
Reachability Analysis of Innermost Rewriting
Thomas Genet and Yann Salmon

IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
{Thomas.Genet,Yann.Salmon}@irisa.fr

Abstract
We consider the problem of inferring a grammar describing the output of a functional program
given a grammar describing its input. Solutions to this problem are helpful for detecting bugs or
proving safety properties of functional programs and, several rewriting tools exist for solving this
problem. However, known grammar inference techniques are not able to take evaluation strategies
of the program into account. This yields very imprecise results when the evaluation strategy
matters. In this work, we adapt the Tree Automata Completion algorithm to approximate
accurately the set of terms reachable by rewriting under the innermost strategy. We prove that
the proposed technique is sound and precise w.r.t. innermost rewriting. The proposed algorithm
has been implemented in the Timbuk reachability tool. Experiments show that it noticeably
improves the accuracy of static analysis for functional programs using the call-by-value evaluation
strategy.

1998 ACM Subject Classification I.2.3 Deduction and Theorem Proving, F.4.2 Grammars and
Other Rewriting Systems, D.2.4 Software/Program Verification

Keywords and phrases term rewriting systems, strategy, innermost strategy, tree automata,
functional program, static analysis

Digital Object Identifier 10.4230/LIPIcs.RTA.2015.177

1 Introduction and motivations

If we define by a grammar the set of inputs of a functional program, is it possible to infer
the grammar of its output? Some strongly typed functional programming languages (like
Haskell, OCaml, Scala and F#) have a type inference mechanism. This mechanism, among
others, permits to automatically detect some kinds of errors in the programs. In particular,
when the inferred type is not the expected one, this suggests that there may be a bug in
the function. To prove properties stronger than well typing of a program, it is possible to
define properties and, then, to prove them using a proof assistant or an automatic theorem
prover. However, defining those properties with logic formulas (and do the proof) generally
requires a strong expertise.

Here, we focus on a restricted family of properties: regular properties on the structures
manipulated by those programs. Using a grammar, we define the set of data structures given
as input to a function and we want to infer the grammar that can be obtained as output
(or an approximation). Like in the case of type inference, the output grammar can suggest
that the program contains a bug, or on the opposite, that it satisfies a regular property.

The family of properties that can be shown in this way is restricted, but it strictly gener-
alises standard typing as used in languages of the ML family1. There are other approaches
where the type system is enriched by logic formulas and arithmetic like [29, 5], but they

1 Standard types can easily be expressed as grammars. The opposite is not true. For instance, with a
grammar one can distinguish between an empty and a non empty list.

© Thomas Genet and Yann Salmon;
licensed under Creative Commons License CC-BY

26th International Conference on Rewriting Techniques and Applications (RTA’15).
Editor: Maribel Fernández; pp. 177–193

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62920011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.177
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

178 Reachability Analysis of Innermost Rewriting

generally require to annotate the output of the function for type checking to succeed. The
properties we consider here are intentionally simpler so as to limit as much as possible the
need for annotations. The objective is to define a lightweight formal verification technique.
The verification is formal because it proves that the results have a particular form. But,
the verification is lightweight for two reasons. First, the proof is carried out automatically:
no interaction with a prover or a proof assistant is necessary. Second, it is not necessary to
state the property on the output of the function using complex logic formulas or an enriched
type system but, instead, only to observe and check the result of an abstract computation.

With regards to the grammar inference technique itself, many works are devoted to
this topic in the functional programming community [20, 25]2 as well as in the rewriting
community [10, 27, 3, 14, 23, 2, 12]. In [12], starting from a term rewriting system (TRS
for short) encoding a function and a tree automaton recognising the inputs of a function,
it is possible to automatically produce a tree automaton over-approximating as precisely as
possible the outputs. Note that a similar reasoning can be done on higher-order programs [16]
using a well-known encoding of higher order functions into first-order TRS [20]. However, for
the sake of simplicity, examples used in this paper will only be first order functions. This is
implemented in the Timbuk tool [13]. Thus, we are close to building an abstract interpreter,
evaluating a function on an (unbounded) regular set of inputs, for a real programming
language. However, none of the aforementioned grammar inference techniques takes the
evaluation strategy into account, though every functional programming language has one.
As a consequence, those techniques produce very poor results as soon as the evaluation
strategy matters or, as we will see, as soon as the program is not terminating. This paper
proposes a grammar inference technique for the innermost strategy:

overcoming the precision problems of [20, 25] and [10, 27, 3, 14, 23, 2, 12] on the analysis
of functional programs using call-by-value strategy
whose accuracy is not only shown on a practical point of view but also formally proved.
This is another improvement w.r.t. other grammar inference techniques (except [14]).

1.1 Towards an abstract OCaml interpreter
In the following, we assume that we have an abstract OCaml interpreter. This interpreter
takes a regular expression as an input and outputs another regular expression. In fact, all
the computations presented in this way have been performed with Timbuk (and latter with
TimbukSTRAT), but on a TRS and a tree automaton rather than on an OCaml function and
a regular expression. We made this choice to ease the understanding of input and output
languages, since regular expressions are far more easier to read and to understand than
tree automata. Assume that we have a notation, inspired by regular expressions, to define
regular languages of lists. Let us denote by [a*] (resp. [a+]) the language of lists having 0
(resp. 1) or more occurrences of symbol a. We denote by [(a|b)*] any list with 0 or more
occurrences of a and b (in any order). Now, in OCaml, we define a function deleting all the
occurrences of an element in a list. Here is a first (bugged) version of this function:
let rec delete x l= match l with

| [] -> []
| h::t -> if h=x then t else h::(delete x t);;

Of course, one can perform tests on this function using the usual OCaml interpreter:

2 Note that the objective of other papers like [4, 21] is different. They aim at predicting the control flow
of a program rather than estimating the possible results of a function (data flow).

T. Genet and Y. Salmon 179

delete 2 [1;2;3]);;
-:int list= [1; 3]

With an abstract OCaml interpreter dealing with grammars, we could ask the following
question: what is the set of the results obtained by applying delete to a and to any list of
a and b?
delete a [(a|b)*];;
-:abst list= [(a|b)*]

The obtained result is not the expected one. Since all occurrences of a should have been
removed, we expected the result [b*]. Since the abstract interpreter results into a grammar
over-approximating the set of outputs, this does not show that there is a bug, it only suggests
it (like for type inference). Indeed, in the definition of delete there is a missing recursive
call in the then branch. If we correct this mistake, we get:
delete a [(a|b)*];;
-:abst list= [b*]

This result proves that delete deletes all occurrences of an element in a list. This is only
one of the expected properties of delete, but shown automatically and without complex
formalisation. Here is, in Timbuk syntax, the TRS R and tree automata that are given to
Timbuk to achieve the above proof.

Ops delete:2 cons:2 nil:0 a:0 b:0 ite:3 true:0 false:0 eq:2
Vars X Y Z
TRS R
eq(a,a)->true eq(a,b)->false eq(b,a)->false eq(b,b)->true
delete(X,nil)->nil ite(true,X,Y)->X ite(false,X,Y)->Y
delete(X,cons(Y,Z))->ite(eq(X,Y),delete(X,Z),cons(Y,delete(X,Z)))
Automaton A0 States qf qa qb qlb qlab qnil Final States qf
Transitions delete(qa,qlab)->qf a->qa b->qb nil->qlab
cons(qa,qlab)->qlab cons(qb,qlab)->qlab

The resulting automaton computed by Timbuk is the following. It is not minimal but its
recognised language is equivalent to [b*].

States q0 q6 q8 Final States q6
Transitions cons(q8,q0)->q0 nil->q0 b->q8 cons(q8,q0)->q6 nil->q6

1.2 What is the problem with evaluation strategies?
Let us consider the function sum(x) which computes the sum of the x first natural numbers.

let rec sumList x y= let rec nth i (x::l)=
(x+y)::(sumList (x+y) (y+1)) if i <=0 then x else nth (i -1) l

let sum x= nth x (sumList 0 0)

This function is terminating with call-by-need (used in Haskell) but not with call-by-
value strategy (used in OCaml). Hence, any call to sum for any number i will not terminate
because of OCaml’s evaluation strategy. Thus the result of the abstract interpreter on
sum s*(0) (i.e. sum applied to any natural number 0, s(0), . . .) should be an empty
grammar meaning that there is an empty set of results. However, if we use any of the
techniques mentioned in the introduction to infer the output grammar, it will fail to show
this. All those techniques compute reachable term grammars that do not take evaluation
strategy into account. In particular, the inferred grammars will also contain all call-by-need
evaluations. Thus, an abstract interpreter built on those techniques will produce a result of
the form s*(0), which is a very rough approximation. In this paper, we propose to improve

RTA 2015

180 Reachability Analysis of Innermost Rewriting

the accuracy of such approximations by defining a language inference technique taking the
call-by-value evaluation strategy into account.

1.3 Computing over-approximations of innermost reachable terms

Call-by-value evaluation strategy of functional programs is strongly related to innermost
rewriting. The problem we are interested in is thus to compute (or to over-approximate)
the set of innermost reachable terms. For a TRS R and a set of terms L0 ⊆ T (Σ), the
set of reachable terms is R∗(L0) = {t ∈ T (Σ) | ∃s ∈ L0, s→∗R t}. This set can be computed
for specific classes of R but, in general, it has to be approximated. Most of the techniques
compute such approximations using tree automata (and not grammars) as the core formalism
to represent or approximate the (possibly) infinite set of terms R∗(L0). Most of them also
rely on a Knuth-Bendix completion-like algorithm to produce an automaton A∗ recognising
exactly, or over-approximating, the set of reachable terms. As a result, these techniques can
be referred to as tree automata completion techniques [10, 27, 3, 14, 23].

Surprisingly, very little effort has been paid to computing or over-approximating the set
R∗strat(L0), i.e. set of reachable terms when R is applied with a strategy strat. To the best of
our knowledge, Pierre Réty and Julie Vuotto’s work [26] is the first one to have tackled this
goal. They give some sufficient conditions on L0 and R for R∗strat(L0) to be recognised by a
tree automaton A∗, where strat can be the innermost or the outermost strategy. Innermost
reachability for shallow TRSs was studied in [9]. However, in both cases, the restrictions on
R are strong and generally incompatible with functional programs seen as TRS. Moreover,
the proposed techniques are not able to over-approximate reachable terms when the TRSs
does not satisfy the restrictions.

In this paper, we concentrate on the innermost strategy and define a tree automata com-
pletion algorithm over-approximating the set R∗in(L0) (innermost reachable terms) for any
left-linear TRS R and any regular set of input terms L0. As the completion algorithm of [14],
it is parameterized by a set of term equations E defining the precision of the approximation.
We prove the soundness of the algorithm: for all set of equation E, if completion terminates
then the resulting automaton A∗ recognises an over-approximation of R∗in(L0). Then, we
prove a precision theorem: A∗ recognises no more terms than terms reachable by innermost
rewriting with R modulo equations of E. Finally, we show on examples that the precision of
innermost completion noticeably improves the accuracy of the static analysis of functional
programs.

This paper is organised as follows. Section 2 recalls some basic notions about TRSs and
tree automata.

Section 3 exposes innermost completion. Section 4 states and proves the soundness of
this method. Section 5 states the precision theorem. Section 6 demonstrates how our new
technique can effectively give more precise results on functional programs thanks to the tool
TimbukSTRAT, an implementation of our method in the Timbuk reachability tool [13].

2 Preliminaries

We use the same basic definitions and notions as in [1] and [28] for TRS and as in [6] for
tree automata.

For a set of functions Σ and a set of variables X , we denote signatures by (Σ,X), T (Σ,X)
for the set of terms and T (Σ) for the set of ground terms over (Σ,X). Given a signature Σ
and k ∈ N, the set of its function symbols of arity k is denoted by Σk.

T. Genet and Y. Salmon 181

I Definition 1 (Rewriting rule, term rewriting system). A rewriting rule over (Σ,X) is a
couple (`, r) ∈ T (Σ,X)× T (Σ,X), denoted by `→ r, such that ` is not a variable and any
variable appearing in r also appears in `. A term rewriting system (TRS) over (Σ,X) is a
set of rewriting rules over (Σ,X).

The set of normal forms of a rewriting system R (i.e. terms that are not reducible by R)
is Irr(R). A term t is linear when no variable appears twice in t; a TRS is left-linear if the
lhs of each of its rules is linear.

I Definition 2 (Set of reachable terms). Given a signature (Σ,X), a TRS R over it and
a set of terms L ⊆ T (Σ), we denote R(L) = {t ∈ T (Σ) | ∃s ∈ L, s→R t} and R∗(L) =
{t ∈ T (Σ) | ∃s ∈ L, s→∗R t}.

2.1 Equations
IDefinition 3 (Equivalence relation, congruence). A binary relation is an equivalence relation
if it is reflexive, symmetric and transitive.

An equivalence relation ≡ over T (Σ) is a congruence if for all k ∈ N, for all f ∈ Σk,
for all t1, . . . , tk, s1, . . . , sk ∈ T (Σ) such that ∀i = 1 . . . k, ti ≡ si, we have f(t1, . . . , tk) ≡
f(s1, . . . , sk).

I Definition 4 (Equation, ≡E). An equation over (Σ,X) is a pair of terms (s, t) ∈ T (Σ,X)×
T (Σ,X), denoted by s = t. A set E of equations over (Σ,X) induces a congruence ≡E over
T (Σ) which is the smallest congruence over T (Σ) such that for all s = t ∈ E and for all
substitution θ : X → T (Σ), sθ ≡E tθ. The equivalence classes of ≡E are denoted with [·]E .

I Definition 5 (Rewriting modulo E). Given a TRS R and a set of equations E both
over (Σ,X), we define the R modulo E rewriting relation, →R/E , as follows. For any
u, v ∈ T (Σ), u →R/E v if and only if there exist u′, v′ ∈ T (Σ) such that u′ ≡E u, v′ ≡E v

and u′ →R v
′. We define→∗R/E as the reflexive and transitive closure of→R/E and (R/E)(L)

and (R/E)∗(L) in the same way as R(L) and R∗(L) where →R/E replaces →R.

2.2 Tree automata
IDefinition 6 (Tree automaton, delta-transition, epsilon-transition, new state). An automaton
over Σ is some A = (Σ, Q,QF ,∆) where Q is a finite set of states (symbols of arity 0 such
that Σ ∩ Q = ∅), QF is a subset of Q whose elements are called final states and ∆ a
finite set of transitions. A delta-transition is of the form f(q1, . . . , qk) � q′ where f ∈ Σk
and q1, . . . , qk, q

′ ∈ Q. An epsilon-transition is of the form q � q′ where q, q′ ∈ Q. A
configuration of A is a term in T (Σ, Q).

A state q ∈ Q that appears nowhere in ∆ is called a new state. A configuration is
elementary if each of its sub-configurations at depth 1 (if any) is a state.

I Definition 7. Let A = (Σ, Q,QF ,∆) be an automaton and let c, c′ be configurations of A.
We say that A recognises c into c′ in one step, and denoted by c�

A
c′ if there a transition

τ � ρ in A and a context C over T (Σ, Q) such that c = C[τ] and c′ = C[ρ]. We denote by
∗
�
A

the reflexive and transitive closure of�
A

and, for any q ∈ Q, L (A, q) =
{
t ∈ T (Σ)

∣∣∣∣ t ∗�A q

}
.

We extend this definition to subsets of Q and denote it by L (A) = L (A, QF). A sequence
of configurations c1, . . . , cn such that t�

A
c1 �
A
· · ·�

A
cn �
A
q is called a recognition path

RTA 2015

182 Reachability Analysis of Innermost Rewriting

for t (into q) in A. When q �
A
q′ and q′ �

A
q, this is denoted by q ��

A
q′. A state q of A is

accessible if L (A, q) 6= ∅. An automaton is accessible if all of its states are.

I Example 8. Let Σ be defined with Σ0 = {n, 0}, Σ1 = {s, a, f}, Σ2 = {c} where
0 is meant to represent integer zero, s the successor operation on integers, a the pre-
decessor (‘antecessor’) operation, n the empty list, c the constructor of lists of integers
and f is intended to be the function on lists that filters out integer zero. Let R =
{f(n) → n, f(c(s(X), Y)) → c(s(X), f(Y)), f(c(a(X), Y)) → c(a(X), f(Y)), f(c(0, Y)) →
f(Y), a(s(X)) → X, s(a(X)) → X}. Let A0 be the tree automaton with final state qf and
transitions {n� qn, 0� q0, s(q0)� qs, a(qs)� qa, c(qa, qn)� qc, f(qc)� qf}. We have
L (A0, qf) = {f(c(a(s(0)), n))} and R(L (A0, qf)) = {f(c(0, n)), c(a(s(0)), f(n))}.

I Remark. Automata transitions may have ‘colours’, like R for transition q
R
� q′. We will

use colours R and E for transitions denoting either rewrite or equational steps.

I Definition 9. Given an automaton A and a colour R, we denote by A�R the automaton
obtained from A by removing all transitions coloured with R.

2.3 Pair automaton
We now give notations used for pair automaton, the archetype of which is the product of
two automata.

I Definition 10 (Pair automaton). An automaton A = (Σ, Q,QF ,∆) is said to be a pair
automaton if there exists some sets Q1 and Q2 such that Q = Q1 ×Q2.

I Definition 11 (Product automaton [6]). Let A = (Σ, Q,QF ,∆A) and B = (Σ, P, PF ,∆B)
be two automata. The product automaton of A and B is A× B = (Σ, Q× P,QF × PF ,∆)
where ∆ = {f(〈q1, p1〉 , . . . , 〈qk, pk〉)� 〈q′, p′〉 | f(q1, . . . , qk)� q′ ∈ ∆A ∧ f(p1, . . . , pk)�
p′ ∈ ∆B} ∪ {〈q, p〉� 〈q′, p〉 | p ∈ P, q� q′ ∈ ∆A} ∪ {〈q, p〉� 〈q, p′〉 | q ∈ Q, p� p′ ∈ ∆B}

I Definition 12 (Projections). Let A = (Σ, Q,QF ,∆) be a pair automaton, let τ � ρ be
one of its transitions and 〈q, p〉 be one of its states. We define Π1 (〈q, p〉) = q and extend
Π1 (·) to configurations inductively: Π1 (f(γ1, . . . , γk)) = f(Π1 (γ1) , . . . ,Π1 (γk)). We define
Π1 (τ � ρ) = Π1 (τ)� Π1 (ρ). We define Π1 (A) = (Σ,Π1 (Q) ,Π1 (QF) ,Π1 (∆)). Π2 (·) is
defined on all these objects in the same way for the right component.

I Remark. Using Π1 (A) amounts to forgetting the precision given by the right component
of the states. As a result, L (Π1 (A) , q) ⊇

⋃
p∈P

L (A, 〈q, p〉).

2.4 Innermost strategy
In general, a strategy over a TRS R is a set of (computable) criteria to describe a certain
sub-relation of →R. In this paper, we will be interested in innermost strategies. In these
strategies, commonly used to execute functional programs (‘call-by-value’), terms are re-
written by always contracting one of the lowest reducible subterms. If s→R t and rewriting
occurs at a position p of s, s|p is called the redex.

I Definition 13 (Innermost strategy). Given a TRS R and two terms s, t, we say that s can
be rewritten into t by R with an innermost strategy, denoted by s →Rin t, if s →R t and
each strict subterm of the redex in s is a R-normal form. We define Rin(L) and R∗in(L) in
the same way as R(L), R∗(L) where →Rin replaces →R.

T. Genet and Y. Salmon 183

I Example 14. We continue on Example 8. We have Rin(L (A0, qf)) = {f(c(0, n))} because
the rewriting step f(c(a(s(0)), n)) →R c(a(s(0)), f(n)) is not innermost since the subterm
a(s(0)) of the redex f(c(a(s(0)), n)) is not in normal form.

To deal with innermost strategies, we have to discriminate normal forms. When R is
left-linear, it is possible to compute a tree automaton recognising normal forms.

I Theorem 15 ([7]). Let R be a left-linear TRS. There is a deterministic and complete tree
automaton AIRR(R) whose states are all final except one, denoted by pred and such that
L (AIRR(R)) = Irr(R) and L (AIRR(R), pred) = T (Σ) r Irr(R).

I Remark. Since AIRR(R) is deterministic, for any state p 6= pred, L (AIRR(R), p) ⊆ Irr(R).

I Remark. If a term s is reducible, any term having s as a subterm is also reducible. Thus
any transition of AIRR(R) where pred appears in the left-hand side will necessarily have pred
as its right-hand side. Thus, for brevity, these transitions will always be left implicit when
describing the automaton AIRR(R) for some TRS R.

I Example 16. In Example 8, AIRR(R) needs, in addition to pred, a state plist to recognise
lists of integers, a state pa for terms of the form a(. . .), a state ps for s(. . .), a state
p0 for 0 and a state pvar to recognise terms that are not subterms of lhs of R, but may
participate in building a reducible term by being instances of variables in a lhs. We note
P = {plist, p0, pa, ps, pvar} and Pint = {p0, pa, ps}. The interesting transitions are thus 0�
p0,

⋃
p∈Pr{pa}{s(p) � ps},

⋃
p∈Pr{ps}{a(p) � pa} ; n � plist,

⋃
p∈Pint,p′∈P {c(p, p′) �

plist} ; f(plist) � pred, a(ps) � pred, s(pa) � pred. Furthermore, as remarked above, any
configuration that contains a pred is recognised into pred. Finally, some configurations are
not covered by the previous cases: they are recognised into pvar.

3 Innermost equational completion

Our first contribution is an adaptation of the classical equational completion of [14], which
is an iterative process on automata. Starting from a tree automaton A0 it iteratively com-
putes tree automata A1,A2, . . . until a fixpoint automaton A∗ is found. Each iteration
comprises two parts: (exact) completion itself (Subsection 3.1), then equational merging
(Subsection 3.2). The former tends to incorporate descendants by R of already recognised
terms into the recognised language; this leads to the creation of new states. The latter tends
to merge states in order to ease termination of the overall process, at the cost of precision
of the computed result. Some transition added by equational completion will have colours
R or E. We will use colours R and E for transitions denoting either rewrite or equational
steps; it is assumed that the transitions of the input automaton A0 do not have any colour
and that A0 does not have any epsilon-transition.

The equational completion of [14] is blind to strategies. To make it innermost-strategy-
aware, we equip each state of the studied automata with a state from the automaton
AIRR(R) (see Theorem 15) to keep track of normal and reducible forms. Let Ainit be
an automaton recognising the initial language. Completion will start with A0 = Ainit ×
AIRR(R). This automaton enjoys the following property.

I Definition 17 (Consistency with AIRR(R)). A pair automaton A is said to be consistent
with AIRR(R) if, for any configuration c and any state 〈q, p〉 of A, Π2 (c) is a configuration
of AIRR(R) and p is a state of AIRR(R), and if c

∗
�
A
〈q, p〉 then Π2 (c)

∗
�

AIRR(R)
p.

RTA 2015

184 Reachability Analysis of Innermost Rewriting

`σ rσ

f(q1, . . . , qk)

q q′

R

A ∗

A
A′∗

A′
R

(a) For comparison: Clas-
sical completion.

`σ rσ

f(〈q1, p1〉 , . . . , 〈qk, pk〉)

〈q, pred〉
〈
q′, prσ

〉
〈q, prσ〉

Rin

A ∗

A p1, . . . , pk 6= pred

A′∗

A′
R

(b) Innermost completion: we added inform-
ation about normal forms.

Figure 1 Comparison of classical and innermost critical pairs.

3.1 Exact completion
The first step of equational completion incorporates descendants by R of terms recognised
by Ai into Ai+1. The principle is to search for critical pairs between Ai and R. In classical
completion, a critical pair is triple (` → r, σ, q) such that lσ

∗
�
Ai

q, lσ →R rσ and rσ 6
∗
�
Ai

q.
Such a critical pair denotes a rewriting position of a term recognised by Ai such that the
rewritten term is not recognised by Ai. For the innermost strategy, the critical pair notion
is slightly refined since it also needs that every subterm γ at depth 1 in `σ is in normal
form. This corresponds to the third case of the following definition where γ

∗
�
A
〈qγ , pγ〉 and

pγ 6= pred ensures that γ is irreducible. See Figure 1.

IDefinition 18 (Innermost critical pair). LetA be a pair automaton. A tuple (`→ r, σ, 〈q, p〉)
where `→ r ∈ R, σ : X → QA and 〈q, p〉 ∈ QA is called a critical pair if

1. `σ
∗
�
A
〈q, p〉,

2. there is no p′ such that rσ
∗
�
A
〈q, p′〉 and

3. for each sub-configuration γ at depth 1 of `σ, the state 〈qγ , pγ〉 such that γ
∗
�
A
〈qγ , pγ〉

in the recognition path of condition 1 is with pγ 6= pred.

I Remark. Because a critical pair denotes a rewriting situation, the p of Definition 18 is
necessarily pred as long as A is consistent with AIRR(R).

I Example 19. In the situation of Examples 8 and 16, consider the rule f(c(a(X), Y)) →
c(a(X), f(Y)), the substitution σ1 = {X 7→ 〈qs, ps〉 , Y 7→ 〈qn, pn〉} and the state 〈qf , pred〉:
this is not an innermost critical pair because the recognition path is:

f(c(a(〈qs, ps〉), 〈qn, pn〉))� f(c(〈qa, pred〉 , 〈qn, pn〉))� f(〈qc, pred〉)� 〈qf , pred〉
and so there is a pred at depth 1. But there is an innermost critical pair in A0 with the rule
a(s(X))→ X, the substitution σ2 = {X 7→ 〈q0, p0〉} and the state 〈qa, pred〉.

Once a critical pair is found, the completion algorithm needs to resolve it: it adds
the necessary transitions for rσ to be recognised by the completed automaton. Classical
completion adds the necessary transitions so that rσ

∗
�
A′

q, where A′ is the completed
automaton. In innermost completion this is more complex. The state q is, in fact, a pair of
the form 〈q, pred〉 and adding transitions so that rσ

∗
�
A′
〈q, pred〉 may jeopardise consistency

of A′ with AIRR if rσ is not reducible. Thus the diagram is closed in a different way
preserving consistency with AIRR (see Figure 1). However, like in classical completion, this

T. Genet and Y. Salmon 185

can generally not be done in one step, as rσ might be a non-elementary configuration. We
have to split the configuration into elementary configurations and to introduce new states to
recognise them: this is what normalisation (denoted by NormA) does. Given an automaton
A, a configuration c of A and a new state 〈q, p〉, we denote by NormA(c, 〈q, p〉) the set of
transitions (with new states) that we add to A to ensure that c is recognised into 〈q, p〉.
The NormA operation is parameterized by A because it reuses transitions of A whenever it
is possible. On an example, we show how normalisation behaves. For a formal definition
see [15].

I Example 20. With a suitable signature, suppose that automaton A consists of the trans-
itions c� 〈q1, pc〉 and f(〈q1, pc〉)�

〈
q2, pf(c)

〉
and we want to normalise f(g(

〈
q2, pf(c)

〉
, c))

to the new state
〈
qN , pf(g(f(c),c))

〉
. We first have to normalise under g:

〈
q2, pf(c)

〉
is already

a state, so it does not need to be normalised; c has to be normalised to a state: since
A already has transition c � 〈q1, pc〉, we add no new state and it remains to normalise
g(
〈
q2, pf(c)

〉
, 〈q1, pc〉). Since A does not contain a transition for this configuration, we must

add a new state
〈
q′, pg(f(c),c)

〉
and the transition g(

〈
q2, pf(c)

〉
, 〈q1, pc〉) �

〈
q′, pg(f(c),c)

〉
.

Finally, we add f(
〈
q′, pg(f(c),c)

〉
) �

〈
qN , pf(g(f(c),c))

〉
. Note that due to consistency with

AIRR(R), whenever we add a new transition c′ � 〈q′, p′〉, only the q′ is arbitrary: the p′
is always the state of AIRR(R) such that Π2 (c) �

AIRR(R)
p′, in order to preserve consistency

with AIRR(R).

Completion of a critical pair is done in two steps. The first set of operations formalises
‘closing the square’ (see Figure 1), i.e. if lσ

∗
�
A
〈q, pred〉 then we add transitions rσ

∗
�
A′

〈q′, prσ〉
R
� 〈q, prσ〉. The second step adds the necessary transitions for any context C[rσ]

to be recognised in the tree automaton if C[lσ] was. Thus if the the recognition path for
C[lσ] is of the form C[lσ]

∗
�
A
C[〈q, pred〉]

∗
�
A
〈qc, pred〉, we add the necessary transitions for

C[〈q, prσ〉] to be recognised into 〈qc, pc〉 where pc is the state of AIRR(R) recognising C[rσ].

I Definition 21 (Completion of an innermost critical pair). A critical pair (`→ r, σ, 〈q, p〉) in
automaton A is completed by first computing N = Norm

A�R
(rσ, 〈q′, prσ〉) where q′ is a new

state and Π2 (rσ)
∗
�

AIRR(R)
prσ, then adding to A the new states and the transitions appearing

in N as well as the transition 〈q′, prσ〉
R
� 〈q, prσ〉. If rσ is a trivial configuration (i.e. r is

just a variable, and thus Π2 (rσ) is a state), only transition rσ
R
� 〈q,Π2 (rσ)〉 is added.

Afterwards, we execute the following supplementary operations. For any new transition
f(. . . , 〈q, pred〉 , . . .) � 〈q′′, p′′〉, we add a transition f(. . . , 〈q, prσ〉 , . . .) � 〈q′′, p′′′〉 with
f(. . . , prσ, . . .) �

AIRR(R)
p′′′. These new transitions are in turn recursively considered for the

supplementary operations3.

I Definition 22 (Innermost completion step). Let PC be the set of all innermost critical
pairs of Ai. For pc ∈ PC, let Npc be the set of new states and transitions needed un-
der Definition 21 to complete pc, and A ∪ Npc the automaton A completed by states and
transitions of Npc. Then Ai+1 = Ai ∪

⋃
pc∈PC

Npc.

3 Those supplementary operations add new pairs, but the element of each pair are not new. So, this
necessarily terminates.

RTA 2015

186 Reachability Analysis of Innermost Rewriting

I Lemma 23. Let A be an automaton obtained from some Ainit×AIRR(R) after some steps
of innermost completion. A is consistent with AIRR(R).

Due to space constraints, the full proofs can be found in [15].

3.2 Equational simplification
I Definition 24. Given two states q, q′ of some automaton A and a colour E, we note

q
E
��
A
q′ when we have both q

E
�
A
q′ and q′

E
�
A
q.

I Definition 25 (Situation of application of an equation). Given an equation s = t, an
automaton A, a substitution θ : X → QA and states 〈q1, p1〉 and 〈q2, p2〉, we say that
(s = t, θ, 〈q1, p1〉 , 〈q2, p2〉) is a situation of application in A if

1. sθ
∗
�
A
〈q1, p1〉,

2. tθ
∗
�
A
〈q2, p2〉,

3. 〈q1, p1〉
�
�
�E��
A
〈q2, p2〉

4. p1 = p2.

Note that when p1 6= p2, this is not a situation of application for an equation. This is
the only difference with the situation of application in classical completion. This restriction
avoids, in particular, to apply an equation between reducible and irreducible terms. Such
terms will be recognised by states having two distinct second components. On the opposite,
when a situation of application arises, we ‘apply’ the equation, i.e. add the necessary trans-

itions to have 〈q1, p1〉
E
��
A
〈q2, p2〉 and supplementary transitions to lift this property to any

embedding context. We apply equations until there are no more situation of application on
the automaton (this is guaranteed to happen because we add no new state in this part).

I Definition 26 (Application of an equation). Given (s = t, θ, 〈q1, p1〉 , 〈q2, p1〉) a situation
of application in A, applying the underlying equation in it consists in adding transitions
〈q1, p1〉

E
� 〈q2, p1〉 and 〈q2, p1〉

E
� 〈q1, p1〉 to A. We also add the supplementary transitions

〈q1, p
′
1〉

E
� 〈q2, p

′
1〉 and 〈q2, p

′
1〉

E
� 〈q1, p

′
1〉 where 〈q1, p

′
1〉 and 〈q2, p

′
1〉 occur in the automaton.

I Lemma 27. Applying an equation preserves consistency with AIRR(R).

3.3 Innermost completion and equations
I Definition 28 (Step of innermost equational completion). Let R be a left-linear TRS, Ainit
a tree automaton, E a set of equations and A0 = Ainit × AIRR(R). The automaton Ai+1
is obtained, from Ai, by applying an innermost completion step on Ai (Definition 21) and
solving all situations of applications of equations of E (Definition 25).

4 Correctness

I Definition 29 (Correct automaton). An automaton A is correct w.r.t. Rin if for all states
〈q, pred〉 of A, for all u ∈ L (A, 〈q, pred〉) and for all v ∈ Rin(u), either there is a state p of
AIRR(R) such that v ∈ L (A, 〈q, p〉) or there is a critical pair (` → r, σ, 〈q0, p0〉) in A for
some 〈q0, p0〉 and a context C on T (Σ) such that u

∗
�
A
C[`σ]

∗
�
A
C[〈q0, pred〉]

∗
�
A
〈q, pred〉 and

v
∗
�
A
C[rσ].

T. Genet and Y. Salmon 187

I Lemma 30. Any automaton produced by innermost equational completion starting from
some Ainit ×AIRR(R) is correct w.r.t. Rin.

I Theorem 31 (Correctness). Assuming R is left-linear, the innermost equational completion
procedure defined above produces a correct result whenever it terminates and produces some
fixpoint Ain∗:

L (Ain∗) ⊇ R∗in(L (Ainit ×AIRR(R))).

Proof. Ain∗ is correct w.r.t. Rin, but the case of Definition 29 where there remains a critical
pair cannot occur, because it is a fixpoint. J

5 Precision theorem

We just showed that the approximation is correct. Now we investigate its accuracy on a the-
oretical point of view. This theorem is technical and difficult to prove (details can be found
in [15]). But, this result is crucial because producing an over-approximation of reachable
terms is easy (the tree automaton recognising T (Σ) is a correct over-approximation) but
producing an accurate approximation is hard. To the best of our knowledge, no other work
dealing with abstract interpretation of functional programs or computing approximations of
regular languages can provide such a formal precision guarantee (except [14] but in the case
of general rewriting). Like in [14], we formally quantify the accuracy w.r.t. rewriting mod-
ulo E, replaced here by innermost rewriting modulo E. The relation of innermost rewriting
modulo E, denoted by →Rin/E , is defined as rewriting modulo E where →Rin replaces →R.
We also define (Rin/E)(L) and (Rin/E)∗(L) in the same way as R(L), R∗(L) where→Rin/E

replaces →R.
The objective of the proof is to show that the completed tree automaton recognises no

more terms than those reachable by Rin/E rewriting. The accuracy relies on the Rin/E-
coherence property of the completed tree automaton, defined below. Roughly, a tree auto-
maton A is Rin/E-coherent if

∗
�
A

is coherent w.r.t. R innermost rewriting steps and E

equational steps. More precisely if s
∗
�
A
q and t

∗
�
A
q with no epsilon transitions with colour

R, then s =E t (this is called separation of E-classes for A�R). And, if t
∗
�
A

q with at
least one epsilon transitions with colour R, then s →∗Rin/E

t (this is called Rin-coherence
of A). Roughly, a tree automaton separates E-classes if all terms recognized by a state are
E-equivalent. Later, we will require this property on A0 and then propagate it on A�Ri , for
all completed automata Ai.

I Definition 32 (Separation of E-classes). The pair automaton A separates the classes of E if
for any q ∈ Π1 (QA), there is a term s such that for all p ∈ Π2 (QA), L (A, 〈q, p〉) ⊆ [s]E . We
denote by [q]AE the common class of terms in L (A, 〈q, ·〉), and extend this to configurations.
We say the separation of classes by A is total if Π1 (A) is accessible.

I Definition 33 (Rin/E-coherence). An automaton A is Rin/E-coherent if

1. A�R totally separates the classes of E,
2. A is accessible, and

3. for any state 〈q, p〉 of A, L (A, 〈q, p〉) ⊆ (Rin/E)∗
(

[q]A�
R

E

)
.

Then, the objective is to show that the two basic elements of innermost equational
completion: completing a critical pair and applying an equation preserve Rin/E-coherence.
This is the purpose of the two following lemmas.

RTA 2015

188 Reachability Analysis of Innermost Rewriting

I Lemma 34. Completion of an innermost critical pair preserves Rin/E-coherence.

I Lemma 35. Equational simplification preserves Rin/E-coherence.

This shows that, under the assumption that A0 separates the classes of E, innermost
equational completion will never never add to the computed approximation a term that is
not a descendant of L (A0) through Rin modulo E rewriting. This permits to state the
main theorem, which formally defines the precision of the completed tree automaton.

I Theorem 36 (Precision). Let E be a set of equations. Let A0 = Ainit ×AIRR(R), where
Ainit has designated final states. We prune A0 of its non-accessible states. Suppose A0
separates the classes of E. Let R be any left-linear TRS. Let Ai be obtained from A0 after
some steps of innermost equational completion. Then

L (Ai) ⊆ (Rin/E)∗(L (A0))).

Proof. (Sketch) We know that A0 is Rin/E-coherent because (1) A�R0 separates the classes
of E (A0 separates the classes of E and A0 = A�R0 since none of Ainit and AIRR have
epsilon transitions), and (2) A0 is accessible. Condition (3) of Definition 33 is trivially
satisfied since A0 separates classes of E, meaning that for all states q, there is a term s

s.t. L (A0, 〈q, p〉) ⊆ [s]E , i.e. all terms recognized by q are E-equivalent to s which is
a particular case of case (3) in Definition 33. Then, during successive completion steps,
by Lemma 34 and 35, we know that each basic transformation applied on A0 (completion
or equational step) will preserve the Rin/E-coherence of A0. Thus, Ai is Rin/E-coherent.
Finally, case (3) of Rin/E-coherence of Ai entails the result. J

Note that the fact that A0 needs to separate the classes of E is not a strong restriction.
In the particular case of functional TRS (TRS encoding first order typed functional pro-
grams [12]), there always exists a tree automaton recognising a language equal to L (A0)
and which separates the classes of E, see [11] for details.

6 Improving accuracy of static analysis of functional programs

We just showed accuracy of the approximation on a theoretical side. Now we investigate
the accuracy on a practical point of view. There is a recent and renewed interest for Data
flow analysis of higher-order functional programs [25, 22] that was initiated by [20]. None of
those techniques is strategy-aware: on Example 8, they all consider the term c(a(s(0)), f(n))
as reachable, though it is not with innermost strategy. Example 8 also shows that this is
not the case with innermost completion.

We made an alpha implementation of innermost equational completion. This new version
of Timbuk, named TimbukSTRAT, is available at [13] along with several examples. On those
examples, innermost equational completion runs within milliseconds. Sets of approximation
equations, when needed, are systematically defined using [12]. Roughly, the idea is to define
a set E such that the set of equivalence classes of T (Σ) w.r.t. E is finite. Now, we show
that accuracy of innermost equational completion can benefit to static analysis of functional
programs. As soon as one of the analysed functions is not terminating (intentionally or be-
cause of a bug), not taking the evaluation strategy into account may result into an imprecise
analysis. Consider the following OCaml program:
let hd= function x::_ -> x;; let tl= function _::l -> l;;
let rec delete e l=

if (l=[]) then [] else if (hd l=e) then tl l else (hd l)::(delete e l);;

T. Genet and Y. Salmon 189

It is faulty: the recursive call should be (hd l)::(delete e (tl l)). Because of this
error, any call (delete e l) will not terminate if l is not empty and hd l is not e. We can
encode the above program into a TRS R. Furthermore, if we consider only two elements
in lists (a and b), the language L of calls to (delete a l), where l is any non empty list
of b, is regular. Thus, standard completion can compute an automaton over-approximating
R∗(L). Besides, the automaton AIRR(R) recognising normal forms of R can be computed
since R is left-linear. Then, by computing the intersection between the two automata, we
obtain the automaton recognising an over-approximation of the set of reachable terms in
normal form4. Assume that we have an abstract OCaml interpreter performing completion
and intersection with AIRR(R):
delete a [b+];;
-:abst list= empty

The result empty reflects the fact that the delete function does not compute any result,
i.e. it is not terminating on all the given input values. Thus the language of results is
empty. Now, assume that we consider calls like hd(delete e l). In this case, any analysis
technique ignoring the call-by-value evaluation strategy of OCaml will give imprecise results.
This is due to the fact that, for any non empty list l starting with an element e’ different
from e, (delete e l) rewrites into e’::(delete e l), and so on. Thus hd(delete e l),
can be rewritten into e’ with an outermost rewrite strategy. Thus, if we use an abstract
OCaml interpreter built on the standard completion, we will have the following interaction:
hd (delete a [b+]);;
-:abst list= b

The result provided by the abstract interpreter is imprecise. It fails to reveal the bug in
the delete function since it totally hides the fact that the delete function does not terminate!
Using innermost equational completion and TimbukSTRAT on the same example would
permit to have the expected result which is5:
hd (delete a [b+]);;
-:abst list= empty

We can perform the same kind of analysis for the program sum given in the introduc-
tion. This program does not terminate with call-by-value (for any input) but it terminates
with call-by-name strategy. Again, strategy-unaware methods cannot show this: there are
(outermost) reachable terms that are in normal form: the integer results obtained with a
call-by-need or lazy evaluation. An abstract OCaml interpreter unaware of strategies would
say:
sum s*(0);;
-:abst nat= s*(0)
where a more precise and satisfactory answer would be -:abst nat= empty. Using Tim-
bukSTRAT, we can get this answer. To over-approximate the set of results of the func-
tion sum for all natural numbers i, we can start innermost equational completion with
the initial regular language {sum(s∗(0))}. Let A = (Σ, Q,Qf ,∆) with Qf = {q1} and
∆ = {0 � q0, s(q0) � q0, sum(q0) � q1} be an automaton recognising this language.
Timbuk[13] can compute the automaton AIRR(R). Innermost equational completion with
TimbukSTRAT terminates on an automaton (see [15]) where the only product state labelled
by q1 is 〈q1, pred〉. This means that terms of the form sum(s∗(0)) have no innermost normal
form, i.e. the function sum is not terminating with call-by-value for all input values. On all

4 Computing AIRR(R) and the intersection can be done using Timbuk.
5 Details in [15]; see files nonTerm1 and nonTerm1b in the TimbukSTRAT distribution at [13].

RTA 2015

190 Reachability Analysis of Innermost Rewriting

those examples, we used initial automata A that were not separating equivalences classes of
E. On those particular examples the precision of innermost completion was already suffi-
cient for our verification purpose. Yet, if accuracy is not sufficient, it is possible to refine A
into an equivalent automaton separating equivalences classes of E, see [11]. When necessary,
this permits to exploit the full power of the precision Theorem 36 and get an approximation
of innermost reachable terms, as precise as possible, w.r.t. E.

On the same example, all aforementioned techniques [25, 22, 20], as well as all standard
completion techniques [27, 14, 23], give a more coarse approximation and are unable to prove
strong non-termination with call-by-value. Indeed, those techniques approximate all reach-
able terms, independently of the rewriting strategy. Their approximation will, in particular,
contain the integer results that are reachable by the call-by-need evaluation strategy.

7 Related work

No tree automata completion-like techniques [10, 27, 3, 14, 23] take evaluation strategies
into account. They compute over-approximations of all reachable terms.

Dealing with reachable terms and strategies was first addressed in [26] in the exact case
for innermost and outermost strategies but only for some restricted classes of TRSs, and also
in [9]. As far as we know, the technique we propose is the first to over-approximate terms
reachable by innermost rewriting for any left-linear TRSs. For instance, Example 8 and
examples of Section 6 are in the scope of innermost equational completion but are outside
of the classes of [26, 9]. For instance, the sum example is outside of classes of [26, 9] because
a right-hand side of a rule has two nested defined symbols and is not shallow.

Data flow analysis of higher-order functional programs is a long standing and very active
research topic [25, 22, 20]. Used techniques ranges from tree grammars to specific formalisms:
HORS, PMRS or ILTGs and can deal with higher-order functions. Higher-order functions
are not in the scope of the work presented here, though it is possible with tree automata
completion in general [16]. None of [25, 22, 20], takes evaluation strategies into account and
analysis results are thus coarse when program execution rely on a specific strategy.

8 Conclusion

In this paper, we have proposed a sound and precise algorithm over-approximating the set
of terms reachable by innermost rewriting. As far as we know this is the first algorithm
solving this problem for any left linear TRS and any regular initial set of terms. It is based
on tree automata completion and equational abstractions with a set E of approximation
equations. The algorithm also minimises the set of added transitions by completing the
product automaton (between Ainit and AIRR(R)). We proposed TimbukSTRAT [13], a
prototype implementation of this method.

The precision of the approximations have been shown on a theoretical and a practical
point of view. On a theoretical point of view, we have shown that the approximation auto-
maton recognises no more terms than those effectively reachable by innermost rewriting
modulo the approximation E. On the practical side, unlike other techniques used to stat-
ically analyse functional programs [25, 22, 20], innermost equational completion can take
the call-by-value strategy into account. As a result, for programs whose semantics highly
depend on the evaluation strategy, innermost equational completion yields more accurate
results. This should open new ways to statically analyse functional programs by taking
evaluation strategies into account.

T. Genet and Y. Salmon 191

Approximations of sets of ancestors or descendants can also improve existing termination
techniques [17, 24]. In the dependency pairs setting, such approximations can remove edges
in a dependency graph by showing that there is no rewrite derivation from a pair to another.
Besides, it has been shown that dependency pairs can prove innermost termination [19]. In
this case, innermost equational completion can more strongly prune the dependency graph:
it can show that there is no innermost derivation from a pair to another. For instance, on
the TRS:

choice(X,Y) → X choice(X,Y) → Y eq(s(X), s(Y)) → eq(X,Y)
eq(0, 0) → tt eq(s(X), 0) → ff eq(0, s(Y)) → ff
g(0, X) → eq(X,X) g(s(X), Y) → g(X,Y) f(ff, X, Y) → f(g(X, choice(X,Y)), X, Y)
We can prove that any term of the form f(g(t1, choice(t2, t3)), t4, t5) cannot be rewrit-

ten (innermost) to a term of the form f(ff, t6, t7) (for all terms ti ∈ T (Σ), i = 1 . . . 7).
This proves that, in the dependency graph, there is no cycle on this pair. This makes the
termination proof of this TRS simpler than what AProVE [18] does: it needs more com-
plex techniques, including proofs by induction. Simplification of termination proofs using
innermost equational completion should be investigated more deeply.

For further work, we want to improve and expand our implementation of innermost
equational completion in order to design a strategy-aware and higher-order-able static ana-
lyser for a reasonable subset of a real functional programming language with call-by-value
like OCaml, F#, Scala, Lisp or Scheme. On examples taken from [25], we already showed
in [16] that completion can handle some higher-order functions. We also want to study if the
innermost completion covers the TRS classes preserving regularity of [26, 9], like standard
completion does for many decidable classes [8].

Another objective is to extend this completion technique to other strategies. It should
be easy to extend those results to the case of leftmost or rightmost innermost strategy. This
should be a simple refinement of the second phase of completion of innermost critical pairs,
when supplementary transitions are added. To encode leftmost (resp. rightmost) inner-
most, for each transition f(q1, . . . , qi−1, 〈q, pred〉 , qi+1, . . . , qn) � 〈q′′, p′′〉, we should add a
new transition f(q1, . . . , qi−1, 〈q, prσ〉 , qi+1, . . . , qn)� 〈q′′, p′′′〉, only if all states q1, . . . , qi−1
(resp. qi+1, . . . , qn) have a p component that is not pred. Another strategy of interest for
completion is the outermost strategy. This would improve the precision of static analysis of
functional programming language using call-by-need evaluation strategy, like Haskell. Ex-
tension of this work to the outermost case is not straightforward but it may use similar
principles, such as running completion on a pair automaton rather than on single auto-
maton. States in tree automata are closely related to positions in terms. To deal with the
innermost strategy, in states 〈q, p〉, the p component tells us if terms s (or subterms of s)
recognised by the state 〈q, p〉 are reducible or not. This is handy for innermost completion
because we can decide if a tuple (`→ r, σ, 〈q′, p′〉) is an innermost critical pair we checking
if the p components of the states recognising strict subterms of `σ are different from pred.
For the outermost case, this is exactly the opposite: a tuple (` → r, σ, 〈q′, p′〉) is an outer-
most critical pair only if all the contexts C[] such that C[`σ] is recognised, are irreducible
contexts. If it is possible to encode in the p′ component (using an automaton or something
else) whether all contexts embedding 〈q′, p′〉 are irreducible or not, we should be able to
define outermost critical pairs and, thus, outermost completion in a similar manner.

Acknowledgements. The authors thank René Thiemann for providing the example of in-
nermost terminating TRS for AProVE, Thomas Jensen, Luke Ong, Jonathan Kochems,
Robin Neatherway and the anonymous referees for their comments.

RTA 2015

192 Reachability Analysis of Innermost Rewriting

References
1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.
2 Y. Boichut, J. Chabin, and P. Réty. Over-approximating descendants by synchronized tree

languages. In RTA’13, volume 21 of LIPIcs, pages 128–142. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2013.

3 Y. Boichut, R. Courbis, P.-C. Héam, and O. Kouchnarenko. Handling non left-linear rules
when completing tree automata. IJFCS, 20(5), 2009.

4 C. H. Broadbent, A. Carayol, M. Hague, and O. Serre. C-shore: a collapsible approach to
higher-order verification. In ICFP’13. ACM, 2013.

5 G. Castagna, K. Nguyen, Z. Xu, H. Im, S. Lenglet, and L. Padovani. Polymorphic functions
with set-theoretic types: part 1: syntax, semantics, and evaluation. In POPL’14. ACM,
2014.

6 H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison, and
M. Tommasi. Tree automata techniques and applications. http://tata.gforge.inria.fr,
2008.

7 H. Comon and Jean-Luc Rémy. How to characterize the language of ground normal forms.
Technical Report 676, INRIA-Lorraine, 1987.

8 G. Feuillade, T. Genet, and V. Viet Triem Tong. Reachability Analysis over Term Rewriting
Systems. Journal of Automated Reasonning, 33 (3-4):341–383, 2004.

9 A. Gascon, G. Godoy, and F. Jacquemard. Closure of Tree Automata Languages under
Innermost Rewriting. In WRS’08, volume 237 of ENTCS, pages 23–38. Elsevier, 2008.

10 T. Genet. Decidable Approximations of Sets of Descendants and Sets of Normal Forms. In
RTA’98, volume 1379 of LNCS, pages 151–165. Springer, 1998.

11 T. Genet. A note on the Precision of the Tree Automata Completion. Technical report,
INRIA, 2014. https://hal.inria.fr/hal-01091393.

12 T. Genet. Towards Static Analysis of Functional Programs using Tree Automata Comple-
tion. In WRLA’14, volume 8663 of LNCS. Springer, 2014.

13 T. Genet, Y. Boichut, B. Boyer, V. Murat, and Y. Salmon. Reachability Analysis and
Tree Automata Calculations. IRISA / Université de Rennes 1. http://www.irisa.fr/
celtique/genet/timbuk/.

14 T. Genet and R. Rusu. Equational tree automata completion. Journal of Symbolic Com-
putation, 45:574–597, 2010.

15 T. Genet and Y. Salmon. Reachability Analysis of Innermost Rewriting. Technical report,
INRIA, 2013. http://hal.archives-ouvertes.fr/hal-00848260/PDF/main.pdf.

16 T. Genet and Y. Salmon. Tree Automata Completion for Static Analysis of Func-
tional Programs. Technical report, INRIA, 2013. http://hal.archives-ouvertes.fr/
hal-00780124/PDF/main.pdf.

17 A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that certify
termination of left-linear term rewriting systems. In RTA’05, volume 3467 of LNCS, pages
353–367. Springer, 2005.

18 J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker, P. Schneider-
Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Proving termination of programs
automatically with aprove. In IJCAR’14, volume 8562 of LNCS, pages 184–191. Springer,
2014.

19 J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. Journal of Automated Reasonning, 37(3):155–203, 2006.

20 N. D. Jones and N. Andersen. Flow analysis of lazy higher-order functional programs.
Theoretical Computer Science, 375(1-3):120–136, 2007.

https://hal.inria.fr/hal-01091393
http://www.irisa.fr/celtique/genet/timbuk/
http://www.irisa.fr/celtique/genet/timbuk/
http://hal.archives-ouvertes.fr/hal-00848260/PDF/main.pdf
http://hal.archives-ouvertes.fr/hal-00780124/PDF/main.pdf
http://hal.archives-ouvertes.fr/hal-00780124/PDF/main.pdf

T. Genet and Y. Salmon 193

21 N. Kobayashi. Model Checking Higher-Order Programs. Journal of the ACM, 60.3(20),
2013.

22 J. Kochems and L. Ong. Improved Functional Flow and Reachability Analyses Using
Indexed Linear Tree Grammars. In RTA’11, volume 10 of LIPIcs. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2011.

23 A. Lisitsa. Finite Models vs Tree Automata in Safety Verification. In RTA’12, volume 15
of LIPIcs, pages 225–239, 2012.

24 A. Middeldorp. Approximations for strategies and termination. ENTCS, 70(6):1–20, 2002.
25 L. Ong and S. Ramsay. Verifying higher-order functional programs with pattern-matching

algebraic data types. In POPL’11. ACM, 2011.
26 P. Réty and J. Vuotto. Regular Sets of Descendants by some Rewrite Strategies. In RTA’02,

volume 2378 of LNCS. Springer, 2002.
27 T. Takai, Y. Kaji, and H. Seki. Right-linear finite-path overlapping term rewriting systems

effectively preserve recognizability. In RTA’11, volume 1833 of LNCS. Springer, 2000.
28 Terese. Term Rewriting Systems. Cambridge University Press, 2003.
29 N. Vazou, P. Rondon, and R. Jhala. Abstract Refinement Types. In ESOP’13, volume

7792 of LNCS. Springer, 2013.

RTA 2015

	Introduction and motivations
	Towards an abstract OCaml interpreter
	What is the problem with evaluation strategies?
	Computing over-approximations of innermost reachable terms

	Preliminaries
	Equations
	Tree automata
	Pair automaton
	Innermost strategy

	Innermost equational completion
	Exact completion
	Equational simplification
	Innermost completion and equations

	Correctness
	Precision theorem
	Improving accuracy of static analysis of functional programs
	Related work
	Conclusion

