8 research outputs found

    Fragile Watermarking Based on Encoding of the Zeroes of the zz-Transform

    Full text link

    Secure and Robust Fragile Watermarking Scheme for Medical Images

    Get PDF
    Over the past decade advances in computer-based communication and health services, the need for image security becomes urgent to address the requirements of both safety and non-safety in medical applications. This paper proposes a new fragile watermarking based scheme for image authentication and self-recovery for medical applications. The proposed scheme locates image tampering as well as recovers the original image. A host image is broken into 4×4 blocks and Singular Value Decomposition (SVD) is applied by inserting the traces of block wise SVD into the Least Significant Bit (LSB) of the image pixels to figure out the transformation in the original image. Two authentication bits namely block authentication and self-recovery bits were used to survive the vector quantization attack. The insertion of self-recovery bits is determined with Arnold transformation, which recovers the original image even after a high tampering rate. SVD-based watermarking information improves the image authentication and provides a way to detect different attacked area. The proposed scheme is tested against different types of attacks such are text removal attack, text insertion attack, and copy and paste attack

    Logistic Map-Based Fragile Watermarking for Pixel Level Tamper Detection and Resistance

    Get PDF
    An efficient fragile image watermarking technique for pixel level tamper detection and resistance is proposed. It uses five most significant bits of the pixels to generate watermark bits and embeds them in the three least significant bits. The proposed technique uses a logistic map and takes advantage of its sensitivity property to a small change in the initial condition. At the same time, it incorporates the confusion/diffusion and hashing techniques used in many cryptographic systems to resist tampering at pixel level as well as at block level. This paper also presents two new approaches called nonaggressive and aggressive tamper detection algorithms. Simulations show that the proposed technique can provide more than 99.39% tamper detection capability with less than 2.31% false-positive detection and less than 0.61% false-negative detection responses

    Lossless Authentication Watermarking Based on Adaptive Modular Arithmetic

    Get PDF
    Reversible watermarking schemes based on modulo-256 addition may cause annoying salt-and-pepper noise. To avoid the salt-and-pepper noise, a reversible watermarking scheme using human visual perception characteristics and adaptive modular arithmetic is proposed. First, a high-bit residual image is obtained by extracting the most significant bits (MSB) of the original image, and a new spatial visual perception model is built according to the high-bit residual image features. Second, the watermark strength and the adaptive divisor of modulo operation for each pixel are determined by the visual perception model. Finally, the watermark is embedded into different least significant bits (LSB) of original image with adaptive modulo addition. The original image can be losslessly recovered if the stego-image has not been altered. Extensive experiments show that the proposed algorithm eliminates the salt-and-pepper noise effectively, and the visual quality of the stego-image with the proposed algorithm has been dramatically improved over some existing reversible watermarking algorithms. Especially, the stegoimage of this algorithm has about 9.9864 dB higher PSNR value than that of modulo-256 addition based reversible watermarking scheme

    On the Assumption of Equal Contributions in Fingerprinting

    Full text link

    Statistical Fragile Watermarking Capable of Locating Individual Tampered Pixels

    No full text
    corecore