schemes see less variations in their

achieved throughput and therefore fewer adaptations.

It is of particular interest to know what the results would be for this scenario under

the conventional tiering model based on max service rates. For this, we ran a second variant

of the APP experiment called TAPPC. This variant runs the same set of flows with the

same setup but the three tiers are the conventional service tiers with max service rates

112

Table 5.28: Application Flow Throughput by Types and Tiers for Experiment TAPPC

Tier Rate 150 12 50 150

Scheme FTP HAS

DRR-CoDel 19.06 6.78 13.36 13.28

ABB-2 19.87 6.78 13.66 14.25

ABB-3 18.72 6.78 14.40 14.24

ABB-4 16.78 6.78 13.78 14.26

CoDel 26.77 6.72 12.55 12.92

Table 5.29: HAS Performance By Tiers for Experiment TAPPC:
Video Play Rate (Mbps) / Average Adaptation Count Per Hour

Tier Rate 12 50 150

DRR-CoDel 5.97 / 7.0 11.91 / 15.8 11.76 / 17.7

ABB-2 5.96 / 7.0 12.68 / 57.0 13.21 / 41.5

ABB-3 5.96 / 7.0 13.17 / 31.2 12.74 / 25.9

ABB-4 5.96 / 7.0 12.36 / 24.2 12.73 / 22.9

CoDel 5.96 / 7.5 11.42 / 91.8 11.73 / 82.9

set to 12, 50, and 150 Mbps as commonly used today. Table 5.28 and Table 5.29 provide

the throughput and HAS performance results. With conventional tiering model, schedulers

are unweighted. So the data for DRR-CoDel and ABB are the data with the schedulers

configured to not use weights. The throughput and video play rate results for the middle

tier show that the flows of the middle tier achieve similar performance to that of the flows at

the highest tier. In some cases, the flows of the middle tier even achieve better performance

than the flows at the highest tier, which totally defeats the purpose of subscribing to the

best tier. Under single queue CoDel, the flows at the higher tiers exhibit the much higher

degree of adaptations, which can have a negative impact over perceived video quality for

higher tier HAS users. The clearest result from this experiment is the conventional tiering

model is not good during the time of congestion and our new tiering model is better in

maintaining service quality levels with respect to service tiers.

We also ran a third variant, called TAPPR, of the experiment with the three types

of application traffic running in all three tiers simultaneously. Flows of each type are equally

113

divided among the tiers. Each tier runs 3 FTP, 20 HAS, and 10 Web flows.

 0

 20

 40

 60

 80

 100

 120

FTP-T1 FTP-T2 FTP-T4 HAS-T1 HAS-T2 HAS-T4 WEB-T1 WEB-T2 WEB-T4

P
er

ce
nt

ag
e

of
 B

in
 O

cc
u

pa
nc

y

Traffic Type and Tier

Bin 1 Bin 2 Bin 3 Bin 4

Figure 5.8: TAPPR - Bin occupancy in percentage of time for each tier and traffic type

Table 5.30 and Table 5.31 provide the application throughput and HAS performance

results. The throughput results show that tier aware DRR-CoDel allocates more bandwidth

for flows of higher tiers for both FTP and HAS flow classes. The throughput results also

show that the ABB scheme is able to provide both FTP and HAS flows with the throughput

consistent with their tiers approximating that of DRR-CoDel. The percentage of time each

tier and type of traffic spend in each bin is given in Figure 5.8. Again we see that web flows

irrespective of the tiers spend the whole time in bin 1 due to their low demand. Among

the HAS or FTP flows of different tiers, higher tier flows were able to spend more time in

lower bins to receive more bandwidth. Among the FTP and HAS flows of the same tier,

FTP flows spend less time in lower bins due to their higher throughput demands. From

the HAS application performance data for this experiment, it is not difficult to draw the

same conclusion we drew before. Under ABB scheme, HAS flows of higher tier are able to

achieve better HAS video play rate and lower adaption count than CoDel.

Finally we give the WRT results for all three APP experiment variants in Table 5.32.

114

Table 5.30: Application Flow Throughput by Types and Tiers for Experiment TAPPR

Scheme FTP-T1 FTP-T2 FTP-T4 HAS-T1 HAS-T2 HAS-T4

DRR-CoDel 8.53 16.67 32.08 7.96 11.94 16.46

ABB-2 12.83 15.54 20.16 9.81 12.43 15.73

ABB-3 10.28 15.19 26.34 9.18 11.94 16.13

ABB-4 8.49 14.33 25.76 8.49 12.48 16.50

CoDel 24.63 22.80 23.13 11.74 11.66 11.46

Table 5.31: HAS Performance By Tiers for Experiment TAPPR:
Video Play Rate (Mbps) / Average Adaptation Count Per Hour

Scheme HAS-T1 HAS-T2 HAS-T4

DRR-CoDel 7.29 / 18.2 10.54 / 15.2 14.73 / 18.0

ABB-2 8.70 / 115.8 11.39 / 56.5 14.12 / 19.2

ABB-3 8.21 / 95.1 10.94 / 25.1 14.45 / 19.6

ABB-4 7.65 / 73.0 11.16 / 43.7 14.74 / 19.1

CoDel 10.63 / 114.7 10.66 / 129.0 10.36 / 111.7

For the low bandwidth web flows, under all scenarios, we see reasonably good web perfor-

mance in terms of web response time (WRT). It is worth noting that the web model we use

is not a good representation of modern commercial web flows (see Section 4.2.3). So such

conclusion is most likely not true for modern web flows.

Table 5.32: Web Performance for All APP Experiment Variants:
Web Response Time (Seconds) / Stddev

Experiment TAPPG TAPPC TAPPR

DRR-CoDel 0.196 / 0.061 0.187 / 0.059 0.194 / 0.061

ABB-2 0.185 / 0.062 0.183 / 0.063 0.184 / 0.061

ABB-3 0.187 / 0.063 0.183 / 0.062 0.183 / 0.060

ABB-4 0.182 / 0.065 0.183 / 0.059 0.187 / 0.061

CoDel 0.195 / 0.060 0.200 / 0.061 0.198 / 0.060

115

Chapter 6

Conclusions and Future Work

In the research leading to this dissertation, we have studied the downstream band-

width management in the context of emerging DOCSIS-based cable networks. The latest

DOCSIS 3.1 (D3.1) standard is to provide unprecedented capacity at Gbps bandwidth for

an access network. Once deployed, the whole landscape of broadband access will change

with the number of the households having Gbps access increasing dramatically.

As cable networks are transitioning to D3.1 standard, the work that is of compelling

interests to the broadband network community is apparently to understand if the existing

bandwidth management strategy based on the current notion of service model is able to

continue to function and provide reasonable performance. Such work defined the effort of the

first phase of the research. Following the first phase, our second phase focused on addressing

the combined problem of fairness and bufferbloat, which were properly identified in the first

phase. While a solution based on fair queueing is possible, the community has been hesitant

in adopting such approach due to its high complexity and cost. We proposed an approximate

bandwidth management model to address the combined problem of fairness and bufferbloat

with low complexity and low cost. The approximate bandwidth management model is based

on quantization and binning techniques that have been the latest research trend in reducing

scheduling complexity. Following the model, we further implemented a scheduling scheme

based on adaptive bandwidth binning (ABB). Detailed comparative studies and results of

the research were provided in the previous two chapters. In the following, we conclude with

116

our results and remarks. We also end with a section for potential future work.

6.1 Concluding Remarks

For the first phase of the research, we assumed that the current standard practice

of bandwidth management in DOCSIS is to use a single aggregate queue for all flows to be

served FCFS after a regulator process used to support service tiering. The single queue is

managed by a simple DT queue manager. We also assumed that delay-based AQMs or other

AQMs can be used. Under these assumptions, we studied the effectiveness of these queue

managers in managing fairness and application performance. The result is clear that DT is

not desirable. Delay-based AQMs are effective in controlling queueing delays and provide

strong isolations among responsive flows. However, single queue delay-based AQMs do not

address TCP RTT unfairness issue nor do they protect responsive flows from unresponsive

high bandwidth UDP flows.

For the second phase of the study, we addressed the combined problem of fairness and

bufferbloat using an idea we call adaptive bandwidth binning (ABB). ABB is positioned in

between state-aware AQM’s designed to isolate mice from elephant flows and low complexity

packet scheduling approximations to fair queueing. We apply the idea in the context of

multi-tiered, emerging DOCSIS-based cable networks. We assume that the weighted max-

min fairness is the desirable criterion to allocate more bandwidth for higher tiered users.

The state-aware AQM will likely not provide sufficiently granular isolocation while a fair

queueing approximation is generally viewed as overly complex.

ABB uses a fixed number of bins and periodically (re-)maps the flows into these

bins based on flow consumption levels. Flows in the same bin share a queue managed by

CoDel for low queueing latency and are scheduled in a FCFS manner for low complexity

and cost. An outer scheduler schedules the bins. Due to the number of bins being limited,

the scheduler can be sufficiently simple to implement. With the ABB scheme, bins are

scheduled with a weighted DRR scheduler where each bin is given a weight according to the

flows (along with their weights) classified into the bin. We addressed the service tiering by

117

assuming flows subscribe to different service quality levels and the flow weights are assigned

according to such quality levels. The bandwidth allocation is then to approximate weighted

max-min fair allocation in the tiered scenario. We support the service tiering by normalizing

flow consumption levels with flow weights.

Through simulation studies, we compared the ABB scheme with DRR-CoDel, SFQ-

CoDel and single queue CoDel. DRR-CoDel is an representative of the reference approach

and is included as a reference point. SFQ-CoDel is multi-queue based approach that cannot

handle flow weights but works well in a single tier environment. Single queue based CoDel

was also included for reference purpose.

We first analyzed the ABB scheme in the single tier environment where all flows are

in the same tier with same weight. Our results and analysis indicated that the ABB scheme

with its use of just a few bins is able to provide reasonable performance in terms of fairness

and latency property close to that of DRR-CoDel and SFQ-CoDel. The results showed that

the multi-queue based ABB scheme is able to ameliorate the TCP RTT unfairness issue

that impacts single queue management schemes.

In a multi-tier environment, our results and analysis showed that the ABB scheme is

able to provide weighted fairness close to that of DRR-CoDel. Due to lack of support for flow

weights, both SFQ-CoDel and single queue CoDel are unable to support flow tiering. We also

considered the scenario in which responsive TCP flows and high bandwidth unresponsive

flows compete. We found the ABB scheme with its use of sufficient number of bins is able

to provide certain degree of UDP isolation. We further analyzed application performance

with experiments that involved realistic types of traffic including FTP, HAS, and web flows.

We found that the ABB scheme is able to provide better HAS application performance for

subscribers that subscribe to higher service tiers. On the contrary, conventional service

tiering based on max service rates faces difficulty in providing better service quality for

high tier users.

In summary, the ABB scheme is a low complexity and cost solution. With CMTS

already measuring flow consumptions, its use of flow consumption levels for binning does

118

not incur extra cost. It is shown to be effective in providing long term weighted max-min

fairness and optimal latency property close to that of a reference approach.

6.2 Future Work

The research described in this dissertation proposed a significantly new approach for

managing bandwidth. Our work should be viewed simply as foundational. While the results

presented do show promise, there is a significant number of basic questions and issues that

must be addressed. These issues include at least the following:

• More precisely define and quantify fairness outcomes.

• Explore the design space surrounding the choice of the flow consumption sliding win-

dow time scale and the scheduling interval.

The future work should be plenty. The direction of this research has been on the

bandwidth management in the downstream direction only. We recognize upstream band-

width management is an integral part of the overall bandwidth management for the emerg-

ing DOCSIS networks. Thus the future work should involve bandwidth management in the

upstream direction as well.

Future work may also include the refinement and optimization of the ABB scheme.

We also recognize some of the shortcomings or potential shortcomings of the ABB scheme.

For example, the scheme may be further optimized to provide better fairness through better

binning strategies. One of the binning strategies we actively considered was to use the

max-min fair share as the bandwidth boundary for the first bin. This would help isolate

all non-backlogged flows into the first bin to have more bins for the isolation of other flows

or reduce the number of bins needed. But estimating the fair share based on actual flow

consumption was proven to be difficult. It may need a combination of other measurements

to be successful.

The ABB scheme is found to be not as effective as we hoped in isolating unresponsive

high bandwidth UDP flows to provide better fairness when such unresponsive flows are

119

involved. It is inherently hard in a binning scheme to ensure fairness when unresponsive

flows are involved. For example, in the scenario where an unresponsive high bandwidth

UDP flow is binned with responsive flows in the same bin, the achieved throughput of the

responsive flows is at the mercy of the unresponsive flow. Even in the scenario where all

unresponsive flows are isolated in separate bins, different unresponsive flows with different

sending rates cannot share fairly in the same bin. It would require one bin per unresponsive

flow to ensure ideal fairness.

We found in ABB that the scheduling disruption time can be significant due to

unresponsive high bandwidth UDP flows. With the involvement of unresponsive flows, the

bins may not be well balanced in terms of their lengths, which translates to longer disruption

time. This is somehow related to the head-drop CoDel algorithm that allows a queue to

build up in one bin. A tail-drop version of the CoDel or PIE may be more effective when

used with each bin.

While it may not seem to be hard to identify unresponsive high bandwidth flows,

how to handle them is not a simple issue once they are identified. The handling may well

depend on specific goal. If the goal is simply to provide protection for responsive flows, the

unresponsive flows can be isolated to a single bin. But if the goal also includes providing

fairness among all flows including unresponsive flows, it becomes much harder to do.

We plan on addressing these issues in the near future.

120

Bibliography

[1] The network simulator – ns-2. http://www.isi.edu/nsnam/ns/.

[2] Saamer Akhshabi, Lakshmi Anantakrishnan, Ali C Begen, and Constantine Dovro-
lis. What happens when HTTP adaptive streaming players compete for bandwidth?
In Proceedings of the 22nd international workshop on Network and Operating System
Support for Digital Audio and Video, pages 9–14. ACM, 2012.

[3] Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis. An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP. In Proceedings of the
second annual ACM conference on Multimedia systems, pages 157–168. ACM, 2011.

[4] F. Baker and G. Fairhurst. IETF recommendations regarding active queue manage-
ment. https://tools.ietf.org/html/rfc7567, 2015.

[5] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and
Hui Zhang. A quest for an Internet video quality-of-experience metric. In Proceedings
of the 11th ACM Workshop on Hot Topics in Networks, pages 97–102. ACM, 2012.

[6] Paul Barford and Mark Crovella. Generating representative web workloads for network
and server performance evaluation. In ACM SIGMETRICS Performance Evaluation
Review, volume 26, pages 151–160. ACM, 1998.

[7] Jon C. R. Bennett and Hui Zhang. WF2Q: worst-case fair weighted fair queueing. In
INFOCOM’96. Fifteenth Annual Joint Conference of the IEEE Computer Societies.
Networking the Next Generation. Proceedings IEEE, volume 1, pages 120–128. IEEE,
1996.

[8] Cable Television Laboratories, Inc. Data-Over-Cable Service Interface Specifications:
Operations Support System Interface Specification. http://www.cablelabs.org/
cablemodem/specifications/specifications20.html, 2008.

[9] Cable Television Laboratories, Inc. Data-Over-Cable Service Interface Specifications:
DOCSIS 3.1 MAC and Upper Layer Protocols Interface Specification, 2015. CM-SP-
MULPIv3.1-I06-150611.

[10] Shun Y Cheung and Corneliu S Pencea. BSFQ: Bin sort fair queueing. In INFOCOM
2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communica-
tions Societies. Proceedings. IEEE, volume 3, pages 1640–1649. IEEE, 2002.

121

http://www.isi.edu/nsnam/ns/
https://tools.ietf.org/html/rfc7567
http://www.cablelabs.org/cablemodem/specifications/specifications20.html
http://www.cablelabs.org/cablemodem/specifications/specifications20.html

[11] David Clark and John Wroclawski. An approach to service allocation in the internet.
Technical report, Internet Draft draft-clark-diff-svc-alloc-00. txt, July 1997, also talk
by D. Clark in the Int-Serv WG at the Munich IETF, 1997.

[12] Robert G Cole and Joshua H Rosenbluth. Voice over IP performance monitoring. ACM
SIGCOMM Computer Communication Review, 31(2):9–24, 2001.

[13] Nicola Cranley, Philip Perry, and Liam Murphy. User perception of adapting video
quality. International Journal of Human-Computer Studies, 64(8):637–647, 2006.

[14] Mark E Crovella and Azer Bestavros. Self-similarity in world wide web traffic: evidence
and possible causes. Networking, IEEE/ACM Transactions on, 5(6):835–846, 1997.

[15] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. Elastic: A
client-side controller for dynamic adaptive streaming over HTTP (DASH). In Packet
Video Workshop (PV), 2013 20th International, pages 1–8. IEEE, 2013.

[16] Luca De Cicco and Saverio Mascolo. An adaptive video streaming control system: Mod-
eling, validation, and performance evaluation. Networking, IEEE/ACM Transactions
on, 22(2):526–539, 2014.

[17] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simulation of a
fair queueing algorithm. In ACM SIGCOMM Computer Communication Review, vol-
ume 19, pages 1–12. ACM, 1989.

[18] Florin Dobrian, Asad Awan, Dilip Joseph, Aditya Ganjam, Jibin Zhan, Vyas Sekar, Ion
Stoica, and Hui Zhang. Understanding the impact of video quality on user engagement.
Communications of the ACM, 56(3):91–99, 2013.

[19] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. Understanding the impact of video quality on user en-
gagement. ACM SIGCOMM Computer Communication Review, 41(4):362–373, 2011.

[20] Constantinos Dovrolis, Dimitrios Stiliadis, and Parameswaran Ramanathan. Propor-
tional differentiated services: Delay differentiation and packet scheduling. ACM SIG-
COMM Computer Communication Review, 29(4):109–120, 1999.

[21] Mandouh Droubi, Nasser Idirene, and Charles Chen. Dynamic bandwidth allocation
for the hfc docsis mac protocol. In Computer Communications and Networks, 2000.
Proceedings. Ninth International Conference on, pages 54–60. IEEE, 2000.

[22] Eric Duzamet. Fair queue CoDel packet scheduler. https://dev.openwrt.
org/browser/trunk/target/linux/generic/patches-3.3/042-fq_
codel-Fair-Queue-Codel-AQM.patch?rev=33560, 2012.

[23] Zyad Dwekat and George N Rouskas. A practical fair queuing scheduler: Simplification
through quantization. Computer Networks, 55(10):2392–2406, 2011.

[24] G Fairhurst, A Sathiaseelan, and R Secchi. Updating tcp to support rate-
limited traffic (draft-ietf-tcpm-newcwv-12). https://tools.ietf.org/html/
draft-ietf-tcpm-newcwv-12, 2015.

122

https://dev.openwrt.org/browser/trunk/target/linux/generic/patches-3.3/042-fq_codel-Fair-Queue-Codel-AQM.patch?rev=33560
https://dev.openwrt.org/browser/trunk/target/linux/generic/patches-3.3/042-fq_codel-Fair-Queue-Codel-AQM.patch?rev=33560
https://dev.openwrt.org/browser/trunk/target/linux/generic/patches-3.3/042-fq_codel-Fair-Queue-Codel-AQM.patch?rev=33560
https://tools.ietf.org/html/draft-ietf-tcpm-newcwv-12
https://tools.ietf.org/html/draft-ietf-tcpm-newcwv-12

[25] Federal Communications Commission. 2015 Broadband Progress Report, 2015.

[26] Anja Feldmann, Anna C Gilbert, Polly Huang, and Walter Willinger. Dynamics of IP
traffic: A study of the role of variability and the impact of control. In ACM SIGCOMM
Computer Communication Review, volume 29, pages 301–313. ACM, 1999.

[27] Wu-chang Feng, Kang G Shin, Dilip D Kandlur, and Debanjan Saha. The BLUE ac-
tive queue management algorithms. IEEE/ACM Transactions on Networking (TON),
10(4):513–528, 2002.

[28] Sally Floyd. RED (random early detection) queue management. http://www.icir.
org/floyd/red.html, 2008.

[29] Sally Floyd and Kevin Fall. Promoting the use of end-to-end congestion control in the
internet. IEEE/ACM Transactions on Networking (TON), 7(4):458–472, 1999.

[30] Sally Floyd, Ramakrishna Gummadi, Scott Shenker, et al. Adaptive RED: An al-
gorithm for increasing the robustness of RED’s active queue management. Preprint,
available at http://www.icir.org/floyd/papers.html, 2001.

[31] Sally Floyd and Van Jacobson. Traffic phase effects in packet-switched gateways. ACM
SIGCOMM Computer Communication Review, 21(2):26–42, 1991.

[32] Sally Floyd and Van Jacobson. Random early detection gateways for congestion avoid-
ance. Networking, IEEE/ACM Transactions on, 1(4):397–413, 1993.

[33] Manfred Georg, Christoph Jechlitschek, and Sergey Gorinsky. Improving individual
flow performance with multiple queue fair queuing. In Quality of Service, 2007 Fifteenth
IEEE International Workshop on, pages 141–144. IEEE, 2007.

[34] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark buffers in the Internet. Queue,
9(11):40, 2011.

[35] S Jamaloddin Golestani. A self-clocked fair queueing scheme for broadband applica-
tions. In INFOCOM’94. Networking for Global Communications., 13th Proceedings
IEEE, pages 636–646. IEEE, 1994.

[36] T Hoeiland-Joergensen, P McKenney, D Taht, J Ghettys, and E Dumazet.
FlowQueue-Codel (draft-ietf-aqm-fq-codel-02). https://tools.ietf.org/html/
draft-ietf-aqm-fq-codel-02, 2015.

[37] Gongbing Hong, James Martin, Scott Moser, and James Westall. Fair scheduling on
parallel bonded channels with intersecting bonding groups. In Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS), 2012 IEEE
20th International Symposium on, pages 89–98. IEEE, 2012.

[38] Gongbing Hong, James Martin, and James M. Westall. On fairness and application
performance of active queue management in broadband cable networks. Computer
Networks, 91:390–406, November 2015.

123

http://www.icir.org/floyd/red.html
http://www.icir.org/floyd/red.html
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-02
https://tools.ietf.org/html/draft-ietf-aqm-fq-codel-02

[39] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari.
Confused, timid, and unstable: Picking a video streaming rate is hard. In Proceedings
of the 2012 ACM Conference on Internet Measurement Conference, pages 225–238.
ACM, 2012.

[40] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Wat-
son. A buffer-based approach to rate adaptation: Evidence from a large video streaming
service. In Proceedings of the 2014 ACM conference on SIGCOMM, pages 187–198.
ACM, 2014.

[41] Paul Hurley, J-Y Le Boudec, Patrick Thiran, and Mourad Kara. ABE: Providing a
low-delay service within best effort. Network, IEEE, 15(3):60–69, 2001.

[42] Saima Jabeen, Muhammad Bilal Zafar, Ihsan Ayyub Qazi, and Zartash Afzal Uzmi.
Splitbuff: Improving the interaction of heterogeneous rtt flows on the internet. In
Communications (ICC), 2013 IEEE International Conference on, pages 2315–2319.
IEEE, 2013.

[43] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM Computer
Communication Review, volume 18, pages 314–329. ACM, 1988.

[44] Rajendra K Jain, Dah-Ming W Chiu, and William R Hawe. A quantitative measure of
fairness and discrimination for resource allocation in shared computer systems. http:
//www1.cse.wustl.edu/˜jain/papers/ftp/fairness.pdf, 1984.

[45] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency, and sta-
bility in HTTP-based adaptive video streaming with FESTIVE. In Proceedings of the
8th International Conference on Emerging Networking Experiments and Technologies,
pages 97–108. ACM, 2012.

[46] Srinivasan Keshav. An Engineering Approach to Computer Networking: ATM Net-
works, The Internet and Telephone Network. Addison Wesley, Reading, Massachusetts,
1997.

[47] Naeem Khademi, David Ros, and Michael Welzl. The new AQM kids on the block:
Much ado about nothing? Technical report, University of Oslo, October 2013.

[48] S Shunmuga Krishnan and Ramesh K Sitaraman. Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs. Networking,
IEEE/ACM Transactions on, 21(6):2001–2014, 2013.

[49] Nicolas Kuhn, Emmanuel Lochin, and Olivier Mehani. Revisiting old friends: Is CoDel
really achieving what RED cannot? In Proceedings of the 2014 ACM SIGCOMM
Workshop on Capacity Sharing Workshop, CSWS ’14, pages 3–8, New York, NY, USA,
2014. ACM.

[50] Wen-Kuang Kuo, Sunil Kumar, and C-CJ Kuo. Bandwidth allocation and traffic
scheduling for docsis systems with qos support. In Global Telecommunications Confer-
ence, 2002. GLOBECOM’02. IEEE, volume 2, pages 1990–1994. IEEE, 2002.

124

http://www1.cse.wustl.edu/~jain/papers/ftp/fairness.pdf
http://www1.cse.wustl.edu/~jain/papers/ftp/fairness.pdf

[51] Jean-Yves Le Boudec. Rate adaptation, congestion control and fairness: A tutorial,
2012.

[52] Zhi Li, Ali C Begen, Joshua Gahm, Yufeng Shan, Bruce Osler, and David Oran. Stream-
ing video over HTTP with consistent quality. In Proceedings of the 5th ACM Multimedia
Systems Conference, pages 248–258. ACM, 2014.

[53] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali Begen, and David Oran.
Probe and adapt: Rate adaptation for HTTP video streaming at scale. Selected Areas
in Communications, IEEE Journal on, 32(4):719–733, 2014.

[54] Dong Lin and Robert Morris. Dynamics of random early detection. In ACM SIGCOMM
Computer Communication Review, volume 27, pages 127–137. ACM, 1997.

[55] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. Rate adaptation for adaptive
HTTP streaming. In Proceedings of the second annual ACM conference on Multimedia
systems, pages 169–174. ACM, 2011.

[56] Chenghao Liu, Imed Bouazizi, Miska M Hannuksela, and Moncef Gabbouj. Rate adap-
tation for dynamic adaptive streaming over HTTP in content distribution network.
Signal Processing: Image Communication, 27(4):288–311, 2012.

[57] James Martin, Gongbing Hong, and James Westall. Managing fairness and application
performance with active queue management in docsis-based cable networks. In Pro-
ceedings of the 2014 ACM SIGCOMM workshop on Capacity sharing workshop, pages
9–14. ACM, 2014.

[58] Jim Martin, Yunhui Fu, Nicholas Wourms, and Terry Shaw. Characterizing Netflix
bandwidth consumption. In Consumer Communications and Networking Conference
(CCNC), 2013 IEEE, pages 230–235. IEEE, 2013.

[59] Jim Martin and James Westall. A simulation model of the DOCSIS protocol. Simula-
tion, 83(2):139–155, 2007.

[60] Matthew Mathis. Reflections on the TCP macroscopic model. ACM SIGCOMM Com-
puter Communication Review, 39(1):47–49, 2008.

[61] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macroscopic
behavior of the TCP congestion avoidance algorithm. ACM SIGCOMM Computer
Communication Review, 27(3):67–82, 1997.

[62] Martin May, Jean Bolot, Christophe Diot, and Bryan Lyles. Reasons not to deploy
RED. In Quality of Service, 1999. IWQoS’99. 1999 Seventh International Workshop
on, pages 260–262. IEEE, 1999.

[63] Paul E McKenney. Stochastic fairness queueing. In INFOCOM’90. Ninth Annual Joint
Conference of the IEEE Computer and Communication Societies.’The Multiple Facets
of Integration’. Proceedings., IEEE, pages 733–740. IEEE, 1990.

125

[64] J. Mills, J. Livingood, R. Woundy, T. Klieber, and C. Bastian. Comcast’s protocol-
agnostic congestion management system, 2010.

[65] Scott A. Moser. Downstream Resource Allocation in DOCSIS 3.0 Channel Bonded
Networks. PhD thesis, Clemson, SC, USA, 2011. AAI3469539.

[66] Aisha Mushtaq, Asad Khalid Ismail, Abdul Wasay, Bilal Mahmood, Ihsan Ayyub Qazi,
and Zartash Afzal Uzmi. Rethinking buffer management in data center networks. In
Proceedings of the 2014 ACM conference on SIGCOMM, pages 575–576. ACM, 2014.

[67] John Nagle. On packet switches with infinite storage. Communications, IEEE Trans-
actions on, 35(4):435–438, 1987.

[68] Sajid Nazir, Ziaul Hossain, Raffaello Secchi, Matthew Broadbent, Andreas Petlund,
and Gorry Fairhurst. Performance evaluation of congestion window validation for
DASH transport. In Proceedings of Network and Operating System Support on Digital
Audio and Video Workshop, page 67. ACM, 2014.

[69] Pengpeng Ni, Ragnhild Eg, Alexander Eichhorn, Carsten Griwodz, and P̊al Halvorsen.
Flicker effects in adaptive video streaming to handheld devices. In Proceedings of the
19th ACM international conference on Multimedia, pages 463–472. ACM, 2011.

[70] K Nichols. SFQ-CoDel ns-2 source code. http://www.pollere.net/Txtdocs/,
2013.

[71] K. Nichols and V. Jacobson. Controlled delay active queue manage-
ment (draft-nichols-tsvwg-codel-01). http://tools.ietf.org/html/
draft-nichols-tsvwg-codel-01, 2013.

[72] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar. Controlled delay active
queue management (draft-ietf-aqm-codel-01). https://tools.ietf.org/html/
draft-ietf-aqm-codel-01, 2015.

[73] Kathleen Nichols and Van Jacobson. Controlling queue delay. Communications of the
ACM, 55(7):42–50, 2012.

[74] Dessislava Nikolova and Chris Blondia. Bonded deficit round robin scheduling for
multi-channel networks. Computer Networks, 55(15):3503–3516, 2011.

[75] R. Pan, P. Natarajan, G. White, B. VerSteeg, M.S. Prabhu, C. Piglione, and V. Subra-
manian. PIE: A lightweight control scheme to address the bufferbloat problem (draft-
ietf-aqm-pie-02). https://tools.ietf.org/html/draft-ietf-aqm-pie-02,
2015.

[76] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. Approximate fairness
through differential dropping. ACM SIGCOMM Computer Communication Review,
33(2):23–39, 2003.

126

http://www.pollere.net/Txtdocs/
http://tools.ietf.org/html/draft-nichols-tsvwg-codel-01
http://tools.ietf.org/html/draft-nichols-tsvwg-codel-01
https://tools.ietf.org/html/draft-ietf-aqm-codel-01
https://tools.ietf.org/html/draft-ietf-aqm-codel-01
https://tools.ietf.org/html/draft-ietf-aqm-pie-02

[77] Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili Suryanarayana Prabhu, Vijay
Subramanian, Fred Baker, and Bill VerSteeg. PIE: A lightweight control scheme to
address the bufferbloat problem. In High Performance Switching and Routing (HPSR),
2013 IEEE 14th International Conference on, pages 148–155. IEEE, 2013.

[78] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis. CHOKe: A stateless active
queue management scheme for approximating fair bandwidth allocation. In INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, volume 2, pages 942–951. IEEE, 2000.

[79] Abhay Kumar J. Parekh. A generalized processor sharing approach to flow control in
integrated services networks. PhD thesis, Massachusetts Institute of Technology, 1992.

[80] Maxim Podlesny and Sergey Gorinsky. Leveraging the rate-delay trade-off for service
differentiation in multi-provider networks. Selected Areas in Communications, IEEE
Journal on, 29(5):997–1008, 2011.

[81] Sriram Ramabhadran and Joseph Pasquale. The stratified round robin scheduler:
design, analysis and implementation. IEEE/ACM Transactions on Networking (TON),
14(6):1362–1373, 2006.

[82] Vincent Rosolen, Olivier Bonaventure, and Guy Leduc. A RED discard strategy for
ATM networks and its performance evaluation with TCP/IP traffic. ACM SIGCOMM
Computer Communication Review, 29(3):23–43, 1999.

[83] Sandvine Incorporated ULC. Global Internet phenomena report, 2015.

[84] Neel Shah, Demetres Kouvatsos, Jim Martin, and Scott Moser. A tutorial on DOCSIS:
protocol and performance models. In Proceedings of the international working confer-
ence on performance modeling and evaluation of heterogeneous networks, Ikley, UK,
2005.

[85] Neelkamal P Shah, Demetres D Kouvatsos, Jim Martin, and Scott Moser. On the
performance modelling and optimisation of DOCSIS HFC networks. In Network per-
formance engineering, pages 682–715. Springer, 2011.

[86] Madhavapeddi Shreedhar and George Varghese. Efficient fair queueing using deficit
round robin. In ACM SIGCOMM Computer Communication Review, volume 25, pages
231–242. ACM, 1995.

[87] Madhavapeddi Shreedhar and George Varghese. Efficient fair queuing using deficit
round-robin. Networking, IEEE/ACM Transactions on, 4(3):375–385, 1996.

[88] Subhash Suri, George Varghese, and Girish Chandranmenon. Leap forward virtual
clock: a new fair queuing scheme with guaranteed delays and throughput fairness. In
INFOCOM’97. Sixteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Driving the Information Revolution., Proceedings IEEE, volume 2,
pages 557–565. IEEE, 1997.

127

[89] Ben Teitelbaum and Stanislav Shalunov. Why premium IP service has not deployed
(and probably never will). Internet2 QoS Working Group Informational Document,
2002.

[90] Guibin Tian and Yong Liu. Towards agile and smooth video adaptation in dynamic
HTTP streaming. In Proceedings of the 8th international conference on Emerging
networking experiments and technologies, pages 109–120. ACM, 2012.

[91] Jonathan Turner. New directions in communications (or which way to the information
age?). IEEE communications Magazine, 24(10):8–15, 1986.

[92] Greg White and Joey Padden. Preliminary study of CoDel AQM in a DOCSIS network.
Technical report, Technical Report, CableLabs, 2012.

[93] Greg White and Dan Rice. Active queue management algorithms for DOCSIS 3.0,
2013. CableLabs Technical Report, April 2013.

[94] Lin Xue, Suman Kumar, Cheng Cui, Praveenkumar Kondikoppa, Chui-Hui Chiu, and
Seung-Jong Park. AFCD: An approximated-fair and controlled-delay queuing for high
speed networks. In Computer Communications and Networks (ICCCN), 2013 22nd
International Conference on, pages 1–7. IEEE, 2013.

[95] Xin Yuan and Zhenhai Duan. FRR: a proportional and worst-case fair round robin
scheduler. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings IEEE, volume 2, pages 831–842. IEEE,
2005.

[96] Hui Zhang. Service disciplines for guaranteed performance service in packet-switching
networks. Proceedings of the IEEE, 83(10):1374–1396, 1995.

128

	Clemson University
	TigerPrints
	12-2015

	Downstream Bandwidth Management for Emerging DOCSIS-based Networks
	Gongbing Hong
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Research Motivation
	Research Direction
	Problem Formulation and Contributions
	Dissertation Outline

	Background
	Bandwidth Management
	Review of Related Work
	Overview of DOCSIS Operation

	System Description
	System Model
	Simulation Model

	Evaluation of Single-Queue Management Approaches
	Experimental Setup and Experiment Definitions
	Throughput Fairness and Application Performance
	Implications of Service Rate Management
	Management of Unresponsive Flows
	Summary of the Results

	Approximate Fair Scheduling Using Adaptive Bandwidth Binning
	Adaptive Bandwidth Binning and Implementation
	Experimental Setup and Experiment Definition
	Results and Analysis for Single Tier Environment
	Results and Analysis for Multi Tier Environment

	Conclusions and Future Work
	Concluding Remarks
	Future Work

	Bibliography

