18 research outputs found

    Visual Servoing for Floppy Robots Using LWPR

    Get PDF
    We have combined inverse kinematics learned by LWPR with visual servoing to correct for inaccuracies in a low cost robotic arm. By low cost we mean weak inaccurate servos and no available joint-feedback. We show that from the trained LWPR model the Jacobian can be estimated. The Jacobian maps wanted changes in position to corresponding changes in control signals. Estimating the Jacobian for the first iteration of visual servoing is straightforward and we propose an approximative updating scheme for the following iterations when the Jacobian can not be estimated exactly. This results in a sufficient accuracy to be used in a shape sorting puzzle.

    A nonparametric Bayesian approach toward robot learning by demonstration

    No full text
    In the past years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e., the number of model component densities. Existing methods, including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori. Under this motivation, to resolve the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a number of demanding robot learning by demonstration scenarios

    Clustered Regression Control of a Biped Robot Model

    Get PDF

    Efficient Marginal Likelihood Computation for Gaussian Process Regression

    Full text link
    In a Bayesian learning setting, the posterior distribution of a predictive model arises from a trade-off between its prior distribution and the conditional likelihood of observed data. Such distribution functions usually rely on additional hyperparameters which need to be tuned in order to achieve optimum predictive performance; this operation can be efficiently performed in an Empirical Bayes fashion by maximizing the posterior marginal likelihood of the observed data. Since the score function of this optimization problem is in general characterized by the presence of local optima, it is necessary to resort to global optimization strategies, which require a large number of function evaluations. Given that the evaluation is usually computationally intensive and badly scaled with respect to the dataset size, the maximum number of observations that can be treated simultaneously is quite limited. In this paper, we consider the case of hyperparameter tuning in Gaussian process regression. A straightforward implementation of the posterior log-likelihood for this model requires O(N^3) operations for every iteration of the optimization procedure, where N is the number of examples in the input dataset. We derive a novel set of identities that allow, after an initial overhead of O(N^3), the evaluation of the score function, as well as the Jacobian and Hessian matrices, in O(N) operations. We prove how the proposed identities, that follow from the eigendecomposition of the kernel matrix, yield a reduction of several orders of magnitude in the computation time for the hyperparameter optimization problem. Notably, the proposed solution provides computational advantages even with respect to state of the art approximations that rely on sparse kernel matrices.Comment: 20 pages, 3 figure

    Recent advances in video-based human action recognition using deep learning: A review

    Full text link
    © 2017 IEEE. Video-based human action recognition has become one of the most popular research areas in the field of computer vision and pattern recognition in recent years. It has a wide variety of applications such as surveillance, robotics, health care, video searching and human-computer interaction. There are many challenges involved in human action recognition in videos, such as cluttered backgrounds, occlusions, viewpoint variation, execution rate, and camera motion. A large number of techniques have been proposed to address the challenges over the decades. Three different types of datasets namely, single viewpoint, multiple viewpoint and RGB-depth videos, are used for research. This paper presents a review of various state-of-the-art deep learning-based techniques proposed for human action recognition on the three types of datasets. In light of the growing popularity and the recent developments in video-based human action recognition, this review imparts details of current trends and potential directions for future work to assist researchers

    Recurrent Network And Multi-arm Bandit Methods For Multi-task Learning Without Task Specification

    Get PDF
    This paper addresses the problem of multi-task learning (MTL) in settings where the task assignment is not known. We propose two mechanisms for the problem of inference of task\u27s parameter without task specification: parameter adaptation and parameter selection methods. In parameter adaptation, the model\u27s parameter is iteratively updated using a recurrent neural network (RNN) learner as the mechanism to adapt to different tasks. For the parameter selection model, a parameter matrix is learned beforehand with the task known apriori. During testing, a bandit algorithm is utilized to determine the appropriate parameter vector for the model on the fly. We explored two different scenarios in MTL without task specification, continuous learning and reset learning. In continuous learning, the model has to adjust its parameter continuously to a number of different task without knowing when task changes. Whereas in reset learning, the parameter is reset to an initial value to aid transition to different tasks. Results on three real benchmark datasets demonstrate the comparative performance of both models with respect to multiple RNN configurations, MTL algorithms and bandit selection policies

    Dynamics Model Abstraction Scheme Using Radial Basis Functions

    Get PDF
    This paper presents a control model for object manipulation. Properties of objects and environmental conditions influence the motor control and learning. System dynamics depend on an unobserved external context, for example, work load of a robot manipulator. The dynamics of a robot arm change as it manipulates objects with different physical properties, for example, the mass, shape, or mass distribution. We address active sensing strategies to acquire object dynamical models with a radial basis function neural network (RBF). Experiments are done using a real robot's arm, and trajectory data are gathered during various trials manipulating different objects. Biped robots do not have high force joint servos and the control system hardly compensates all the inertia variation of the adjacent joints and disturbance torque on dynamic gait control. In order to achieve smoother control and lead to more reliable sensorimotor complexes, we evaluate and compare a sparse velocity-driven versus a dense position-driven control scheme

    The advantage of flexible neuronal tunings in neural network models for motor learning

    Get PDF
    Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies
    corecore