25 research outputs found

    Static Analysis of Functional Programs

    Get PDF
    In this paper, the static analysis of programs in the functional programming language Miranda* is described based on two graph models. A new control-flow graph model of Miranda definitions is presented, and a model with four classes of callgraphs. Standard software metrics are applicable to these models. A Miranda front end for Prometrix, Âż, a tool for the automated analysis of flowgraphs and callgraphs, has been developed. This front end produces the flowgraph and callgraph representations of Miranda programs. Some features of the metric analyser are illustrated with an example program. The tool provides a promising access to standard metrics on functional programs

    Towards Static Analysis of Functional Programs using Tree Automata Completion

    Get PDF
    This paper presents the first step of a wider research effort to apply tree automata completion to the static analysis of functional programs. Tree Automata Completion is a family of techniques for computing or approximating the set of terms reachable by a rewriting relation. The completion algorithm we focus on is parameterized by a set E of equations controlling the precision of the approximation and influencing its termination. For completion to be used as a static analysis, the first step is to guarantee its termination. In this work, we thus give a sufficient condition on E and T(F) for completion algorithm to always terminate. In the particular setting of functional programs, this condition can be relaxed into a condition on E and T(C) (terms built on the set of constructors) that is closer to what is done in the field of static analysis, where abstractions are performed on data.Comment: Proceedings of WRLA'14. 201

    Introspective Pushdown Analysis of Higher-Order Programs

    Full text link
    In the static analysis of functional programs, pushdown flow analysis and abstract garbage collection skirt just inside the boundaries of soundness and decidability. Alone, each method reduces analysis times and boosts precision by orders of magnitude. This work illuminates and conquers the theoretical challenges that stand in the way of combining the power of these techniques. The challenge in marrying these techniques is not subtle: computing the reachable control states of a pushdown system relies on limiting access during transition to the top of the stack; abstract garbage collection, on the other hand, needs full access to the entire stack to compute a root set, just as concrete collection does. \emph{Introspective} pushdown systems resolve this conflict. Introspective pushdown systems provide enough access to the stack to allow abstract garbage collection, but they remain restricted enough to compute control-state reachability, thereby enabling the sound and precise product of pushdown analysis and abstract garbage collection. Experiments reveal synergistic interplay between the techniques, and the fusion demonstrates "better-than-both-worlds" precision.Comment: Proceedings of the 17th ACM SIGPLAN International Conference on Functional Programming, 2012, AC

    Programmers' performance on structured versus nonstructured function definitions

    Get PDF
    A control-flow model for functional programs is used in an experimental comparison of the performance of programmers on structured versus nonstructured Miranda function definitions. The performance is taken as a measure of the comprehensibility of functional programs. The experimental set-up is similar to the Scanlan study (1989). However, in the present study, a two-factor repeated measures design is used in the statistical analysis. The control-flow model appears to be useful in the shaping of the experiment. A significantly better performance has been found for structured function definitions on both dependent variables: the time needed to answer questions about the function definitions and the proportion correct answers. Moreover, for structured function definitions, a counter-intuitive result has been obtained: there are significantly fewer errors in larger definitions than in smaller ones

    Doctor of Philosophy

    Get PDF
    dissertationIn the static analysis of functional programs, control- ow analysis (k-CFA) is a classic method of approximating program behavior as a infinite state automata. CFA2 and abstract garbage collection are two recent, yet orthogonal improvements, on k-CFA. CFA2 approximates program behavior as a pushdown system, using summarization for the stack. CFA2 can accurately approximate arbitrarily-deep recursive function calls, whereas k-CFA cannot. Abstract garbage collection removes unreachable values from the store/heap. If unreachable values are not removed from a static analysis, they can become reachable again, which pollutes the final analysis and makes it less precise. Unfortunately, as these two techniques were originally formulated, they are incompatible. CFA2's summarization technique for managing the stack obscures the stack such that abstract garbage collection is unable to examine the stack for reachable values. This dissertation presents introspective pushdown control-flow analysis, which manages the stack explicitly through stack changes (pushes and pops). Because this analysis is able to examine the stack by how it has changed, abstract garbage collection is able to examine the stack for reachable values. Thus, introspective pushdown control-flow analysis merges successfully the benefits of CFA2 and abstract garbage collection to create a more precise static analysis. Additionally, the high-performance computing community has viewed functional programming techniques and tools as lacking the efficiency necessary for their applications. Nebo is a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena. For efficient execution, Nebo exploits a version of expression templates, based on the C++ template system, which is a type-less, completely-pure, Turing-complete functional language with burdensome syntax. Nebo's declarative syntax supports functional tools, such as point-wise lifting of complex expressions and functional composition of stencil operators. Nebo's primary abstraction is mathematical assignment, which separates what a calculation does from how that calculation is executed. Currently Nebo supports single-core execution, multicore (thread-based) parallel execution, and GPU execution. With single-core execution, Nebo performs on par with the loops and code that it replaces in Wasatch, a pre-existing high-performance simulation project. With multicore (thread-based) execution, Nebo can linearly scale (with roughly 90% efficiency) up to 6 processors, compared to its single-core execution. Moreover, Nebo's GPU execution can be up to 37x faster than its single-core execution. Finally, Wasatch (the pre-existing high-performance simulation project which uses Nebo) can scale up to 262K cores

    Abstract semantics for functional constraint programming

    Get PDF
    technical reportA denotational semantics is given for a lazy functional language with monotonic side-effects arising from the unification of singly-bound logical variables. The semantics is based on a Scott-style information system, which elegantly captures the notion of "constraint additin" inherent in unification. A novel feature of our approach is exploitation of the representational duality of denotations defined by information systems: (i) as domain elements in the traditional sense, and (ii) as sets of propositions or constraints. Spread care is taken to express accurately the interactions of lazy evaluation (e.g. evaluation by need), and read-only accesses of logical variables defer function applications. The purpose of our semantic description is to establish language properties such as determinacy under parallel evaluation, to validate implementation strategies, and to support the design of program analysis techniques such as those based on abstract interpretation

    Reachability Analysis of Innermost Rewriting

    Get PDF
    We consider the problem of inferring a grammar describing the output of a functional program given a grammar describing its input. Solutions to this problem are helpful for detecting bugs or proving safety properties of functional programs and, several rewriting tools exist for solving this problem. However, known grammar inference techniques are not able to take evaluation strategies of the program into account. This yields very imprecise results when the evaluation strategy matters. In this work, we adapt the Tree Automata Completion algorithm to approximate accurately the set of terms reachable by rewriting under the innermost strategy. We prove that the proposed technique is sound and precise w.r.t. innermost rewriting. The proposed algorithm has been implemented in the Timbuk reachability tool. Experiments show that it noticeably improves the accuracy of static analysis for functional programs using the call-by-value evaluation strategy

    Reachability Analysis of Innermost Rewriting

    Get PDF
    Approximating the set of terms reachable by rewriting finds more and more applications ranging from termination proofs of term rewriting systems, cryp- tographic protocol verification to static analysis of programs. However, since approximation techniques do not take rewriting strategies into account, they build very coarse approximations when rewriting is constrained by a specific strategy. In this work, we propose to adapt the Tree Automata Completion algorithm to accurately approximate the set of terms reachable by rewriting under the inner- most strategy. We prove that the proposed technique is sound and precise w.r.t. innermost rewriting. The proposed algorithm has been implemented in the Timbuk reachability tool. Experiments shows that it noticeably improves the accuracy of static analysis for functional programs using the call-by-value evaluation strategy. In particular, for some functional programs needing lazy evaluation to terminate, the computed approximations are precise enough to prove the absence of innermost normal forms, i.e. prove non termination of the program with call-by-value
    corecore