250 research outputs found

    Fault Detection and Diagnosis in Gene Regulatory Networks and Optimal Bayesian Classification of Metagenomic Data

    Get PDF
    It is well known that the molecular basis of many diseases, particularly cancer, resides in the loss of regulatory power in critical genomic pathways due to DNA mutations. We propose a methodology for model-based fault detection and diagnosis for stochastic Boolean dynamical systems indirectly observed through a single time series of transcriptomic measurements using Next Generation Sequencing (NGS) data. The fault detection consists of an innovations filter followed by a fault certification step, and requires no knowledge about the system faults. The innovations filter uses the optimal Boolean state estimator, called the Boolean Kalman Filter (BKF). We propose an additional step of fault diagnosis based on a multiple model adaptive estimation (MMAE) method consisting of a bank of BKFs running in parallel. The efficacy of the proposed methodology is demonstrated via numerical experiments using a p53-MDM2 negative feedback loop Boolean network. The results indicate the proposed method is promising in monitoring biological changes at the transcriptomic level. Genomic applications in the life sciences experimented an explosive growth with the advent of high-throughput measurement technologies, which are capable of delivering fast and relatively inexpensive profiles of gene and protein activity on a genome-wide or proteome-wide scale. For the study of microbial classification, we propose a Bayesian method for the classification of r16S sequencing pro- files of bacterial abundancies, by using a Dirichlet-Multinomial-Poisson model for microbial community samples. The proposed approach is compared to the kernel SVM, Random Forest and MetaPhyl classification rules as a function of varying sample size, classification difficulty, using synthetic data and real data sets. The proposed Bayesian classifier clearly displays the best performance over different values of between and within class variances that defines the difficulty of the classification

    A stochastic and dynamical view of pluripotency in mouse embryonic stem cells

    Full text link
    Pluripotent embryonic stem cells are of paramount importance for biomedical research thanks to their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory network. Latest advances in transcriptomics have made it possible to infer basic topologies of pluripotency governing networks. The inferred network topologies, however, only encode boolean information while remaining silent about the roles of dynamics and molecular noise in gene expression. These features are widely considered essential for functional decision making. Herein we developed a framework for extending the boolean level networks into models accounting for individual genetic switches and promoter architecture which allows mechanistic interrogation of the roles of molecular noise, external signaling, and network topology. We demonstrate the pluripotent state of the network to be a broad attractor which is robust to variations of gene expression. Dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the molecular noise originating from genetic switching events which makes cells more responsive to extracellular signals. Lastly we show that steady state probability landscape can be significantly remodeled by global gene switching rates alone which can be taken as a proxy for how global epigenetic modifications exert control over stability of pluripotent states.Comment: 11 pages, 7 figure

    TaBooN -- Boolean Network Synthesis Based on Tabu Search

    Full text link
    Recent developments in Omics-technologies revolutionized the investigation of biology by producing molecular data in multiple dimensions and scale. This breakthrough in biology raises the crucial issue of their interpretation based on modelling. In this undertaking, network provides a suitable framework for modelling the interactions between molecules. Basically a Biological network is composed of nodes referring to the components such as genes or proteins, and the edges/arcs formalizing interactions between them. The evolution of the interactions is then modelled by the definition of a dynamical system. Among the different categories of network, the Boolean network offers a reliable qualitative framework for the modelling. Automatically synthesizing a Boolean network from experimental data therefore remains a necessary but challenging issue. In this study, we present taboon, an original work-flow for synthesizing Boolean Networks from biological data. The methodology uses the data in the form of Boolean profiles for inferring all the potential local formula inference. They combine to form the model space from which the most truthful model with regards to biological knowledge and experiments must be found. In the taboon work-flow the selection of the fittest model is achieved by a Tabu-search algorithm. taboon is an automated method for Boolean Network inference from experimental data that can also assist to evaluate and optimize the dynamic behaviour of the biological networks providing a reliable platform for further modelling and predictions

    The Architecture And Dynamics Of Gene Regulatory Networks Directing Cell-Fate Choice During Murine Hematopoiesis

    Get PDF
    Mammals produce hundreds of billions of new blood cells every day througha process known as hematopoiesis. Hematopoiesis starts with stem cells that develop into all the different types of cells found in blood by changing their genome-wide gene expression. The remodeling of genome-wide gene expression can be primarily attributed to a special class of proteins called transcription factors (TFs) that can activate or repress other genes, including genes encoding TFs. TFs and their targets therefore form recurrent networks called gene regulatory networks (GRNs). GRNs are crucial during physiological developmental processes, such as hematopoiesis, while abnormalities in the regulatory interactions of GRNs can be detrimental to the organisms. To this day we do not know all the key compo-nents that comprise hematopoietic GRNs or the complete set of their regulatory interactions. Inference of GRNs directly from genetic experiments is low throughput and labor intensive, while computational inference of comprehensive GRNs is challenging due to high processing times. This dissertation focuses on deriving the architecture and the dynamics of hematopoietic GRNs from genome-wide gene expression data obtained from high-resolution time-series experiments. The dissertation also aims to address the technical challenge of speeding up the process of GRN inference. Here GRNs are inferred and modeled using gene circuits, a data-driven method based on Ordinary Differential Equations (ODEs). In gene circuits, the rate of change of a gene product depends on regulatory influences from other genes encoded as a set of parameters that are inferred from time-series data. A twelve-gene GRN comprising genes encoding key TFs and cytokine receptors involved in erythrocyte-neutrophil differentiation was inferred from a high-resolution time-series dataset of the in vitro differentiation of a multipotential cell line. The inferred GRN architecture agreed with prior empirical evidence and pre- dicted novel regulatory interactions. The inferred GRN model was also able to predict the outcome of perturbation experiments, suggesting an accurate inference of GRN architecture. The dynamics of the inferred GRN suggested an alternative explanation to the currently accepted sequence of regulatory events during neutrophil differentiation. The analysis of the model implied that two TFs, C/EBPα and Gfi1, initiate cell-fate choice in the neutrophil lineage, while PU.1, believed to be a master regulator of all white-blood cells, is activated only later. This inference was confirmed in a single-cell RNA-Seq dataset from mouse bone marrow, in which PU.1 upregulation was preceded by C/EBPα and Gfi1 upregulation. This dissertation also presents an analysis of a high-temporal resolution genome-wide gene expression dataset of in vitro macrophage-neutrophil differentiation. Analysis of these data reveal that genome-wide gene expression during differentiation is highly dynamic and complex. A large-scale transition is observed around 8h and shown to be related to wide-spread physiological remodeling of the cells. The genes associated by myeloid differentiation mainly change during the first 4 hours, implying that the cell-fate decision takes place in the first four hours of differentiation. The dissertation also presents a new classification-based model-training technique that addresses the challenge of the high computational cost of inferring GRNs. This method, called Fast Inference of Gene Regulation (FIGR), is demonstrated to be two orders magnitude faster than global non-linear optimization techniques and its computational complexity scales much better with GRN size. This work has demonstrated the feasibility of simulating relatively large realistic GRNs using a dynamical and mechanistically accurate model coupled to high-resolution time series data and that such models can yield novel biological insight. Taken together with the macrophage-neutrophil dataset and the computationally efficient GRN inference methodology, this work should open up new avenues for modeling more comprehensive GRNs in hematopoiesis and the broader field of developmental biology

    BTR: training asynchronous Boolean models using single-cell expression data

    Get PDF
    Abstract Background Rapid technological innovation for the generation of single-cell genomics data presents new challenges and opportunities for bioinformatics analysis. One such area lies in the development of new ways to train gene regulatory networks. The use of single-cell expression profiling technique allows the profiling of the expression states of hundreds of cells, but these expression states are typically noisier due to the presence of technical artefacts such as drop-outs. While many algorithms exist to infer a gene regulatory network, very few of them are able to harness the extra expression states present in single-cell expression data without getting adversely affected by the substantial technical noise present. Results Here we introduce BTR, an algorithm for training asynchronous Boolean models with single-cell expression data using a novel Boolean state space scoring function. BTR is capable of refining existing Boolean models and reconstructing new Boolean models by improving the match between model prediction and expression data. We demonstrate that the Boolean scoring function performed favourably against the BIC scoring function for Bayesian networks. In addition, we show that BTR outperforms many other network inference algorithms in both bulk and single-cell synthetic expression data. Lastly, we introduce two case studies, in which we use BTR to improve published Boolean models in order to generate potentially new biological insights. Conclusions BTR provides a novel way to refine or reconstruct Boolean models using single-cell expression data. Boolean model is particularly useful for network reconstruction using single-cell data because it is more robust to the effect of drop-outs. In addition, BTR does not assume any relationship in the expression states among cells, it is useful for reconstructing a gene regulatory network with as few assumptions as possible. Given the simplicity of Boolean models and the rapid adoption of single-cell genomics by biologists, BTR has the potential to make an impact across many fields of biomedical research
    • …
    corecore