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This paper presents a control model for object manipulation. Properties of objects and environmental conditions influence the
motor control and learning. System dynamics depend on an unobserved external context, for example, work load of a robot
manipulator. The dynamics of a robot arm change as it manipulates objects with different physical properties, for example, the
mass, shape, or mass distribution. We address active sensing strategies to acquire object dynamical models with a radial basis
function neural network (RBF). Experiments are done using a real robot’s arm, and trajectory data are gathered during various
trials manipulating different objects. Biped robots do not have high force joint servos and the control system hardly compensates
all the inertia variation of the adjacent joints and disturbance torque on dynamic gait control. In order to achieve smoother control
and lead to more reliable sensorimotor complexes, we evaluate and compare a sparse velocity-driven versus a dense position-driven

control scheme.

1. Introduction

Current research of biomorphic robots can highly benefit
from simulations of advance learning paradigms [1-5] and
also from knowledge acquired from biological systems [6—8].
The basic control of robot actuators is usually implemented
by adopting a classic scheme [9-14]: (a) the desired trajec-
tory, in joint coordinates, is obtained using the inverse kine-
matics [12, 14, 15] and (b) efficient motor commands drive,
for example, an arm, making use of the inverse dynamics
model or using high power motors to achieve rigid move-
ments. Different controlling schemes using hybrid posi-
tion/velocity and forces have been introduced mainly for
industrial robots [9, 10]. In fact, industrial robots are
equipped with digital controllers, generally of PID type with
no possibility of modifying the control algorithms to im-
prove their performance. Robust control (control using PID
paradigms [12, 14-19]) is very power consuming and highly
reduces autonomy of nonrigid robots. Traditionally, the
major application of industrial robots is related to tasks that
require only position control of the arm. Nevertheless, there
are other important robotic tasks that require interaction

between the robot’s end-effector and the environment. Sys-
tem dynamics depend on an unobserved external context
(3, 20], for example, work load of a robot manipulator.
Biped robots do not have high force joint servos and the
control system hardly compensates all the inertia variation of
the adjacent joints and disturbance torque on dynamic gait
control [21]. Motivated by these concerns and the promising
preliminary results [22], we evaluate a sparse velocity-driven
control scheme. In this case, smooth motion is naturally
achieved, cutting down jerky movements and reducing the
propagation of vibrations along the whole platform. Includ-
ing the dynamic model into the control scheme becomes
important for an accurate manipulation, therefore, it is
crucial to study strategies to acquire it. There are other bioin-
spired model abstraction approaches that could take advan-
tage of this strategy [23-26]. Conventional artificial neural
networks [27, 28] have been also applied to this issue [29—
31]. In biological systems [6-8], the cerebellum [32, 33]
seems to play a crucial role on model extraction tasks dur-
ing manipulation [12, 34-36]. The cerebellar cortex has a
unique, massively parallel modular architecture [34, 37, 38]
that appears to be efficient in the model abstraction [11, 35].



Human sensorimotor recognition [8, 12, 37] continually
learns from current and past sensory experiences. We set
up an experimental methodology using a biped robot’s arm
[34, 36] which has been equipped, at its last arm-limb, with
three acceleration sensors [39] to capture the dynamics of
the different movements along the three spatial dimensions.
In human body, there are skin sensors specifically sensitive
to acceleration [8, 40]. They represent haptic sensors and
provide acceleration signals during the arm motion. In order
to be able to abstract a model from object manipulation,
accurate data of the movements are required. We acquire
the position and the acceleration along desired trajectories
when manipulating different objects. We feed these data into
the radial basis function network (RBF) [27, 31]. Learning
is done off-line through the knowledge acquisition module.
The RBF learns the dynamic model, that is, it learns to react
by means of the acceleration in response to specific input
forces and to reduce the effects of the uncertainty and non-
linearity of the system dynamics [41, 42].

To sum up, we avoid adopting a classic regular point-
to-point strategy (see Figure 1(b)) with fine PID control
modules [11, 14, 15] that drive the movement along a finely
defined trajectory (position-based). This control scheme
requires high power motors in order to achieve rigid move-
ments (when manipulating heavy objects) and the whole
robot augments vibration artefacts that make difficult accu-
rate control. Furthermore, these platform jerks induce high
noise in the embodied accelerometers. Contrary to this
scheme, we define the trajectory by a reduced set of target
points (Figure 1(c)) and implement a velocity-driven control
strategy that highly reduces jerks.

2. Control Scheme

The motor-driver controller and the communication inter-
face are implemented on an FPGA (Spartan XC31500 [43]
embedded on the robot) (Figure 1(a)). Robonova-I [44] is
a fully articulating mechanical biped robot, 0.3 m, 1.3kg,
controlled with sixteen motors [44]. We have tested two
control strategies for a specific “L” trajectory previously
defined for the robot’s arm controlled with three motors (one
in the shoulder and two in the arm, see Figure 2. This whole
movement along three joints makes use of three degrees of
freedom during the trajectory. The movement that involves
the motor at the last arm-limb is the dominant one, as is
evidenced from the sensorimotor values in Figure 4(b).

2.1. Control Strategies. The trajectory is defined in different
ways for the two control strategies.

2.1.1. Dense Position-Driven. The desired joint trajectory is
finely defined by a set of target positions (P;) that regularly
sample the desired movement (see Figure 1(b)).

2.1.2. Sparse Velocity-Driven. In this control strategy, the
joint trajectory definition is carried out by specifying only
positions related to changes in movement direction.
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During all straight intervals, between a starting position
P, and the next change of direction P4, we proceed to com-
mand the arm by modulating the velocity towards P4
(see Figure 1(c)). Velocities (V) are calculated taking into
account the last captured position and the time step in
which the position has been acquired. Each target velocity for
period T is calculated with the following expression, V, =
(Pea — P,)/T. The control scheme applies a force propor-
tional to the target velocity. Figure 1(d(B)) illustrates how a
smoother movement is achieved using sparse velocity-driven
control.

The dense position-driven strategy reveals noisy vibra-
tions and jerks because each motor always tries to get the
desired position in the minimum time, whereas it would be
better to efficiently adjust the velocity according to the whole
target trajectory. The second strategy defines velocities dy-
namically along the trajectory as described above. Therefore,
we need to sample the position regularly to adapt the velocity.

2.2. Modelling Robot Dynamics. The dynamics of a robot arm
have a linear relationship to the inertial properties of the
manipulator joints [45, 46]. In other words, for a specific
context r they can be written in the form (1),

T =Y(q,4,4) - (1)

where ¢, g, and § are joint angles, velocities, and accelerations
respectively. Equation (1), based on fundamentals of robot
dynamics [47], splits the dynamics in two terms. Y(q, g, §)
is a term that depends on kinematics properties of the arm
such as direction of the axis of rotation of joints, and link
lengths. Term 7, is a high-dimensional vector containing all
inertial parameters of all links of the arm [45]. Now, let us
consider that the manipulated objects are attached at the
end of the arm, so we model the dynamics of the arm as
the manipulated object being the last link of the arm. Then,
manipulating different objects is equivalent to changing the
physical properties of the last link of the arm. The first
term of the equation remains constant in different models.
It means that all kinematic quantities of the arm remain the
same between different contexts. Under this assumption, we
could use a set of models with known inertial parameters
to infer a predictive model (RBF) of dynamics [27, 31, 48]
for any possible context. From another point of view, the
previous dynamic Equation (1) could be written in the form

(2):
7= A(q)(4) + H(q,9). (2)

Each dynamic term is nonlinear and coupled [49] where
A(q) is the matrix of inertia, symmetric, and positive and
H(q, g) includes Coriolis, gravitational, and centrifugal for-
ces. A(g) could be inverted for each robot configuration. Ap-
proximating A(q) = A(g) and H(g,q) = H(q,q), we obtain
(3):

A~

?=A(q) - u+H(q,q), (3)
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FiGurk 1: (a) Computing scheme. An FPGA processing platform embeds all the real-time control interfaces. The robot is connected to the
FPGA which receives commands from the host PC. The robot is equipped with three accelerometers in its arm. The computer captures the
sensor data. A RBF is used for learning the objects models from sensorimotor complexes. (b) Dense position-driven scheme. A motor moves
from an initial position P, to a final position Py temporally targeting each intermediate point P; along this trajectory. (c) Sparse velocity-
driven scheme. For each position P; indicated above, a target velocity is calculated for a motor with a time step T of 0.015s. Using a fixed
sampling frequency for obtaining feedback position, we calculate the distance AP from this current position to a position P4 corresponding
to a change of direction. (d(A)) Dense position-driven trajectory. The trajectory is defined in terms of regularly sampled intermediate points
(dashed line). (d(B)) The thinner continuous line represents the real curve executed by the robot’s arm in the space under the sparse velocity-
driven control. The black arrows indicate points in which changes of direction take place. The thicker continuous line corresponds to the
smooth velocity-driven trajectory executed anticipating the points in which changes of direction are applied before the arm reaches them.

where u is a new control vector. ff(q) and H (g,q) are esti-
mations of the real robot terms. So we have the following
equivalence relation (4):

u=4g. (4)

Component u is influenced only by a second-order term, it
depends on the joint variables (g,q), independently from
the movement of each joint. To sum up, we replaced the
nonlinear and coupled dynamic expressions with a second-
order linear system of noncoupled equations. The inputs to
the RBF network are the positions and velocities of the robot
joints, while the outputs are the accelerations. The input-
output relationship is in accordance with the equations of
motion. In this work, we propose and show the RBF to be
useful in approximating the unknown nonlinearities of the
dynamical systems [41, 42, 50-56] through the control signal
(4) found for the estimation method for the dynamics of the
joints of a robot.

2.3. The RBF-Based Modelling. The RBF function is defined
as (5):

z(x) = ¢(|lx = ull), (5)
where x is the n-dimensional input vector, ¢ is an n-dimen-
sional vector called centre of the RBF, || - || is the Euclidean

distance, and ¢ is the RBF outline.
We built our model as a linear combination of N RBF
functions with N centres. The RBF output is given by (6):

N
y(x) = > Bizj(x), (6)
=1

where B; is the weight of the jth radial function, centered at
u and with an activation level z;.

RBF has seven inputs: two per each of the three motors
in the robot arm (joints) and one for the label of the tra-
jectory which is executed (7). Three inputs encode the
difference between the current joint position and the next
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FIGURE 2: Diagram of the whole system architecture. The robot’s picture in the left is showing the different joints of the 3 DOF Robonova arm
involved in the movement. The PC applied appropriate motor commands to each joint of the arm at all times during the movement to follow
the desired trajectory. To relieve the computer from interface computation and allow real-time communication with the robot, an FPGA
board containing position acquisition modules and motor-driver controller circuits with PWM (pulse with modulation) was connected to
the robot. The communication task between devices and the operations described above was synchronised by the computer speeding up the
process. Finally, the batch learning with RBF of sensorimotor data collected during the movements was performed in the PC. The dataset
was split up into training data (75%) and test data (25%).
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FiGure 3: RBF inputs and outputs. (a) The network is used for function approximation of the sensor responses to specific inputs along
different trajectories. (b) This network includes an output label (OBJ) for object classification and uses as inputs the actual sensor responses
(connected to the upper part of the block).

target position in each of the joints (D;, D,, and Dj3). The
other three inputs (Vi, V3, and V3) encode the velocity com-
puted on the basis of the previous three inputs. We aim to
model the acceleration sensory outputs (S; and S,) (S3 does
not provide further information than S, for the movement
trajectory defined) and we also include one output (label) to
classify different kinds of objects (OB]J). See the illustrative
block in Figure 3(b). Therefore, we use two RBF networks.
The first one (see Figure 3(a)) aims to approximate the

acceleration sensor responses to the input motor commands.
The second one (see Figure 3(b)) aims to discriminate object
models (classification task) using as inputs the motor com-
mands and also the actual acceleration estimations given by
the sensors [57]. During learning, we feed the inputs and
actual outputs of the training set in the network [27, 31].
During the test stage, we evaluate the error obtained from the
sensors [39] that indicates how accurate the acquired model
is and, therefore, how stable, predictable, and repeatable is



Journal of Control Science and Engineering

Joint coordinates positions (deg)
motors 1 and 2

(deg) motors 2 and 3

200

—_
'S
(e}

—
3%
(=}

— — 3
(S (=3
o (=}

(=3
S

Position-driven versus velocity-driven trajectory

w
(=}

Joint coordinates positions

Position-driven versus velocity-driven trajectory

'Change motor positibn ' ! ' ! " ' 106 1 ) A T i
/2 NS St ‘g 104 | i ph I
It &; I I !
! ! 102 . i
v L P R
1\ ! ) i) 1 i
{ : — 100 1 ! |
| £ | = | o |
i i i g B b
i ! ! 96| i i i
| Motor 1 ‘v 1 1 1 : : : :
! ! ! ! " 94 1 I I I 1 1
Il I 1 I 1 I 1 11 I | N | N | N | 1 N
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (ms) Time (ms)
—— Position-driven —— Position-driven
- -~ Velocity-driven - -~ Velocity-driven
(a) (b)
Position-driven versus velocity-driven trajectory 200 Position-driven versus velocity-driven trajectory
T ——" E : —T ="k fn i
! I | = 2 I
r /Cﬁange motor position Motor 2 oo T %D 150 1 ' i
I I I I I ~ { I I I
i i Motor 3 AT B " | i i i
Sy I [ | g 100 ™ T Uil R ek Rk 1 -
I = I I I . =} I I I I
L I S| I g k9 I I I I
1 Xy 1 2l 1 1 1 1
1 I 1 I 1 1 1l 1 50 1 1 1 1 1 1 1l 1
0 500 1000 1500 2000 0 500 1000 1500 2000
Time (ms) Time (ms)
—— DPosition-driven —— DPosition-driven
- -~ Velocity-driven - -~ Velocity-driven
(0) (d)
Position-driven versus velocity-driven trajectory
200 : -
— I I
& I
@ 1
150 f | ! il 111
3 I | I
a I I |
SO 11 A ML P
: T
w I I I I
I I I I
50 1 1 1 1 1 1l 1
0 500 1000 1500 2000
Time (ms)
—— Position-driven
- -~ Velocity-driven
(e)

FIGURE 4: Plots (a) and (c) show the motor commands (in joint coordinates) and plots (b), (d), and (e) show the sensor responses during
the movement. We compare the dense position-driven versus the sparse velocity-driven strategies for the case related to object 0 (see the
experimental results). In (b) (Sensor 1), it can be clearly seen how the sensor responses are directly related with the motor command
changes in plot (a). The sensor responses, obtained using the sparse velocity-driven strategy, are more stable. Motor commands increasing
the derivative of joint coordinates cause increments in sensor 1 response during a certain period, while motor commands decreasing the
derivative of joint coordinates cause decrements in sensor 1 response, plot (b). The piece of trajectory monitored by these plots is mainly
related to sensor 1. It can be seen in the right plots (d) and (e) that the other sensors are not so sensitive to the motions in this example.
Nevertheless, sparse velocity-driven control still leads to much more stable sensor responses. Dense position-driven control causes large
vibrations that highly affect the capability of the neural network to approach the sensor response function.

the object manipulation. The error metric shown in the
result figures (see Figure 5) is the root mean square error
(RMSE) in degrees/s? of the different sensors along the whole
trajectory. Finally, the classification error (related to the label
output) indicates how accurately the network can classify

a specific object from the positions, velocities, and accel-
erometer responses along the trajectory with a correspond-
ing target output. A lower error in the predicted sensor re-
sponses indicates that the motion is performed in a smoother
and more predictable way. Therefore, as can be seen in
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and 4), H (2and 3),1 (2and 4), and J (3 and 4). (c) Using a different class (model) for each set of three objects. Cases (objects): A (0, 1, and
2),B(0,1,and 3), C (0, 1,and 4), D (0, 2, and 3), E (0, 2, and 4), F (0, 3,and 4), G (1, 2, and 3), H (objects 1,2,and 4), I (1,3, and 4), and J
(2, 3, and 4). (d) Using a different class for each set of four objects. Cases (objects): A (0, 1, 2, and 4), B (0, 1, 2, and 3), C (0, 1, 3, and 4), D
(0,2,3,and 4), E (1, 2, 3, and 4). (e) Using a single class for the only set of five objects. In this case the increment of RMSE in the test stage

is neglectable. Cases (objects): (0, 1, 2, 3, and 4).

Figures 4, 5, and 6, strategies such as sparse velocity-driven
control lead to a more reliable movement control scheme.
Furthermore, this allows a better dynamic characterisation of
different objects. This facilitates the use of adaptation strate-
gies of control gains to achieve more accurate manipulation
skills (although this issue is not specifically addressed in this
work).

3. Results

Studies have shown high correlations between the inertia
tensor and various haptic properties like length, height, ori-
entation of the object, and position of the hand grasp [57—
59]. The inertia tensor has the central role to be the percep-
tual basis for making haptic judgments of object properties.
In order to describe the approach and the pursued move-
ments (several repetitions) and to test different dynamic

models of the whole system (robot arm with object) [60, 61],
the robot hand manipulated objects with different weights,
shapes, and position of grasp. We acquired all the data from
the position and accelerator sensors and we used them for
the RBF off-line training. We considered the following cases
of study:

(0) NO object;
(1) Scissors (0.05kg, 0.14 m);

(2) Monkey wrench manipulated fixing the centre
(0.07 kg, 0.16 m);

(3) Monkey wrench manipulated fixing an extreme
(0.07kg, 0.16 m);

(4) Two Allen keys (0.1kg, 0.10 m).

We repeated manipulation experiments ten times for each
case of study collecting sixty thousand data. We applied
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FIGURE 6: Comparison between dense position-driven control scheme (column A) and the sparse velocity-driven control scheme (column
B) for the case related to object 0. RMSE (degrees/s?) of predicted values of the sensors S; and S, using a sparse velocity-driven scheme (B)
are always lower than the ones obtained using dense position-driven control (A). The sensor that suffers more significantly from jerks when
using dense position-driven scheme is S,. The darker colour in the top of the columns indicates the increment of RMSE in the test stage.
The test results are always slightly higher. The variance value obtained with the cross-validation method for the test results is also included.
Figures 6(a) and 6(b) are related to the cases of a nonfixed and a fixed robot respectively.

a cross-validation method defining different datasets for the
training and test stages. We used the data of seven experi-
ments out of ten for training and three for the test stage. We
repeated this approach three times shuffling the experiments
of the datasets for training and test. The neural network is
built using the MBC model toolbox of MATLAB [62]. We
chose the following algorithms: TrialWidths [63] for the
width selection and StepItRols for the Lambda and centres
selection [64]. We measured the performance calculating the
RMSE in degrees/s? in the acceleration sensory outputs (S;
and S,).

We addressed a comparative study evaluating how accu-
rately the neural network can abstract the dynamic model
using a dense position-driven and a sparse velocity-driven
schemes. Plots in Figure 4 illustrate how the motor com-
mands are highly related with specific sensor responses
(mainly in sensor 1 along this piece of trajectory). Figures
4(a) and 4(c) illustrate a piece of movement. Figures 4(b),
4(d) and 4(e) show that sparse velocity-driven control leads
to much more stable sensor responses.

3.1. Abstracting the Dynamic Model during Manipulation.
The goal of the RBF network is to model the sensory outputs
given the motor commands along well defined trajectories
(manipulating several objects). The purpose is to study how
accurate models can be acquired if the neural network is
trained with individual objects or with groups of “sets of
objects” (as a single class). When we select the target “mod-
els” to abstract in the training stage with the neural network,
we can define several target cases: 5 classes for abstracting
single object models (Figure 5(a)), 10 classes for abstracting
models for pairs of objects (Figure 5(b)), 10 classes for

abstracting models of sets of “three objects” (Figure 5(c)),
5 classes for models of sets of “four objects” (Figure 5(d)),
and finally, a single global model for the set of five objects
(Figure 5(e)). The neural network, trained with data of two
objects, presents the minimum of RMSE using 25 neurons in
the hidden layer. For three objects, we used 66—-80 neurons
depending on the specific case, and for four objects, 80
neurons. But even with these larger numbers of neurons, the
network was able to accurately classify the objects in the case
of sets of two of them. During manipulation, if the model
prediction significantly deviates from the actual sensory
outputs, the system can assume that the model being applied
is incorrect and should proceed to “switch” to another model
or to “learn modifications” on the current model. In this task,
we evaluate the performance of the “abstraction process”
calculating the RMSE between the model sensor response
and the actual sensor response along the movement. Figure 6
compares the performance achieved between the two control
schemes under study for the cases of a nonfixed (Figure 6(a))
and a fixed robot (Figure 6(b)). Results indicate that the
velocity driven strategy reduces the error to very low values
in both cases.

Results in Figure 5 are obtained using a sparse velocity-
driven control scheme. In Figure 5(a), they show how the
RBF achieves different performance when trying to abstract
models of different objects. For objects 1 and 3, both sensors
lead to similar RMSE values as their dynamic models are
similar. Objects 2 and 4 lead to higher RMSE values since
they have more inertia than others. As we can see (comparing
the results of Figures 5(a) and 5(b), if the network has to
learn the dynamic model of more objects in the same class
(shared model learning) at the same time, the error rate
increases slightly.
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FIGURE 7: Bars represent the object discrimination power of the
network (RBF) for all combinations of two, three, four, or five
objects respectively (see paragraph 3 for object classification). If the
RMSE (OB]J) value of the label output for a specific set of objects
lies below the discrimination threshold, an accurate classification
of objects can be achieved. Graphs show the result obtained with a
non-fixed robot (Figure 7(a)) and with a fixed robot (Figure 7(b)),
and each bar is associated to a combination of objects listed in
the legend from left to right, respectively. A combination with two
thresholds (i.e., 0 3 4) has two bars and two labels (0 3 4a and 0 3
4b) and bars are joined together in the graph.

3.2. Classifying Objects during Manipulation. In Figure 7,
the discrimination power of the RBF based on the dynamic
model itself is shown. In this case, we evaluate if the RBF
is able to accurately distinguish among different objects
assigning the correct labels (0, 1, 2, 3, and 4) by using only the
inputs of the network (i.e., sensorimotor vectors). Evaluation
of the classification performance is not straightforward and
is based on the difference between the “discrimination
threshold” (half of the distance between the closest target
label values) and the RMSE value of the label output for a
specific set of objects. We have chosen a single dimension
distribution of the classes, therefore, distances between the
different class labels are diverse. For instance, the “distance”
between labels one and two is one, while the distance between
labels one and four is three and the threshold is the half of
that distance. For any set of two or five objects (i.e. A (0 and
1), B (1 and 3), and C (0, 1, 2, 3, and 4)) only one threshold
value exists (Th(A) = 0.5, Th(B) = 1, and Th(C) = [0.5, 0.5,
0.5, 0.5]), while sets of three or four objects (i.e., D (1, 2,
and 3), E (0, 2, and 3), and F (0, 1, 2, and 4), and G (1, 2, 3,
and 4)) may have two threshold values (Th(D) = [0.5,0.5],
Th(E) = [1,0.5], Th(F) = [0.5,0.5, 1], and Th(G) = [0.5, 0.5,
0.5]). We see that the RBF is able to correctly classify the
objects when using only two of them (values above zero)
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but the system becomes unreliable (negative values) when
using three objects or more in the case of a standing robot
(Figure 7(a)), while the RBF always correctly classifies the
objects when the robot is fixed to the ground (Figure 7(b)).

3.3. Accurate Manipulation Strategy: Classification with Cus-
tom Control. We have abstracted dynamic models from ob-
jects and can use them for accurate control (Figure 9).

(a) Direct Control. We control different objects directly. Dur-
ing manipulation, the sensor responses are compared with
a “shared model” to evaluate the performance. We measure
the RMSE comparing the global model output (model of the
sensor outputs of two different manipulated objects) and the
actual sensor outputs.

(b) Classification with Control. Since we are able to accurately
distinguish between two objects (Figure 7(a)), we select the
corresponding individual model from the RBF network (see
Figure 3(a)) to obtain the acceleration values of the object
being manipulated instead of using a shared model with the
data of the two objects. In fact, the individual models of
the five objects were previously learnt. The RMSE is always
lower when single object models are used (Figure 9) (after
an object classification stage). Direct control using a global
(shared) model achieves a lower performance because the
applied model does not take into account the singularities
of each of the individual models.

The classification with control scheme is feasible when
dealing with objects easy to be discriminated and the actual
trajectory of the movement follows more reliably the single
object model than a “shared model.” In Figure 9, the RMSE
is plotted when comparing sensor model response and the
actual sensor responses. Figure 8 shows the accuracy of the
classification task when training the network with different
numbers of objects (classification errors along the trajec-
tory). Nevertheless, we have shown (Figure 7) that with the
objects used in our study, the network can only reliably
classify the object (along the whole trajectory) when we focus
on distinguishing between two objects.

4. Conclusions

The first conclusion of the presented work is that the applied
control scheme is critical to facilitate reliable dynamic model
abstraction. In fact, the dynamic models or computed
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F1GUre 9: Comparison between the individual and the shared models related to predicted sensory values S1 and S2. The columns of a lighter
colour indicate RMSE for the direct control while the columns of a darker colour represent RMSE for the controller of a single object once
it is accurately classified. Cases (objects): A (0 and 1), B (0 and 2), C (0 and 3), D (0 and 4), E (1 and 2), F (1 and 3), G (1 and 4), H (2 and

3),1(2and 4),and J (3 and 4).

torques are used for high performance and compliant robot
control in terms of precision and energy efficiency [3, 65].

We have compared a dense position-driven versus a
sparse velocity-driven control strategy. The second scheme
leads to smoother movements when manipulating different
objects. This produces more stable sensor responses which
allow to model the dynamics of the movement. As model
abstraction engine, we have used a well-known RBF network
(widely used for function approximation tasks) and we
compared its performance for abstracting dynamics models
of the different objects using a sparse velocity-driven scheme
(Figure 5(a)).

In a second part of the work, we have evaluated if the
object classification is feasible. More concretely, we have
checked out if we can perform it using sensorimotor com-
plexes (motor commands, velocities, and local accelerations)
obtained during object manipulation (exploration task) as
inputs. Figure 7(a) shows that only the discrimination be-
tween any pair of two objects was possible. Robots with low
gains will produce different actual movements when manip-
ulating different objects, because these objects affect signif-
icantly their dynamic model. If the robot is controlled with
high gains, the differences in the dynamic model of the robot
are compensated by the high control gains. If the robot is
tightly fixed but is controlled with low gains the actual
movement (sensorimotor representation of an object manip-
ulation) is different for each object (Figure 7(b)). If the robot
is slightly fixed, the control commands produce vibrations
that perturb the dynamic model and, therefore, the different
sensorimotor representations are highly affected by these
noisy artefacts (motor command driven vibrations) (see
Figure 7(a)).

Finally, by assuming that we are able to classify objects
during manipulation and to switch to the best dynamic
model, we have evaluated the accuracy when comparing the
movement’s actual dynamics (actual sensor responses) with
the abstracted ones. Furthermore, we have evaluated the gain
in performance if we compare it with a specific dynamic
model instead of a “global” dynamics model. We have eval-
uated the impact of this two-step control strategy obtaining
an improvement of 30% (Figure 9) in predicting the sensor
outputs along the trajectory. This abstracted model can

be used in predicted control strategies or for stabilisation
purposes.

Summarising, our results prove that the presented robot
and artificial neural network can abstract dynamic models
of objects within the stream sensorimotor primitives during
manipulation tasks. One of the most important results of the
work shown in Figures 6(a) (nonfixed robot) and 6(b) (fixed
robot) indicates that robot platforms can highly benefit
from nonrigid sparse velocity-driven control scheme. The
high error obtained with the dense position-driven control
scheme (Figure 6(a)) is caused by vibrations as the slight
fixation of the robot to the ground is only supported by its
own weight. Furthermore, when we try to abstract a move-
ment model, the performance achieved by the neural net-
work (RBF) also represents a measurement of the stability of
the movements (the repeatability of such trajectories when
applying different control schemes).
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