59 research outputs found

    Variability analysis of FinFET AC/RF performances through efficient physics-based simulations for the optimization of RF CMOS stages

    Get PDF
    A nearly insatiable appetite for the latest electronic device enables the electronic technology sector to maintain research momentum. The necessity for advancement with miniaturization of electronic devices is the need of the day. Aggressive downscaling of electronic devices face some fundamental limits and thus, buoy up the change in device geometry. MOSFETs have been the leading contender in the electronics industry for years, but the dire need for miniaturization is forcing MOSFET to be scaled to nano-scale and in sub-50 nm scale. Short channel effects (SCE) become dominant and adversely affect the performance of the MOSFET. So, the need for a novel structure was felt to suppress SCE to an acceptable level. Among the proposed devices, FinFETs (Fin Field Effect Transistors) were found to be most effective to counter-act SCE in electronic devices. Today, many industries are working on electronic circuits with FinFETs as their primary element.One of limitation which FinFET faces is device variability. The purpose of this work was to study the effect that different sources of parameter fluctuations have on the behavior and characteristics of FinFETs. With deep literature review, we have gained insight into key sources of variability. Different sources of variations, like random dopant fluctuation, line edge roughness, fin variations, workfunction variations, oxide thickness variation, and source/drain doping variations, were studied and their impact on the performance of the device was studied as well. The adverse effect of these variations fosters the great amount of research towards variability modeling. A proper modeling of these variations is required to address the device performance metric before the fabrication of any new generation of the device on the commercial scale. The conventional methods to address the characteristics of a device under variability are Monte-Carlo-like techniques. In Monte Carlo analysis, all process parameters can be varied individually or simultaneously in a more realistic approach. The Monte Carlo algorithm takes a random value within the range of each process parameter and performs circuit simulations repeatedly. The statistical characteristics are estimated from the responses. This technique is accurate but requires high computational resources and time. Thus, efforts are being put by different research groups to find alternative tools. If the variations are small, Green’s Function (GF) approach can be seen as a breakthrough methodology. One of the most open research fields regards "Variability of FinFET AC performances". One reason for the limited AC variability investigations is the lack of commercially available efficient simulation tools, especially those based on accurate physics-based analysis: in fact, the only way to perform AC variability analysis through commercial TCAD tools like Synopsys Sentaurus is through the so-called Monte Carlo approach, that when variations are deterministic, is more properly referred to as incremental analysis, i.e., repeated solutions of the device model with varying physical parameters. For each selected parameter, the model must be solved first in DC operating condition (working point, WP) and then linearized around the WP, hence increasing severely the simulation time. In this work, instead, we used GF approach, using our in-house Simulator "POLITO", to perform AC variability analysis, provided that variations are small, alleviating the requirement of double linearization and reducing the simulation time significantly with a slight trade-off in accuracy. Using this tool we have, for the first time addressed the dependency of FinFET AC parameters on the most relevant process variations, opening the way to its application to RF circuits. This work is ultimately dedicated to the successful implementation of RF stages in commercial applications by incorporating variability effects and controlling the degradation of AC parameters due to variability. We exploited the POLITO (in-house simulator) limited to 2D structures, but this work can be extended to the variability analysis of 3D FinFET structure. Also variability analysis of III-V Group structures can be addressed. There is also potentiality to carry out the sensitivity analysis for the other source of variations, e.g., thermal variations

    Strain-Engineered MOSFETs

    Get PDF
    This book brings together new developments in the area of strain-engineered MOSFETs using high-mibility substrates such as SIGe, strained-Si, germanium-on-insulator and III-V semiconductors into a single text which will cover the materials aspects, principles, and design of advanced devices, their fabrication and applications. The book presents a full TCAD methodology for strain-engineering in Si CMOS technology involving data flow from process simulation to systematic process variability simulation and generation of SPICE process compact models for manufacturing for yield optimization

    Compact modeling of the rf and noise behavior of multiple-gate mosfets

    Get PDF
    La reducción de la tecnología MOSFET planar ha sido la opción tecnológica dominante en las últimas décadas. Sin embargo, hemos llegado a un punto en el que los materiales y problemas en los dispositivos surgen, abriendo la puerta para estructuras alternativas de los dispositivos. Entre estas estructuras se encuentran los dispositivos DG, SGT y Triple-Gate. Estas tres estructuras están estudiadas en esta tesis, en el contexto de rducir las dimensiones de los dispositivos a tamaños tales que los mecanismos cuánticos y efectos de calan coro deben tenerse n cuenta. Estos efectos vienen con una seria de desafíos desde el pun to de vista de modelación, unos de los más grandes siendo el tiempo y los recursos comprometidos para ejecutar las simulaciones. para resolver este problema, esta tesis propone modelos comlets analíticos y compactos para cada una de las geometrías, validos desde DC hasta el modo de operación en Rf para los nodos tecnológicos futuros. Dichos modelos se han extendido para analizar el ruido de alta frecuencia en estos diapositivos

    Process-induced Structural Variability-aware Performance Optimization for Advanced Nanoscale Technologies

    Get PDF
    Department of Electrical EngineeringAs the CMOS technologies reach the nanometer regime through aggressive scaling, integrated circuits (ICs) encounter scaling impediments such as short channel effects (SCE) caused by reduced ability of gate control on the channel and line-edge roughness (LER) caused by limits of the photolithography technologies, leading to serious device parameter fluctuations and makes the circuit analysis difficult. In order to overcome scaling issues, multi-gate structures are introduced from the planar MOSFET to increase the gate controllability. The goal of this dissertation is to analyze structural variations induced by manufacturing process in advanced nanoscale devices and to optimize its impacts in terms of the circuit performances. If the structural variability occurs, aside from the endeavor to reduce the variability, the impact must be taken into account at the design level. Current compact model does not have device structural variation model and cannot capture the impact on the performance/power of the circuit. In this research, the impacts of structural variation in advanced nanoscale technology on the circuit level parameters are evaluated and utilized to find the optimal device shape and structure through technology computer-aided-design (TCAD) simulations. The detail description of this dissertation is as follows: Structural variation for nanoscale CMOS devices is investigated to extend the analysis approach to multi-gate devices. Simple and accurate modeling that analyzes non-rectilinear gate (NRG) CMOS transistors with a simplified trapezoidal approximation method is proposed. The electrical characteristics of the NRG gate, caused by LER, are approximated by a trapezoidal shape. The approximation is acquired by the length of the longest slice, the length of the smallest slice, and the weighting factor, instead of taking the summation of all the slices into account. The accuracy can even be improved by adopting the width-location-dependent factor (Weff). The positive effect of diffusion rounding at the transistor source side of CMOS is then discussed. The proposed simple layout method provides boosting the driving strength of logic gates and also saving the leakage power with a minimal area overhead. The method provides up to 13% speed up and also saves up to 10% leakage current in an inverter simulation by exploiting the diffusion rounding phenomena in the transistors. The performance impacts of the trapezoidal fin shape of a double-gate FinFET are then discussed. The impacts are analyzed with TCAD simulations and optimal trapezoidal angle range is proposed. Several performance metrics are evaluated to investigate the impact of the trapezoidal fin shape on the circuit operation. The simulations show that the driving capability improves, and the gate capacitance increases as the bottom fin width of the trapezoidal fin increases. The fan-out 4 (FO4) inverter and ring-oscillator (RO) delay results indicate that careful optimization of the trapezoidal angle can increase the speed of the circuit because the ratios of the current and capacitance have different impacts depending on the trapezoidal angle. Last but not least, the electrical characteristics of a double-gate-all-around (DGAA) transistor with an asymmetric channel width using device simulations are also investigated in this work. The DGAA FET, a kind of nanotube field-effect transistor (NTFET), can solve the problem of loss of gate controllability of the channel and provide improved short-channel behavior. Simulation results reveal that, according to the carrier types, the location of the asymmetry has a different effect on the electrical properties of the devices. Thus, this work proposes the n/p DGAA FET structure with an asymmetric channel width to form the optimal inverter. Various electrical metrics are analyzed to investigate the benefits of the optimal inverter structure over the conventional GAA inverter structure. In the optimum structure, 27% propagation delay and 15% leakage power improvement can be achieved. Analysis and optimization for device-level variability are critical in integrated circuit designs of advanced technology nodes. Thus, the proposed methods in this dissertation will be helpful for understanding the relationship between device variability and circuit performance. The research for advanced nanoscale technologies through intensive TCAD simulations, such as FinFET and GAA, suggests the optimal device shape and structure. The results provide a possible solution to design high performance and low power circuits with minimal design overhead.ope

    Novel III-V compound semiconductor technologies for low power digital logic applications

    Get PDF
    As silicon (Si) complementary metal oxide semiconductor (CMOS) technology continues to scale into the 10 nm node, chip power consumption is approaching 200 W/cm2 and any further increase is unsustainable. Incorporating III-V compound semiconductor n-type devices into future CMOS generations could allow for the the reduction in supply voltage, and therefore, power consumption, while simultaneously improving on-state performance. The advanced state of Si CMOS places stringent demands on III-V devices, however: the current 14 nm Si tri-gate devices employ high aspect ratio, densely spaced fins which serve to significantly increase current per chip surface area. III-V devices need to significantly out perform state of the art Si devices in order to merit their disruptive incorporation into the well established CMOS process. This necessitates that they too exploit the vertical dimension. To this end, this thesis reports on the fabrication, measurement and analysis of high aspect ratio junctionless InGaAs FinFETs. The junctionless architecture was first demonstrated in 2010 and was shown to circumvent pro- hibitive fabrication challenges for devices with ultra short gate lengths. This work investigated the impact of fin width on both the on and off-state performance of 200 nm gate length devices, with nominal fin widths of 10, 15 and 20 nm. Excellent subthreshold performance was demonstrated, with the narrowest fin width exhibiting a minimum subthreshold swing (SS) of 73 mV/Dec., and an average SS of 80 mV/Dec. over two decades of current. A maximum on-current, Ion, of 80.51 μA/cm2 was measured at a gate overdrive of 0.5 V from an off-state current, Ioff, of 100 nA/cm2 and a drain voltage, Vd, of 0.5 V, with current normalised by gated perimeter. This is competitive with other III-V junctionless devices at similar gate lengths. With current normalised to base fin width, however, Ion increases to 371.8 μA/cm2, which is a record value among equivalently normalised non-planar III-V junctionless devices at any gate length. This technology, therefore, clearly demonstrates the feasibility of incorporating scaled, etched InGaAs fins into future logic generations. Perhaps the greatest bottleneck to the incorporation of III-V compounds into future CMOS technology nodes, however, is the lack of a suitable III-V PMOS candidate: co-integrating different material systems onto a common substate incurs great fabrication complexity, and therefore, cost. III-V antimonides, however, have recently emerged as promising candidates for III-V PMOS and exhibit the highest bulk electron mobility of all III-Vs in addition to a hole mobility second only to germanium. InGaSb ternary compounds have been shown to offer the best combined performance for electrons and holes in the same material, and as such, have the potential to the enable the most simplistic incarnation of III-V CMOS; provided, of course, that is possible to form a gate stack to both device polarities with sufficient electrical properties. To date, however, there has been no investigation into the high-k dielectric interface to InGaSb. To this end, this thesis presents results of the first investigation into the impact of in-situ H2 plasma exposure on the electrical properties of the p/n-In0.3Ga0.7Sb-Al2O3 interface. The parameter space was explored systematically in terms of H2 plasma power and exposure time, and further, the impact of impact of in-situ trimethylaluminium (TMA) pre-cleaning and annealing in forming gas was assessed. Metal oxide semiconductor capacitors (MOSCAPs) were fabricated subsequent to H2 plasma processing and Al2O3 deposition, and the correspond- ing capacitance-voltage and conductance-voltage measurements were analysed both qualita- tively and quantitatively via the simulation of an equivalent circuit model. X-Ray photoelectron spectroscopy (XPS) analysis of samples processed as part of the plasma power series revealed a combination of ex-situ HCl cleaning and in-situ H2 plasma exposure to completely remove In and Sb sub oxides, with the Ga-O content reduced to Ga-O:InGaSb <0.1. The optimal process, which included ex-situ HCl surface cleaning, in-situ H2 plasma and TMA pre-cleaning, and a post gate metal forming gas anneal, was unequivocally demonstrated to yield a fully unpinnned MOS interface with both n and p-type MOSCAPs explicitly demonstrating a genuine minority carrier response. Interface state and border trap densities were extracted, with a minimum Dit of 1.73x1012 cm-2 eV-1 located at ~110 meV below the conduction band edge and peak border trap densities approximately aligned with the valence and conduction band edges of 3x1019 cm-3 eV-1 and 6.5x1019 cm-3 eV-1 respectively. These results indicate that the optimal gate stack process is indeed applicable to both p and n- type InGaSb MOSFETs, and therefore, represent a critical advancement towards achieving high performance III-V CMOS

    Vertical Heterostructure III-V MOSFETs for CMOS, RF and Memory Applications

    Get PDF
    This thesis focuses mainly on the co-integration of vertical nanowiren-type InAs and p-type GaSb MOSFETs on Si (Paper I & II), whereMOVPE grown vertical InAs-GaSb heterostructure nanowires areused for realizing monolithically integrated and co-processed all-III-V CMOS.Utilizing a bottom-up approach based on MOVPE grown nanowires enablesdesign flexibilities, such as in-situ doping and heterostructure formation,which serves to reduce the amount of mask steps during fabrication. By refiningthe fabrication techniques, using a self-aligned gate-last process, scaled10-20 nm diameters are achieved for balanced drive currents at Ion ∼ 100μA/μm, considering Ioff at 100 nA/μm (VDD = 0.5 V). This is enabledby greatly improved p-type MOSFET performance reaching a maximumtransconductance of 260 μA/μm at VDS = 0.5 V. Lowered power dissipationfor CMOS circuits requires good threshold voltage VT matching of the n- andp-type device, which is also demonstrated for basic inverter circuits. Thevarious effects contributing to VT-shifts are also studied in detail focusing onthe InAs channel devices (with highest transconductance of 2.6 mA/μm), byusing Electron Holography and a novel gate position variation method (PaperV).The advancements in all-III-V CMOS integration spawned individual studiesinto the strengths of the n- and p-type III-V devices, respectively. Traditionallymaterials such as InAs and InGaAs provide excellent electrontransport properties, therefore they are frequently used in devices for highfrequency RF applications. In contrast, the III-V p-type alternatives have beenlacking performance mostly due to the difficult oxidation properties of Sb-based materials. Therefore, a study of the GaSb properties, in a MOSFETchannel, was designed and enabled by new manufacturing techniques, whichallowed gate-length scaling from 40 to 140 nm for p-type Sb-based MOSFETs(Paper III). The new fabrication method allowed for integration of deviceswith symmetrical contacts as compared to previous work which relied on atunnel-contact at the source-side. By modelling based on measured data fieldeffecthole mobility of 70 cm2/Vs was calculated, well in line with previouslyreported studies on GaSb nanowires. The oxidation properties of the GaSbgate-stack was further characterized by XPS, where high intensities of xraysare achieved using a synchrotron source allowed for characterization ofnanowires (Paper VI). Here, in-situ H2-plasma treatment, in parallel with XPSmeasurements, enabled a study of the time-dependence during full removalof GaSb native oxides.The last focus of the thesis was building on the existing strengths of verticalheterostructure III-V n-type (InAs-InGaAs graded channel) devices. Typically,these devices demonstrate high-current densities (gm >3 mS/μm) and excellentmodulation properties (off-state current down to 1 nA/μm). However,minimizing the parasitic capacitances, due to various overlaps originatingfrom a low access-resistance design, has proven difficult. Therefore, newmethods for spacers in both the vertical and planar directions was developedand studied in detail. The new fabrication methods including sidewall spacersachieved gate-drain capacitance CGD levels close to 0.2 fF/μm, which isthe established limit by optimized high-speed devices. The vertical spacertechnology, using SiO2 on the nanowire sidewalls, is further improved inthis thesis which enables new co-integration schemes for memory arrays.Namely, the refined sidewall spacer method is used to realize selective recessetching of the channel and reduced capacitance for large array memoryselector devices (InAs channel) vertically integrated with Resistive RandomAccess Memory (RRAM) memristors. (Paper IV) The fabricated 1-transistor-1-memristor (1T1R) demonstrator cell shows excellent endurance and retentionfor the RRAM by maintaining constant ratio of the high and low resistive state(HRS/LRS) after 106 switching cycles

    Reliability Investigations of MOSFETs using RF Small Signal Characterization

    Get PDF
    Modern technology needs and advancements have introduced various new concepts such as Internet-of-Things, electric automotive, and Artificial intelligence. This implies an increased activity in the electronics domain of analog and high frequency. Silicon devices have emerged as a cost-effective solution for such diverse applications. As these silicon devices are pushed towards higher performance, there is a continuous need to improve fabrication, power efficiency, variability, and reliability. Often, a direct trade-off of higher performance is observed in the reliability of semiconductor devices. The acceleration-based methodologies used for reliability assessment are the adequate time-saving solution for the lifetime's extrapolation but come with uncertainty in accuracy. Thus, the efforts to improve the accuracy of reliability characterization methodologies run in parallel. This study highlights two goals that can be achieved by incorporating high-frequency characterization into the reliability characteristics. The first one is assessing high-frequency performance throughout the device's lifetime to facilitate an accurate description of device/circuit functionality for high-frequency applications. Secondly, to explore the potential of high-frequency characterization as the means of scanning reliability effects within devices. S-parameters served as the high-frequency device's response and mapped onto a small-signal model to analyze different components of a fully depleted silicon-on-insulator MOSFET. The studied devices are subjected to two important DC stress patterns, i.e., Bias temperature instability stress and hot carrier stress. The hot carrier stress, which inherently suffers from the self-heating effect, resulted in the transistor's geometry-dependent magnitudes of hot carrier degradation. It is shown that the incorporation of the thermal resistance model is mandatory for the investigation of hot carrier degradation. The property of direct translation of small-signal parameter degradation to DC parameter degradation is used to develop a new S-parameter based bias temperature instability characterization methodology. The changes in gate-related small-signal capacitances after hot carrier stress reveals a distinct signature due to local change of flat-band voltage. The measured effects of gate-related small-signal capacitances post-stress are validated through transient physics-based simulations in Sentaurus TCAD.:Abstract Symbols Acronyms 1 Introduction 2 Fundamentals 2.1 MOSFETs Scaling Trends and Challenges 2.1.1 Silicon on Insulator Technology 2.1.2 FDSOI Technology 2.2 Reliability of Semiconductor Devices 2.3 RF Reliability 2.4 MOSFET Degradation Mechanisms 2.4.1 Hot Carrier Degradation 2.4.2 Bias Temperature Instability 2.5 Self-heating 3 RF Characterization of fully-depleted Silicon on Insulator devices 3.1 Scattering Parameters 3.2 S-parameters Measurement Flow 3.2.1 Calibration 3.2.2 De-embedding 3.3 Small-Signal Model 3.3.1 Model Parameters Extraction 3.3.2 Transistor Figures of Merit 3.4 Characterization Results 4 Self-heating assessment in Multi-finger Devices 4.1 Self-heating Characterization Methodology 4.1.1 Output Conductance Frequency dependence 4.1.2 Temperature dependence of Drain Current 4.2 Thermal Resistance Behavior 4.2.1 Thermal Resistance Scaling with number of fingers 4.2.2 Thermal Resistance Scaling with finger spacing 4.2.3 Thermal Resistance Scaling with GateWidth 4.2.4 Thermal Resistance Scaling with Gate length 4.3 Thermal Resistance Model 4.4 Design for Thermal Resistance Optimization 5 Bias Temperature Instability Investigation 5.1 Impact of Bias Temperature Instability stress on Device Metrics 5.1.1 Experimental Details 5.1.2 DC Parameters Drift 5.1.3 RF Small-Signal Parameters Drift 5.2 S-parameter based on-the-fly Bias Temperature Instability Characterization Method 5.2.1 Measurement Methodology 5.2.2 Results and Discussion 6 Investigation of Hot-carrier Degradation 6.1 Impact of Hot-carrier stress on Device performance 6.1.1 DC Metrics Degradation 6.1.2 Impact on small-signal Parameters 6.2 Implications of Self-heating on Hot-carrier Degradation in n-MOSFETs 6.2.1 Inclusion of Thermal resistance in Hot-carrier Degradation modeling 6.2.2 Convolution of Bias Temperature Instability component in Hot-carrier Degradation 6.2.3 Effect of Source and Drain Placement in Multi-finger Layout 6.3 Vth turn-around effect in p-MOSFET 7 Deconvolution of Hot-carrier Degradation and Bias Temperature Instability using Scattering parameters 7.1 Small-Signal Parameter Signatures for Hot-carrier Degradation and Bias Temperature Instability 7.2 TCAD Dynamic Simulation of Defects 7.2.1 Fixed Charges 7.2.2 Interface Traps near Gate 7.2.3 Interface Traps near Spacer Region 7.2.4 Combination of Traps 7.2.5 Drain Series Resistance effect 7.2.6 DVth Correction 7.3 Empirical Modeling based deconvolution of Hot-carrier Degradation 8 Conclusion and Recommendations 8.1 General Conclusions 8.2 Recommendations for Future Work A Directly measured S-parameters and extracted Y-parameters B Device Dimensions for Thermal Resistance Modeling C Frequency response of hot-carrier degradation (HCD) D Localization Effect of Interface Traps Bibliograph

    Ageing and embedded instrument monitoring of analogue/mixed-signal IPS

    Get PDF

    Journal of Telecommunications and Information Technology, 2007, nr 2

    Get PDF
    kwartalni
    corecore