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Abstract. A denotational semantics is given for a lazy functional language with monotonic side- 
effects arising from the unification of singly-bound logical variables. The semantics is based on a 
Scott-style information system, which elegantly captures the notion of ‘constraint addition’ inherent 
in unification. A novel feature of our approach is exploitation of the representational duality of 
denotations defined by information systems: (i) as domain elements in the traditional sense, and
(ii) as sets of propositions or constraints. Special care is taken to express accurately the interactions 
of lazy evaluation (e.g. evaluation by need), and read-only accesses of logical variables defer function 
applications. The purpose of our semantic description is to establish language properties such as 
determinacy under parallel evaluation, to validate implementation strategies, and to support the 
design of program analysis techniques such as those based on abstract interpretation.

1 Introduction

Functional languages are predicated on the absence of side effects, which results 
in both elegance and shortcomings as general purpose programming languages. The 
absence of side effects requires that all variables be bound immediately upon intro
duction. In the absence of update analysis, single threading, or other sophisticated 
techniques, aggregate data structures must be copied whenever a component is up
dated. This not only results in unacceptable space consumption, but also entails time 
expense in copying data values and recycling inaccessible storage.

The need to overcome these problems has long been recognized. One avenue re
ceiving considerable attention is the amalgamation of functional languages with other 
declarative models o f programming supporting disciplined side effects, e.g.

• logic programming languages and

• equational languages, e.g. term rewriting systems.

These amalgamation efforts all recognize the important role played by logical vari
a b l e s arguably the most important concept to emerge from logic programming. The 
reader is referred to [1 0 ], [1 2 ] for a detailed account of the benefits of incorporating 
logical variables into functional languages.

"This material is based upon work supported by the National Science Foundation under Grant 
No. CCR-8704778.
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We shall, however, give a brief summary of the advantages o f such an integra
tion. Logical variables enhance the already powerful data structuring capabilities 
and modular nature of functional languages by allowing

• Monotonic side effects;

• Use before definition o f data structures;

• Multi-reader multi-writer communication channels between processes, thereby 
providing a richer notion of communication and synchronization than is pro
vided by the exclusively producer-consumer model in functional programming, 
and

• An elegant notion o f functional program m ing with constraints.

2 The CoF Language

C o F  ( Com m unicating Functions) is a lazy functional language with logical vari
ables. Its evaluation strategy —  graph reduction —  molds well onto a parallel ma
chine, in that the closures used to support lazy evaluation are naturally implementable 
as variable grain tasks. Parameter passing is done by pattern matching, a familiar 
concept in functional languages. This causes a rewrite or reduction to be suspended if 
the actual arguments are not evaluated or are insufficiently instantiated. For example, 
if the actual argument happens to be an unbound logical variable wrhere a destruc
turing pattern match is required, then the rewrite suspends awaiting a binding of 
that variable. Special care will be taken to express accurately the interactions of lazy 
evaluation (e.g. evaluation by need), and read-only accesses of logical variables defer 
function applications. Note, however, that in C o F  the degree of evaluation thorough
ness of expressions is semantically important, rather than being simply an efficiency 
or divergence control issue. In particular, over-evaluation can needlessly lead to er
rors, due to the gratuitous application of conflicting constraints (unifications). Hence 
our semantics must exhibit T-avoidance as well as -L-avoidance!

We give the abstract syntax of C oF  and refer the reader to [5] for details on its 
design. C oF  is based on an M L  syntax with two syntactic extensions to expressions 
to handle unification and the introduction o f logical variables.

exp ::=  N at
| B o o l  
| n i l  
| Id
j expi : : exp 2 

. | hd exp\ 
| t l  expi 
j expi exp2
| lambda Id exp •
| l e t  Id  * expi in  exp 2 
j l e t  Id  = u bv() in  exp  
| exp\ assuming exp2 == exp 3 
j expi p r im -o p  exp2 
| i f  expi then exp 2 e ls e  exp3
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The symbol == denotes the unification operator, which occurs only within an assuming 
expression. The value of the assuming expression is expi, which is strict upon suc
cessfully unifying exp2 and exp3. The special form Id = u bv () binds Id  to a new (un
bound) logical variable. Logical variables are singly bound to preserve the functional 
semantics. Hence no backtracking or relational results are utilized, and unification 
failure is a fatal error. Logical variables are first class objects in CoF, e.g. they may 
be passed as arguments to functions and returned by function applications. While 
referential transparency is lost (because u bv () /  u b v () ) , the top level determinacy 
o f functional programs is preserved, as we will later demonstrate. The semantics of 
purely functional CoF programs (those without the u bv () and assuming constructs) 
is quite conventional.

3 A  Semantic Model Based On Information Systems

As observed in the previous section, logic programming and functional program
ming are becoming more closely related. We build here on important contributions 
made by other researchers seeking abstract semantics for languages combining these 
two paradigms.

• Pingali et al. [6 ] give an abstract semantics for a functional language with logical 
variables based on solving a set of equations involving an environment. Their 
language Cid is eager and hence does not have lazy constructors.
Our semantic framework employs a purely functional meta-language rather than 
equation solving as in [6 ]. In fact, the notion of constraint solving is an inherent 
part o f C oF  semantics unlike in Cid. We adopt Saraswat’s [17] notion of a 
global logical store as a repository for the constraints that have been imposed 
by program execution. In Saraswat’s terminology, ask (read-only) constraints 
arise in C oF  through parameter passing, and tell constraints arise from unify 
operations.

• Kieburtz was the first to use Scott’s information systems [2 0 ] in this arena. 
Reference [8 ] gives a relational semantics for the logic component of a language 
with functions and Horn clauses, rather than the tradmtional semantics based on 
Herbrand models. The motivation there is to develop an integrated functions 
and logic language F -fL  that provides the flexibility o f relational definitions 
while retaining the power o f general applicative expressions.
C oF  is less ambitious in that the functional basis is preserved by requiring logical 
variables to be singly bound. Also, logical variables are fully integrated into our 
functional framework, as opposed to constituting a stylized interface between 
the applicative and relational sublanguages as in F-j-L. Recent work [13] on open 
languages holds the promise of a clean interface shared among languages such 
as these, using polymorphic type information.

Like the work o f Kieburtz, our denotational semantics is based on Scott’s infor
mation systems. Information systems are an elegant way of characterizing monotonic 
constraint addition. This alternative semantic foundation was first introduced by 
Scott [2 0 ] as an attempt to demystify the theory of domains. The underlying motiva
tion for the study o f domains is to formulate a notion of computability with respect to 
recursively defined types containing infinite elements. This infinitude necessitates the
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introduction of the notions of approximation and total and partial elements. Scott 
gives an elegant formulation of domains in terms of information systems with the 
following advantages:

• Information system definitions are constructive, with complex domains can be 
obtained from simpler ones in a straightforward manner.

• Domains are given a simpler structure, based on classical set theory.

• Very few axioms are used, and they can be tailored to suit many applications.

• Elements of domains are endowed with more structure; consequently it is easier 
to reason about them.

The key insight in the information system approach to domains is that possible el
em ents o f  the desired domain are computed by accumulating propositions that mono- 
tonically refine an approximation of the element. The computation o f a domain 
element involves the monotonic enlargement of a set of data objects. A single data 
object contributes a fragment of information about the element being computed in 
the form of a unary predicate. The data objects are, in a sense, exclusive predicates 
about the elements of the domain of interest. We can look upon a set o f data objects 
as the conjunction o f a set o f constraints, each contributing information about the 
element. A data object thus constitutes a conjunctive proposition about an element 
being computed. It is obvious that the data objects should not contribute conflicting 
information. If they do, then the result of the computation is error.

We shall define all relevant concepts as we develop the semantics for CoF. In the 
detailed and thoroughly readable paper [20] Scott describes the construction of do
mains from information systems, traces the topological connections and also gives 
examples of constructing complex domains from simpler ones.

4 Domains for CoF

D efin ition  1 An  information system is a 4-tuple

Da =  (A, A ,  Con*, h)

where A  is the set o f  data objects, A  is a distinguished elem ent in A that has no 
inform ation, Cotia is the set o f  finite and consistent subsets o f  A  and I-  is a binary 
entailment relation between m em bers o f  C on  a and elem ents o f  A.

The entailment relation I- can easily be extended to a relation between elements of 
C o n  a- It is specified by the following axioms.

1. (u h A ) Vu € ConA-

2. (u H x) if (u € C o u a ) A x  6  u.

3. (u ,r  € C o n A ), {{u h x) Vx £ v) A (d I- y) then u t- y.

Our set A  is given by
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A  =  { A }  U H U Bool  U Vars  U 5  

where N is the set of integers, Vars  are logical variables and is the set

{ pair(x, y) | x ,y  G A } .

The set Con a  of finite and consistent subsets comprises:

• The singleton sets { A }  and { x }  where x is an element of either N, Bool  or 
V a r s ;

• Two-element sets of the form {x , A } ,  where x is an element o f either N, Bool 
or Vars, and

• Finite sets whose elements are either A  or pair(x, y), such that the first elements 
of all the pairs form a consistent set (with the relaxation that the set so formed 
could have more than one logical variable) and so do the second elements. An 
example is

{A ,  pair(A , A'), pair(A , A ), p a ir(4 ,Y )}

• No other sets belong to Con a .

We add a fourth axiom to the entailment relation b to model the intended structure 
of A.

• (u b pair(x, y)) if 3 {pair(xx, ya), pair(x2, y2)} C u, such that ( { x l5 x 2} b x) 
and ({j/i, y 2) b y).

With the above machinery we are ready to define the elements of the domain \D&\ 
generated by the information system D a - The elements of \Da \ are the entailment 
closed, consistently upwardly closed subsets of A  (ideals of the complete lattice V( A)). 
Thus, every finite subset of an element belongs to Con a • For instance, the element 
pair(3,4) is represented by the constraint set

{A ,  pair(A , A ), pair(3, A ), pair(A , 4), pair(3 ,4 )}

We shall use elements and the constraint sets that represent them interchangeably 
(which is, really, the key to our semantic formulation). The partial order between el
ements is the familiar set inclusion relationship, applied to their associated constraint 
sets. The least element of the domain is given by:

' ±  =  {x  | { A }  b x }

The total elements o f \Da \ are those to which information cannot be added without 
introducing inconsistencies. We specially add to \Da\ a top element T , interpreted 
as error. Note that error is an element o f neither A  nor C oua ■ Partial elements are 
those to which more information can be added without raising to error. Rather, it is 
the interpretation given to inconsistent subsets of A. The finite elements are obtained 
by the entailment closure o f elements of Con a 

We next define the notion of an approximable mapping (function). An approximable 
mapping f a(, between two information systems D a  and D b  is a binary relation bet ween 
their finite and consistent subsets Coua and C o n s  such that
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1 .  $ f a b $ -

2. Ua  fab UB, Ua  fab Vb  = $ ’ UA f ab ( Ub  U Vb ).

3. va ~̂a ua, ua fab uB, uB I~b v b  then vA f ab vB.

Intuitively, the first condition states that if a function’s input is totally undefined, 
then we may expect it not to give any answer. The second condition states that 
if a function gives two pieces of information about an element, then they must be 
consistent. The last condition states that on refining the input to a function, the 
computations already performed still hold and no recomputation has to be done.

Scott [2 0 ] shows that approxim ate mappings between D a and D B take elements 
to elements, i.e. \Da \ to \DB \- Constructing an information system D ab  whose data 
objects consist o f binary tuples of elements from Con a and Cong, and whose elements 
are approximable mappings from D a to D B , is quite straightforward and we omit it 
here. The reader is referred to [2 0 ] for details.

Winskel [23] shows that recursive domain equations based on information systems 
can be solved effectively. The domain that we are interested in is given by the set of 
elements \Dom\ of the information system D om  which is the solution to the recursive 
equation

D o m  =  D a  +  (D o m  —> D om )  

where D a is as defined above.

5 Semantic Functions

The explicit construction of domain elements from data objects affords us a finer 
level of reasoning than is typically afforded by the usual notion of an element. We can 
operate directly on the data objects in order to formalize the notion of value refine
ment. As stated earlier, the basic model o f computation is that o f value refinement 
through constraint addition. In accordance with this philosophy, program constructs 
will be viewed as imposing constraints on a logical store, comprising a mapping from 
logical variables (cf. “ locations” ) to constraint sets (cf. value approximations). We 
first define the various domains used in the semantic functions.

D  =  \Dom\ overall domain
Id  lexical identifiers
E xp  expressions
Vars  logical variables C A
D en =  Vars  denotable values
E n v  =  Id  —► D en  environment
Ans  =  D  4 - ( Vars  x  D)  answers
Exp-val  =  (A n s  x  Lstore) +  error expressible values
Suspension =  Lstore  —► Exp.val  suspensions
Constraints  =  D  -f Suspension  constraints
Lstore  =  ((V ars —► Constraints)  x V ars) logical stores 

-f error

As suggested above, V a rs , the domain of logical variables, is analogous to the do
main of locations in imperative semantic formulations. Den  is the domain of denotable
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values, i.e. those values that can be bound to identifiers. For convenience in our se
mantic specification, identifiers can denote only logical variables. This is exploited to 
achieve laziness, i.e. to model the call by need argument evaluation strategy of CoF. 
E n v  is the domain of environments, which map identifiers to logical variables (deno
table values). Ans  is the domain of answer values, representing the side-effect free 
aspect o f expression evaluation. The second summand of Ans  reflects the fact that 
the value of a variable is a pair with the name of the variable as its first component 
and its value as the second component. This will permit the unify function to deal 
properly with both bound and unbound variables. Non-error expressible values, the 
complete result o f expression evaluation, are pairs including a logical store conveying 
any variable binding side-effects. Suspensions is the domain of closures. These are 
functions that take a logical store and return an expressible value.

Constraints  is analogous to the domain of storable values. This is the domain of 
objects that constrain the values of variables in the logical store. The store includes 
a Vars  component used as a basis for generating fresh logical variables. The domain 
Vars  can be modeled using natural numbers; in fact any flat (countably infinite) 
domain will serve our purpose. The only operation we use in posting the constraints 
to the logical store is set theoretic union. It has the desired properties of idempotence 
and monotonicity, and hence forms a closure operator.

In cases were disjoint sums are used, the summands must be ordered to ensure the 
monotonicity of our semantic functions. In Exp.val  and Lstore  we set error to be 
greater than its summand partner; in A n s , we stipulate Vars  x D  □  D

The semantic function £  takes an expression, an environment and a logical store, 
and returns an answer value and a new logical store. Since CoF  is higher order and 
logical variables are first class objects, top-level answers can be functions or unbound 
logical variables. The signature of £  is:

£: E x p  —► E n v  —> Lstore  —+ (Ans, Lstore)

We now discuss several auxiliary functions that support our formal semantics.

1. Lookup.env takes an identifier, an environment, and a logical store as arguments, 
and calls Lookup-LS-and-force with the logical store and the binding of the 
identifier in the environment.

lookup.env: Id  —+ E n v  —► Lstore —► Exp.val

2. LookupJjS-and-force takes a variable and a logical store as arguments and re
turns the constraints (the set of data objects) that apply on it along with a 
possibly new store. If the value of the variable is a suspension (i.e. an uneval
uated expression), then it forces evaluation (application to the current logical 
store) and constructs a new logical store reflecting the result of the evaluation.

lookup_LS_and_force: Vars  —► Lstore —► Exp.val

Note, that suspensions (or closures) are evaluated only once. All subsequent 
references to the variable use the value incorporated into the resulting logical 
store.
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3. Unify takes two terms (elements of the domain Ans), a logical store, and returns 
a new logical store that is obtained as a result o f the bindings performed.

unify: Ans  —► Ans  —» Lstore —► Lstore .

4. Merge.constraints takes two variables, their respective constraints, a logical 
store, and returns a new logical store in which the constraints operating on 
the two variables have been merged.

merge_constraints: Vars  —» D  —► Vars  —► D  —► Lstore  —► Lstore

5. Union takes two sets of constraints (data objects) and a logical store, and returns 
the union of the two sets and a new logical store after ensuring consistency 
between the two sets of constraints.

union: D  —► D  —> Lstore —► (D  x Lstore)

6. N ew -L V takes a logical store and returns a fresh logical variable and a new store.

new XV: Lstore —> (Vars  x Lstore)

7. Is-Consistent utilizes set union to merge constraint sets, after ensuring consis
tency.

Is.Consistent: D  —> D  —► L S  rightarrow LS

We also define a function fixstore  that takes a functional over a logical store, a current 
logical store as argument and iterates it until a fixpoint is obtained. Such a fixpoint is 
guaranteed to exist since the operators that we use in constructing our functionals are 
m onotonic and continuous. Hence fixstore  is crucial to our semantic formulation. By 
taking the fixpoint over a logical store, we ensure that the final logical store obtained 
is independent of the evaluation order. We present a proof sketch of this claim later 
in the paper.

fix_store: (Lstore —► Lstore)  —> Lstore  —> Lstore

The definitions o f the auxiliary functions are now given. For clarify and space econ
omy, shortcuts are taken in certain cases, e.g. through the omission of error treatment, 
and in ignoring the Vars  component of Lstores  when it is irrelevant.

fix-store F  arg =

lookup_env x [a: ►-*• v]p LS =  
if  IsVars(v) then

lookup_LS_and_force v LS 
else 

error

lookup_LS_and_force v LS =  
let [u *-> preds]p = LS
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in
if  IsVars(preds) then

lookup_LS_and_force preds p
else

i f  IsSuspension(pre<i.s) then 
let

(val, LSi) =  preds ZS
in

((v , val) ,  ZSi[u i-*- va/])
else

({v , preds) , ZS)

unify { A }  3/ ZS = ZS 
unify x {A }  LS = ZS 
unify (a :BOOL) (b :BOOL) ZS = 

if  (a = 6) then
LS 

else error 
unify (a :INT) (b :INT) ZS = 

if  (a = 6) then 
LS 

else error 
unify pair(xi, pair(x2, y2) LS = 

fix-store (XtempJs.
let*

(i’i , tempJsi) = lookup_LS.and_force Zi tempJs 
(v2 , tempJs2) = lookup_LS_and_force a?2 tempJsi 
(v$ , tempdsz) = lookup _L S.and-force 2/! tempJs2 
(v4 , tempJs^) =  lookup_LS_and_force 2/2 tempJs^ 
tempJs*, = unify i>i t>2 tempJs4 )

in
(unify U3 i;4 tempJs^))

) LS
unify (u i, con \) (u2 , con2) £S  =

merge-constraints rj conj u2 con2 ZS 
unify ( r , con) va/ ZS =

let an$ = union con val LS 
in

if  IsError(ans) then 
error

else
snd(ans)[v >-+ fst(ans)] 

unify val ( v , con) ZS =
let ans =  union con val LS 
in

if  IsError(ans) then 
error

else
snd(ans)[u >->fst(arcs)]

merge-constraints vname 1 conset\ vname2 conset2 L-tnv — 
if  (conseti =  {A } )  then

Z_enu[tmamei {vname2, A }]
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else
if  (conset2 = {A } )  then

L~env[vname2 »-*• {vname 1, A }]
else

let fjans =  union conset\ conseti L.env 
in

if IsError(/_ans) then 
error 

else
snd(f.ans)[vnamei ►-+ {A , vname2} , vname2 fst(f.ans)]

union cons\ cons2 LS =  
if  cons\ = { A }  then 

(cons2 , LS) 
else

if  cons2 = { A }  then 
{consi , LS)

else
if  Is-Function(consi) or Is-Function(cons2) 

then error 
else 

let
new-LS = Is.Consistent cons\ cons2 LS

in
if  IsError(neu’_LS) then 

error else
(consi U cons2 , new-LS)

Is.Consistent { }  y LS = LS 
Is.Consistent ( { x }  U rest) cons2 LS = 

let*
fun is.c x { }  LS = LS

is.c x ( { y }  U ys) LS =  
let LS\ = unify x y LS 
in

if  IsError(ZS]) then 
error 

else
is_c x ys LS\

end
val t.LS =  is_c x cons2 LS

in
if  IsError(i_LS) then 

error
else

Is.Consistent rest cons2 t-LS

We are now ready to define the semantic function <f: E x p  —> E n v  —> Lstort  
(Ans, L store )

£ [[ccmsfj env = \LS.(V(const), LS) (* const =  N at U B o o l U { n i l }  *)
f jx le n i ’ =  ALS.lookupjenv(x env LS)
£\e\ :: e2] env =



ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 11

XLS.(let*
(i>i, LS\) = new_LV(X5)
(v2 , L S 2) = new j 
in
(pair(vi, v2) , X5 2 [ui i-> InSuspension{£\e{\ env), v2 *-*• InSuspension{£\e2] erir)])) 

£|hde| env =
A£S.(let ( v , LS\) =  £|ej env LS 

in
if  v =  pair(t>i, U2) then lookup-LS_and_force v\ LS 1 
else error)

£ [ t l  ej env =
AZS.(let (u, X5i) =  £[e] env LS 

in
if  v =  pair(u!,i>2) then lookupXS_and_force v2 LS\ 
else error)

S\eie2\ env =
A£S.(let { / ,  LSi) = f [ e i j  env LS 

in
if  isFunction(/) then

let { v , LS2) — new .LV(i5!) 
in

/  v LS2[v InSuspension(£\e2\ env)]) 
else error 

^Jlambda I  e j env =
XLS.{InFunction(Xd : Vars. \ls.£Je] env[I t-+ J] Is) , LS)

£ [ le t  I  = e-i in e2J env=
AZ5.(let*

(vi , LSa) = new_LV(ZS) 
enui = env[1 ►-+ uj] 
in
S\e2\ env 1 £S i[i’i h* JnSu-sperasion^Jei]] entj)]

£ fubv()| env = A ZS .({A } , LS)
£ [ei assuming e2 = =  eaj enu =

ALS.( let f J s  =
fix-store (AtempJs. 

let*
tempJsi =  snd(£[ejJ env tempJs)
(v2 , tempJs2) =  £fe2j env tempJsi 
(v$, tempdsz) =  ^|e3j  env tempJs2

in
unify v2 V3 tempJs3 

) LS
in
fjej]] env fJs )

£\e\ prim jap e2 1 env =
AIS.(let f J s  =

fixjstore (AtempJs. 
let*

tempJsi =  snd(f Jci] env tempJs)
in

snd(£^ 2! env tempJs\)
) LS

in



ABSTRACT SEMANTICS FOR FUNCTIONAL CONSTRAINT PROGRAMMING 12

((fst(£ [e ij env fJ s ) )  primjop (fst(£[e2j  env f J s ) ) ,  fJ s ) )  
f  [ i f  €1 then e2 e lse  eaj env =

ALS.(let
(bval, LS 1) =  f [e i ]  env LS in
i f  bval then £[e2I env LS\ else f [ e 3j env LSi)

6 Determinacy

It is imperative that the final answer of a program be independent o f the order of 
evaluation o f its parts. This ensures determinacy of programs. Determinacy of Id 
was shown in [1] by proving the confluence of an intermediate language P -T A C  (with 
rewriting as its operational semantics) into which Id programs are compiled. The 
proof uses the sub-commutativity property of P-TAC.

Determinacy is achieved by the Church-Rosser property in a purely functional 
framework where there are no side-effects. It is also a property of singly threaded 
imperative code. Is determinacy preserved in CoF? The monotonic nature of the 
side-effects introduced by incorporating logical variables ensures determinacy. A few 
observations about logical stores are in order.

D e fin ition  2 Let L S  1 and L S 2 be two logical stores. LSi is said to be <  than L S 2 
iff

Vx € Vars LSi(x)  C L S2{x).

The logical stores form a complete lattice under the <  ordering with the completely 
unconstrained store as the bottom  element. All inconsistent (or over-constrained) 
stores are identified as one and interpreted as T . Any computation takes a program 
and an initial logical store and returns a term in normal form  and a refined logical 
store. Our claim is that all orders of evaluation of the program lead to the same final 
logical store. Intuitively, the different evaluation orders take us through different 
paths in the lattice to the same final store.

L em m a 1 If  some evaluation of an expression in an initial logical store L S  results 
in error, then all evaluations of  that expression in all logical stores >  L S  result in 
error.

An error is obtained by a conflicting unification. There are two kinds of unification 
errors.

• A call to unify that results in error while trying to refine the value (by adding 
to the constraint set) o f a variable. The error is a result of overconstraining the 
variable. The variable must have some constraints already operating on it by 
some prior unification operation. Changing the order of the unify operations 
will still over-constrain the variable and thus result in error.

• A call to unify o f the form

unify (x i, predsi) (x2, preds2) LS
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where (at least) one o f preds\ and preds2 is a function and the other is not an 
unbound variable. Such a call would result in error independent of the order of 
evaluation.

The call by need evaluation strategy achieves lazy evaluation. Any expression that 
is evaluated is needed and contributes to the final answer. Laziness thus ensures that 
the same expressions will be evaluated in any evaluation order. Since logical variables 
are singly-bound, the same top level answer will be produced in all evaluation orders. 
Also, the final store (if the computation is error-free) will be the same.

7 Definiteness

D efiniteness  is the property that ensures that any results obtained during program 
execution are guaranteed not to have involved any erroneous unifications. This follows 
immediately from the fact that the assuming construct reports its result only when 
the corresponding unifications have refined the store fully, and a consistent final logical 
store has been obtained.

8 Example '

l e t  z = u bv () in  
hd ( (1  assuming z == 1) : :  ( n i l  assuming z == 2 ) )

The denotation for the program is:

£ [le t...|  ±  JL

In anticipation of the environments and logical stores required we define:

env 0 =  ±
ls0 =  _L
env 1 =  _L [z t-i► /Ul]
Isi =  ± [/v j 11—* 7n5uspension(£’ [ubv()J enui)]
IS2 =  Is^Vi H-+ InSuspension(£\l  assuming z = =  l j  env 1), V2 » ....]
U 3 =  ls2 [lvi ~ 1 ]
IS4 =  ls3[v1 — 1] ■

The reduction steps are:

f j l e t  z = ubv() in ...] JL ±
Epid((l assuming z = =  l) :: (n il assuming z = =  2))J envi ls\
let (v , LSi) =  £|(1 assuming z = =  l) :: (n il assuming z = =  2)16711;! ls\ in if v = ... 
let (v , LSi) =  (pair(vi, V2 ) , IS2 ) in if v = ...
£ fvi] enuj l$2 condition succeeds 
lookup_LS_and_force vj ls2
let (Z\ , ls3) =  assuming z = =  l] env 1 ls2 in {(v i , Z \), /^[di i-+ Z\])
After evaluating Z\ = 1, ls$ = /so[z ^  1] and we get 
<(t>i , 1), ls4)

9 Conclusion

We shown that logical variables can be neatly incorporated into functional lan
guages without resulting in a semantic ghoulash. The use of information systems and
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a global logical store elegantly captures the notion o f programming with constraints. 
It is widely agreed that a clean denotational semantics not only helps in validating 
implementations but also facilitates program analysis techniques such as abstract in
terpretation. An implementation of CoF  on a shared memory multiprocessor is in 
progress. We hope to use the semantics presented above for abstract interpretation 
to efficiently manage the parallelism in CoF  programs.
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