95,131 research outputs found

    A multilingual SLU system based on semantic decoding of graphs of words

    Full text link
    In this paper, we present a statistical approach to Language Understanding that allows to avoid the effort of obtaining new semantic models when changing the language. This way, it is not necessary to acquire and label new training corpora in the new language. Our approach consists of learning all the semantic models in a target language and to do the semantic decoding of the sentences pronounced in the source language after a translation process. In order to deal with the errors and the lack of coverage of the translations, a mechanism to generalize the result of several translators is proposed. The graph of words generated in this phase is the input to the semantic decoding algorithm specifically designed to combine statistical models and graphs of words. Some experiments that show the good behavior of the proposed approach are also presented.Calvo Lance, M.; Hurtado Oliver, LF.; García Granada, F.; Sanchís Arnal, E. (2012). A multilingual SLU system based on semantic decoding of graphs of words. En Advances in Speech and Language Technologies for Iberian Languages. Springer Verlag (Germany). 328:158-167. doi:10.1007/978-3-642-35292-8_17S158167328Hahn, S., Dinarelli, M., Raymond, C., Lefèvre, F., Lehnen, P., De Mori, R., Moschitti, A., Ney, H., Riccardi, G.: Comparing stochastic approaches to spoken language understanding in multiple languages. IEEE Transactions on Audio, Speech, and Language Processing 6(99), 1569–1583 (2010)Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken language understanding. In: Proceedings of Interspeech 2007, pp. 1605–1608 (2007)Tur, G., Mori, R.D.: Spoken Language Understanding: Systems for Extracting Semantic Information from Speech, 1st edn. Wiley (2011)Maynard, H.B., Lefèvre, F.: Investigating Stochastic Speech Understanding. In: Proc. of IEEE Automatic Speech Recognition and Understanding Workshop, ASRU (2001)Segarra, E., Sanchis, E., Galiano, M., García, F., Hurtado, L.: Extracting Semantic Information Through Automatic Learning Techniques. IJPRAI 16(3), 301–307 (2002)He, Y., Young, S.: Spoken language understanding using the hidden vector state model. Speech Communication 48, 262–275 (2006)De Mori, R., Bechet, F., Hakkani-Tur, D., McTear, M., Riccardi, G., Tur, G.: Spoken language understanding: A survey. IEEE Signal Processing Magazine 25(3), 50–58 (2008)Hakkani-Tür, D., Béchet, F., Riccardi, G., Tur, G.: Beyond ASR 1-best: Using word confusion networks in spoken language understanding. Computer Speech & Language 20(4), 495–514 (2006)Tur, G., Wright, J., Gorin, A., Riccardi, G., Hakkani-Tür, D.: Improving spoken language understanding using word confusion networks. In: Proceedings of the ICSLP. Citeseer (2002)Tur, G., Hakkani-Tür, D., Schapire, R.E.: Combining active and semi-supervised learning for spoken language understanding. Speech Communication 45, 171–186 (2005)Ortega, L., Galiano, I., Hurtado, L.F., Sanchis, E., Segarra, E.: A statistical segment-based approach for spoken language understanding. In: Proc. of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 1836–1839 (2010)Sim, K.C., Byrne, W.J., Gales, M.J.F., Sahbi, H., Woodland, P.C.: Consensus network decoding for statistical machine translation system combination. In: IEEE Int. Conference on Acoustics, Speech, and Signal Processing (2007)Bangalore, S., Bordel, G., Riccardi, G.: Computing Consensus Translation from Multiple Machine Translation Systems. In: Proceedings of IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2001, pp. 351–354 (2001)Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: ClustalW and ClustalX version 2.0. Bioinformatics 23(21), 2947–2948 (2007)Benedí, J.M., Lleida, E., Varona, A., Castro, M.J., Galiano, I., Justo, R., López de Letona, I., Miguel, A.: Design and acquisition of a telephone spontaneous speech dialogue corpus in Spanish: DIHANA. In: Proceedings of LREC 2006, Genoa, Italy, pp. 1636–1639 (May 2006

    A Train-on-Target Strategy for Multilingual Spoken Language Understanding

    Full text link
    [EN] There are two main strategies to adapt a Spoken Language Understanding system to deal with languages different from the original (source) language: test-on-source and train-on-target. In the train-ontarget approach, a new understanding model is trained in the target language, which is the language in which the test utterances are pronounced. To do this, a segmented and semantically labeled training set for each new language is needed. In this work, we use several general-purpose translators to obtain the translation of the training set and we apply an alignment process to automatically segment the training sentences. We have applied this train-on-target approach to estimate the understanding module of a Spoken Dialog System for the DIHANA task, which consists of an information system about train timetables and fares in Spanish. We present an evaluation of our train-on-target multilingual approach for two target languages, French and EnglishThis work has been partially funded by the project ASLP-MULAN: Audio, Speech and Language Processing for Multimedia Analytics (MEC TIN2014-54288-C4-3-R).García-Granada, F.; Segarra Soriano, E.; Millán, C.; Sanchís Arnal, E.; Hurtado Oliver, LF. (2016). A Train-on-Target Strategy for Multilingual Spoken Language Understanding. Lecture Notes in Computer Science. 10077:224-233. https://doi.org/10.1007/978-3-319-49169-1_22S22423310077Benedí, J.M., Lleida, E., Varona, A., Castro, M.J., Galiano, I., Justo, R., López de Letona, I., Miguel, A.: Design and acquisition of a telephone spontaneous speech dialogue corpus in Spanish: DIHANA. In: LREC 2006, pp. 1636–1639 (2006)Calvo, M., Hurtado, L.-F., García, F., Sanchís, E.: A Multilingual SLU system based on semantic decoding of graphs of words. In: Torre Toledano, D., Ortega Giménez, A., Teixeira, A., González Rodríguez, J., Hernández Gómez, L., San Segundo Hernández, R., Ramos Castro, D. (eds.) IberSPEECH 2012. CCIS, vol. 328, pp. 158–167. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-35292-8_17Calvo, M., Hurtado, L.F., Garca, F., Sanchis, E., Segarra, E.: Multilingual spoken language understanding using graphs and multiple translations. Comput. Speech Lang. 38, 86–103 (2016)Dinarelli, M., Moschitti, A., Riccardi, G.: Concept segmentation and labeling for conversational speech. In: Interspeech, Brighton, UK (2009)Esteve, Y., Raymond, C., Bechet, F., Mori, R.D.: Conceptual decoding for spoken dialog systems. In: Proceedings of EuroSpeech 2003, pp. 617–620 (2003)García, F., Hurtado, L., Segarra, E., Sanchis, E., Riccardi, G.: Combining multiple translation systems for spoken language understanding portability. In: Proceedings of IEEE Workshop on Spoken Language Technology (SLT), pp. 282–289 (2012)Hahn, S., Dinarelli, M., Raymond, C., Lefèvre, F., Lehnen, P., De Mori, R., Moschitti, A., Ney, H., Riccardi, G.: Comparing stochastic approaches to spoken language understanding in multiple languages. IEEE Trans. Audio Speech Lang. Process. 6(99), 1569–1583 (2010)He, Y., Young, S.: A data-driven spoken language understanding system. In: Proceedings of ASRU 2003, pp. 583–588 (2003)Hurtado, L., Segarra, E., García, F., Sanchis, E.: Language understanding using n-multigram models. In: Vicedo, J.L., Martínez-Barco, P., Muńoz, R., Saiz Noeda, M. (eds.) EsTAL 2004. LNCS (LNAI), vol. 3230, pp. 207–219. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30228-5_19Jabaian, B., Besacier, L., Lefèvre, F.: Comparison and combination of lightly supervised approaches for language portability of a spoken language understanding system. IEEE Trans. Audio Speech Lang. Process. 21(3), 636–648 (2013)Koehn, P., et al.: Moses: open source toolkit for statistical machine translation. In: Proceedings of ACL Demonstration Session, pp. 177–180 (2007)Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: International Conference on Machine Learning, pp. 282–289. Citeseer (2001)Lefèvre, F.: Dynamic Bayesian networks and discriminative classifiers for multi-stage semantic interpretation. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, vol. 4, pp. 13–16. IEEE (2007)Ortega, L., Galiano, I., Hurtado, L.F., Sanchis, E., Segarra, E.: A statistical segment-based approach for spoken language understanding. In: Proceedings of InterSpeech 2010, Makuhari, Chiba, Japan, pp. 1836–1839 (2010)Segarra, E., Sanchis, E., Galiano, M., García, F., Hurtado, L.: Extracting semantic information through automatic learning techniques. IJPRAI 16(3), 301–307 (2002)Servan, C., Camelin, N., Raymond, C., Bchet, F., Mori, R.D.: On the use of machine translation for spoken language understanding portability. In: Proceedings of ICASSP 2010, pp. 5330–5333 (2010)Tür, G., Mori, R.D.: Spoken Language Understanding: Systems for Extracting Semantic Information from Speech, 1st edn. Wiley, Hoboken (2011

    Neural overlap of L1 and L2 semantic representations across visual and auditory modalities : a decoding approach/

    Get PDF
    This study investigated whether brain activity in Dutch-French bilinguals during semantic access to concepts from one language could be used to predict neural activation during access to the same concepts from another language, in different language modalities/tasks. This was tested using multi-voxel pattern analysis (MVPA), within and across language comprehension (word listening and word reading) and production (picture naming). It was possible to identify the picture or word named, read or heard in one language (e.g. maan, meaning moon) based on the brain activity in a distributed bilateral brain network while, respectively, naming, reading or listening to the picture or word in the other language (e.g. lune). The brain regions identified differed across tasks. During picture naming, brain activation in the occipital and temporal regions allowed concepts to be predicted across languages. During word listening and word reading, across-language predictions were observed in the rolandic operculum and several motor-related areas (pre- and postcentral, the cerebellum). In addition, across-language predictions during reading were identified in regions typically associated with semantic processing (left inferior frontal, middle temporal cortex, right cerebellum and precuneus) and visual processing (inferior and middle occipital regions and calcarine sulcus). Furthermore, across modalities and languages, the left lingual gyrus showed semantic overlap across production and word reading. These findings support the idea of at least partially language- and modality-independent semantic neural representations

    Nonparametric Bayesian Double Articulation Analyzer for Direct Language Acquisition from Continuous Speech Signals

    Full text link
    Human infants can discover words directly from unsegmented speech signals without any explicitly labeled data. In this paper, we develop a novel machine learning method called nonparametric Bayesian double articulation analyzer (NPB-DAA) that can directly acquire language and acoustic models from observed continuous speech signals. For this purpose, we propose an integrative generative model that combines a language model and an acoustic model into a single generative model called the "hierarchical Dirichlet process hidden language model" (HDP-HLM). The HDP-HLM is obtained by extending the hierarchical Dirichlet process hidden semi-Markov model (HDP-HSMM) proposed by Johnson et al. An inference procedure for the HDP-HLM is derived using the blocked Gibbs sampler originally proposed for the HDP-HSMM. This procedure enables the simultaneous and direct inference of language and acoustic models from continuous speech signals. Based on the HDP-HLM and its inference procedure, we developed a novel double articulation analyzer. By assuming HDP-HLM as a generative model of observed time series data, and by inferring latent variables of the model, the method can analyze latent double articulation structure, i.e., hierarchically organized latent words and phonemes, of the data in an unsupervised manner. The novel unsupervised double articulation analyzer is called NPB-DAA. The NPB-DAA can automatically estimate double articulation structure embedded in speech signals. We also carried out two evaluation experiments using synthetic data and actual human continuous speech signals representing Japanese vowel sequences. In the word acquisition and phoneme categorization tasks, the NPB-DAA outperformed a conventional double articulation analyzer (DAA) and baseline automatic speech recognition system whose acoustic model was trained in a supervised manner.Comment: 15 pages, 7 figures, Draft submitted to IEEE Transactions on Autonomous Mental Development (TAMD

    The determinants of Spanish language proficiency among immigrants in Spain

    Get PDF
    This article uses micro-data from the Spanish National Immigrant Survey (Encuesta Nacional de Inmigrantes-ENI in Spanish) carried out in 2007 among immigrants in Spain. In recent years, Spain has received unprecedented immigration flows. A substantial number of immigrants cannot communicate adequately in the language of the country to which they immigrate. Among the multiple reasons for the lack of host language proficiency one can distinguish factors such as a low level of educational attainment, not having been provided with adequate opportunities to learn the host language, living in ethnic enclaves or having arrived at an older age. Language skills (including oral and written ability) play a crucial role in the determination of the immigrants’ social and economic integration in the host country. As a consequence, analyzing the source of foreign language acquisition is crucial for understanding the immigrants’ economic, social and political involvement. The results show that an increase in educational attainment is associated with a higher level of Spanish spoken proficiency. Language ability is also associated with the country or region of origin. The results show that immigrant men and women from the Maghreb and Asia, as well as men from Eastern Europe and Sub Saharan Africa show a significantly weaker command over spoken Spanish than Western Europeans.N/

    Infants segment words from songs - an EEG study

    No full text
    Children’s songs are omnipresent and highly attractive stimuli in infants’ input. Previous work suggests that infants process linguistic–phonetic information from simplified sung melodies. The present study investigated whether infants learn words from ecologically valid children’s songs. Testing 40 Dutch-learning 10-month-olds in a familiarization-then-test electroencephalography (EEG) paradigm, this study asked whether infants can segment repeated target words embedded in songs during familiarization and subsequently recognize those words in continuous speech in the test phase. To replicate previous speech work and compare segmentation across modalities, infants participated in both song and speech sessions. Results showed a positive event-related potential (ERP) familiarity effect to the final compared to the first target occurrences during both song and speech familiarization. No evidence was found for word recognition in the test phase following either song or speech. Comparisons across the stimuli of the present and a comparable previous study suggested that acoustic prominence and speech rate may have contributed to the polarity of the ERP familiarity effect and its absence in the test phase. Overall, the present study provides evidence that 10-month-old infants can segment words embedded in songs, and it raises questions about the acoustic and other factors that enable or hinder infant word segmentation from songs and speech
    • …
    corecore