
Surya Mantha, Lai George, and Gary Lindstrom

UUCS-89-022

Department of Computer Science
University o f Utah

Salt Lake City, U T 84112, USA

1989

A b s t r a c t S e m a n t i c s F o r F u n c t i o n a l

C o n s t r a i n t P r o g r a m m i n g 1

A b stra ct
A denotational sem antics is given for a la zy functional language with m on oton ic side-effects arising from

the unification o f sin gly-bou n d logical variables. T he sem antics is based on a S co tt-sty le inform ation system ,
which elegantly captures the notion o f ’’ constraint additin” inherent in unification. A n ovel feature o f our
approach is exploitation o f the representational duality o f denotations defined b y inform ation sy ste m s: (i) as
domain elem ents in the traditional sense, and (ii) as sets o f propositions or constraints. Spread care is taken
to express accurately the interactions o f la zy evaluation (e.g. evaluation b y n eed), and read-only accesses
o f logical variables defer function applications. T he purpose o f our sem antic description is to establish
language p roperties such as determ inacy under parallel evaluation, to validate iinplem entation strategies,
and to support the design o f program analysis techniques such as those based on abstract interpretation.

xThis material is based upon work supported by the National Science Foundation under Grant No. C C R -
8704778.

Pa.ra.Ilel Programming Research Group
University of Utah, Department of Computer Science

Note PPRG-S9-TR-89-022

A b s t r a c t S e m a n t i c s F o r F u n c t i o n a l C o n s t r a i n t
P r o g r a m m i n g *

SURYA MANTHA (m antha@cs.utah .edu)
LAL GEORGE (george@ cs.utah.edu)
GARY LINDSTROM . (lindstrom @cs.utah.edu)
University of Utah
Dept, of Computer Science
Salt Lake City, Utah 84112

Keywords: lazy functional languages, logical variables, semantics, information systems

Abstract. A denotational semantics is given for a lazy functional language with monotonic side-
effects arising from the unification of singly-bound logical variables. The semantics is based on a
Scott-style information system, which elegantly captures the notion of ‘constraint addition’ inherent
in unification. A novel feature of our approach is exploitation of the representational duality of
denotations defined by information systems: (i) as domain elements in the traditional sense, and
(ii) as sets of propositions or constraints. Special care is taken to express accurately the interactions
of lazy evaluation (e.g. evaluation by need), and read-only accesses of logical variables defer function
applications. The purpose of our semantic description is to establish language properties such as
determinacy under parallel evaluation, to validate implementation strategies, and to support the
design of program analysis techniques such as those based on abstract interpretation.

1 Introduction

Functional languages are predicated on the absence of side effects, which results
in both elegance and shortcomings as general purpose programming languages. The
absence of side effects requires that all variables be bound immediately upon intro
duction. In the absence of update analysis, single threading, or other sophisticated
techniques, aggregate data structures must be copied whenever a component is up
dated. This not only results in unacceptable space consumption, but also entails time
expense in copying data values and recycling inaccessible storage.

The need to overcome these problems has long been recognized. One avenue re
ceiving considerable attention is the amalgamation of functional languages with other
declarative models o f programming supporting disciplined side effects, e.g.

• logic programming languages and

• equational languages, e.g. term rewriting systems.

These amalgamation efforts all recognize the important role played by logical vari
a b l e s arguably the most important concept to emerge from logic programming. The
reader is referred to [1 0], [1 2] for a detailed account of the benefits of incorporating
logical variables into functional languages.

"This material is based upon work supported by the National Science Foundation under Grant
No. CCR-8704778.

mailto:mantha@cs.utah.edu
mailto:george@cs.utah.edu
mailto:lindstrom@cs.utah.edu

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 2

We shall, however, give a brief summary of the advantages o f such an integra
tion. Logical variables enhance the already powerful data structuring capabilities
and modular nature of functional languages by allowing

• Monotonic side effects;

• Use before definition o f data structures;

• Multi-reader multi-writer communication channels between processes, thereby
providing a richer notion of communication and synchronization than is pro
vided by the exclusively producer-consumer model in functional programming,
and

• An elegant notion o f functional program m ing with constraints.

2 The CoF Language

C o F (Com m unicating Functions) is a lazy functional language with logical vari
ables. Its evaluation strategy — graph reduction — molds well onto a parallel ma
chine, in that the closures used to support lazy evaluation are naturally implementable
as variable grain tasks. Parameter passing is done by pattern matching, a familiar
concept in functional languages. This causes a rewrite or reduction to be suspended if
the actual arguments are not evaluated or are insufficiently instantiated. For example,
if the actual argument happens to be an unbound logical variable wrhere a destruc
turing pattern match is required, then the rewrite suspends awaiting a binding of
that variable. Special care will be taken to express accurately the interactions of lazy
evaluation (e.g. evaluation by need), and read-only accesses of logical variables defer
function applications. Note, however, that in C o F the degree of evaluation thorough
ness of expressions is semantically important, rather than being simply an efficiency
or divergence control issue. In particular, over-evaluation can needlessly lead to er
rors, due to the gratuitous application of conflicting constraints (unifications). Hence
our semantics must exhibit T-avoidance as well as -L-avoidance!

We give the abstract syntax of C oF and refer the reader to [5] for details on its
design. C oF is based on an M L syntax with two syntactic extensions to expressions
to handle unification and the introduction o f logical variables.

exp ::= N at
| B o o l
| n i l
| Id
j expi : : exp 2

. | hd exp\
| t l expi
j expi exp2
| lambda Id exp •
| l e t Id * expi in exp 2
j l e t Id = u bv() in exp
| exp\ assuming exp2 == exp 3
j expi p r im -o p exp2
| i f expi then exp 2 e ls e exp3

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 3

The symbol == denotes the unification operator, which occurs only within an assuming
expression. The value of the assuming expression is expi, which is strict upon suc
cessfully unifying exp2 and exp3. The special form Id = u bv () binds Id to a new (un
bound) logical variable. Logical variables are singly bound to preserve the functional
semantics. Hence no backtracking or relational results are utilized, and unification
failure is a fatal error. Logical variables are first class objects in CoF, e.g. they may
be passed as arguments to functions and returned by function applications. While
referential transparency is lost (because u bv () / u b v ()) , the top level determinacy
o f functional programs is preserved, as we will later demonstrate. The semantics of
purely functional CoF programs (those without the u bv () and assuming constructs)
is quite conventional.

3 A Semantic Model Based On Information Systems

As observed in the previous section, logic programming and functional program
ming are becoming more closely related. We build here on important contributions
made by other researchers seeking abstract semantics for languages combining these
two paradigms.

• Pingali et al. [6] give an abstract semantics for a functional language with logical
variables based on solving a set of equations involving an environment. Their
language Cid is eager and hence does not have lazy constructors.
Our semantic framework employs a purely functional meta-language rather than
equation solving as in [6]. In fact, the notion of constraint solving is an inherent
part o f C oF semantics unlike in Cid. We adopt Saraswat’s [17] notion of a
global logical store as a repository for the constraints that have been imposed
by program execution. In Saraswat’s terminology, ask (read-only) constraints
arise in C oF through parameter passing, and tell constraints arise from unify
operations.

• Kieburtz was the first to use Scott’s information systems [2 0] in this arena.
Reference [8] gives a relational semantics for the logic component of a language
with functions and Horn clauses, rather than the tradmtional semantics based on
Herbrand models. The motivation there is to develop an integrated functions
and logic language F -fL that provides the flexibility o f relational definitions
while retaining the power o f general applicative expressions.
C oF is less ambitious in that the functional basis is preserved by requiring logical
variables to be singly bound. Also, logical variables are fully integrated into our
functional framework, as opposed to constituting a stylized interface between
the applicative and relational sublanguages as in F-j-L. Recent work [13] on open
languages holds the promise of a clean interface shared among languages such
as these, using polymorphic type information.

Like the work o f Kieburtz, our denotational semantics is based on Scott’s infor
mation systems. Information systems are an elegant way of characterizing monotonic
constraint addition. This alternative semantic foundation was first introduced by
Scott [2 0] as an attempt to demystify the theory of domains. The underlying motiva
tion for the study o f domains is to formulate a notion of computability with respect to
recursively defined types containing infinite elements. This infinitude necessitates the

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 4

introduction of the notions of approximation and total and partial elements. Scott
gives an elegant formulation of domains in terms of information systems with the
following advantages:

• Information system definitions are constructive, with complex domains can be
obtained from simpler ones in a straightforward manner.

• Domains are given a simpler structure, based on classical set theory.

• Very few axioms are used, and they can be tailored to suit many applications.

• Elements of domains are endowed with more structure; consequently it is easier
to reason about them.

The key insight in the information system approach to domains is that possible el
em ents o f the desired domain are computed by accumulating propositions that mono-
tonically refine an approximation of the element. The computation o f a domain
element involves the monotonic enlargement of a set of data objects. A single data
object contributes a fragment of information about the element being computed in
the form of a unary predicate. The data objects are, in a sense, exclusive predicates
about the elements of the domain of interest. We can look upon a set o f data objects
as the conjunction o f a set o f constraints, each contributing information about the
element. A data object thus constitutes a conjunctive proposition about an element
being computed. It is obvious that the data objects should not contribute conflicting
information. If they do, then the result of the computation is error.

We shall define all relevant concepts as we develop the semantics for CoF. In the
detailed and thoroughly readable paper [20] Scott describes the construction of do
mains from information systems, traces the topological connections and also gives
examples of constructing complex domains from simpler ones.

4 Domains for CoF

D efin ition 1 An information system is a 4-tuple

Da = (A, A , Con*, h)

where A is the set o f data objects, A is a distinguished elem ent in A that has no
inform ation, Cotia is the set o f finite and consistent subsets o f A and I- is a binary
entailment relation between m em bers o f C on a and elem ents o f A.

The entailment relation I- can easily be extended to a relation between elements of
C o n a- It is specified by the following axioms.

1. (u h A) Vu € ConA-

2. (u H x) if (u € C o u a) A x 6 u.

3. (u ,r € C o n A), {{u h x) Vx £ v) A (d I- y) then u t- y.

Our set A is given by

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 5

A = { A } U H U Bool U Vars U 5

where N is the set of integers, Vars are logical variables and is the set

{ pair(x, y) | x ,y G A } .

The set Con a of finite and consistent subsets comprises:

• The singleton sets { A } and { x } where x is an element of either N, Bool or
V a r s ;

• Two-element sets of the form {x , A } , where x is an element o f either N, Bool
or Vars, and

• Finite sets whose elements are either A or pair(x, y), such that the first elements
of all the pairs form a consistent set (with the relaxation that the set so formed
could have more than one logical variable) and so do the second elements. An
example is

{A , pair(A , A'), pair(A , A), p a ir(4 ,Y)}

• No other sets belong to Con a .

We add a fourth axiom to the entailment relation b to model the intended structure
of A.

• (u b pair(x, y)) if 3 {pair(xx, ya), pair(x2, y2)} C u, such that ({ x l5 x 2} b x)
and ({j/i, y 2) b y).

With the above machinery we are ready to define the elements of the domain \D&\
generated by the information system D a - The elements of \Da \ are the entailment
closed, consistently upwardly closed subsets of A (ideals of the complete lattice V(A)).
Thus, every finite subset of an element belongs to Con a • For instance, the element
pair(3,4) is represented by the constraint set

{A , pair(A , A), pair(3, A), pair(A , 4), pair(3 ,4)}

We shall use elements and the constraint sets that represent them interchangeably
(which is, really, the key to our semantic formulation). The partial order between el
ements is the familiar set inclusion relationship, applied to their associated constraint
sets. The least element of the domain is given by:

' ± = {x | { A } b x }

The total elements o f \Da \ are those to which information cannot be added without
introducing inconsistencies. We specially add to \Da\ a top element T , interpreted
as error. Note that error is an element o f neither A nor C oua ■ Partial elements are
those to which more information can be added without raising to error. Rather, it is
the interpretation given to inconsistent subsets of A. The finite elements are obtained
by the entailment closure o f elements of Con a

We next define the notion of an approximable mapping (function). An approximable
mapping f a(, between two information systems D a and D b is a binary relation bet ween
their finite and consistent subsets Coua and C o n s such that

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 6

1 . $ f a b $ -

2. Ua fab UB, Ua fab Vb = $ ’ UA f ab (Ub U Vb).

3. va ~̂a ua, ua fab uB, uB I~b v b then vA f ab vB.

Intuitively, the first condition states that if a function’s input is totally undefined,
then we may expect it not to give any answer. The second condition states that
if a function gives two pieces of information about an element, then they must be
consistent. The last condition states that on refining the input to a function, the
computations already performed still hold and no recomputation has to be done.

Scott [2 0] shows that approxim ate mappings between D a and D B take elements
to elements, i.e. \Da \ to \DB \- Constructing an information system D ab whose data
objects consist o f binary tuples of elements from Con a and Cong, and whose elements
are approximable mappings from D a to D B , is quite straightforward and we omit it
here. The reader is referred to [2 0] for details.

Winskel [23] shows that recursive domain equations based on information systems
can be solved effectively. The domain that we are interested in is given by the set of
elements \Dom\ of the information system D om which is the solution to the recursive
equation

D o m = D a + (D o m —> D om)

where D a is as defined above.

5 Semantic Functions

The explicit construction of domain elements from data objects affords us a finer
level of reasoning than is typically afforded by the usual notion of an element. We can
operate directly on the data objects in order to formalize the notion of value refine
ment. As stated earlier, the basic model o f computation is that o f value refinement
through constraint addition. In accordance with this philosophy, program constructs
will be viewed as imposing constraints on a logical store, comprising a mapping from
logical variables (cf. “ locations”) to constraint sets (cf. value approximations). We
first define the various domains used in the semantic functions.

D = \Dom\ overall domain
Id lexical identifiers
E xp expressions
Vars logical variables C A
D en = Vars denotable values
E n v = Id —► D en environment
Ans = D 4 - (Vars x D) answers
Exp-val = (A n s x Lstore) + error expressible values
Suspension = Lstore —► Exp.val suspensions
Constraints = D -f Suspension constraints
Lstore = ((V ars —► Constraints) x V ars) logical stores

-f error

As suggested above, V a rs , the domain of logical variables, is analogous to the do
main of locations in imperative semantic formulations. Den is the domain of denotable

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 7

values, i.e. those values that can be bound to identifiers. For convenience in our se
mantic specification, identifiers can denote only logical variables. This is exploited to
achieve laziness, i.e. to model the call by need argument evaluation strategy of CoF.
E n v is the domain of environments, which map identifiers to logical variables (deno
table values). Ans is the domain of answer values, representing the side-effect free
aspect o f expression evaluation. The second summand of Ans reflects the fact that
the value of a variable is a pair with the name of the variable as its first component
and its value as the second component. This will permit the unify function to deal
properly with both bound and unbound variables. Non-error expressible values, the
complete result o f expression evaluation, are pairs including a logical store conveying
any variable binding side-effects. Suspensions is the domain of closures. These are
functions that take a logical store and return an expressible value.

Constraints is analogous to the domain of storable values. This is the domain of
objects that constrain the values of variables in the logical store. The store includes
a Vars component used as a basis for generating fresh logical variables. The domain
Vars can be modeled using natural numbers; in fact any flat (countably infinite)
domain will serve our purpose. The only operation we use in posting the constraints
to the logical store is set theoretic union. It has the desired properties of idempotence
and monotonicity, and hence forms a closure operator.

In cases were disjoint sums are used, the summands must be ordered to ensure the
monotonicity of our semantic functions. In Exp.val and Lstore we set error to be
greater than its summand partner; in A n s , we stipulate Vars x D □ D

The semantic function £ takes an expression, an environment and a logical store,
and returns an answer value and a new logical store. Since CoF is higher order and
logical variables are first class objects, top-level answers can be functions or unbound
logical variables. The signature of £ is:

£: E x p —► E n v —> Lstore —+ (Ans, Lstore)

We now discuss several auxiliary functions that support our formal semantics.

1. Lookup.env takes an identifier, an environment, and a logical store as arguments,
and calls Lookup-LS-and-force with the logical store and the binding of the
identifier in the environment.

lookup.env: Id —+ E n v —► Lstore —► Exp.val

2. LookupJjS-and-force takes a variable and a logical store as arguments and re
turns the constraints (the set of data objects) that apply on it along with a
possibly new store. If the value of the variable is a suspension (i.e. an uneval
uated expression), then it forces evaluation (application to the current logical
store) and constructs a new logical store reflecting the result of the evaluation.

lookup_LS_and_force: Vars —► Lstore —► Exp.val

Note, that suspensions (or closures) are evaluated only once. All subsequent
references to the variable use the value incorporated into the resulting logical
store.

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 8

3. Unify takes two terms (elements of the domain Ans), a logical store, and returns
a new logical store that is obtained as a result o f the bindings performed.

unify: Ans —► Ans —» Lstore —► Lstore .

4. Merge.constraints takes two variables, their respective constraints, a logical
store, and returns a new logical store in which the constraints operating on
the two variables have been merged.

merge_constraints: Vars —» D —► Vars —► D —► Lstore —► Lstore

5. Union takes two sets of constraints (data objects) and a logical store, and returns
the union of the two sets and a new logical store after ensuring consistency
between the two sets of constraints.

union: D —► D —> Lstore —► (D x Lstore)

6. N ew -L V takes a logical store and returns a fresh logical variable and a new store.

new XV: Lstore —> (Vars x Lstore)

7. Is-Consistent utilizes set union to merge constraint sets, after ensuring consis
tency.

Is.Consistent: D —> D —► L S rightarrow LS

We also define a function fixstore that takes a functional over a logical store, a current
logical store as argument and iterates it until a fixpoint is obtained. Such a fixpoint is
guaranteed to exist since the operators that we use in constructing our functionals are
m onotonic and continuous. Hence fixstore is crucial to our semantic formulation. By
taking the fixpoint over a logical store, we ensure that the final logical store obtained
is independent of the evaluation order. We present a proof sketch of this claim later
in the paper.

fix_store: (Lstore —► Lstore) —> Lstore —> Lstore

The definitions o f the auxiliary functions are now given. For clarify and space econ
omy, shortcuts are taken in certain cases, e.g. through the omission of error treatment,
and in ignoring the Vars component of Lstores when it is irrelevant.

fix-store F arg =

lookup_env x [a: ►-*• v]p LS =
if IsVars(v) then

lookup_LS_and_force v LS
else

error

lookup_LS_and_force v LS =
let [u *-> preds]p = LS

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING

in
if IsVars(preds) then

lookup_LS_and_force preds p
else

i f IsSuspension(pre<i.s) then
let

(val, LSi) = preds ZS
in

((v , val) , ZSi[u i-*- va/])
else

({v , preds) , ZS)

unify { A } 3/ ZS = ZS
unify x {A } LS = ZS
unify (a :BOOL) (b :BOOL) ZS =

if (a = 6) then
LS

else error
unify (a :INT) (b :INT) ZS =

if (a = 6) then
LS

else error
unify pair(xi, pair(x2, y2) LS =

fix-store (XtempJs.
let*

(i’i , tempJsi) = lookup_LS.and_force Zi tempJs
(v2 , tempJs2) = lookup_LS_and_force a?2 tempJsi
(v$, tempdsz) = lookup _L S.and-force 2/! tempJs2
(v4 , tempJs^) = lookup_LS_and_force 2/2 tempJs^
tempJs*, = unify i>i t>2 tempJs4)

in
(unify U3 i;4 tempJs^))

) LS
unify (u i, con \) (u2 , con2) £S =

merge-constraints rj conj u2 con2 ZS
unify (r , con) va/ ZS =

let an$ = union con val LS
in

if IsError(ans) then
error

else
snd(ans)[v >-+ fst(ans)]

unify val (v , con) ZS =
let ans = union con val LS
in

if IsError(ans) then
error

else
snd(ans)[u >->fst(arcs)]

merge-constraints vname 1 conset\ vname2 conset2 L-tnv —
if (conseti = {A }) then

Z_enu[tmamei {vname2, A }]

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING

else
if (conset2 = {A }) then

L~env[vname2 »-*• {vname 1, A }]
else

let fjans = union conset\ conseti L.env
in

if IsError(/_ans) then
error

else
snd(f.ans)[vnamei ►-+ {A , vname2} , vname2 fst(f.ans)]

union cons\ cons2 LS =
if cons\ = { A } then

(cons2 , LS)
else

if cons2 = { A } then
{consi , LS)

else
if Is-Function(consi) or Is-Function(cons2)

then error
else

let
new-LS = Is.Consistent cons\ cons2 LS

in
if IsError(neu’_LS) then

error else
(consi U cons2 , new-LS)

Is.Consistent { } y LS = LS
Is.Consistent ({ x } U rest) cons2 LS =

let*
fun is.c x { } LS = LS

is.c x ({ y } U ys) LS =
let LS\ = unify x y LS
in

if IsError(ZS]) then
error

else
is_c x ys LS\

end
val t.LS = is_c x cons2 LS

in
if IsError(i_LS) then

error
else

Is.Consistent rest cons2 t-LS

We are now ready to define the semantic function <f: E x p —> E n v —> Lstort
(Ans, L store)

£ [[ccmsfj env = \LS.(V(const), LS) (* const = N at U B o o l U { n i l } *)
f jx le n i ’ = ALS.lookupjenv(x env LS)
£\e\ :: e2] env =

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 11

XLS.(let*
(i>i, LS\) = new_LV(X5)
(v2 , L S 2) = new j
in
(pair(vi, v2) , X5 2 [ui i-> InSuspension{£\e{\ env), v2 *-*• InSuspension{£\e2] erir)]))

£|hde| env =
A£S.(let (v , LS\) = £|ej env LS

in
if v = pair(t>i, U2) then lookup-LS_and_force v\ LS 1
else error)

£ [t l ej env =
AZS.(let (u, X5i) = £[e] env LS

in
if v = pair(u!,i>2) then lookupXS_and_force v2 LS\
else error)

S\eie2\ env =
A£S.(let { / , LSi) = f [e i j env LS

in
if isFunction(/) then

let { v , LS2) — new .LV(i5!)
in

/ v LS2[v InSuspension(£\e2\ env)])
else error

^Jlambda I e j env =
XLS.{InFunction(Xd : Vars. \ls.£Je] env[I t-+ J] Is) , LS)

£ [le t I = e-i in e2J env=
AZ5.(let*

(vi , LSa) = new_LV(ZS)
enui = env[1 ►-+ uj]
in
S\e2\ env 1 £S i[i’i h* JnSu-sperasion^Jei]] entj)]

£ fubv()| env = A ZS .({A } , LS)
£ [ei assuming e2 = = eaj enu =

ALS.(let f J s =
fix-store (AtempJs.

let*
tempJsi = snd(£[ejJ env tempJs)
(v2 , tempJs2) = £fe2j env tempJsi
(v$, tempdsz) = ^|e3j env tempJs2

in
unify v2 V3 tempJs3

) LS
in
fjej]] env fJs)

£\e\ prim jap e2 1 env =
AIS.(let f J s =

fixjstore (AtempJs.
let*

tempJsi = snd(f Jci] env tempJs)
in

snd(£^ 2! env tempJs\)
) LS

in

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 12

((fst(£ [e ij env fJ s)) primjop (fst(£[e2j env f J s)) , fJ s))
f [i f €1 then e2 e lse eaj env =

ALS.(let
(bval, LS 1) = f [e i] env LS in
i f bval then £[e2I env LS\ else f [e 3j env LSi)

6 Determinacy

It is imperative that the final answer of a program be independent o f the order of
evaluation o f its parts. This ensures determinacy of programs. Determinacy of Id
was shown in [1] by proving the confluence of an intermediate language P -T A C (with
rewriting as its operational semantics) into which Id programs are compiled. The
proof uses the sub-commutativity property of P-TAC.

Determinacy is achieved by the Church-Rosser property in a purely functional
framework where there are no side-effects. It is also a property of singly threaded
imperative code. Is determinacy preserved in CoF? The monotonic nature of the
side-effects introduced by incorporating logical variables ensures determinacy. A few
observations about logical stores are in order.

D e fin ition 2 Let L S 1 and L S 2 be two logical stores. LSi is said to be < than L S 2
iff

Vx € Vars LSi(x) C L S2{x).

The logical stores form a complete lattice under the < ordering with the completely
unconstrained store as the bottom element. All inconsistent (or over-constrained)
stores are identified as one and interpreted as T . Any computation takes a program
and an initial logical store and returns a term in normal form and a refined logical
store. Our claim is that all orders of evaluation of the program lead to the same final
logical store. Intuitively, the different evaluation orders take us through different
paths in the lattice to the same final store.

L em m a 1 If some evaluation of an expression in an initial logical store L S results
in error, then all evaluations of that expression in all logical stores > L S result in
error.

An error is obtained by a conflicting unification. There are two kinds of unification
errors.

• A call to unify that results in error while trying to refine the value (by adding
to the constraint set) o f a variable. The error is a result of overconstraining the
variable. The variable must have some constraints already operating on it by
some prior unification operation. Changing the order of the unify operations
will still over-constrain the variable and thus result in error.

• A call to unify o f the form

unify (x i, predsi) (x2, preds2) LS

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 13

where (at least) one o f preds\ and preds2 is a function and the other is not an
unbound variable. Such a call would result in error independent of the order of
evaluation.

The call by need evaluation strategy achieves lazy evaluation. Any expression that
is evaluated is needed and contributes to the final answer. Laziness thus ensures that
the same expressions will be evaluated in any evaluation order. Since logical variables
are singly-bound, the same top level answer will be produced in all evaluation orders.
Also, the final store (if the computation is error-free) will be the same.

7 Definiteness

D efiniteness is the property that ensures that any results obtained during program
execution are guaranteed not to have involved any erroneous unifications. This follows
immediately from the fact that the assuming construct reports its result only when
the corresponding unifications have refined the store fully, and a consistent final logical
store has been obtained.

8 Example '

l e t z = u bv () in
hd ((1 assuming z == 1) : : (n i l assuming z == 2))

The denotation for the program is:

£ [le t...| ± JL

In anticipation of the environments and logical stores required we define:

env 0 = ±
ls0 = _L
env 1 = _L [z t-i► /Ul]
Isi = ± [/v j 11—* 7n5uspension(£’ [ubv()J enui)]
IS2 = Is^Vi H-+ InSuspension(£\l assuming z = = l j env 1), V2 »]
U 3 = ls2 [lvi ~ 1]
IS4 = ls3[v1 — 1] ■

The reduction steps are:

f j l e t z = ubv() in ...] JL ±
Epid((l assuming z = = l) :: (n il assuming z = = 2))J envi ls\
let (v , LSi) = £|(1 assuming z = = l) :: (n il assuming z = = 2)16711;! ls\ in if v = ...
let (v , LSi) = (pair(vi, V2) , IS2) in if v = ...
£ fvi] enuj l$2 condition succeeds
lookup_LS_and_force vj ls2
let (Z\ , ls3) = assuming z = = l] env 1 ls2 in {(v i , Z \), /^[di i-+ Z\])
After evaluating Z\ = 1, ls$ = /so[z ^ 1] and we get
<(t>i , 1), ls4)

9 Conclusion

We shown that logical variables can be neatly incorporated into functional lan
guages without resulting in a semantic ghoulash. The use of information systems and

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 14

a global logical store elegantly captures the notion o f programming with constraints.
It is widely agreed that a clean denotational semantics not only helps in validating
implementations but also facilitates program analysis techniques such as abstract in
terpretation. An implementation of CoF on a shared memory multiprocessor is in
progress. We hope to use the semantics presented above for abstract interpretation
to efficiently manage the parallelism in CoF programs.

References

1. Zena Ariola, Arvind. P -T A C : A Parallel Intermediate Language Proceedings of
FPCA Conference, 1989, London, UK.

2. Arvind, Rishiyur S. Nikhil, Keshav Pingali. I-structures: Data Structures for
Parallel Computing ACM TOPLAS, Volume 11 Number 4, October 1989.

3. Doug DeGroot, Gary Lindstrom. Logic Programming: Functions, Relations and
Equations, Prentice-Hall, NJ, 1986.

4. Michael J. Gordon. The Denotation Description of Programming Languages,
Springer Verlag, 1979.

5. Lai George, Surya Mantha, Gary Lindstrom. CoF: A Language for Multiproces
sors, Unpublished Report, submitted for publication, Nov. 1989.

6. Radha Jagadeesan, Prakash Panangaden, Keshav Pingali. A Fully Abstract Se
mantics for a Functional Language with Logical Variables, Proceedings of the
LICS conference, 1989.

7. Mark B. Josephs. The Semantics of Lazy Functional Languages, Theoretical
Computer Science, 68, 1989.

8. Richard Kieburtz. Semantics of a Functions+Logic Language, Oregon Graduate
Center, 1986.

9. Richard Kieburtz. Functions + Loqic in theory and practice, Oregon Graduate
Center, 1987.

10. Gary Lindstrom. Functional Programming and the Logical Variable, A C M P O P L ,
New Orleans, 1985.

11. Gary Lindstrom, Goran Bage. Committed Choice Functional Programming Pro
ceedings of the FGCS conference, Tokyo, November 1988.

12. Gary Lindstrom. Static Analysis of Functional Programs with Logical Variables,
International Workshop on Programming Language Implementation and Logic
Programming, Orleans, France 1988.

13. Gary Lindstrom, Jan Maluszynski, Takeshi Ogi. Using Types to Interface Func
tional and Loqic Proqramminq, Unpublished Report, submitted for publication,
November 1989.

14. R.S. Nikhil, K. Pingali, Arvind. Id Nouveau, Technical Report, Computation
Structures Group Memo 265, MIT LCS 1986.

ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 15

15. Keshav Pingali. Lazy Evaluation and the Logical Variable, Proc. of Inst, on
Declarative Programming, U of Texas, August, 1987.

16. Uday Reddy. On the Relationship between Functional and Logic Languages, in
Logic Programming: Functions, Relations and Equations, Prentice Hall, 1986.

17. Vijay Saraswat. Constraint Logic Programming Languages, PhD. Thesis, CMU,
1989.

18. David Schmidt. Detecting Global Variables in Denotational Specifications, ACM
TOPLAS, Vol. 7, No. 2, 1985.

19. David Schmidt. Denotational Semantics: A methodology for language develop
ment, Allyn and Bacon, Inc., 1986.

20. Dana Scott. Domains for Denotational Semantics, ICALP 1982.

21. Joseph Stoy. Denotational Semantics : The Scott-Strachey approach to program
ming language semantics, MIT Press, Cambridge, Mass. 1978.

22. Satish Thatte. Towards a Semantic Theory for Equational Programming Lan
guages, Proceedings of ACM Lisp and Functional Programming, 1986.

23. G. Winskel, K. G. Larsen. Using Information Systems to Solve Recursive D o
main Equations Effectively, Semantics of Data Types, International Symposium,
France 1984.

