308 research outputs found

    Statistical Distributions and q-Analogues of k-Fibonacci Numbers

    Get PDF
    Abstract We study q-analogues of k-Fibonacci numbers that arise from weighted tilings of an n × 1 board with tiles of length at most k. The weights on our tilings arise naturally out of distributions of permutations statistics and set partitions statistics. We use these q-analogues to produce q-analogues of identities involving k-Fibonacci numbers. This is a natural extension of results of the first author and Sagan on set partitions and the first author and Mathisen on permutations. In this paper we give general q-analogues of k-Fibonacci identities for arbitrary weights that depend only on lengths and locations of tiles. We then determine weights for specific permutation or set partition statistics and use these specific weights and the general identities to produce specific identities

    Statistics of resonances and of delay times in quasiperiodic Schr"odinger equations

    Full text link
    We study the statistical distributions of the resonance widths P(Γ){\cal P} (\Gamma), and of delay times P(τ){\cal P} (\tau) in one dimensional quasi-periodic tight-binding systems with one open channel. Both quantities are found to decay algebraically as Γ−α\Gamma^{-\alpha}, and τ−γ\tau^{-\gamma} on small and large scales respectively. The exponents α\alpha, and γ\gamma are related to the fractal dimension D0ED_0^E of the spectrum of the closed system as α=1+D0E\alpha=1+D_0^E and γ=2−D0E\gamma=2-D_0^E. Our results are verified for the Harper model at the metal-insulator transition and for Fibonacci lattices.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    Statistics of Resonances and Delay Times in Random Media: Beyond Random Matrix Theory

    Full text link
    We review recent developments on quantum scattering from mesoscopic systems. Various spatial geometries whose closed analogs shows diffusive, localized or critical behavior are considered. These are features that cannot be described by the universal Random Matrix Theory results. Instead one has to go beyond this approximation and incorporate them in a non-perturbative way. Here, we pay particular emphasis to the traces of these non-universal characteristics, in the distribution of the Wigner delay times and resonance widths. The former quantity captures time dependent aspects of quantum scattering while the latter is associated with the poles of the scattering matrix.Comment: 30 pages, 15 figures (submitted to Journal of Phys. A: Math. and General, special issue on "Aspects of Quantum Chaotic Scattering"

    A Probabilistic Approach to Generalized Zeckendorf Decompositions

    Full text link
    Generalized Zeckendorf decompositions are expansions of integers as sums of elements of solutions to recurrence relations. The simplest cases are base-bb expansions, and the standard Zeckendorf decomposition uses the Fibonacci sequence. The expansions are finite sequences of nonnegative integer coefficients (satisfying certain technical conditions to guarantee uniqueness of the decomposition) and which can be viewed as analogs of sequences of variable-length words made from some fixed alphabet. In this paper we present a new approach and construction for uniform measures on expansions, identifying them as the distribution of a Markov chain conditioned not to hit a set. This gives a unified approach that allows us to easily recover results on the expansions from analogous results for Markov chains, and in this paper we focus on laws of large numbers, central limit theorems for sums of digits, and statements on gaps (zeros) in expansions. We expect the approach to prove useful in other similar contexts.Comment: Version 1.0, 25 pages. Keywords: Zeckendorf decompositions, positive linear recurrence relations, distribution of gaps, longest gap, Markov processe

    Why Delannoy numbers?

    Full text link
    This article is not a research paper, but a little note on the history of combinatorics: We present here a tentative short biography of Henri Delannoy, and a survey of his most notable works. This answers to the question raised in the title, as these works are related to lattice paths enumeration, to the so-called Delannoy numbers, and were the first general way to solve Ballot-like problems. These numbers appear in probabilistic game theory, alignments of DNA sequences, tiling problems, temporal representation models, analysis of algorithms and combinatorial structures.Comment: Presented to the conference "Lattice Paths Combinatorics and Discrete Distributions" (Athens, June 5-7, 2002) and to appear in the Journal of Statistical Planning and Inference

    Artin's primitive root conjecture -a survey -

    Get PDF
    This is an expanded version of a write-up of a talk given in the fall of 2000 in Oberwolfach. A large part of it is intended to be understandable by non-number theorists with a mathematical background. The talk covered some of the history, results and ideas connected with Artin's celebrated primitive root conjecture dating from 1927. In the update several new results established after 2000 are also discussed.Comment: 87 pages, 512 references, to appear in Integer
    • …
    corecore