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ABSTRACT

Mammals produce hundreds of billions of new blood cells every day through

a process known as hematopoiesis. Hematopoiesis starts with stem cells that de-

velop into all the different types of cells found in blood by changing their genome-

wide gene expression. The remodeling of genome-wide gene expression can be

primarily attributed to a special class of proteins called transcription factors (TFs)

that can activate or repress other genes, including genes encoding TFs. TFs and

their targets therefore form recurrent networks called gene regulatory networks

(GRNs). GRNs are crucial during physiological developmental processes, such

as hematopoiesis, while abnormalities in the regulatory interactions of GRNs can

be detrimental to the organisms. To this day we do not know all the key compo-

nents that comprise hematopoietic GRNs or the complete set of their regulatory

interactions. Inference of GRNs directly from genetic experiments is low through-

put and labor intensive, while computational inference of comprehensive GRNs

is challenging due to high processing times.

This dissertation focuses on deriving the architecture and the dynamics of

hema- topoietic GRNs from genome-wide gene expression data obtained from

high-resolu- tion time-series experiments. The dissertation also aims to address

the technical challenge of speeding up the process of GRN inference. Here GRNs

are inferred and modeled using gene circuits, a data-driven method based on Or-

dinary Differential Equations (ODEs). In gene circuits, the rate of change of a

gene product depends on regulatory influences from other genes encoded as a set

of parameters that are inferred from time-series data.

xiv



A twelve-gene GRN comprising genes encoding key TFs and cytokine recep-

tors involved in erythrocyte-neutrophil differentiation was inferred from a high-

resolution time-series dataset of the in vitro differentiation of a multipotential cell

line. The inferred GRN architecture agreed with prior empirical evidence and

predicted novel regulatory interactions. The inferred GRN model was also able

to predict the outcome of perturbation experiments, suggesting an accurate in-

ference of GRN architecture. The dynamics of the inferred GRN suggested an

alternative explanation to the currently accepted sequence of regulatory events

during neutrophil differentiation. The analysis of the model implied that two

TFs, C/EBPα and Gfi1, initiate cell-fate choice in the neutrophil lineage, while

PU.1, believed to be a master regulator of all white-blood cells, is activated only

later. This inference was confirmed in a single-cell RNA-Seq dataset from mouse

bone marrow, in which PU.1 upregulation was preceded by C/EBPα and Gfi1

upregulation.

This dissertation also presents an analysis of a high-temporal resolution genome-

wide gene expression dataset of in vitro macrophage-neutrophil differentiation.

Analysis of these data reveal that genome-wide gene expression during differenti-

ation is highly dynamic and complex. A large-scale transition is observed around

8h and shown to be related to wide-spread physiological remodeling of the cells.

The genes associated by myeloid differentiation mainly change during the first

4 hours, implying that the cell-fate decision takes place in the first four hours of

differentiation.

The dissertation also presents a new classification-based model-training tech-

xv



nique that addresses the challenge of the high computational cost of inferring

GRNs. This method, called Fast Inference of Gene Regulation (FIGR), is demon-

strated to be two orders magnitude faster than global non-linear optimization

techniques and its computational complexity scales much better with GRN size.

This work has demonstrated the feasibility of simulating relatively large realis-

tic GRNs using a dynamical and mechanistically accurate model coupled to high-

resolution time series data and that such models can yield novel biological insight.

Taken together with the macrophage-neutrophil dataset and the computationally

efficient GRN inference methodology, this work should open up new avenues for

modeling more comprehensive GRNs in hematopoiesis and the broader field of

developmental biology.
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CHAPTER 1

Introduction

All the information and instructions for building a complete, fully functioning

organism are encoded within the genome of the fertilized oocyte. During devel-

opment, the zygote slowly morphs into an adult body that is made up of trillions

of cells and hundreds of different cell types with nearly all cells bearing identical

DNA. Cells start their life as stem or progenitor cells and through the process of

cellular differentiation change their gene expression programs and progressively

mature to acquire the distinct morphology and function of their fate. How the

genetic code is translated into the vast array of cellular identities is one of the

fundamental questions in developmental and molecular biology.

A special class of proteins called transcription factors (TF) have the ability to

regulate the expression of other genes, including cell identity genes and those en-

coding TFs themselves. In interacting and regulating each other’s expression, TFs

form networks known as Gene Regulatory Networks (GRNs) that are particularly

important for making cell-fate choices and for cellular differentiation. The topol-

ogy and architecture of GRNs are still largely unknown for most developmental

systems. Understanding the underpinnings of such networks would provide in-

sights into normal development and abnormalities in disease. This dissertation

will focus on hematopoiesis, the process of forming all of the cell types found

in blood, as a model to study cell-fate choice and differentiation. This disserta-

tion presents a novel GRN model simulating the differentiation of hematopoietic

progenitors into neutrophils and erythrocytes that revises the causality of regu-
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latory events in neutrophil development. It also describes a machine learning

algorithm that considerably speeds up the process of inferring such models from

genome-wide gene expression time-series data, and investigates the differentia-

tion of hematopoietic progenitors into neutrophils and macrophages by the anal-

ysis of a high temporal resolution genome-wide gene expression dataset.

1.1 MAMMALIAN DEVELOPMENT

Living organisms begin their life as a single cell, a zygote, and through the pro-

cess of continuous development and growth, they acquire adult morphology with

trillions of organized and cooperating cells. Even unicellular organisms develop

and change, despite being somewhat less complex than their multicellular descen-

dants. Animal development in a broad sense is the process by which genotype

is decoded to create phenotype and can be approached and studied at different

levels of system organization, from cells to entire ecosystems (Gilbert & Baressi,

2016).

1.1.1 Main stages of development

Mammalian development can be divided into two main phases, the embryonic

and post-embryonic phase. During embryogenesis the zygote is transformed into

a fully formed body, while during post-embryonic development the organism

grows and maintains its homeostasis.

Embryogenesis is the first part of mammalian development that starts with

fertilization and ends with birth. Immediately after fertilization, the zygote un-
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dergoes a series of rapid mitotic divisions without overall growth called cleavage

that results in a formation of smaller cells called blastomeres. By the end of cleav-

age, the blastomeres form a hollow sphere called the blastocyst (Gilbert & Baressi,

2016). The inner wall of the blastocyst is lined with a collection of cells called

the inner cell mass that will give rise to all the different cell types of the fetus

(Zakrzewski et al., 2019). These cells, if derived before implantation, can be differ-

entiated in vitro into all fetal cell types and are referred to as embryonic stem cells

(ESC).

The next fundamental stage of animal embryogenesis is gastrulation, during

which the blastoderm is reorganized from a hollow sphere to a multilayered struc-

ture called the gastrula. The gastrula is organized into the three germ layers,

endoderm, mesoderm, and ectoderm. The cells in each layer proliferate, differ-

entiate, and mature, giving rise to different tissues and organs through a process

called organogenesis. The endoderm gives rise to gastrointestinal, respiratory,

and urinary systems and many endocrine glands. The mesoderm forms the no-

tochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys, and

blood. The ectoderm gives rise to the nervous system, epidermis and various neu-

ral crest-derived tissues (Kiecker et al., 2016). During gastrulation and the subse-

quent organogenesis, the embryo’s cells organize into diverse configurations that

emerge as tissues of defined form and type. This process involves both morpho-

genesis, mechanical changes in cell and tissue shape, and gene regulation, which

dictates cell-fate decisions and patterning. These two processes are dependent

on each other, as morphogenesis can induce changes in gene expression and vice
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versa (Shahbazi, 2020).

Development does not stop with birth but continues throughout adulthood,

during which senescent cells are replenished by new ones in order to maintain

tissue homeostasis. Every day hundreds of billions of cells in the adult human

body die and are replaced by new ones. This process of maintenance and repair of

tissues is coordinated by stem cells, a special type of cell capable of self-renewing

and differentiating into multiple lineages (Klein & Simons, 2011; Häving et al.,

2021).

1.1.2 Developmental processes

Development is driven by many different processes that cause cells to grow, pro-

liferate, differentiate, change shape, communicate with each other, migrate, and

die. Each of these central developmental processes occurs in precise temporal and

spatial manner during the lifetime of a cell. Most cells increase in size and con-

tent before they divide into two daughter cells. Cell proliferation is an increase in

the numbers of cells through cell division (Kaldis, 2016; Gilbert & Baressi, 2016).

During embryogenesis, cells rapidly proliferate and differentiate, or change their

fate, to produce the many specialized types of cells that make up different tissues

and organs of multicellular animals. During cellular differentiation, cells acquire

lineage specific characteristics through the activation of appropriate gene expres-

sion programs. For example, each B cell produces a B-cell receptor (BCR) having

a unique antigen binding site. When a naïve or memory B cell is activated by an

antigen, it proliferates and differentiates into an antibody-secreting effector cell
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(Alberts et al., 2002). Cellular differentiation is described in greater detail in Sec-

tions 1.3 and 1.4.2.

Migration is an important process shaping development and stem cells have

the natural ability to migrate to distant locations in the embryo where they spe-

cialize to form different tissues. Stem cells are also one of the few types of cells

that migrate in adults. The hematopoietic stem cell (HSC), the progenitor of all

the different cell types found in blood, is undoubtedly one of the best examples

of migratory stem cells. HSCs reside in the bone marrow but can egress from the

bone marrow into circulation, and subsequently extravasate into tissues or ingress

into the bone marrow at a different location (de Lucas et al., 2018).

Cells can change shape due to internal mechanical forces such as those ex-

erted by the cytoskeleton or external mechanical forces exerted on the cell from

neighboring cells or the extra-cellular matrix (ECM) (Paluch & Heisenberg, 2009).

For example, the reorganization of the cytoskeletal architecture that transforms

a “cuboidal” epithelial cell into an elongated mesenchymal cell with migratory

properties is the defining characteristic of the epithelial-to-mesenchymal transi-

tion (EMT) important for both normal development but also for metastasis in can-

cer (Nelson et al., 2008; Lamouille et al., 2014; Serrano-Gomez et al., 2016; Lai et al.,

2020).

Cell-cell communication, the exchange of chemical signals such as growth fac-

tors, neurotransmitters, morphogens, hormones, or cytokines, is crucial in em-

bryogenesis and adult homeostasis (Basson, 2012; Hwang, 2013). Intercellular

signals are classified according to the distance they traverse. Paracrine signals
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act on cells locally through the secretion of signaling proteins (ligands) into the

ECM where the signal elicits fast but short-lived responses due to the fast degra-

dation of paracrine ligands. Endocrine signals occur between distant cells, are

transported within the blood, and produce a slower but long-lasting response.

Autocrine signals are produced by cells that themselves can uptake that signal

while direct or juxtacrine signaling involves neighboring cells exchanging the sig-

nals by direct contact through the gap junctions. Signaling molecules such as

cytokines usually act by binding to cell-surface receptors and initiating certain

intracellular signal-transduction pathways that ultimately lead to the activation

of signaling effector TFs that drive gene expression programs causing the cell to

change its behavior.

Lastly, programmed cell death, or apoptosis, is an important mechanism that

controls cell number and eliminates unneeded, infected, mutated, or damaged

cells in particular tissues and times (Vaux & Korsmeyer, 1999; Arya & White,

2015). For example, the webbing between toes and fingers or vestigial tails are

removed by apoptosis during human embryogenesis (Gilbert & Baressi, 2016).

1.2 CELL-FATE CHOICE

One of the most important processes in development, and the focus of this dis-

sertation, is the specialization of cells into the hundreds of types required for a

functioning animal. Also referred to as cell-fate specification, cell-fate choice, or

differentiation, this specialization occurs during both embryonic and adult devel-

opment. While cell-fate choice in embryogenesis starts with pluripotent ESCs,
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development is associated with multipotent adult stem cells (ASCs) in adults.

ASCs have been identified in most mammalian tissues and are responsible for

the homeostasis and the continuous repair and regeneration of tissues (Pekovic &

Hutchison, 2008).

The microenvironment of stem cells, known as the stem-cell niche, plays a

central role in the maintenance and differentiation of stem cells. Cell-cell and cell-

matrix interactions, signaling by soluble molecules, and physical and mechanical

stimuli determine whether stem cells will divide symmetrically (symmetric re-

newal) to produce two stem cells, divide asymmetrically and produce either one

stem cell and one differentiated cell (asymmetric division), or two differentiated

cells (symmetric commitment) (Redondo et al., 2017; Wang et al., 2018). For ex-

ample, asymmetrical division of germinal stem cells (GSCs) in the germarium of

the Drosophila ovary occurs when one of the GSC daughter cells loses the contact

with the cap cells of the niche and differentiates into a mature follicle cell while

the daughter that remains attached to the cap cells retains its stem cell properties

(Panchal et al., 2017). In blood, signaling molecules such as prostoglandin E2 have

been shown to increase HSC numbers in the zebrafish aorta-gonad-mesonephros

region (North et al., 2007), and the self-renewal and the myelo-lymphoid matura-

tion of HSCs are supported by bone marrow stromal cells in the mouse HSC niche

(Seita & Weissman, 2010).

In most cases, it is thought that stem cells adopt a particular fate in a determin-

istic manner, by the virtue of their lineage or in response to environmental cues.

In some situations, however, stem cells choose their fate stochastically, regard-
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less of their surroundings or history (Losick & Desplan, 2008). Stochastic cell-fate

choice can be observed in the ommatidia, the individual eyes that constitute the

compound eye of Drosophila. In each ommatidium, a stochastic choice is made in

one of the eight photoreceptor cells (called R7) to become one of the two possible

cell types. Once this choice is made, the R7 cell instructs the photoreceptors ly-

ing underneath it (called R8) to express either a blue-sensitive or a green-sensitive

rhodopsin photopigment. Each ommatidium makes its choice independently al-

though the flipping of the coin is biased, as the ratio of blue to green subtypes is

30:70 (Losick & Desplan, 2008).

1.3 CELL-FATE CHOICE AND GENE EXPRESSION

Animal development involves numerous intricate processes all operating in a

timely and coordinated manner. The complexity of developing organisms appar-

ently increases in time due to the emergence of new cell types, tissues, and organs,

their complex spatial organization, and the emergence of physiological processes.

It is a profoundly difficult task to analyze and understand all the details of an-

imal development. However, one problem—that of cell-fate choice—can be un-

derstood in terms of a simple organizing principle: the phenotypic differences be-

tween cell types can ultimately be attributed to differences in their genome-wide

gene expression programs.

According to the central dogma of molecular biology, DNA is transcribed into

mRNA and mRNA is translated into proteins that determine phenotypes (Koonin,

2012). Since every somatic cell is a descendent of the zygote, nearly all cell types
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have identical genomes (Gilbert & Baressi, 2016). Given that, with rare excep-

tions, all somatic cells have identical genomes and that proteins are encoded in

the DNA, how can different cell types produce different sets of proteins to elicit

different phenotypes? A neuron for example is morphologically and functionally

radically different from a lymphocyte, despite having the same genome (Uzman,

2003).

The answer to this question, of course, is that even though the DNA sequence

of all genes are present in all cell types, genes are expressed at different levels

in different cells, creating distinct genome-wide mRNA and protein expression

programs or signatures. Cell-fate choice or differentiation is the initial appearance

of different gene expression patterns. Differentiation is followed by commitment,

the establishment of changes in transcriptional and epigenetic programs that may

not be reversed (Ladewig et al., 2013; Gilbert & Baressi, 2016).

1.3.1 Gene regulatory networks

Given that phenotypic differences in cell types arise from differences in genome-

wide gene expression, the regulation of gene expression is central to cell-fate

choice. Gene expression is controlled by a group of proteins known as transcrip-

tion factors (TFs) that regulate transcription of their target genes in space and

time. TFs regulate transcription by recognizing short motifs or patterns in DNA

sequence and binding to DNA in upstream, intronic, or downstream noncoding

regions of target genes. The binding sites of TFs usually occur close to each other

in noncoding regions called cis regulatory elements (CREs), which include pro-
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moters and enhancers depending on whether the CRE is proximal or distal to the

transcription start site respectively (Mitsis et al., 2020). After TFs bind to CREs,

they usually interact with other TFs bound to the CRE, and recruit co-factors

to ultimately promote or inhibit the recruitment of RNA polymerase II and act

as either activators or repressors respectively. The importance of TFs in cell-fate

choice and commitment is best illustrated by trans- or dedifferentiation studies.

In a breakthrough experiment, Takahashi and Yamanaka showed that fibroblasts

from the adult mouse can be reprogrammed to pluripotent stem cells, called in-

duced pluripotent stem cells (iPSCs), by the enforced expression of only four TFs,

Oct3/4, Sox2, c-Myc, and Klf4, now known as the Yamanaka factors (Takahashi &

Yamanaka, 2006).

Besides regulating the expression of genes that confer cell-type specific charac-

teristics, TFs also regulate each other’s gene expression, forming gene regulatory

networks (GRNs). GRNs are usually represented as graphs where nodes are genes

and edges are the regulatory relationships between genes. Depending on the level

of description, the edges can be directed or undirected, or have weights signify-

ing the strength and the nature of regulation. GRNs integrate the information

encoded in a cell’s genotype and internal state and the environment to regulate

the downstream physiological responses. Decoding the architecture and function

of GRNs is central to understanding cell-fate choice. Section 1.5 describes the

structure of hematopoietic GRNs and different ways of representing and model-

ing them.
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1.4 HEMATOPOIESIS

Hematopoiesis, from Greek αίμα, “blood” and ποίησις “creation”, is the process of

blood cell formation. Hematopoiesis is an ongoing process during embryogen-

esis and adulthood, whilst the hematopoietic system is among the first complex

tissues to form in the incipient embryo. The functional, spatial, and temporal

characteristics of the hematopoietic system change radically among different de-

velopmental stages before the system stabilizes in the bone marrow and thymus

in adults. During adulthood,∼ 1011 blood cells are replenished every day, and the

newly generated cells derive from HSCs that replicate on average once every 40

weeks in humans (Catlin et al., 2011). The requirement for the precise regulation

and maintenance of the HSC pool coupled with the demand for a continuous sup-

ply of an enormous number of blood cells presents a conundrum that has sparked

extensive investigations of the hematopoietic system over the last several decades

(Seita & Weissman, 2010). Moreover, the dysregulation of the differentiation and

proliferation of hematopoietic cells can lead to numerous hematologic cancers,

such as lymphoma, leukemia, or myeloma (Yamashita et al., 2020), which has fur-

ther prompted the interest in understanding hematopoiesis.

1.4.1 Bone marrow microenvironment

The HSC resides in a highly complex ecosystem inside the bone marrow, called the

HSC niche, which promotes the survival and long-term maintenance of the HSC

pool (Laurenti & Göttgens, 2018). Precise maintenance and regulation of HSCs in

the bone marrow is crucial for the survival of an organism, and self-renewal and
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multilineage differentiation of HSCs are strictly regulated by numerous cellular

components in the bone marrow microenvironment (Man et al., 2021). In adults,

the active or red bone marrow is responsible for the generation of blood cells.

Active bone marrow is a nutrient-dense and spongy tissue located in the cavities

of cancellous bone. It contains thin branching fibers of reticular connective tissue,

hematopoietic cords or islands of cells, and marrow adipose tissue. The bone mar-

row also includes various types of vessels such as arteries, arterioles, capillaries,

and sinusoidal capillaries (sinusoids), that are involved in the transport of cells,

nutrients, oxygen, and waste products (Shahrabi et al., 2016).

The HSC niche is defined by the presence of extracellular growth factors, such

as stem cell factor (SCF), CXC-chemokine ligand 12 (CXCL12), and thrombopoi-

etin, that support the maintenance of HSCs (Crane et al., 2017). The binding of

SCF to receptor tyrosine kinase c-Kit that HSCs express on their surface, leads to

its autophosphorylation and the transduction of signals promoting proliferation,

migration, survival, and differentiation of hematopoietic progenitors (Lennarts-

son & Rönnstrand, 2012). CXCL12 promotes HSC maintenance and retention in

the bone marrow by signaling through CXC-chemokine receptor 4 (CXCR4) (Zou

et al., 1998). Thrombopoietin activates signaling by myeloproliferative leukemia

protein (MPL; also known as TPOR) on HSCs.

Several supporting cell types and bone marrow components are known to reg-

ulate the niche and produce the extracellular signals required for HSC mainte-

nance. Perivascular stromal cells or CXCL12-abundant reticular cells (CAR cells),

and endothelial cells synthesize both CXCL12 and SCF in bone marrow. SCF is
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mainly expressed by perivascular stromal cells that are associated with sinusoidal

blood vessels throughout the bone marrow and to a lesser extent by endothe-

lial cells (Sugiyama et al., 2006). Osteoblasts, or bone-forming cells, also produce

CXCL12 but at approximately 1000-fold lower levels than perivascular stromal

cells (Crane et al., 2017). Macrophages promote HSC quiescence in vivo by pro-

ducing transforming growth factor β1 (TGFβ1) (Zhao et al., 2014; Yamazaki et al.,

2009). Thrombopoietin is expressed at high levels in the liver and to a lesser ex-

tent in kidney, with limited expression in the bone marrow under normal circum-

stances, and it is currently unknown whether HSC maintenance is promoted by

thrombopoietin that is produced locally in bone marrow or at distant sites (Crane

et al., 2017). Although nerve fibers, and the associated Schwann cells, are not

required for the maintenance of HSCs in bone marrow, they regulate the daily cir-

cadian rhythm of HSC mobilization from bone marrow into the blood, perhaps by

regulating the cyclical expression of CXCL12 by stromal cells (Crane et al., 2017).

Whether there are perivascular domains that serve as niches for different types of

hematopoietic progenitors, or whether other growth factors and molecules take

part in HSC maintenance remain open questions about the regulation of HSCs by

its niche (Crane et al., 2017).

1.4.2 Hematopoietic differentiation

The concept of the stem cell was first defined by studies of hematopoiesis, es-

pecially the pioneering and highly influential work of McCulloch and Till in the

1960s. With a series of experiments on bone marrow transplantation in heavily ir-
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radiated mice they discovered a very small sub-population of donor bone marrow

cells that had the ability to generate multiple types of myeloerythroid cells and

the ability to self-replicate. These findings introduced the two defining criteria

of stem cells i.e. multi-potency and self-renewal (Becker et al., 1963; Siminovitch

et al., 1963; Till & McCulloch, 1961; Wu et al., 1968). Today we know that HSCs

are the only type of cell that can differentiate into all functional blood cell types

and also give rise to identical HSC daughter cells (Seita & Weissman, 2010).

The quest for the identification and isolation of HSCs from mouse bone mar-

row started in the 1980s with landmark studies that utilized fluorescence acti-

vated cell sorting (FACS) technologies and monoclonal antibodies (Spangrude

et al., 1988). Cells express a distinct assortment of proteins and lipids on their

plasma membrane and these cell-surface markers can be used to distinguish be-

tween different cell types (Gundry et al., 2008). For example, it was demonstrated

that cells that are Thy-1low, that is, they express low levels of Thy-1 or CD90, Lin

-, which implies that they do not express lineage specific markers, and Sca-1+,

that is, they express Sca-1, are capable of reconstituting the entire hematopoietic

system for more than 3 months when transplanted into lethally irradiated mice

(Spangrude et al., 1988; Seita & Weissman, 2010). This combination of cell-surface

marker expression thus serves as the definition for HSCs with long-term reconsti-

tution capacity (LT-HSCs). Since then the definition of LT-HSCs has been refined

as cells that can reconstitute hosts for 16 weeks and for an additional 16 weeks in

secondary transplantation. The cell-surface phenotype of LT-HSCs has also been

further refined to include c-Kit, CD34, CD150, Flt3, and CD48 so that some in-
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vestigators isolate LT-HSCs as CD150+CD48-CD34+Lin-Sca-1+Kit+ cells) (Ali et al.,

2017).

The mammalian hematopoietic system produces many distinct blood cell types.

The erythrocytes and megakaryocytes/platelets comprise the red blood cell lin-

eage. Monocytes/macrophages, granulocytes such as neutrophils, basophils, eosi-

nophils, and mast cells make up the myeloid lineage. Lymphoid cells consist of

T and B lymphocytes, natural killer cells, and dendritic cells. In addition to the

terminally differentiated cell types found in blood, there are several intermedi-

ate cell types that exist transiently during differentiation. If a cell can produce all

blood cell types and engraft transiently in primary (and in some cases secondary)

transplants, they are referred to as Intermediate-Term (IT-) HSCs, Short-Term (ST-)

HSCs or Multipotent Progenitors (MPPs) depending on the length and robustness

of the graft produced (Laurenti & Göttgens, 2018).

Experiments characterizing the progenitor populations and their differentia-

tion potential downstream of the HSC (Morrison & Weissman, 1994; Christensen

& Weissman, 2001) have resulted in a hierarchical hematopoietic model depicted

usually as a tree (Fig. 1.1A). The HSC resides at the top of the tree, which then

branches out and segregates the lymphoid lineage potential from the myeloid,

erythroid, and megakaryocytic lineages, followed by a number of further branch-

ing steps on either side of the tree progressing from multipotent to bipotent and

finally to unipotent progenitor cells. The common myeloid progenitor (CMP)

gives rise to the more restricted megakaryocytic erythroid progenitor (MEP) and

the granulocyte monocyte progenitor (GMP) that produce the megakaryocytic-
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erythroid and granulocyte-monocyte lineages respectively. The common lym-

phoid progenitor (CLP) gives rise to lymphoid lineages comprising T, B, and natu-

ral killer cells. This hematopoietic differentiation model is still used in many text-

books today (Laurenti & Göttgens, 2018). Inclusion of additional surface markers

and the outcomes of subsequent transplantation experiments led to a revision of

the previous hierarchy, in which the multipotent progenitor compartment was

further divided into distinct sub-populations and the myeloid and lymphoid lin-

eages diverge after the red-blood cell lineage has branched off (Fig. 1.1B). More

recent studies utilizing single-cell RNA sequencing (scRNA-Seq) do not support

the existence of distinct intermediate progenitor populations and suggest that dif-

ferentiation likely occurs as a continuous process, with gradual changes in cellular

state as cells traverse from the HSC to unipotent progenitors (Fig. 1.1C) (Paul et al.,

2015; Nestorowa et al., 2016; Velten et al., 2017).
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Figure 1.1: Conceptual evolution of hierarchical models of
hematopoiesis. (A) A model of hematopoietic differentiation (early
2000 to 2005). HSCs represent a homogeneous population down-
stream of which the first lineage bifurcation separates the erythro-
myeloid and lymphoid branches via the common myeloid pro-
genitors (CMP) and common lymphoid progenitors (CLP) popu-
lations. The CMP gives rise to further downstream progenitors,
the megakaryocytic erythroid progenitor (MEP) and the granu-
locyte monocyte progenitor (GMP). (B) An alternative model of
hematopoiesis (2005-2015). The HSC pool is heterogeneous and con-
tains distinct sub-populations both in terms of self-renewal (vertical
axis) and differentiation (horizontal axis). The myeloid and lym-
phoid branches remain associated further down in the hierarchy via
the lymphoid-primed multipotential progenitor (LMPP) population
and the GMP compartment is shown to be fairly heterogeneous, ad-
ditionally containing the eosinophil basophil progenitor (EoBP). (C)
Another one alternative hematopoietic model (from 2016 onward).
scRNA-Seq data indicate a continuum of differentiation. Each red
dot represents a single cell and its location along the differentiation
trajectory. Used with permission of Springer Nature (Laurenti &
Göttgens, 2018).

In parallel to investigations of the lineage relationships between different blood
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cell types, a great deal of effort has been made to understand the genetic basis

of these cell-fate decisions. The main model of cell-fate choice in hematopoiesis

involves the ideas of multi-lineage priming and lineage cross antagonism. Multi-

lineage priming is the simultaneous low-level expression of genes associated with

multiple lineages in progenitor cells (Laslo et al., 2006a; Enver et al., 2009; van

Galen et al., 2014). Lineage cross antagonism is the repression of gene expres-

sion programs of alternative lineages by TFs expressed in a particular lineage. To-

gether, multi-lineage priming and cross antagonism imply that alternative lineage

programs are competing in progenitor cells and cell-fate choice is made when one

gene expression program prevails while the rest of the programs are extinguished.

The most famous model of cell-fate specification by priming and cross antago-

nism is drawn from the erythrocyte-leukocyte decision process. GATA1 and PU.1

(encoded by Spi1) are required for the production of mature cells in megakary-

ocyte/erythroid and granulocyte-macrophage lineages respectively and can re-

program cells towards their cognate lineages upon over-expression (Graf & En-

ver, 2009a). GATA1 and PU.1 inhibit each other’s expression (Zhang et al., 2000;

Nerlov et al., 2000) while also autoactivating their own expression (Tsai et al.,

1991; Chen et al., 1995). GATA1 represses PU.1 and its target genes by binding

and interacting with PU.1 and preventing the recruitment of its coactivator c-Jun

while simultaneously inhibiting histone H3K9 acetylation that turns the genes on.

PU.1 represses GATA1 and its targets by outcompeting a histone acetyltransferase

(C-terminal binding protein or CBP) and recruiting histone H3K9 methyltrans-

ferases that create a repressed chromatin structure (Burda et al., 2010). Auto-
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activation is thought to stabilize and reinforce the decision once it has been made.

GATA1 and PU.1 positive auto-regulation stabilizes erythroid (Nishikawa et al.,

2003) and myeloid fate (Okuno et al., 2005) respectively, while the triad of Gata2,

Tal1/Scl, and Fli1 is thought to stabilize the stem/progenitor state in mice (Pi-

manda et al., 2007; Narula et al., 2010). This motif, two TFs that repress each other

while also auto-activating their own expression, is referred to as a bistable switch,

since mathematical models representing it have two stable solutions (Huang et al.,

2007a). The bistable switch is such an appealing framework that such switches

have been hypothesized for nearly every lineage decision (Graf & Enver, 2009b).

Recent long-term live tracking study has however questioned the popular GATA1-

PU.1 bistable switch as a prime driver for the erythroid/myeloid fate choice (Hoppe

et al., 2016). The study tracked hematopoietic progenitors derived from mice in

which GATA1 and PU.1 had been tagged with fluorescent proteins. The study

failed to detect any cells simultaneously expressing both GATA1 and PU.1 at low

levels, a key requirement of the bistable switch model, suggesting that the bistable

switch was reinforcing a decision already made instead of making the decision.

The bistable switch model requires some initial asymmetry in order to create

biased expression patterns. Two alternative models have been proposed to ex-

plain the emergence of this asymmetry. The instructive or deterministic model

posits that signaling molecules like cytokines provide the initial asymmetry or

“instruct” progenitors to differentiate into specific lineages (Bhoopalan et al., 2020).

In the stochastic or permissive model, lineage commitment and terminal differen-

tiation are determined in a cell-intrinsic manner whereas cytokines provide per-
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missive growth and survival signals (Robb, 2007a). In the instructive model, cy-

tokine signals are transduced to the cells ultimately activating certain pathways

that lead to cell-fate decisions. It is supported by in vitro experiments on bipoten-

tial GM-colony forming cells (GM-CFCs), which develop into macrophages when

cultured with M-CSF and into granulocytes when cultured with stem cell factor

or G-CSF (Robb, 2007b). The stochastic model is supported by experiments that

show that cell fate is independent of the identity of the cytokine. For example, a

human GM-CSF receptor transgene expressed in EPOR-null fetal liver cells causes

erythropoiesis and not granulopoiesis when the cells are stimulated by GM-CSF,

implying that the erythroid potential of the cells is independent of EPOR (Robb,

2007b). More recent, single-cell tracking studies have conclusively demonstrated

an instructive role for cytokines by showing that bipotential cells differentiate in

response to cytokines without significant cell death, a necessary condition for the

stochastic model (Rieger et al., 2009).

Extensive studies on stem cells and HSCs have revealed many different pro-

cesses and molecules participating in and driving cell fate decisions, but the snap-

shots we get from the experiments have not enabled us so far to see the entire

“developmental movie” that takes place inside and outside cells. We have the

idea that cell decisions are made on the basis of intrinsic cellular states, which

are guided by gene expressions programs which in turn are influenced by cellular

stochasticity or extrinsic cues like external signaling and cell’s microenvironment.

How exactly differentiation proceeds in time and how the key components dur-

ing differentiation work together to produce rich differentiation outcome are still
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largely unknown. Although experimental studies can determine individual play-

ers, it is difficult to ascertain how all these disparate components work together to

decide cell fate. Over the past decades computational and mathematical modeling

has emerged as a means to understand the differentiation in depth, to build uni-

fied theories that can explain diverse experimental results, and provide a broad

and global view of cellular differentiation.

1.5 MODELING HEMATOPOIESIS

A mathematical model is a simplified but quantitative representation of a com-

plex system. One of the first and most famous examples of mathematical models

was Newton’s laws of motion applied to the solar system. Newton’s model was

a simplified version of reality because it did not account for all the details of the

universe but rather focused only on the motions of the planets and considered

them as single points, with properties such as mass, position, and velocity. The

abstraction of a system that reduces it to its essential characteristics is a funda-

mental aspect of modeling. Models are simplifications and approximations of

the real world, such as the “spherical cows” 1 in the humorous metaphor used

by the physicists when describing highly simplified scientific models of complex

phenomena. The famous aphorism “all models are wrong, but some are useful”

coined by a statistician George E. P. Box, acknowledges the fact that while models

1The phrase comes from a joke that spoofs the oversimplified assumptions about the systems
used in theoretical physics. The joke talks about a dairy farmer who wanted to increase the milk
production at his farm and sought the help of a theoretical physicist at the local university. After
carefully studying the problem, the physicist tells the farmer, “I have a solution, but it only works
if we assume a spherical cow.”
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will never encompass all the complexity of reality, sound mathematical models

are nevertheless very useful. Newton’s laws of motion describe with high accu-

racy the motions of objects in the classical realm while mathematical modeling of

infectious disease has provided among others the means of predicting the scale of

disease transmission or providing advance warning during the outbreak of epi-

demics.

1.5.1 Levels of modeling

Biological systems such as hematopoiesis are inherently complex. Each individ-

ual cell is a microcosm of millions of molecules interacting with each other. Most

models of hematopoiesis reduce that complexity by focusing on the most funda-

mental aspect of cell-fate differentiation and commitment, which is gene regula-

tion. The spatial and temporal pattern of a gene’s expression is determined pri-

marily by the regulation of its transcription and/or translation. Gene expression

is regulated by TFs, non-coding RNAs, and other regulatory molecules through

promoters and enhancers. The regulators of genes are themselves regulated by

other regulators, often by the products of their own targets, forming gene reg-

ulatory networks (GRNs). These processes can be modeled by two broad cate-

gories of models. In coarse-grained GRN models (Huang et al., 2007a; Laslo et al.,

2006b), the details of gene regulation, such as DNA sequence and TF binding sites

are not represented and genes are treated like black boxes (Fig. 1.2). Sequence-

based models (Bertolino et al., 2016; Segal et al., 2008; Kim et al., 2013), on the

other hand, include such details. Most modeling in hematopoiesis has employed
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coarse-grained GRN models and we focus on those in this dissertation.

Figure 1.2: An example of a GRN with four genes. The genes in the
network are represented as nodes, while the interactions between
the genes are represented as edges. Gene activation is indicated with
pointed arrows and repression is indicated with flat-headed arrow.
In this GRN, Gene1 activates Gene 2 and 3, Gene 2 autoactivates
itself, and Gene 3 represses Gene 4. In some GRN graphs, edges
bear weights that signify the strength of interactions between the
genes.

1.5.2 The problem of GRN inference

Despite their central biological roles, both the architecture and the function of

GRNs are poorly defined in most developmental systems. One difficulty in the

inference of GRNs using genetic analysis is low throughput of such experiments.

High-throughput biochemical approaches, such as chromatin immunoprecipita-

tion followed by sequencing (ChIP-seq) also have limitations such as the lack of

suitable affinity reagents for all TFs and the large number of combinations of TFs

and cellular states that have to be analyzed. The recent revolution in DNA se-

quencing technologies and the progressive reduction of sequencing costs has en-
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abled an alternative approach to GRN inference during cellular differentiation.

RNA sequencing costs are low enough that is possible to measure abundances of

the entire transcriptome—which defines the state of a cell—at high spatial and

temporal resolution. Training mechanistic models on such time-series data using

machine learning approaches allows for the inference or “reverse-engineering” of

GRNs.

1.5.2.1 Training data for inferring GRNs

Inferring GRNs by training mechanistic models can be accomplished by mea-

suring GRN state using either protein concentration or mRNA concentration as

readouts, although the latter is used most commonly. Microarrays, RNA-seq, or

single-cell RNA-seq (scRNA-seq) experiments allow the monitoring of the mRNA

levels of thousands of genes simultaneously either in bulk or at a single-cell level.

Such experiments can be classified into two groups: time-series experiments and

perturbation experiments. The former are used to understand dynamic processes

in the cell while the latter reveal genetic interconnections by identifying genes af-

fected by treatments such as knockouts, knockdowns, or overexpression of TFs.

An important part of time-series experiments are inducible cell differentiation sys-

tems, which are cell lines that can be induced to differentiate along different lin-

eages in vitro. More comprehensive studies combine time-series data with pertur-

bations and such data are utilized in Chapters 2 and 4.
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1.5.2.2 Estimating GRN parameters by model training

Nearly all GRN models have a number of free parameters whose values have to be

chosen in order to simulate gene expression. The number of free parameters usu-

ally depends on the number of genes in the model. In densely interconnected net-

works of n nodes, the total number of parameters grows as O(n2). There are gener-

ally three approaches available for setting the values of the free parameters. In the

first approach (Ackers et al., 1982; Reinitz & Vaisnys, 1990), the values are chosen

based on empirical measurement of the biophysical and biochemical properties of

the system. In the second approach, “qualitative modeling” (Huang et al., 2007a;

Laslo et al., 2006b; Chickarmane et al., 2009; Tyson et al., 2011), the parameter

space is systematically sampled to identify regions that produce gene expression

patterns in qualitative agreement with those observed empirically. In the third

approach, “data-driven modeling” or “reverse engineering” (Jaeger et al., 2004c;

Manu et al., 2009; Aluru, 2005; Handzlik & Manu, 2022), the values of the parame-

ters are determined by fitting to quantitative gene expression data. One modeling

method, gene circuits (Reinitz & Sharp, 1995a; Jaeger et al., 2004b; Manu et al.,

2009; Handzlik & Manu, 2022), combines the inference of network topology and

genetic architecture and parameter values into a single fitting procedure. Once

the parameters have been estimated, the GRN models can be used for mechanis-

tically investigating the biological system through the simulation of the wildtype

GRN as well as after in silico perturbation.
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1.5.3 Approaches to coarse-grained GRN modeling

Depending on the level of abstraction, the availability and type of empirical data,

the prior knowledge of the biological system, and the purpose of the study, there

are different approaches to coarse-grained GRN modeling. If the goal of the study

is to represent simple relations between genes, a qualitative model representing

the topology and interactions between genes is sufficient, but if in silico predictions

are of interest, then quantitative modeling is imperative.

GRN models can be either dynamic or static, depending on whether they sim-

ulate the evolution of gene product concentrations in time or not. Static models

are limited to simulating GRNs at equilibrium and therefore cannot model the

transient behavior of the system. Dynamic models, in contrast, are capable of

simulating transient behavior relevant for modeling transient processes such as

cell-fate decisions during development. Dynamic models are also more computa-

tionally demanding than static ones since they require the solution of differential

equations. GRN models can also be deterministic or stochastic. The latter simu-

late random fluctuations of gene expression in individual cells while the former

are limited to simulating the average gene expression in a population of cells. In

stochastic models, gene expression is described by random variables which follow

a probability distribution. Even when all the parameters and initial conditions are

the same, the expression of a gene will be different in each independent stochas-

tic simulation, while a deterministic model produces exactly the same output in

each simulation. Additionally, GRNs can be synchronous, operating under the

assumption that all states of the genes are updated at the same time, or asyn-
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chronous, where one variable at a time is updated (Aluru, 2005).

1.5.3.1 Differential Equation Models

The most detailed models of any complex dynamical system, like GRNs, are based

on Ordinary Differential Equations (ODEs) that describe how the rates of change

of state variables depend on the values of the state variables as well as extrinsic

inputs. ODE models are deterministic and capable of describing non-linear dy-

namics of complex systems such as hematopoiesis. ODE GRN models represent

the concentration of gene product i, where i ∈ 1, · · · , n, by time-dependent vari-

ables xi(t), t ∈ T , where T ⊆ R≥0 is a closed time interval and n is the number

of genes. xi : T → R ≥ 0 are non-negative real numbers since concentrations

cannot take negative values. The time evolution of xi(t) is given by the solution

of a system of ODEs

dxi

dt
= fi(x) i ∈ 1, · · · , n, x(t = 0) = x0, (1.1)

where x = x1, · · · , xn
′, the function fi : Rn

≥0 → R represents the regulatory inter-

actions that determine the rate of change xi(t) (de Jong & Geiselmann, 2005), and

x0 are the initial concentrations of the gene products. The specific functional form

of fi is determined from hypotheses about the regulatory architecture of the GRN

and the biochemical principles of gene regulation. fi(x) usually has a non-linear

sigmoidal form since the rate of transcription varies between zero and maximum

determined by the recruitment of RNA Pol II to promoters (Aluru, 2005). Eq. 1.1
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can be rewritten as a vector equation

dx

dt
= f(x), (1.2)

where f = f1, · · · , fn′ (de Jong, 2002). Different forms of f representing GRNs

(Eq. 1.2) have been proposed in various studies. A novel representation of a

complex dynamical ODE system describing differentiation of hematopoietic pro-

genitor cells is presented in section 2.2.1.1.

An example of an ODE model of a GRN with two genes a and b and gene

products A and B forming a mutual-inhibition network, represented as a circuit

rather than classical network graph, is presented in Fig. 1.3. xa and xb represent

the concentrations of proteins A and B. The rate of change in the concentration of

xa equals the difference of the synthesis rate, κah
−(xb, θb,mb), and the degradation

term γaxa. κa is the maximum synthesis rate of protein A, while the repression of

gene a by protein B is given by the Hill function h−(xb, θb,mb) where 0 ≤ h− ≤ 1.

h− = 1 for xb = 0 and h− asymptotically reaches 0 when xb → +∞. For high values

of xb the h− approximates zero which reduced significantly the synthesis rate κa,

whereas for low values of xb the gene a is expressed at synthesis rate close to κa.

The steepness of h− depends on the cooperativity parameter mb and the inflection

point of the curve is given by θb. For mb > 1 the Hill function has a sigmoidal form

that is often observed experimentally and when xb = θb the expression of gene a

reaches half of its maximum synthesis rate κa. The second term of the differential

equation, γaxa, represents the degradation of protein A as a first order reaction.

Therefore degradation is not regulated in this example. The differential equation
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for xb has an analogous interpretation (de Jong & Geiselmann, 2005).

Figure 1.3: An example GRN with the topology of a bistable
switch. A. The representation of GRN as a circuit with genes a and
b, and their protein products A and B that repress each other’s gene
expression B. A system of ODEs with the first and second equation
describing the time evolution of the protein concentrations of gene
a and b respectively. The rate of change in protein concentration
depends on the difference between the synthesis and degradation
rates. The synthesis term is the product of the maximum synthesis
rate κ and the Hill function defined in the third equation. C. Graphi-
cal representation of the Hill function, which takes a sigmoidal form
for m > 1. Adapted from (de Jong & Geiselmann, 2005).

Because of the non-linearity of f , equations such as Eq. 1.2 usually cannot be

solved analytically and the solutions are approximated numerically using meth-

ods such as Runge-Kutta (Bulirsch & Stoer, 1992; Magnusson et al., 2017; Fehr

et al., 2019; Ma et al., 2020; Handzlik et al., 2021).
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Gene circuit models. Gene circuits (Reinitz & Sharp, 1995b) are deterministic

models utilizing coupled ODEs or PDEs (Eq. 1.1) with a specific choice of f to

represent the synthesis and degradation of gene products. Furthermore, GRN

architecture is encoded in the values of the free parameters of gene circuits so that

they can infer GRN architecture when trained with gene expression time series

data. In gene circuit models Eq. 1.1 takes a special form where the time evolution

of the concentrations of the mRNA or protein product, xg(t), of genes g = 1, · · · , G

is described according to G coupled ordinary differential equations

dxg

dt
= Rg S

(
G∑

f=1

Tgfxf + hg

)
− λgxg (1.3)

where Rg is the maximum synthesis rate of product g. Tgf are genetic intercon-

nectivity coefficients describing the regulation of gene g by the product of gene f .

Positive and negative values of Tgf imply activation and repression of gene g by

gene f respectively. The threshold hg determines the basal synthesis rate, and λg

is the degradation rate of product g. S(u) is the regulation-expression function,

which controls the level of synthesis relative to the maximum synthesis rate of

the gene Rg and which depends on the regulatory input u =
∑G

f=1 Tgfxf + hg.

S(u) takes values between 0 and 1. A commonly utilized form of the regulation-

expression function (Reinitz & Sharp, 1995b; Jaeger et al., 2004a) is the sigmoid

function (Fig. 1.4)

S(u) = σ(u) =
1

2

(
u√

1 + u2
+ 1

)
. (1.4)
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It has been shown that gene circuits are capable of representing arbitrarily com-

plex gene expression patterns (Vakulenko & Grigoriev, 2003).
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Figure 1.4: An example of a sigmoid function. Sigmoid function
S(u) = 1

2

(
u√
1+u2 + 1

)
where −∞ < u < +∞ and 0 < S(u) < 1.

When S is applied to GRN models such as the one described in
Eq. 1.3, then u is perceived as a regulatory input. If regulatory in-
put u is positive, then S(u) > 1

2
, and if u is negative, then S(u) < 1

2
.

For u = 0, S(u) = 1
2

and synthesis rate reaches half of its maximum
synthesis rate R.

1.5.3.2 Non-differential-equation based models

Numerous methods and algorithms other than ODE models have been employed

for the modeling of GRNs. Some of them include statistical methods such as

Boolean, Bayesian, or graphical networks, and machine learning algorithms such

as neural networks (de Jong, 2002; Cahan et al., 2014; Sanchez-Castillo et al., 2017;

Hamey et al., 2017; Shu et al., 2021). Some of the most commonly used ones are
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presented below.

Boolean Networks. The simplest dynamic network models that are capable of

exhibiting some of the biological and systems-level properties of real gene net-

works are the Boolean networks. Boolean networks were first used by Kauffman

in the 1970s as a framework for modeling biological networks (Kauffman, 1974).

Boolean networks contain a set of n state variables X = {x1, x2, · · · , xn}, xi ∈ B.

The state variables can assume only a discrete number of values (Davidson et al.,

2002; Theiffry et al., 1993; Sánchez & Thieffry, 2001; Collombet et al., 2017b; Bon-

zanni et al., 2013). In their most common realization, state variables can only take

two values, 0 or 1, which are analogous to inactive (0) or active (1) genes in the

context of GRNs. The state of a Boolean network at time t is defined by a vec-

tor ⃗x(t) = (x1(t), · · · , xn(t)). In Boolean network models, time is considered to

be discrete so that the variables evolve in a finite number of steps. Each variable

is updated from one time point to the next xi(t)7→ xi(t + 1) by a Boolean func-

tion xi(t + 1) = fi( ⃗x(t)), fi : Bn → B (Schwab et al., 2020). Although Boolean

network GRN models are usually constructed by hand curation of experimen-

tal evidence or literature (Davidson et al., 2002; Bonzanni et al., 2013; Collombet

et al., 2017b), they may also be reverse-engineered by fitting to gene expression

data (Aluru, 2005; Schwab et al., 2020). A major downside of Boolean networks is

that, even though the number of transcripts or protein molecules varies smoothly

(Tusi et al., 2018), gene expression has to be discretized into a finite number of

values by a user-defined threshold. Such thresholds are arbitrary, may not have
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a sound biological basis, and reduce the reproducibility of such models. Many

genes present complex behaviour such as continuous changes in expression or os-

cillations. The discretization of gene states for such genes could lead to a loss of

information about gene expression dynamics and erroneous conclusions.

Bayesian Networks Bayesian Networks are a class of graphical probabilistic

models. A Bayesian Network is an annotated acyclic graph G(X,E) where the

nodes, xi ∈ X , are random variables representing gene expression and the edges

indicate the dependencies between the nodes. The random variables are drawn

from conditional probability distributions P (xi|Pa(xi)), where Pa(xi) ⊆ X is the

set of parents for each node. Given its parents, each variable is independent of

its non-descendants. Each Bayesian network uniquely specifies a decomposition

of the joint distribution over all variables down to the conditional distributions

of the nodes: P (x1, x2, ..., xn) =
∏n

i=1 P (xi|Pa(xi)). The conditional probability

distributions are usually modeled by Gaussian distributions assuming a linear

dependence of the child node’s mean expression on the mean expression of the

parents (Friedman et al., 2000). Given genome-wide gene expression data, the

goal is to infer the GRN topology or architecture as well as the weights through

which a child node’s expression depends on its parents’ expression (Aluru, 2005).

One limitation of Bayesian networks is that they are static and only model GRNs

at equilibrium. Additionally, Bayesian networks cannot model GRNs containing

feedback loops since they are limited to acyclic graphs.
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1.6 HEMATOPOIETIC GRN MODELS

Numerous GRN models have been built to simulate hematopoietic differentiation

over the past decade or so using diverse approaches. Hematopoietic GRN models

have largely focused on transcriptional interactions between the core regulators of

hematopoietic differentiation. The earliest models of hematopoiesis focused on 2

or 3 key regulators in a bistable-switch framework (Laslo et al., 2006a; Chickar-

mane et al., 2009; Narula et al., 2010). These early efforts captured some key

properties of hematopoietic cell-fate specification, but clearly oversimplified the

complexities of multifactor regulatory interactions (Göttgens, 2015). More recent

work has attempted to model larger, more realistic GRNs (Collombet et al., 2017a;

Hamey et al., 2017), but has largely relied on the simplified and computationally

inexpensive Boolean network framework. Dynamic hematopoietic GRN models

constructed so far can be divided into three main classes: Boolean network mod-

els, qualitative differentiation equation models (Section 1.5.2.2), and data-driven

differential equation models.

Hand-curated and dynamical Boolean network comprised of 11 TFs (Runx1,

Smad6, Spi1, Eto2, Gata1, Scl, Fli1, Erg, Zfpm1, Gata2, Hhex) active in early HSCs

simulated the direct transitions of the HSC state to B-cell, monocyte, natural killer

(NK), CD4 (T cells), CD8 (cytotoxic T cells), CD4-activated, CD8-activated, gran-

ulocyte, and erythroid states. This model predicted a novel negative regulation of

Fli1 by Gata1 which was further experimentally verified (Bonzanni et al., 2013).

Another hand-curated and dynamical Boolean network with 21 core component

and regulators collected from the literature analysis and ChIP-seq datasets simu-
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lated the cytokine-induced B-cell and macrophage differentiation from multipo-

tent progenitors (Collombet et al., 2017a). An example of an even larger dynam-

ical hematopoietic network comes from a study of data-driven Boolean network

simulating the differentiation of HSCs into the lymphoid-primed multipotent pro-

genitors comprised of 29 TFs and a separate Boolean network simulating the dif-

ferentiation of HSCs into megakaryocyte-erythroid lineage with 31 TFs (Hamey

et al., 2017).

Qualitative differentiation equations models that do not fit the model to data

but instead find parameter sets that match the qualitative behavior of the sys-

tem have been typically utilized to model cell-fate decisions as bistable switches.

Examples of such networks are the 2-gene bistable switch between Gata1 and

Spi1 simulating erythroid and myeloid/monocytic differentiation (Huang et al.,

2007b), a 2-gene bistable switch between Egr (Egr1/Egr2/Nab2) and Gfi1 simulat-

ing the differentiation of macrophage and neutrophil lineages (Laslo et al., 2006a)

or the 4-gene GRN with Gata1, Spi1, Fog1, Cebpa simulating the erythroid-myeloid

lineage decisions (Chickarmane et al., 2009).

Data-driven differential equation models are trained on the data to infer the

values of their unknown parameters. A 3-gene GRN comprising Gata1, Gata2 and

Spi1 was inferred to simulate the differentiation of FDCP-mix cells into erythro-

cytes (May et al., 2013a). A bigger network of 12 TFs (Copeb, Ets1, Gata3, Irf4, Jun,

Maf, Myb, Nfatc3, Nfkb1, Rela, Stat3, Usf2) was inferred for the differentiation of

naïve T cells into Th2 helper T-cells (Magnusson et al., 2017).

Even though many hematopoietic models have been built, only two used the
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mechanistically accurate differential equation framework and were data-driven.

The first (May et al., 2013a) modeled only a 3-gene network in one lineage (ery-

throid). The other one modeled a larger, more realistic 12-gene GRN but only in

one lineage (Magnusson et al., 2017). Models that are simultaneously 1) mecha-

nistically accurate (ODE-based), 2) realistic (large GRNs), and 3) capable of simu-

lating cell-fate choice, that is, differentiation into two or more lineages, have not

been developed yet.

1.7 THE GOALS AND STRUCTURE OF THIS DISSERTATION

Due to the complexity of cell-fate decisions, the size and interconnectedness of the

GRNs, and the technical challenges of assaying and modeling them, the architec-

ture of hematopoietic GRNs and the causality of transcriptional and regulatory

events remain poorly understood. The goals of this dissertation are to use gene

circuits and high temporal resolution time-series data to determine GRN archi-

tecture and causality during hematopoietic cell-fate choice, develop methods to

enable mechanistic modeling of larger, more realistic GRNs, and to analyze high

temporal resolution genome-wide gene expression datasets to understand regu-

latory events during differentiation and enable more comprehensive GRN mod-

eling in the future.

To determine the architecture and causality of GRNs during the erythroid-

neutrophil development, a gene circuit built on high-temporal data from differen-

tiating in vivo hematopoietic progenitors is presented in Chapter 2. This chapter

is a published study of a twelve-gene data-driven gene circuit model capturing
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the complex interactions of key components during the differentiation of progen-

itor cells into two lineages. Although it was possible to infer the aforementioned

network using global non-linear optimization methods, it required many weeks

of computation time. A practical solution to the high computational cost of infer-

ring large GRNs from high-resolution gene expression data is presented in Chap-

ter 3. This chapter includes work that was a part of a manuscript describing a

novel classification-based method for the inference of gene circuit parameters that

is two orders of magnitude faster than brute-force approaches. The inference of

accurate hematopoietic GRNs depends on high temporal resolution gene expres-

sion data. Such datasets are relatively rare in the field (May et al., 2013b) but are

essential for reverse engineering GRNs. Chapter 4 of this dissertation describes

a high-resolution time-series dataset of genome-wide gene expression during in

vitro macrophage-neutrophil differentiation. Chapter 5 summarizes the disserta-

tion and discusses future directions for this research.
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CHAPTER 2

Data-driven modeling predicts gene regulatory network dynamics during the

differentiation of multipotential hematopoietic progenitors

Cellular differentiation during hematopoiesis is guided by GRNs comprising TFs

and the effectors of cytokine signaling. The genetic architecture-the type and

strength of regulatory interconnections-and the dynamics of the majority of GRNs

are still poorly understood. This chapter comes from a published study (Handz-

lik & Manu, 2022) presenting the inference of the architecture and the dynamics

of a twelve-gene GRN including key TFs and cytokine receptors from transient

gene expression patterns. Gene circuit was used as a mathematical model for the

derivation of the GRN from hematopoietic progenitor cells differentiating into

erythrocytes and neutrophils.

2.1 INTRODUCTION

Cell-fate decisions during hematopoiesis are thought to be made by transcrip-

tional gene regulatory networks (GRNs) (Orkin & Zon, 2008; Laslo et al., 2008,

2006), which are comprised of genes that influence each others’ expression through

their products. The genetic architecture, by which we mean the regulators of

genes, whether each regulator activates or represses, as well as the quantitative

strength of regulation, of hematopoietic GRNs is not fully understood. Hematopoi-

etic cell-fate choice has often been interpreted in the context of a simple network

motif, the bistable switch (Huang et al., 2007; Enver et al., 2009; Laslo et al., 2006).
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In the bistable switch model, two TFs repress each others’ expression and cell-fate

is chosen in a cell-autonomous manner when small stochastic fluctuations cause

the system to shift to one of two steady states corresponding to the alternative

cell fates. For example, the choice between the red- and white-blood cell fates is

thought to be made by mutual repression between two transcription factors (TFs),

Gata1 and PU.1 (encoded by Spi1) (Huang et al., 2007). Similar bistable switches

have been proposed for other binary cell-fate choices in hematopoiesis (Laslo

et al., 2008) and more generally in development (Graf & Enver, 2009).

A number of recent developments suggest that the bistable switch framework

might be insufficient to explain cell-fate choice and that hematopoietic GRNs have

a densely interconnected architecture. Network reconstructions based on genome-

wide gene expression data reveal large modules of co-regulated genes (Nover-

shtern et al., 2011) and genome-wide TF binding data show that most regulatory

regions are co-bound by multiple TFs (Wilson et al., 2010a; Nègre et al., 2011). A

second issue is that the bistable-switch hypothesis is anchored in a developmental

sequence of discrete binary cell-fate decisions with well-defined intermediate pro-

genitors. Single-cell RNA sequencing data imply however that cellular states dur-

ing hematopoiesis are situated along a continuum and may not involve binary de-

cisions (Velten et al., 2017; Tusi et al., 2018). Bistable switches, such as Gata1-PU.1,

were inferred from genetic and biochemical analyses conducted at steady state,

which lack information about the dynamics and causality of events. For instance,

tracking the expression dynamics of fluorescently tagged Gata1 and PU.1 in live

cells suggests that rather than initiating lineage choice, the divergent expression of
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the two proteins is itself a consequence of as-yet-unknown upstream regulatory

events (Hoppe et al., 2016). Finally, the cell-autonomous bistable-switch frame-

work cannot integrate and account for the instructive influence of cytokines on

hematopoietic differentiation (Mossadegh-Keller et al., 2013; Rieger et al., 2009).

Here we take an alternative approach to inferring the genetic architecture and

dynamics of the red- and white-blood cell-fate decision. Our approach utilizes

a data-driven predictive modeling methodology called gene circuits (Reinitz &

Sharp, 1995; Fehr David A. et al., 2019). Gene circuits determine the time evolu-

tion of protein or mRNA concentrations using coupled nonlinear ODEs in which

synthesis is represented as a switch-like function of regulator concentrations. The

data can be derived from a wide variety of experiments, ranging from genome-

wide studies of unperturbed development to narrower studies involving targeted

perturbations. The values of the free parameters define the regulatory influences

among the genes in the network. Gene circuits do not presuppose any particu-

lar scheme of regulatory interactions, but instead determine it by estimating the

values of the parameters from quantitative data using global nonlinear optimiza-

tion techniques (Chu et al., 1999; Kozlov et al., 2012; Gursky et al., 2004; Abdol

et al., 2017). Gene circuits infer not only the topology of the GRN but also the

type, either activation or repression, and strength of interactions. Most impor-

tantly, the inference procedure yields ODE models that can be used to interrogate

the dynamics and causality of regulatory events during differentiation as well as

to simulate and predict the consequences of developmental perturbations (Jaeger

et al., 2004; Manu et al., 2009b,a; Wu et al., 2015).
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We inferred the genetic architecture and gene regulation dynamics underlying

red- and white-blood cell differentiation using gene circuit models comprising

12 genes. The gene circuits included receptors and effectors of cytokine signal-

ing in addition to well-known lineage specifying TFs, such as Gata1 and PU.1,

so that they could incorporate the potential influence of cytokines. The gene cir-

cuits were trained on publicly available high temporal resolution genome-wide

gene expression data acquired during the differentiation of an inducible cell line,

FDCP-mix (Huang et al., 2007; May et al., 2013), into erythrocytes and neutrophils.

Most of the inferred pair-wise regulatory interactions were consistent with avail-

able empirical evidence. The models also correctly predicted the effect of knock-

out, knock-down, and overexpression of key TFs both qualitatively and quanti-

tatively. The genetic architecture of the models, instead of being hierarchical, is

densely interconnected and features extensive cross-repression between genes ex-

pressed in different lineages. Furthermore, analysis of the model showed that Spi1

upregulation occurred in the latter half of neutrophil differentiation, which was

driven instead by two other TFs expressed in the neutrophil lineage, C/EBPα and

Gfi1. We tested this prediction of the model by inspecting the sequence of gene up-

regulation during neutrophil differentiation in a single-cell RNA-seq dataset (Tusi

et al., 2018) from mouse bone marrow. These data confirmed that Cebpa and Gfi1

upregulation precede that of Spi1 in vivo.
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2.2 RESULTS

2.2.1 Data-driven modeling of gene expression dynamics during the differen-

tiation of FDCP-mix cells

2.2.1.1 Gene Circuit Models

A gene circuit (Manu et al., 2009b) computes the time evolution of mRNA concen-

trations of a network of interacting genes by solving the coupled ordinary differ-

ential equations (ODEs)

dxl
i

dt
= RiS

(
N∑
j=1

Tijx
l
j + bic

l + hi

)
− λix

l
i, (2.1)

where xl
i(t) is the concentration of the mRNA of gene i at time t in lineage (or con-

dition) l, and N is the total number of genes in the model. The synthesis rate de-

pends on the concentrations of a gene’s regulators through sigmoidal regulation-

expression function S(u) = 1
2

(
u/
√
(u2 + 1) + 1

)
. S(u) determines the fraction of

the maximum synthesis rate Ri attained by the gene given the total regulatory

input u =
∑N

j=1 Tijx
l
j + bic

l + hi. The first term of u,
∑N

j=1 Tijx
l
j , represents the

regulation of gene i by the other genes in the network. Positive and negative val-

ues of Tij signify activation and repression of gene i by gene j respectively. The

regulation of gene i by factors specific to the condition l that have not been explic-

itly represented in the model is described by the second term of u, bicl, where cl is

−1, 0, or 1 for neutrophil, progenitor, and erythroid conditions respectively. The

threshold hi determines the basal synthesis rate and λi is the degradation rate of
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mRNA for gene i. Training gene circuit models on quantitative gene expression

data results in estimates of the values of these parameters. Estimates of the genetic

inteconnectivity coefficients (Tij) allows the inference of the genetic architecture of

the GRN.

The sigmoid regulation-expression function allows the synthesis rate of a tar-

get to change with a regulator’s concentration in either a gradual or a sharp man-

ner, depending on the magnitude of the genetic interconnectivity Tij . If the mag-

nitude is small, then the synthesis rate will change gradually as the regulator’s

concentrations vary. If the magnitude is large, small changes in regulator concen-

tration can lead to sharp changes in synthesis rate. In the latter scenario, sharp

changes occur when the total regulatory input crosses zero and hence the regula-

tor does not have a fixed threshold concentration, which can vary depending on

the contributions of other regulators.

2.2.1.2 Specification of a gene circuit model for erythrocyte-neutrophil differentiation

We constructed a gene circuit model comprising 12 main lineage-specifying TFs

and cytokine receptors implicated in erythrocyte-neutrophil differentiation. Among

them, Tal1 and Gata2 are expressed in pluripotent stem cells and are necessary for

the differentiation of multiple lineages including erythrocytes (Cantor & Orkin,

2002; Doré et al., 2012; Vicente et al., 2012; Shivdasani et al., 1995; Mikkola et al.,

2003; Huang et al., 2009). Gata1, its partner Zfpm1, which encodes the Fog1 pro-

tein, and Klf1 are necessary for erythroid and megakaryocytic differentiation (Can-

tor & Orkin, 2001; Laslo et al., 2008; Starck et al., 2003; Stachura et al., 2006; Porcher
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et al., 1996; Mancini et al., 2012; Siatecka & Bieker, 2011). All white blood-cell lin-

eages are absent in the bone marrow of Spi1−/− knockout mice (Scott et al., 1994),

the products encoded by Cebpa and Gfi1 specify the neutrophil cell fate (Zhang

et al., 1997; Laslo et al., 2006), and the TF encoded by Stat3 acts downstream of

GCSF signaling (Tian et al., 1996). Previous work has suggested that the expres-

sion level of cytokine receptors can influence the activation of lineage specifying

TFs (Palani & Sarkar, 2008). We included three genes, Epor, Csf3r, and Il3ra, encod-

ing the cytokine receptors Epor, GCSF-R, and the alpha subunit of the IL3 receptor

respectively (Robb, 2007) in order to detect such potential regulatory mechanisms.

Although all of these genes are well-known participants in erythrocyte-neutrophil

differentiation, the precise genetic architecture of the network remains to be de-

termined.

While there are other genes known to be important for the specification of

these cell fates, we limited the number of genes to 12 in order to minimize the

risk of overfitting and to complete model fitting in a reasonable amount of time.

Increasing the number of genes increases the number of free parameters in the

model and these extra degrees of freedom increase the chances that the model

will be overfit, resulting in poor predictive ability. With the training data used

here, the 12 gene model has a three-fold excess of datapoints over free parameters,

which makes overfitting unlikely.
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2.2.1.3 Time-series data for training the gene circuits

We trained the gene circuit on May et al.’s high temporal-resolution dataset (May

et al., 2013) of genome-wide gene expression during erythrocyte-neutrophil dif-

ferentiation. May et al. utilized FDCP-mix cells (Stachura et al., 2006) which are

maintained in a multipotent state in the presence of IL3 and can be induced to

differentiate into erythrocytes or neutrophils by culturing in low IL3, Epo, and

hemin or GCSF and SCF respectively. In the rest of the paper, we refer to the

culture of FDCP-mix cells in low IL3, Epo, and hemin as erythrocyte conditions

and culturing in GCSF and SCF as neutrophil conditions. The dataset comprises

genome-wide gene expression measurements at 30 time points during the 7-day

course of differentiation towards either cell fate, with sampling frequency reduc-

ing from once every two hours during the first day to once in three days during

the last three days.

The trajectories of gene expression for the modeled genes (Fig. 2.1) exhibit rich

temporal dynamics. Whereas the expression of some genes, such as Klf1 and Gfi1,

diverges between erythroid and neutrophil conditions during the first few hours

of differentiation, the expression of genes such as Il3ra, Gata2, and Spi1 does not

diverge until 2-3 days into the differentiation. Besides timing, the genes differ also

in the magnitude of change during the course of differentiation. Although all the

genes change expression significantly over 7 days, Il3ra is upregulated ∼2-fold in

the neutrophil condition while Csf3r is upregulated ∼230-fold in the neutrophil

condition. With the exception of Gata2, the expression patterns of the remain-

ing genes are consistent with those in murine bone marrow at a qualitative level
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(SFig. 2.1). While Gata2 is upregulated in both conditions in FDCP-mix cells, it is

downregulated along both the erythrocyte and neutrophil lineages in data from

bone marrow. Lastly, all genes except Gata2 demonstrate an “either-or” pattern

of regulation in FDCP-mix cells, being upregulated in one condition, while being

downregulated in the other (Fig. 2.1).
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Figure 2.1: Gene expression time-series data vs. model output.
Mean microarray gene expression measurements and model output
for the 12 modeled genes are plotted as circles and lines respectively.
Here, and in the following figures, relative expression of a gene
is given by the ratio of its expression to its maximum expression
across all conditions and time points. Errors bars show standard de-
viation over 3 replicates. The output of the 71 models that met the
goodness-of-fit criteria (Section 2.4) are shown simultaneously. Data
and model output for FDCP-mix cells cultured in low IL3, Epo, and
hemin, referred to as the erythrocyte condition hereafter, are shown
in red. Data and model output for FDCP-mix cultured in GCSF and
SCF, referred to as the neutrophil condition hereafter, are shown in
blue.



60

2.2.1.4 Training the gene circuits on time-series gene expression data

We trained the gene circuits on May et al.’s time-series data, with initial condi-

tions specified by gene expression in progenitor cells, using a global nonlinear

optimization method called Parallel Lam Simulated Annealing (PLSA; Chu et al.,

1999; Manu et al., 2009b). PLSA is a stochastic method and results in a distinct

set of parameters each time a gene circuit is inferred from data. In order to ensure

that our analysis was not influenced by any idiosyncrasy of a particular model, we

inferred 100 independent gene circuit models and chose 71 that met our goodness-

of-fit of criteria (Section 2.4) for further analysis.

2.2.1.5 Simulation of the GRN during FDCP-mix erythrocyte-neutrophil differentiation

The output of the 71 analyzed gene circuits agreed with the training data within

experimental error for all 12 genes and the vast majority of time points (Fig. 2.1).

The sole exception was that the models did not reproduce a spike in Cebpa expres-

sion occurring around the 70 hour time point, although it is unclear whether this

spike is genuine or the result of experimental error. Models trained on randomly

shuffled data fit the data poorly (Section 2.4), implying that the fits to the empiri-

cal data are statistically significant (SFig. 2.2). We also checked how sensitive the

model is with respect to perturbations in initial conditions and found that model

output was robust to perturbations of up to ±70% (SFig. 2.3). Consistent with the

general agreement with the data, the models’ outputs reproduce all the essential

dynamical features of the data—the either-or differential expression, gene-specific

timing of expression divergence, and gene-to-gene variation in the dynamic range
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of expression.

2.2.2 Gene circuits predict the consequences of genetic perturbations

Having obtained gene circuits that are able to quantitatively reproduce the ob-

served time series data, we next tested whether the models could predict the out-

comes of experimental treatments de novo, that is, without being trained on the

data from the experiments. We simulated two kinds of experiments using the

gene circuits. The first class are knockouts of Gata1 and Spi1, experiments that

were not carried out in FDCP-mix cells but in mice or other cell types. One should

not expect the model to predict the outcomes of such knockout experiments at

a quantitative level since the model was neither trained on the data from these

cell types nor were all of its state variables measured in the experiments. There-

fore, we compare model predictions with the results of knockout experiments at

a qualitative level. The second class of experiments involved the knockdown or

overexpression of key gene products followed by genome-wide expression profil-

ing conducted by May et al. in FDCP-mix cells (May et al., 2013). Simulation of

these perturbations may be compared to experiments at a quantitative level since

they share the experimental system and all of the model’s state variables were

measured.

2.2.2.1 Simulation of Spi1 and Gata1 knockout

We simulated Spi1 knockout by setting its initial expression and maximum syn-

thesis rate to zero (Section 2.4). The consequences of this perturbation differed
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by condition (Fig. 3.2). In erythrocyte conditions, although the change was more

rapid in the mutant, the expression of all genes moved in the same direction and

attained very similar values on day 7 as the wildtype. The model predicted there-

fore, that erythrocyte differentiation is largely unperturbed in Spi1 mutants, which

matches experimental observations from Spi1 knockout mice (Scott et al., 1994).

Gene expression temporal profiles differed markedly between mutant and wild-

type in neutrophil conditions however, and changed very little from their initial

values. A lack of change in gene expression implies that cells are arrested in a

progenitor state in the Spi1 mutant during neutrophil differentiation. This predic-

tion is supported by the observations that Spi1 knockout mice lack mature white-

blood cells (Scott et al., 1994) and that their bone marrow contains IL3-dependent

granulocyte-monocyte progenitors (GMPs) (Walsh et al., 2002; Dahl et al., 2003b),

while disruption of Spi1 in mouse granulocyte/monocyte-committed progenitors

prevents their maturation but not proliferation (Iwasaki et al., 2005).
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Figure 2.2: Simulation of Spi1 knockout. Spi1 knockout was sim-
ulated in all 71 models that met the goodness-of-fit criteria. Their
output is plotted as lines. The symbols and colors are the same as
Fig 2.1.
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The results of Gata1 knockout (Fig S2.4) were opposite to those of Spi1 knock-

out. In neutrophil conditions, the expression of all genes changed in the same

direction and reached the same endpoints as in wildtype, albeit more rapidly, im-

plying that neutrophil differentiation is not affected by Gata1 mutation. In ery-

throcyte conditions, however, gene expression of all genes did not change much

from initial conditions, implying an arrest in the progenitor state. These predic-

tions match the empirical results that embryonic stem cells (ESCs) lacking Gata1

undergo developmental arrest at the proerythroblast stage (Weiss et al., 1994) and

that Gata1-null ESCs cultured in the presence of Epo resemble proerythroblasts

(Kitajima et al., 2006).

2.2.2.2 Simulation of knockdown and overexpression experiments in FDCP-mix cells

We simulated the knockdown of Spi1 and Gata2 in FDCP-mix cells and compared

model output to the changes in gene expression observed in experiment (May

et al., 2013). Since the knockdown was performed in self-renewing IL3 condi-

tions, we set the lineage condition parameter to zero (Section 2.4) and simulated

knockdown by reducing the synthesis rate of either gene and computing the so-

lution until equilibrium was achieved. Since the knockdown efficiency achieved

in the experiment is unknown, we set the synthesis rate to a value that results in

a fold change in the expression of the targeted gene—Spi1 or Gata2—that matches

the empirically observed value. Therefore, we “fit” the knockdown model to the

expression of the targeted gene to predict the changes in the expression of the re-

maining eleven genes. Finally, this analysis—and all subsequent analyses—were
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performed using one representative model (model #66) out of the 71 that matched

the goodness-of-fit criteria (Section 2.4).

There is strong agreement between prediction and observation for Spi1 knock-

down (Fig. 2.3). Consistent with the well-known regulatory role of PU.1, the

model predicted the upregulation and downregulation of the erythrocyte and

neutrophil lineage genes respectively, which matched the pattern of gene expres-

sion observed in the experiment. The only exception was Il3ra, which was pre-

dicted by the model to be slightly downregulated but in fact did not change in

expression. In contrast to the results with Spi1, the model was unable to pre-

dict the consequences of Gata2 knockdown (Fig. 2.3), suggesting that aspects of

Gata2’s regulation were inferred poorly by model training. This is corroborated

by the fact that many of the Gata2-related regulatory parameters were poorly con-

strained (Fig. 2.4).
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Figure 2.3: Simulation of knockdown and overexpression of key
transcription factors in FDCP-mix cells. The fold change in gene
expression in simulations of Spi1 and Gata2 knockdown (top two
panels) or PU.1 and Gata1 overexpression (bottom two panels) is
plotted against the fold change observed in experiment. The dotted
lines correspond to no change so that points in the green quadrants
indicate qualitative agreement and points in the red quadrants indi-
cate qualitative disagreement between prediction and observation.
The green line represents a perfect quantitative agreement between
prediction and observation.
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Figure 2.4: Inferred genetic architecture. The distribution of each
genetic interconnectivity parameter (Tij) over the ensemble of 71
models is shown as a box plot. The distribution of each regulatory
parameter representing the influence of cytokine conditions (bi) is
shown as a box plot (“Ext. Sig.”). In the box plots, the box lines
are the first quartile, median, and third quartile. The whiskers ex-
tend to the most extreme values lying within 1.5 times the interquar-
tile range. Individual parameter values inferred by the models are
shown as circles overlaid on the box plots.

(continued)
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Figure 2.4: Inferred genetic architecture (continued). Each panel
shows the regulation of a particular target. Positive and negative
values of Tij indicate activation and repression respectively. Posi-
tive values of bi indicate activation by Epo and repression by GCSF
while negative values indicate activation by GCSF and repression by
Epo. Activation is inferred if the first quartile of the distribution is
positive, while repression is inferred if the third quartile is negative.
The type of regulation is considered to be poorly constrained when
the interquartile range spans negative and positive values. The pa-
rameters whose inferred sign agrees with prior empirical evidence
(STable 2.2) are marked as dark green while those that are contradic-
tory are marked as red. The parameters for which there is empirical
evidence for interaction but the type of interaction, activation or re-
pression, is not known are marked as light green. The parameters
for which we were unable to find experimental evidence, the exper-
iments yielded negative results, or the sign was unconstrained are
marked as brown. https://doi.org/10.1371/journal.pcbi.1009779.
g004

The overexpression experiments were simulated differently than knockdown

experiments since the induction of the ERT fusion proteins by OHT does not

change their mRNA expression directly but changes their TF activity, instead.

Since the genetic interconnectivity matrix elements parameterize the activity of

the TFs in gene circuits, we simulated the induction of ERT protein activity by

OHT by adding a bias term to the total regulatory input of each gene. The bias

term of each gene is proportional to the interconnectivity element through which

the gene is regulated by the overexpressed gene (Section 2.4). Similar to the knock-

down experiments, the proportionality constant is unknown and was determined

by fitting the overexpression model to the expression of one of the genes. Fi-

nally, we did not fit to the expression of the overexpressed gene since the observed

https://doi.org/10.1371/journal.pcbi.1009779.g004
https://doi.org/10.1371/journal.pcbi.1009779.g004
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mRNA includes an unknown contribution from the ERT fusion transgene.

The model was able to correctly predict the change in expression of all the

genes except Il3ra in the GATA1ERT experiment (Fig. 2.3). The quantitative agree-

ment between model prediction and experiment was also good with the exception

of Epor, for which a∼1.5-fold upregulation was predicted while a∼3-fold upregu-

lation was observed. In the PU.1ERT experiment, the model predicted the change

in expression of all genes except Cebpa, Gfi1, and Gata2. Whereas the model pre-

dicted an upregulation of these genes upon PU.1 overexpression, these genes were

found to be downregulated in the actual experiment. The downregulation of Gfi1

and Cebpa observed in experiment is inconsistent with the known role of PU.1 as

an activator of these white-blood cell lineages genes (Cooper et al., 2015; Bertolino

et al., 2016; Repele et al., 2019; Wilson et al., 2010b) as well as their downregulation

upon Spi1 knockdown. This inconsistency could be the result of PU.1 overexpres-

sion promoting a macrophage gene expression program by repressing neutrophil

genes indirectly via Egr1/2 (Laslo et al., 2006) or Irf8 (Olsson et al., 2016). The

misprediction of Cebpa and Gfi1 expression in PU.1ERT could, therefore, be a con-

sequence of omitting macrophage lineage genes in the model.

2.2.3 Erythrocyte-neutrophil GRN architecture is non-hierarchical and evolves

in time

Having verified that the inferred models have predictive ability, we next deter-

mined the architecture of the GRN implied by the values of the genetic intercon-

nectivity parameters, Tij . Tij determines how the product of gene j regulates gene
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i, where positive or negative values denote activation or repression respectively.

The distributions of the majority of interconnectivity parameters across the en-

semble of 71 analyzed models were well constrained and distinguishable as ei-

ther activation or repression (Fig. 2.4 and Table S1). For example, the positive val-

ues of TGata1→Gata1 (Fig. 2.4A) and TSpi1→Spi1 (Fig. 2.4B) in all but one model implies

that both genes autoactivate while the negative values of TGata1→Spi1 (Fig. 2.4B) and

TSpi1→Gata1 (Fig. 2.4A) in all analyzed models implies that the two genes repress

each other. We compared the inferred genetic interconnections to published em-

pirical evidence (Fig. 2.4 and STable 2.2). The model inferred the correct role,

activation or repression, for 58 of the 69 interconnections that we found empirical

evidence for. The vast majority of the interconnections have not been previously

examined and the model, therefore, implies novel inferences about the genetic

architecture of the network.

The experimental evidence was inconclusive or conflicting in some instances

(STable 2.2). Notably, the model inferred that Gfi1 activates Spi1, upregulated

during FDCP-mix neutrophil differentiation, and represses Gata1, Klf1, and Epor,

genes downregulated during FDCP-mix neutrophil differentiation (Fig. 2.1). These

model inferences are supported by single-cell RT-qPCR data that show that Gfi1

expression is positively correlated with Spi1 expression in GMPs, LMPPs, and

HSCs, while it is negatively correlated with Gata1 expression in HSCs and GMPs

(Moignard et al., 2013). Furthermore, Gfi1 is known to cooperate with C/EBPϵ to

activate neutrophil genes (van der Meer et al., 2010; Khanna-Gupta et al., 2005).

Contradicting the model’s inferences and the above evidence, Spi1 is upregulated
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in MPPs from Gfi1−/− mice (Hock et al., 2003a; Spooner et al., 2009) while Gata1,

Klf1, and Epor are downregulated in bone-marrow cells from Gfi1−/− mice (Kim

et al., 2014). The conflicting evidence and lack of agreement between the model

and data may be a result of the pleiotropic roles that Gfi1 play in both HSC mainte-

nance and neutrophil development (Hock et al., 2003b). As noted in the previous

section, the regulatory parameters of Gata2, another gene acting pleiotropically

in HSCs, the erythroid-megakaryocytic lineage, and the myeloid lineage (Cantor

& Orkin, 2002; Iwasaki et al., 2006), were poorly or incorrectly inferred. These in-

consistencies were, however, a small proportion of the total inferences and there is

overall good agreement between model inference and empirical evidence (Fig. 2.4

and STable 2.1).

The genetic architecture of the network, in fact, changes in time since the

strength of the regulation of one gene by the products of another gene depends

on the concentration of the latter, which evolves during the differentiation pro-

cess. In order to gain insight into this “dynamical GRN”, we computed the time-

dependent regulatory contribution, given by the product of the genetic intercon-

nectivity parameters by the concentrations of the cognate regulators (Tij · xl
j(t)),

for all pairs of regulators and targets in the model. The GRN may then be rep-

resented as a graph in which each gene is a node and the type—activation or

repression—and time-dependent strength of regulation between each gene pair is

an edge (Fig. 2.5).
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Figure 2.5: The time evolution of the inferred GRN. The GRN is
depicted as a graph at different time points during differentiation
in both erythrocyte and neutrophil conditions. The contributions of
each regulator to the regulation of its targets, given by the product of
the pairwise genetic interconnectivity parameter and the regulator’s
concentration, are shown as edges from the regulator to the targets.
Blue and red edges correspond to activation and repression respec-
tively, while the opacity of the lines indicates the strength of regula-
tion. The maximum opacities of activation and repression have been
normalized to 1 separately.
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The erythrocyte-neutrophil network inferred by the model from FDCP-mix

data is densely interconnected with genes associated with the erythrocyte lineage

repressing genes of the neutrophil lineage and vice versa. This conclusion is in

agreement with other analyses based on genome-wide gene expression data (Nover-

shtern et al., 2011) and contrasts the view that the genetic architecture consists of

a hierarchy of bistable switches (Laslo et al., 2008). The time evolution of the net-

work reveals two broad principles. First, there is a preponderance of repressive

interactions at earlier time points during the differentiation suggesting that the

cell-fate decision is dictated by loss of repression rather than a gain of activation.

Conversely, activation between co-expressed genes gains prominence at later time

points, suggesting that activation mainly reinforces the decision once it has been

made.

2.2.4 Gene circuits predict that C/EBPα and Gfi1 drive neutrophil develop-

ment in FDCP-mix cells

How each gene in the network is regulated is, as discussed earlier, not static but

changes as the concentrations of its regulators evolve in time during differentia-

tion. We reasoned that the temporal dynamics of gene regulation could provide

insight into the causality of the regulatory events underlying differentiation. The

temporal dynamics of gene regulation can be analyzed by “looking under the

hood” of the gene circuit model and decomposing the total regulatory input for

each gene into contributions from individual regulators (Fig. 2.6; see Section 2.4

for details). In Figure 2.6, the total regulatory input (dotted black line) is plotted
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in time. A gene is at half its maximum activation when the total regulatory in-

put is zero and thus the time at which this happens (black vertical lines) serves

as a marker to order the sequence in which genes turn on or off as differentiation

proceeds. The contributions of repressors and activators are shown as shaded

sections above and below the total regulatory input respectively. The regulators

accounting for the up- or down-regulation of a gene can be determined by noting

their contribution to the change in the total regulatory input. For example, the

bulk of the change in Cebpa’s regulatory input from the start of neutrophil dif-

ferentiation to reaching half-max expression is the result of autoactivation (light

blue) and activation by Gfi1 (dark blue; Fig. 2.6).
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Figure 2.6: The dynamics of gene regulation during differentia-
tion. The total regulatory input (u) is plotted as the dotted black
line. The colored layers show the regulatory contribution of indi-
vidual regulators. See Section 2.4 for the definitions of total regu-
latory input and regulatory contributions. The contributions of re-
pressors and activators are shown above and below the dotted line
respectively. The vertical dashed line in the center corresponds to
uninduced FDCP-mix cells at the start of differentiation.

(continued)
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Figure 2.6: The dynamics of gene regulation during differentia-
tion (continued). Regulatory contributions during erythrocyte and
neutrophil differentiation are shown to the right and left of the
dashed line respectively. The vertical black line marks the time
when the total regulatory input crosses zero so that synthesis occurs
at half its maximum rate (Section 2.4).

Several observations can be made regarding the temporal dynamics of gene

regulation during erythrocyte-neutrophil differentiation (Fig. 2.6). All the genes

are in a partially repressed state, since the negative contribution from repres-

sors is greater than the positive contribution from activators, in undifferentiated

FDCP-mix cells. This is reminiscent of multilineage transcriptional priming (Laslo

et al., 2006; Chickarmane et al., 2009; Paul et al., 2015)—the low-level expression

of genes from multiple lineages in multipotential progenitors. What accounts for

the repression varies by the target gene. Genes downregulated in neutrophil con-

ditions, Gata1, Zfpm1, Klf1, Tal1, and Epor, are repressed by several genes of small

effect. Genes downregulated in erythrocyte conditions, however, Spi1, Cebpa, Gfi1,

Stat3, Gata2, Il3ra, and Csf3r, are mainly repressed by a combination of Zfpm1 and

Tal1.

During erythrocyte differentiation, all the upregulated genes are activated more

or less simultaneously since they reach half-max activation in a short ∼30 hour

window (Fig. 2.6). Upregulation of the genes involves both the loss of repres-

sion as well as increased activation (Fig. 2.6). The three main activating influences

are Gata1, Klf1, and Epor. The first two are well-known activators of erythrocyte

genes, while the activating influence of Epor implies that upregulation of the re-
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ceptor’s gene expression provides positive feedback, indirectly, to the TFs driving

erythroid differentiation.

In contrast to erythrocyte differentiation, the sequence of activation of genes

during neutrophil differentiation is spread out over∼100 hours (Fig. 2.6). Surpris-

ingly, Spi1 is one of the last genes in the activation sequence, reaching half-max

activation around day 5 of the differentiation process, while Gata2 and Cebpa are

the first ones to be activated. Unlike erythrocyte differentiation, during which

three activators provided activation throughout the process, the genes accounting

for activation change in time and with the target gene.

PU.1 provides activation during the later stages of the differentiation once it

has increased in expression. This is consistent with the observations that PU.1

acts primarily in a concentration-dependent manner (Huang et al., 2007; DeKoter

& Singh, 2000; Dahl et al., 2003b) and that conditional Spi1 knockout in adult bone

marrow does not eliminate granulopoiesis but instead results in the development

of immature granulocytes (Dakic et al., 2005). Csf3r also provides activation at

late time points. Cebpa and Gfi1 together account for most of the early activa-

tion of the genes upregulated during neutrophil differentiation in FDCP-mix cells

(Fig. 2.6). Although Gfi1 expression is positively correlated with genes upregu-

lated during neutrophil differentiation in FDCP-mix cells (Fig. 2.1) and with Spi1

in GMPs (Moignard et al., 2013), Gfi1 is known to function primarily as a repressor

in MPPs and the lymphoid and myleoid lineages (van der Meer et al., 2010; Hock

et al., 2003a; Spooner et al., 2009; Dahl et al., 2003a). The activation role inferred

here for Gfi1 during the neutrophil differentiation could result from indirect reg-
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ulation of its targets. Another reason for the Gfi1 acting as activator is the high

level of similarity between the expression of Cebpa and Gfi1 in the training data

(Fig. 2.1) that renders the two factors interchangeable in the model. C/EBPα is

known to directly activate itself, Spi1, Csf3r, and Gfi1 during neutrophil differen-

tiation (STable 2.1; Leddin et al., 2011; Ma et al., 2014; Legraverend et al., 1993;

Cooper et al., 2015; Bertolino et al., 2016; Repele et al., 2019; Zhang et al., 1997;

Smith et al., 1996). We conclude therefore that the activation of neutrophil targets

by Gfi1 inferred by the model could, in fact, represent the activity of C/EBPα.

Taken together this analysis implies that neutrophil development in FDCP-mix

cells is driven by C/EBPα and potentially Gfi1 acting indirectly (Li et al., 2010),

which activate Spi1 at later time points.

2.2.5 Cebpa and Gfi1 expression precedes Spi1 upregulation in the neutrophil

lineage in mouse bone-marrow hematopoietic progenitor cells

We sought confirmation of the sequence of gene activation implied by our model

of FDCP-mix cell differentiation in an independent experimental system. We an-

alyzed Tusi et al.’s single-cell RNA-seq (scRNA-Seq) data from Kit+ mouse bone-

marrow HPCs. Although scRNA-Seq data are static snapshots of the progression

of cell states during steady-state hematopoiesis, it is possible to infer the order

of cell states under a few assumptions. Weinreb et al. developed Population Bal-

ance Analysis (PBA) (Weinreb et al., 2018b), which computes the probability of

transitions between the cell states—defined by genome-wide gene expression—

observed in single-cell gene expression data and hence the probability that an
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intermediate cell state will evolve into some terminal cell fate (Fig. 2.7A). Cell

states corresponding to multipotential progenitors—the origin of the differentia-

tion process—and committed unilineage progenitors—the termini of the differen-

tiation process—are identified by the expression of marker genes. PBA assumes

that there are no oscillations in cellular state so that the dynamics are governed by

a potential function of cellular state and cells always move from higher to lower

potential (Weinreb et al., 2018b, Fig. 2.7C). Under this assumption, it is possible

to order the cells in developmental time by arranging them in order of decreasing

potential (see Weinreb et al., 2018b, for details).
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Figure 2.7: The expression of Cebpa, Gfi, and Spi1 in individual
hematopoietic progenitor cells from murine bone marrow. Pan-
els A, C, and D are SPRING plots (Weinreb et al., 2018a) of Tusi et
al.’s scRNA-Seq dataset (Tusi et al., 2018) of mouse bone-marrow de-
rived Kit+ progenitors. Each point corresponds to an individual cell
and cells are arranged as a k-nearest-neighbor (knn) graph accord-
ing to their pairwise distances in gene expression space (Weinreb
et al., 2018a). A. The probability of a cell adopting the neutrophil
fate, as computed by the PBA algorithm, is shown as a color map
if the probability is greater than 0.5. Cells with neutrophil probabil-
ity less than 0.5 are shown as black dots. B. The mean expression
of Cebpa, Gfi1, and Spi1 in cells binned according to their potential
(shown in panel C). Each bin contains 141 cells. The expression of
each gene has been normalized relative to its maximum expression
over the bins. The error bars show standard error. C. The poten-
tial landscape of the cells fated to be neutrophils is shown as a color
map and orders the cells according to their maturity or developmen-
tal age. D. The expression of Cebpa, Gfi1, and Spi1 is shown as a color
map. Cells with no detected transcripts are plotted in black.
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We profiled the expression of Cebpa, Gfi1, and Spi1 in Tusi et al.’s dataset by

identifying cells having a high probability of becoming neutrophils based on the

fate probabilities assigned to them by PBA (Fig. 2.7A). The potential decreases

with increasing neutrophil probability (Fig. 2.7B) and it is possible to visualize

how gene expression changes with developmental age at a single-cell level (Fig. 2.7D)

by following the direction of decreasing potential. Since single-cell read counts

have considerable cell-to-cell variability, we also divided the potential into 11

bins containing an equal number of cells and averaged the expression over the

cells in each bin (Fig. 2.7B). Spi1, although expressed at lower levels at the ear-

lier stages, changes relatively little until bin 6. Spi1 is upregulated subsequently

and reaches its maximum expression in bin 9 and maintains that level until the

latest stage captured in this dataset. This temporal progression of Spi1 expres-

sion is consistent with the patterns observed through live imaging of the PU.1

protein—it is expressed at low levels in HSCs and is upregulated during myeloid

differentiation (Hoppe et al., 2016)—and the differentiation of FDCP-mix cells into

neutrophils (Fig. 2.1).

The scRNA-Seq data also show that Cebpa and Gfi1 expression precedes the

granulocyte-specific upregulation of Spi1 (Fig. 2.7B,D). Cebpa is already at its max-

imum level at the highest potential or earliest developmental stage. Gfi1 rises

rapidly at earlier stages and peaks at bin 7. Spi1 levels in bin 10 are greater than

in bin 6 (Cebpa peak; Welch’s one-sided two-sample t-test p = 0.004) or bin 7 (Gfi1

peak; p = 0.04). Interestingly, both Cebpa and Gfi1 are downregulated to lower lev-

els in the latest developmental stages. These inferred temporal patterns of gene
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expression during the granulocytic differentiation of bone-marrow HPCs are con-

sistent with our model’s predictions that Cebpa and Gfi1 are expressed earlier than

and activate Spi1 during neutrophil development.

2.3 DISCUSSION

Despite our knowledge of the main genes effecting hematopoietic cell-fate deci-

sions, their genetic architecture as well as the causality of their regulation is not

fully understood. Here we have taken the approach, complementary to empiri-

cal genetic analyses, of learning the genetic architecture by training gene circuit

models on gene expression time-series data. We trained a comprehensive model

comprising 12 genes encoding TFs and cytokine signaling components on a high-

temporal resolution dataset (May et al., 2013). The correct predictions of the con-

sequences of genetic perturbations at a quantitative level support the biological

accuracy of the model. Similarly, we demonstrated through a detailed compari-

son with literature that the model correctly inferred the nature, activation or re-

pression, of most known pairwise interactions. Our analysis implies that the ge-

netic architecture of the erythrocyte-neutrophil decision is non-hierarchical and

highly interconnected. There are extensive repressive interactions between genes

from alternative lineages, while there is positive feedback from cytokine recep-

tors. Furthermore, the gene circuit approach goes beyond static GRNs, and re-

veals their dynamics during the FDCP-mix cell differentiation process. We found

that repressive interactions dominate at the earliest stages of the cell-fate decision

while activation gains importance only at later stages. Finally, we show through
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model analysis followed by validation in an independent scRNA-seq dataset (Tusi

et al., 2018) that Cebpa and, possibly, Gfi1 contribute to neutrophil development by

upregulating Spi1 and other downstream genes.

Hematopoietic cell-fate decisions have been modeled by two main approaches

so far. In the first approach, the GRN is modeled using ODEs (Huang et al., 2007;

Laslo et al., 2006; Li & Wang, 2013; Hong et al., 2012) and the quantitative values

of parameters are fixed by an exhaustive search of the parameter space to find re-

gions that reproduce the qualitative behavior of the GRN. Such models have been

mostly limited to 2–3 well-known “master” regulators, perhaps due to their rel-

atively high computational expense. The second approach circumvents the high

computational expense of ODEs by constructing logical or Boolean models that

are more comprehensive and include 11–20 genes (Bonzanni et al., 2013; Collom-

bet et al., 2017). The two approaches are similar in that the genetic architecture

implemented by the models is based on prior empirical evidence.

The gene circuits built here differ from previous bistable-switch models in a

number of ways. First, while bistable-switch models are constructed assuming a

certain genetic architecture—mutual repression between two genes and autoactiva-

tion—gene circuits do not impose any interaction scheme beforehand but instead

learn it from data. Gene circuits therefore offer an independent means of decod-

ing the genetic architecture to supplement, but also to potentially refine, what we

know from purely empirical approaches. The utility of this is illustrated by the

fact that the gene circuits independently inferred the mutual antagonism between

PU.1 and Gata1 and autoactivation of each gene that is baked into bistable-switch
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models, while diverging from them in also inferring that other factors, such as

Cebpa, contribute to Spi1 upregulation. Second, the gene circuits constructed here

are more comprehensive, simulating a GRN of 12 genes compared to previous

much smaller models (Huang et al., 2007; May et al., 2013; Chickarmane et al.,

2009) without resorting to Boolean networks that assume that gene expression is

restricted to a few discrete levels. Third, while previous models and gene circuits

differ in the precise switch-like function employed, this difference is unlikely to

matter since the parameter values are inferred by fitting.

Analysis of gene regulation dynamics in the model followed by validation in

an independent dataset (Tusi et al., 2018) led us to the insight that Cebpa and Gfi1

are upregulated earlier than Spi1 and drive the activation of Spi1 and other neu-

trophil genes in FDCP-mix cells. Spi1 has been thought to reside at the top of

the hierarchy (Cantor & Orkin, 2002; Laslo et al., 2006, 2008; Huang et al., 2007;

Graf & Enver, 2009; May et al., 2013) of white-blood cell genes since Spi1 knock-

out mice lack all white-blood cells (Scott et al., 1994). Additionally, evidence that

PU.1 inhibits Gata1 (Zhang et al., 2000) and vice versa (Nerlov et al., 2000) led

to a model in which Gata1 and Spi1 form a bistable switch that decides the fate,

while all the other genes are downstream targets of Gata1 or PU.1 (Graf & Enver,

2009). However, the causal role of Gata1 and PU.1 in erythro-myeloid differen-

tiation has been questioned recently by experiments in which Gata1 and PU.1

expression was monitored in differentiating HSPCs (Hoppe et al., 2016). These

experiments failed to detect an intermediate stage where cells co-expressed low

amounts of both Gata1 and PU.1, which is a necessary condition for the fate deci-
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sion to be driven by the genes’ mutual repression. Furthermore, in cells destined

for a myeloid fate, PU.1 was expressed at a constant level before being upregu-

lated during the later stages of commitment while Gata1 remained undetectable

throughout. This observation suggested that some factor or factors other than

Gata1, unknown heretofore, drive PU.1 upregulation during myeloid differenti-

ation. Our analysis therefore implicates Cebpa and, potentially, Gfi1 as candidate

upstream factors driving PU.1 upregulation during myeloid differentiation.

The activation of Spi1 by Cebpa inferred here helps provide a link in the chain

of causation leading to neutrophil maturation during FDCP-mix cell differentia-

tion. The upregulation of Spi1 is discernable only∼50 hours after GCSF treatment

and reaches its peak on day 7 (Fig. 2.1), which is consistent with the pattern ob-

served in mouse bone marrow (Fig. 2.7). Cebpa is known to be upregulated by

GCSF treatment (Scott et al., 1992; Dahl et al., 2003b; Bertolino et al., 2016; Repele

et al., 2019). The C/EBPα protein is phosphorylated downstream of GCSF sig-

naling (Jack et al., 2009) and autoactivates Cebpa transcription by binding to its

promoter (Legraverend et al., 1993) and enhancers (Cooper et al., 2015; Bertolino

et al., 2016; Repele et al., 2019). Cebpa, therefore, is a direct target of GCSF signal-

ing, gets upregulated soon after GCSF treatment and activates Spi1 subsequently.

The late upregulation of Spi1 could be reconciled with its mutant phenotype—

the absence of all white-blood cells—if it were necessary for the activation of all

white-blood cell genes, including those characteristic of neutrophil function. Spi1

could then be seen as a hub which integrates input from lineage-specifying genes

such as Cebpa and coordinates the expression of downstream functional genes.
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Gene regulation during differentiation is dynamic; the contributions of the reg-

ulators modulating a gene’s transcription and the overall balance of activation and

repression change as the regulators’ concentrations vary in time. Gene circuits,

being dynamical models, allow us to determine how regulatory control varies in

time both at the level of individual target genes (Fig. 2.6) and more broadly at

the network level (Fig. 2.5). Our analysis indicates that, both at the individual and

global levels, repression dominates over activation at earlier stages of erythrocyte-

neutrophil differentiation. As a result, all the genes in the network are partially

repressed and expressed at low levels in progenitors. The data support this infer-

ence. Each gene in the network is upregulated by at least two-fold in one lineage

or the other (Fig. 2.1), which implies that the expression level observed in the pro-

genitors is significantly below that of an actively transcribed gene.

The predominance of repression in the earlier stages implies, in turn, that the

divergence of gene expression during differentiation is driven by relief of repres-

sion rather than by activation. This is similar to the idea of lineage priming (Hu

et al., 1997; Laslo et al., 2006; Huang et al., 2007; Yoshida et al., 2010; Chickarmane

et al., 2009; Chang et al., 2008) in the bistable switch model (Huang et al., 2007;

Laslo et al., 2006), where genes from alternative lineages are expressed at low lev-

els and repress each others’ expression in progenitors. Our model differs from the

bistable switch model in two ways. First, whereas cell fate is selected by the initial

concentrations of the two genes in the bistable switch model, cytokines select the

fate by exerting asymmetric effects on each gene in the gene circuits modeled here

(Section 2.2). The second difference is that many more genes participate in cross-
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antagonism than Gata1 and PU.1 as hypothesized in the bistable switch model.

The overall balance shifts in favor of activation at later stages of differentia-

tion, leading to the establishment of positive feedback loops between genes co-

expressed in the same lineage. Of note is the activation of lineage-specific TFs

by cytokine receptors. In the model, Csf3r, which codes for GCSFR, provides

substantial activation to most of the genes upregulated in the neutrophil condi-

tion, while Epor performs a similar function in the erythrocyte condition (Fig. 2.6).

As discussed above, Cebpa is known to be downstream of GCSF signaling as are

other myeloid TFs (Tian et al., 1996). Similarly, EpoR phosphorylates and acti-

vates Gata1 through the PI3K-AKT pathway (Zhao et al., 2006) and Epo signal-

ing positively regulates several erythroid genes (Rogers et al., 2008; Deindl et al.,

2014; Chiba et al., 1993; Rogers et al., 2012). Cytokine receptor-mediated posi-

tive feedback has been shown to generate bistability in a model of Epo-dependent

Gata1 activation (Palani & Sarkar, 2008), resulting in greater sensitivity to Epo cy-

tokine concentration. The positive feedback loops inferred in this bigger GRN

might also result in bistability or multistability and sharp responses to cytokine

concentration, a possibility that awaits confirmation through non-linear stability

analysis (Hirsch et al., 2004).

Despite its general success in predicting the consequences of genetic pertur-

bations, the model was unable to do so for Gata2 knockdown (Fig. 2.3) implying

that Gata2-related inferences are incorrect for both FDCP-mix and in vivo differ-

entiation. The model predicted nearly the exact opposite of the observed effects.

The neutrophil lineage genes were predicted to be downregulated about two-fold,
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when in fact they were upregulated 1.2–4 fold, while erythrocyte lineage genes

were predicted to be upregulated instead of being downregulated about two-fold

(Fig. 2.3). These mispredictions may be traced to the fact that Gata2-related pa-

rameters were not inferred with much certainty during fitting. 4 of 12 of the inter-

connectivity parameters (Tij) where Gata2 is the regulator and 4 of 12 of the inter-

connectivity parameters where Gata2 is the target are indistinguishable from zero

among the gene circuits that met goodness-of-fit criteria (Fig. 2.4 and STable 2.1).

This implies that the goodness-of-fit was insensitive to the type, activation or re-

pression, of those interconnections. The uncertainty about how Gata2 regulates its

targets and how it is regulated itself likely arises from the fact that there is almost

no divergence in Gata2 expression between the erythrocyte and neutrophil con-

ditions (Fig. 2.1), with differences discernible only at one time point out of thirty.

The lack of different patterns of expression in the two conditions means that the

Gata2 data do not bear sufficient information to constrain Gata2’s regulatory pa-

rameters. Similarly, some of the inferences, such as the activation of Spi1 and

repression of Gata1, Epor, and Klf1 by Gfi1 (Fig. 2.4 and STable 2.2), that did not

match empirical data probably resulted from a lack of training data from MPPs,

monocytes, and lymphocytic progenitors, where Gfi1 exerts the experimentally

observed effects (Hock et al., 2003b; Li et al., 2010; Kim et al., 2014). This limita-

tion of the gene circuit methodology—that the training dataset may not contain

sufficient information to accurately infer certain regulatory parameters—may be

overcome by experimental designs that either sample differentiation trajectories

in a larger number of conditions and cell types or after genetic perturbations.
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In gene circuits, the interconnection between a pair of genes can represent both

direct and indirect regulation of one by the other. Furthermore, gene circuits as

implemented here do not include higher-order interactions such as the regula-

tion of targets by a Fog1-Gata1 complex. These design choices have both advan-

tages and disadvantages. On the one hand, this flexibility leads to inferred GRNs

that are not completely specified mechanistically. We could not hope to delineate

GRNs with biochemical details relying exclusively on gene circuits. On the other

hand, this very flexibility also makes predictive modeling of GRN dynamics fea-

sible. Although biochemically detailed models of intracellular signaling (Palani &

Sarkar, 2008) and gene regulation (Bertolino et al., 2016; Repele et al., 2019) have

been constructed for individual pathways and enhancers, it is currently not possi-

ble to model multiple signaling pathways or the gene regulation of multiple genes

simultaneously. The challenges involved in constructing comprehensive but bio-

chemically detailed models are many; the components are yet to be completely

delineated, it is impractical to measure all the biochemical parameters, learning

them from data leads to highly underdetermined problems, and the computa-

tional cost of such models would be prohibitive. Gene circuits, by coarse-graining

much of the biochemical detail allow the construction of more complete models

that are predictive in spite of a lack of biochemical detail.

The gene circuits derived here, being deterministic models trained on bulk

gene expression data, are unable to account for stochasticity in gene expression or

the effects of cellular heterogeneity in FDCP-mix populations. These limitations

could potentially result in erroneous inferences of two types. First, the model may
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be overfit to the average initial conditions so that actual initial concentrations in

single cells result in qualitatively different outcomes. Although we ensured that

the inferred models were not fragile to errors of up to 70% in the mean expression

of individual genes, it is possible that the inferred models produce non-biological

outcomes in the presence of errors in the expression of multiple genes. Second,

it is possible that the observed changes in averaged gene expression are not the

result of gene expression modulation in single cells but that of changes in the sizes

of phenotypically distinct subpopulations. Population heterogeneity could there-

fore lead to incorrect inferences about gene regulation. Most of the connections in-

ferred here likely have a sound basis since a large proportion of them agreed with

genetic and biochemical manipulations that are not confounded by cellular het-

erogeneity (Fig 2.4 and STable 2.2). Furthermore, the handful of genes whose ex-

pression has been monitored live are clearly regulated at a single cell level (Hoppe

et al., 2016; Rieger et al., 2009; Mossadegh-Keller et al., 2013). Single-cell RNA-Seq

data (Tusi et al., 2018) also support the view that gene expression is changing at a

single cell level and not as a result of varying proportions of admixed cellular sub-

populations. This evidence does not rule out more complex scenarios where both

single-cell and population-level processes contribute to the observed changes in

mean gene expression and stochastic models trained on single-cell data would be

necessary to uncouple these effects.

Our results show that the temporal dynamics of gene expression bear infor-

mation about the genetic architecture underlying cell-fate choice. With a few ex-

ceptions such as the segmentation system of Drosophila (Surkova et al., 2008), our
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current knowledge of the genetic architecture of most developmental systems is

based on genetic analyses carried out at end points. Coupling gene circuits with

high temporal resolution time series data is a viable complementary approach to

decode the genetic architecture and reveal the causality of events during differen-

tiation. One potential drawback of this approach is the cost of sequencing. How-

ever, the cost of sequencing is expected to decline exponentially over time (Muir

et al., 2016) and is not likely to be a limitation in the future. Another concern is the

high computational cost of fitting the gene circuits, which entails the use of paral-

lel computers. This challenge was recently overcome by an algorithm called Fast

Inference of Gene Regulation (FIGR) (Fehr David A. et al., 2019) that is much more

computationally efficient and can infer models on a consumer-grade computer in

a reasonable amount of time. We anticipate that with these improvements, it will

be possible to collect time series datasets that span multiple hematopoietic lin-

eages and genetic backgrounds and use the gene circuit approach to comprehen-

sively decode the genetic architecture of hematopoietic cell-fate decisions.

2.4 MATERIALS AND METHODS

2.4.1 Gene Circuit Model of Erythroid-Neutrophil differentiation

The initial conditions were given by the mRNA concentrations in progenitor cells.

Equations 2.1 were solved numerically using the Bulirsch-Stöer adaptive step-size

solver to an accuracy of 10−3 as described previously (Manu et al., 2009a).
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2.4.2 Training Data

The gene circuit was trained on May et al.’s genome-wide gene expression time-

series dataset (GEO GSE49991; May et al., 2013) acquired during the differenti-

ation of FDCP-mix cells into erythrocytes or neutrophils. See (May et al., 2013)

for the details of data processing and cross-sample normalization. The expres-

sion level of each gene was further normalized against its maximum expression

in either condition for model training and visualization.

2.4.3 Optimization by Parallel Lam Simulated Annealing (PLSA)

The parameters of Equation 2.1 were inferred by minimizing the cost function

E =
∑
i,m,l

(
xl
i(tm)− x̂l

i(tm)
)2

+ Penalty, (2.2)

where xl
i(tm) and x̂l

i(tm) are model output and data respectively for gene i in lin-

eage/condition l at time tm. The penalty is a weighted regularization term that

limits the search space or magnitude of the regulatory parameters Tij , bi, and hi.

The penalty is given by

Penalty =


exp(Π)− exp(1), if Π > 1

0, otherwise,
(2.3)

where

Π =
∑
i

Λi

(∑
j

(Tijx̂
max
j )2 + (bmax

i )2 + h2
i

)
.
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x̂max
j is the maximum expression of gene j observed in the dataset (John et al.,

1995) and bmax
i is the maximum value of bli over all conditions l. Λi controls the

magnitude of the regulatory parameters of gene i. Λi was set to 0.1 for all genes

except Csf3r, for which Λi was set to 0.01. This allowed Csf3r’s regulatory pa-

rameters to have larger values, which was necessary for the model to be able to

recapitulate the large dynamic range of Csf3r expression data (Fig 2.1).

The cost function (Eq. 2.2) was minimized using parallel Lam simulated an-

nealing (PLSA)—simulated annealing with the Lam cooling schedule (Lam & De-

losme, 1988)—running in parallel (Chu et al., 1999) as described previously (Manu

et al., 2009b). PLSA was carried out on 10 CPUs (Intel Xeon E5-2643 v3 cores) in

parallel.

2.4.4 Selection of gene circuits for analysis

Since PLSA is a stochastic method (Chu et al., 1999), each optimization attempt re-

sults in different values of inferred parameters and hence in a distinct gene circuit

model. In order to evaluate their reproducibility, we repeated the optimization to

obtain 100 different gene circuits. The root mean square (RMS) score,

RMS =

√
E

Nd

, (2.4)

where Nd is the total number of data points, was used to measure the goodness-of-

fit of each gene circuit model. We chose 71 gene circuits having RMS scores lower

than 0.06, corresponding to an average error of 6% in expression levels. Models
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with higher RMS scores showed qualitative defects in their expression patterns

compared to data.

2.4.5 Significance of fits

The optimization problem for the 12-gene circuit is overdetermined, having 720

data points and 192 free parameters, and the risk of overfitting is minimal. Nev-

ertheless, we checked whether the model fits captured temporal patterns inherent

in the data or whether the degrees of freedom were so numerous that the model

could fit randomized non-biological data equally well. We randomized the data

in a manner that preserved the dynamic range of the real data while creating non-

biological temporal expression patterns and tested the ability of gene circuits to fit

the latter compared to the former. For each gene, we created chimerical temporal

expression patterns by combining erythrocyte training data up to the 96 hour time

point with neutrophil data at later time points and vice versa. In each synthetic

dataset, 10 of 12 genes were given chimerical expression patterns while the other

two retained the original training data. 66 such synthetic datasets were generated

for each combination of 10 genes (Algorithm 1). 10 gene circuits were trained per

dataset resulting in a total of 660 gene circuits. The RMS scores of the resultant

gene circuits were compared to the 100 gene circuits trained on the real data. The

statistical significance of the differences between the RMS scores of gene circuits

trained on random and real data was determined using the Wilcoxon rank sum

test with continuity correction.
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Algorithm 1 Gene expression swapping between two conditions

1: Ci: combination i for 10 out of 12 genes
2: ci: 2 genes not included in Ci

3: time_points: 30 sampled differentiation time points, time_points ∈
{0, 2, 4, ..., 96, 120, 168}

4: xery(i, g, t)← gene expressions in erythrocyte condition for gene combination
i, gene g, and time point t

5: xneu(i, g, t)← gene expressions in neutrophil condition for gene combination
i, gene g, and time point t

6: xeryW (i, g, t): empty 66 × 12 × 30 array for storing swapped and normal gene
expressions in erythrocyte condition for gene combination i, gene g, and time
point t

7: xneuW (i, g, t): empty 66 × 12 × 30 array for storing swapped and normal gene
expressions in neutrophil condition for gene combination i, gene g, and time
point t

8: filei: output file for writing swapped and normal expressions for gene com-
bination i

9: for i in 1:12C10 do
10: for gene g in Ci do
11: for t in time_points do
12: if t < 96 then
13: xeryW (i, g, t)← xery(i, g, t)
14: xneuW (i, g, t)← xneu(i, g, t)
15: else
16: xeryW (i, g, t)← xneu(i, g, t)
17: xneuW (i, g, t)← xery(i, g, t)
18: end if
19: end for
20: end for
21: for gene g in ci do
22: for t in time_points do
23: xeryW (i, g, t)← xery(i, g, t)
24: xneutW (i, g, t)← xneu(i, g, t)
25: end for
26: end for
27: for gene g in (Ci and ci) do
28: for t in time_points do
29: WRITE(filei, xeryW (i, g, t), xneuW (i, g, t))
30: end for
31: end for
32: end for
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2.4.6 The sensitivity of the model to initial conditions

The initial concentration of each gene was perturbed by ±10, 20, 30, 50, 70%, one

gene at a time. Model 66 was run with the perturbed initial conditions (120 simu-

lations) and the RMS for each simulation was calculated.

2.4.7 Simulation of perturbation experiments

Gata1 and Spi1 knockout was simulated by setting their initial concentrations and

mRNA synthesis rates Ri to zero.

To simulate the knockdown and overexpression experiments carried out by

(May et al., 2013) in FDCP-mix cells, we chose one representative model from the

71 that had met the goodness-of-fit criteria. For each model, we determined the

number of regulatory parameters (Tij) that had the same sign as the majority of

the models. Of the 7 models having the largest number of regulatory parameters

aligning with the consensus, one model, model #66, was chosen for perturbation

simulations.

The knockdown Spi1 or Gata2 in FDCP-mix cells was simulated by decreasing

the maximum synthesis rate of the gene, RSpi1 or RGata2, respectively. Since the

efficiency of the knockdown achieved in the specific experiments was unknown,

we chose the value of RSpi1 or RGata2 so that the simulated expression of Spi1 or

Gata2 matched the empirical values respectively. The simulations therefore could

be said to predict the expression of only 11 of the 12 genes.

In the PU.1ERT and GATA1ERT experiments, 4-hydroxy-tamoxifen (OHT) treat-

ment did not directly modulate the amount of Spi1 or Gata1 mRNA but instead
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increased the activity of the constitutively expressed PU.1ERT and GATA1ERT

fusion proteins. We simulated the increase in the activity of PU.1 or Gata1 by

introducing a constant bias term Bi in the total regulatory input u of each gene i,

u =
N∑
j=1

Tijx
l
j + bic

l + hi +Bi.

The bias term is proportional to the genetic interconnectivity parameter corre-

sponding to the regulation of each gene by PU.1 or Gata1 so that Bi = Ti←Spi1 ·βSpi1

or Bi = Ti←Gata1 · βGata1 respectively. The proportionality constants βSpi1 and

βGata1 represent the additional amount of active PU.1 and Gata1 induced by OHT

respectively. Similar to the knockdown experiments, the efficiency of activation

achieved in the overexpression experiments was unknown and we chose the val-

ues of the proportionality constants to match the observed expression of 1 of 12

genes. We did not however fit to the observed expression of the overexpressed

gene since it stems from a mixture of mRNAs transcribed from the endogenous

locus and the constitutively expressed ERT fusion gene. Instead we chose the

values of the proportionality constants so the simulations matched the observed

expression of Gata1 in the PU.1ERT and Spi1 in the GATA1ERT experiments re-

spectively.

The simulations were carried out with cl = 0 to simulate the progenitor con-

dition since the experiments had been conducted in undifferentiated FDCP-mix

cells. The simulations were compared to experimental data at equilibrium. The

GRN was simulated for 1000 hours to allow the solution to reach equilibrium. The
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ratio of each gene’s expression in the perturbed condition to its expression in the

unperturbed condition was computed to determine the fold change predicted by

the simulation. This was compared to the empirical fold change, computed as the

ratio of gene expression in treated cells to gene expression in control cells.

2.4.8 Analysis of gene regulation dynamics

The contribution of individual regulators to the activation or repression of a tar-

get was determined by decomposing the total regulatory input u =
∑N

j=1 Tijx
l
j +

bic
l + hi into its individual terms. The contribution of regulator j to the regu-

lation of gene i was determined by computing Tijx
l
j(t), where Tij is the genetic

interconnectivity of the two genes and xl
j(t) is the model solution for the mRNA

concentration of gene j at time t and condition l. Since the mRNA concentrations

vary in time, the relative contributions of the regulators to the activation or re-

pression of any target also vary in time. When the total regulatory input crosses 0,

that is u = 0, the regulation-expression S(u) = 1
2

(
u/
√

(u2 + 1) + 1
)
= 1

2
and the

mRNA is synthesized at half the maximum rate (Eq. 2.1). The time at which dif-

ferent genes achieve half-maximum expression was used to order their activation

in time.

2.4.9 Visualization of Tusi et al.’s scRNA-Seq data

The expression of Cebpa, Gfi1, and Spi1 in individual Kit+ hematopoietic progeni-

tors cells from mouse bone marrow (GEO GSE49991; Tusi et al., 2018) was visual-

ized as follows. The cells were arranged in 2D space as a k-nearest-neighbor (knn)
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graph according to their pairwise distances in gene expression space (SPRING al-

gorithm; Weinreb et al., 2018a). The potential landscape and the probability of

each cell to adopt a given fate were given by Population Balance Analysis (PBA;

see Weinreb et al., 2018b, for details). Genome-wide normalized gene expression

counts, the PBA potential, the PBA lineage probability, and the 2D SPRING coor-

dinates of each cell were obtained from

https://kleintools.hms.harvard.edu/paper_websites/tusi_et_al/.

https://kleintools.hms.harvard.edu/paper_websites/tusi_et_al/
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2.5 SUPPLEMENTARY DATA
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SFigure 2.1: Expression of the modeled genes in the Tusi et al.
scRNA-Seq dataset. The average expression in MPPs, erythroid
progenitors, and granulocytic progenitors is shown for the mod-
eled genes. Erythroid and granulocytic progenitors were identified
as having a PBA erythroid and granulocytic probability (see 2.4)
greater than 0.9 respectively. MPPs were identified as cells having a
low PBA probability (< 0.2) of belonging to any lineage. Error bars
show the standard error of the mean.
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els) are shown as violin plots. The scores were compared using the
Wilcoxon ranksum test with continuity correction (p = 3.8× 10−8).



102

0.0525

0.0550

0.0575

0.0600

−70 −50 −30 −20 −10 10 20 30 50 70

% change of expression at t=0

R
M

S

Acceptance threshold

Model 66

Zfpm1

Gata1

Klf1

Epor

Tal1

Gata2

Cebpa

Il3ra

Gfi1

Csf3r

Spi1

Stat3

SFigure 2.3: Sensitivity of the model to initial conditions. Model
66 was run with the initial conditions perturbed one gene at a time.
The x-axis is the magnitude of the perturbation. The y-axis is the
RMS. The perturbed gene is indicated by the color of the points.
The dotted line is the RMS of model 66 and the black line is the
goodness-of-fit threshold RMS.



103

0

0.5

1

1.5

Zfpm1

 

 
Simulation (Ery. Cond.)

Progenitor State

Gata2

0

0.5

1

1.5

Gata1

 

 
Data (Neu. Cond.)

Simulation (Neu. Cond.)

Cebpa

0

1

Klf1 Il3ra

0

0.5

1

1.5

Epor Gfi1

0

0.5

1

1.5

Tal1 Csf3r

0 50 100 150
0

0.5

1

1.5

Stat3

0 50 100 150

Spi1

Time (hrs)

R
e
la

ti
v
e
 e

x
p
re

s
s
io

n

SFigure 2.4: Simulation of Gata1 knockout. Gata1 knockout was
simulated in all 71 models that met the goodness-of-fit criteria. Their
output is plotted as lines. The symbols and colors are the same as in
Fig. 2.1.



104

STable 2.1: The values of the parameters of the gene circuit models
that met the goodness-of-fit criteria

Columns correspond to parameters while rows correspond to models. Tij are
shown as T_Genei_Genej, bi are shown as b_Genei, hi are shown as h_Genei, Ri

are shown as R_Genei, and λi are shown as lambda_Genei.
https://doi.org/10.1371/journal.pcbi.1009779.s005 (TSV)

https://doi.org/10.1371/journal.pcbi.1009779.s005
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STable 2.2: Comparison of model predictions with published ex-
perimental evidence

Each row compares a model prediction about a genetic interconnectivity pa-
rameter Tij , representing the regulation of gene i by gene j, with published
experimental evidence. Comparisons of the same parameter to multiple papers
are listed in separate rows. Tij is listed as T_Genei_Genej. The prediction column
lists the type of regulation inferred by the model. It shows activation or repression
when the first quartile of the distribution of the inferred parameter is positive
or if the third quartile of the distribution is negative respectively (Fig. 2.4). The
prediction column shows “sign not constrained” when the interquartile range
spans negative and positive values. The experiment column lists that type of
interaction established in the paper. If the paper describes evidence only of
binding but not whether the target is activated or repressed, then the entry is
“binding”. Negative experimental results are listed as “no effect found”. The
entry in the experiment column is ”not found” if we were not able to find any
published tests of the parameter in question. The “Status of prediction” columns
lists whether the evidence matches the prediction or not. “confirmed” implies
agreements, while “incorrect prediction” implies disagreement. An asterisk
indicates that conflicting experimental evidence was found. Conflicting evidence
was found for the regulation of Gata1, Spi1, and Gata2 by Gfi1 (Moignard et al.,
2013). Situations where no evidence was found or the paper reported negative
results are listed as “undetermined”. The “Type of evidence” column classifies
the evidence as genetic, protein-protein interaction, cis regulation, or functional
cis regulation. Genetic evidence involves genetic manipulation of the predicted
regulator followed by a characterization of the target’s expression and usually
cannot distinguish between direct and indirect effects. Protein-protein interaction
implies biochemical evidence of direct protein-protein interactions. cis regulatory
evidence indicates direct interactions by identifying regulatory elements or
binding sites potentially bound by the predicted regulator but does not establish
a functional relationship between binding and the expression of the target gene.
Functional cis regulation goes a step further and manipulates the binding sites and
measures reporter or target expression to provide evidence that the binding of the
regulator has functional impacts. The “Organism/Cells” and “Citation” columns
list the organism or cells in which the interaction was tested and the DOI URL for
the paper respectively. https://doi.org/10.1371/journal.pcbi.1009779.s006 (TSV)

https://doi.org/10.1371/journal.pcbi.1009779.s006
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CHAPTER 3

Classification-based Inference of Dynamical Models of Gene Regulatory

Networks

In the previous chapter, it was shown how the genetic architecture of a GRN can

be inferred by fitting gene circuits to gene expression time-series data using global

non-linear optimization methods such as simulated annealing (SA). Parallel Lam

SA (Chu et al., 1999; Manu et al., 2009b) required ∼6 hours to train one 12-gene

circuit on 10 processors. PLSA is a stochastic optimization method with many op-

timization parameters that needs to be executed hundreds of times to obtain confi-

dent networks, therefore long computational times can be impractical in the infer-

ence of big GRNs. This chapter presents a novel classification-based inference ap-

proach called Fast Inference of Gene Regulation (FIGR) (Fehr David A. et al., 2019)

to determining in an ultra-fast manner gene circuit parameters. FIGR exploits the

switch-like nature of gene regulation by breaking the gene circuit inference prob-

lem into two simpler optimization problems. In (Fehr David A. et al., 2019) it was

demonstrated that FIGR is faster than a global non-linear optimization by a factor

of 600 during the inference of gap system in Drosophila melanogaster. Additionally,

in FIGR the computational complexity scales much better with GRN size, making

the inference of GRNs more practical. This chapter presents parts of the paper

(Fehr David A. et al., 2019) where I performed an accuracy comparison between

FIGR and SA run on synthetic GRNs.
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3.1 INTRODUCTION

Development is controlled by gene regulatory networks (GRNs) that integrate ex-

trinsic signals and intrinsic cell state to make decisions about cell fate (Levine &

Davidson, 2005; Davidson & Levine, 2008). Modeling of GRNs is an important

approach to understanding a wide variety of developmental processes such as

pattern formation (Manu et al., 2009b,a; Verd et al., 2018; Balaskas et al., 2012),

cell-fate specification (Hamey et al., 2017; May et al., 2013), pluripotency and cell-

fate reprogramming (Collombet et al., 2017; Li & Wang, 2013), oncogenesis (Tyson

et al., 2011), and regeneration (Pietak et al., 2019). Over the past decade or so, it

has become clear that developmental GRNs comprise tens to hundreds of densely

interconnected genes (Davidson et al., 2002a; Novershtern et al., 2011) rather than

a few so-called master regulators. Moreover, developmental GRNs are wired re-

cursively since the genes encoding transcription factors (TFs) are themselves reg-

ulated by other TFs or indirectly by non-TF gene products (Palani & Sarkar, 2008;

Kueh et al., 2013). Their large size and high interconnectivity make the modeling

of developmental GRNs a challenging problem.

Coupled ordinary or partial differential equations (ODEs or PDEs) are a natu-

ral choice for modeling GRNs since GRNs are nonlinear dynamical systems (Manu

et al., 2009a; Weston et al., 2018; Li & Wang, 2013; Laslo et al., 2006) whose time

evolution depends on their state. The state is defined by the concentrations of

gene products and the equations are parameterized by constants with a biochem-

ical or biophysical underpinning, such as synthesis and degradation rates and

binding constants. Estimating the values of these parameters is necessary for sim-
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ulating the time evolution of GRN state but direct in vivo biochemical measure-

ment of the large numbers of parameters involved is generally infeasible if not

outright impossible. One approach to estimating parameter values is to search in

parameter space for broad regions that reproduce the qualitative behavior of the

system (Huang et al., 2007; Laslo et al., 2006; Li & Wang, 2013; Hong et al., 2012).

The other approach (Reinitz & Sharp, 1995; May et al., 2013) to parameter estima-

tion is data-driven, that is, parameter values are inferred by fitting the ODEs or

PDEs to quantitative observations of GRN state sampled in space and/or time.

In inferring parameters from quantitative data, data-driven differential equation

modeling of GRNs provides a framework for understanding developmental cel-

lular decisions at a quantitative and predictive level.

Here we focus on a specific data-driven and predictive ODE modeling frame-

work, termed gene circuits, that has been particularly successful in inferring and

modeling developmental GRNs from spatiotemporal protein (Jaeger et al., 2004a;

Manu et al., 2009b,a; Kozlov et al., 2012; Hengenius et al., 2011) or mRNA (Crom-

bach et al., 2012) data. Gene circuits determine the time evolution of protein or

mRNA concentrations using coupled nonlinear ODEs in which synthesis is rep-

resented as a switch-like function of regulator concentrations. The values of the

free parameters define the regulatory influences among the genes in the network.

Gene circuits do not presuppose any particular scheme of regulatory interactions,

but instead determine it by estimating the values of the parameters from quan-

titative data using optimization. Gene circuits infer not only the topology of the

GRN but also the type, either activation or repression, and strength of interac-
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tions. Most importantly, the inference procedure yields ODE models that can be

used to simulate and predict developmental perturbations (Jaeger et al., 2004b;

Manu et al., 2009b,a; Wu et al., 2015; Verd et al., 2018).

Despite its successes, the gene circuit method suffers from the drawback that

parameter inference is computationally expensive. Efficient optimization meth-

ods, such as steepest descent (Gursky et al., 2004) are guaranteed to find the global

minimum only if the cost function, usually the sum of squared differences be-

tween model output and data, is convex—has a unique minimum—which is not

the case in such problems. This implies that the only practical approach currently

available for fitting gene circuit models is global nonlinear optimization with tech-

niques such as simulated annealing (SA; Kirkpatrick et al., 1983; Lam & Delosme,

1988a,b), that minimize the cost function by searching the high-dimensional pa-

rameter space stochastically. Not only do global nonlinear optimization methods

need to make millions of cost function evaluations in order to find the minimum,

but each evaluation is itself quite costly since it involves solving a set of cou-

pled differential equations. Furthermore, the computational cost scales poorly,

as O(G3), with gene number G, since G ODEs are solved in each function eval-

uation and the number of cost function evaluations required is proportional to

the number of parameters (O(G2)). High computational cost and poor scalabil-

ity have hamstrung the application of the gene circuit method to larger networks

or more broadly in development. Gene circuits have only been inferred for rela-

tively small networks so far (Reinitz & Sharp, 1995; Manu et al., 2009b; Cotterell

& Sharpe, 2010; May et al., 2013; Verd et al., 2018).
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One approach to speeding up the inference procedure has been to explore dif-

ferent global optimization methods such as evolutionary algorithms (Kozlov &

Samsonov, 2009; Kozlov et al., 2012) and scatter search (Abdol et al., 2017). Alter-

native global optimization methods do not circumvent the problem of high com-

putational cost since each cost function evaluation still involves the solution of

coupled ODEs. Another important strategy for inferring gene circuits in a reason-

able amount of time has been the development of parallel optimization algorithms

such as parallel Lam simulated annealing (pLSA; Chu et al., 1999) and Differential

Evolution Entirely Parallel (DEEP; Kozlov & Samsonov, 2009; Kozlov et al., 2012),

including attempts at reducing communication overhead (Jostins & Jaeger, 2010;

Lou & Reinitz, 2016). Although parallel methods reduce the absolute amount of

time required to infer a gene circuit of a given size, they nevertheless suffer from

the scaling problem.

In this paper we present an alternative approach, FIGR (Fast Inference of Gene

Regulation), for determining gene circuit parameters that is significantly more

computationally efficient than global nonlinear optimization. Our algorithm ex-

ploits the observation that the inference of the connectivity of a given gene can be

rephrased as a supervised learning problem: to find a hyperplane in state space

that classifies observations into two groups, one where the gene is ON and the

other where the gene is OFF. Our algorithm determines whether a gene is ON or

OFF at a given observation point by computing the time derivative of concentra-

tions in a numerically robust manner. It then performs classification using either

logistic regression or support vector machines (SVM) to determine the equation
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of the switching hyperplane. The genetic interconnectivity can then be computed

from the coefficients of the hyperplane equation in a straightforward manner. We

have implemented the algorithm in MATLAB and tested its ability to recover the

genetic interconnectivity of random GRNs of up to 50 genes from simulated data.

The algorithm works as expected and recovers parameters accurately, provided

that sufficient data are available. We also demonstrate the ability of our method

to correctly infer the gap gene regulatory network of Drosophila melanogaster from

empirical data. We observed a∼600-fold speed up relative to simulated annealing

on the gap gene problem.

3.2 MATERIALS AND METHODS

3.2.1 Validation of FIGR with synthetic data

3.2.1.1 Generation of synthetic data from random gene circuits

Random gene circuits were generated and simulated to generate synthetic data as

follows. The synthesis rates Rg and degradation rates λg were drawn uniformly

from the interval [0.5, 2]. We chose the genetic interconnectivity coefficients Tgf

and threshold hg such that the switching hyperplane passed through a random

point xcen drawn uniformly from the bounding hypercube (0 < xcen
g < Rg

λg
), and

the normal to the switching hyperplane (T̂g) was drawn uniformly from the unit

G-sphere, where G is the number of genes in the GRN. We generated N trajectories

starting at random initial position xn(t = 0) drawn uniformly from the bounding

hypercube by integrating the Glass equations without diffusion (Eq. 3.3) using
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MATLAB’s ode45 solver. We stored the values of these functions xng(tk) at Nt

timepoints equally subdividing the interval of the simulation ([0, 2]) to serve as

synthetic data for both FIGR and SA.

3.2.1.2 Inference with FIGR

Gene circuits were inferred using FIGR as described in Section FIGR: Classification-

based inference. The user-defined options and parameters utilized in this study

are provided in STable 3.1.

3.2.1.3 Inference with SA

SA was carried out with gene circuit C code in serial largely as described previ-

ously (Manu et al., 2009b) save for a few modifications. The quality factor λ was

set to 0.001 and the averaging parameters λu and λv were set to 200 and 1000 re-

spectively. The stopping criterion was 0.001. The parameter controlling the search

space of the regulatory parameters Λ was set to 0.1. The search space of Rg and λg

were set to (0.4, 2.1). The Glass equations (Eq. 3.3) were solved using a 4th order

Runge-Kutta solver. Since SA is a stochastic method, different optimization runs

yield slightly different gene circuits. The inferences were carried out in 5 repli-

cates, each starting for a random set of initial parameter values. For each synthetic

dataset, several replicates having low RMS could be identified. The circuit with

the lowest RMS was chosen for further analysis.
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3.2.2 Data Availability

SFig. 3.1 shows the fraction of genetic interconnectivity signs inferred correctly

from synthetic data. SFig. 3.3 shows the training error of SA-inferred gene cir-

cuits. SFig. 3.3 shows the inference of hg and kinetic parameters from synthetic

data. STable 3.1 lists user-defined options and parameters utilized in FIGR code.

SFrame 3.5 describes an alternative method for determining kinetic parameters in

FIGR. FIGR Source code is freely available at http://github.com/mlekkha/FIGR.

3.3 RESULTS

3.3.1 Gene circuit models of GRNs

We consider a GRN of G genes whose state at time t is defined by the concen-

trations of the gene products xg(t), g = 1, 2, · · · , G. We assume that the GRN

functions cell autonomously, that is, the expression of the genes is independent

of the state of other cells. Gene circuits (Reinitz & Sharp, 1995) describe the time

evolution of xg(t) according to G coupled ordinary differential equations,

dxg

dt
= Rg S

(
G∑

f=1

Tgfxf + hg

)
− λgxg, (3.1)

where Rg is the maximum synthesis rate of product g. Tgf are genetic intercon-

nectivity coefficients describing the regulation of gene g by the product of gene

f . Positive and negative values of Tgf signify activation and repression of gene g

by gene f respectively. The threshold hg determines the basal synthesis rate, and

http://github.com/mlekkha/FIGR
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λg is the degradation rate of product g. Nominally, all genes in the model also

function as regulators, so that both g and f run over the range 1, 2, 3, . . . , G. Some-

times such gene networks include upstream regulators that are not themselves

influenced by other gene products represented in the model. For example, in

the Drosophila segmentation gene network, maternal proteins such as Bicoid acti-

vate the zygotically expressed genes, but are not regulated by their targets (Akam,

1987). An upstream regulator g can be represented by setting Tgf = 0 for all f .

S(u) is the regulation-expression function, which determines the fraction of

the maximum synthesis rate attained by the gene given the total regulatory input

u =
∑G

f=1 Tgfxf+hg. S(u) is required to have a switch-like dependence on u and to

take values between 0 and 1. If the total regulatory input has large positive values,

u � 0, as a result of high activator concentrations, low repressor concentrations,

or both, S(u) ∼ 1 and the gene product is synthesized at the maximum rate Rg.

If the total regulatory input has large negative values, u � 0, so that S(u) ∼ 0,

the gene product is not synthesized. One sigmoid function that satisfies these

properties,

S(u) = σ(u) =
1

2

(
u√

1 + u2
+ 1

)
, (3.2)

has been utilized almost exclusively in previous studies (Reinitz & Sharp, 1995;

Jaeger et al., 2004a; Manu et al., 2009b; Kozlov et al., 2012). However, any func-

tion that satisfies these rather general properties is a valid regulation-expression

function.
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3.3.1.1 Glass networks

In what follows, we show that one choice of the regulation-expression function

permits a radical simplification of the gene circuit inference problem. If the regulation-

expression function is chosen to be the Heaviside function,

S(u) = Θ(u) =

 0 if u < 0

1 if u ≥ 0.

the resulting differential equations (Eq. 3.1) are piece-wise linear and are referred

to as Glass networks (Glass & Kauffman, 1973; Edwards, 2000; Glass & Pasternack,

1978; Mestl et al., 1996).

Using the state vector x = (x1, x2, . . . , xG) to represent a point in the G-dimensional

state space of the model and the vector Tg to represent the gth row of the genetic

interconnectivity matrix, the Glass equations may be written as

dxg

dt
= Rg Θ(Tg · x+ hg)− λgxg, g = 1, 2, 3, . . . , G. (3.3)

The gene may said to be “ON” or “OFF” depending on whether the gene product

is being synthesized or not respectively. Equation (3.3) implies that

gene g is


ON if Tg · x+ hg > 0

OFF if Tg · x+ hg < 0.

(3.4)

Thus the “gene g ON” and “gene g OFF” configurations are separated in state
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space by the hyperplane defined by the equation Tg · x + hg = 0. We call this the

switching hyperplane. Tg is the normal to the switching hyperplane and Tg · x+ hg

is the perpendicular distance of any point x to the hyperplane. Furthermore,

xg(t) =


xg(0)e

−λgt + Rg

λg
(1− e−λgt) if ON for t ≥ 0

xg(0)e
−λgt if OFF for t ≥ 0.

(3.5)

Equations (3.4) and (3.5) imply that for Glass networks, the regulatory param-

eters, Tg and hg, and the kinetic parameters, Rg and λg, are separable. The former

determine the switching hyperplane, while the latter determine the trajectories on

either side of the hyperplane. Figure 3.1D,G shows examples of the switching hy-

perplanes and trajectory of a two-gene gene circuit (Fig. 3.1A,B) having a stable

spiral equilibrium solution.



128

 

 
T11=-0.1

T12=1

T22=0

T21=-1
Gene A Gene B

B

Figure 3.1: Classification-based inference of an example gene cir-
cuit. A. Theoretical parameter values are listed by row for each
gene. The T matrix is shown in the first two columns, one col-
umn per regulator. Green (red) indicates activation (repression).
B. Schematic of the theoretical gene circuit. C. Parameters inferred
by FIGR. D,G. Trajectory in state space (purple) overlaid upon the
Heaviside regulation-expression function. Green (red) is ON (OFF).
The switching hyperplane is plotted as a blue line. Switching hy-
perplanes for genes A and B are showing in panels D and G respec-
tively. E,H. Sampled gene expression trajectories and assignment of
ON/OFF state for genes A (panel E) and B (panel H). Trajectories
are numerical solutions of Equation (3.3). Detected ON or OFF state
(Section Determining ON/OFF state) is indicated with green stars or
red circles respectively. F,I. Switching hyperplane (dashed blue line)
inferred using Logistic regression for genes A (panel F) and B (panel
I). Sampled trajectories annotated with ON/OFF state are plotted in
state space.
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3.3.2 FIGR: Classification-based inference

Let the expression of each gene be measured at Nt time points te, e = 1, · · · , Nt,

along trajectories starting from n = 1, · · · , N initial conditions. The goal of GRN

inference is to estimate the values of the gene circuit parameters T̃gf , h̃g, R̃g, and

λ̃g given the measurements xng(te).

In FIGR, we exploit the separability of the regulatory (Tg, hg) and kinetic (Rg,

λg) parameters to break up the inference problem into two distinct tractable sub-

problems. For inferring the parameters of any given gene, we classify the data

points into two classes—one in which the gene’s product is being synthesized (ON

class) and the other in which the product is not being synthesized (OFF class). The

regulatory parameters are inferred by determining the optimal G− 1 dimensional

hyperplane separating the two classes. The kinetic parameters can be inferred

either by fitting the piece-wise linear Glass equations to estimates of the rate of

change of gene product concentrations or by fitting Equation 3.5 to the gene prod-

uct concentration time series.

3.3.2.1 Determining ON/OFF state

We will assume that the gene product concentration, including initial concentra-

tion, is bounded by the maximum concentration determined by the synthesis and

degradation rates, that is,

0 ≤ xg <
Rg

λg

, g = 1, 2, 3, . . . , G. (3.6)



130

Let

yg ≡ (Tg · x+ hg) = ±1 (3.7)

represent the ON/OFF state of gene g. Then,

dxg

dt
=

 Rg − λgxg > 0 if Tg · x+ hg > 0

−λgxg ≤ 0 if Tg · x+ hg < 0.
(3.8)

This implies that the ON/OFF state of a gene can be determined by ascertaining

the sign of the velocity, vg =
dxg

dt
.

yg ≡ (Tg · x+ hg) =
dxg

dt
, g = 1, 2, 3, . . . , G. (3.9)

Gene expression data, such as those obtained from immunofluorescence or

high-throughput sequencing, inevitably contain noise. If the gene expression level

is close to its maximum (xg ≈ Rg/λg) or minimum level (xg ≈ 0), dxg

dt
is theoreti-

cally close to zero, but noise causes dxg

dt
to fluctuate, which might be interpreted as

spurious switching events. To avoid this problem, we identify a gene’s ON/OFF

state as follows. If the gene expression level xg is increasing (decreasing) at a rate

greater than a user-supplied velocity threshold vcg, then the gene is classified as ON

(OFF). Otherwise, if the expression level is above (below) a user-supplied expres-

sion threshold xc
g, then the gene is classified as ON (OFF). This can be summarized
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as

yg =


dxg

dt

dxg

dt
≥ vcg

(xg − xc
g)

dxg

dt
< vcg.

(3.10)

In our implementation of FIGR, cubic smoothing splines are fit to time series data

and differentiated to estimate velocity. Figure 3.1E,H illustrates the determination

of yg for an example two-gene network.

3.3.2.2 Determining regulatory parameters

Within the Glass model, the ON/OFF state of a particular target gene g, whose

index we shall omit from now on, is given by y = (T · x+ h) . Suppose that gene

product concentrations have been sampled P times, in time and in one or more

conditions or cell types. The gene ON/OFF state yp is determined for each ex-

perimentally measured state vector xp, p = 1, 2, 3, . . . , P , according to the method

described above (Section Determining ON/OFF state). Then, the regulatory pa-

rameters can be inferred by finding T̃ and h̃ such that

yp =
(
T̃ · xp + h̃

)
(3.11)

is satisfied for as many p as possible. Inferring the regulatory parameters therefore

reduces to the problem of linear binary classification (Hastie et al., 2009).

There are many well-known supervised learning algorithms for linear binary
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classification. We have used both support vector machines (SVM) and logistic

regression. An SVM finds a hyperplane buffered by the biggest possible margin

such that the number of points xp belonging to each class, “gene ON” or “gene

OFF”, is maximized on opposite sides of the margin zone. This can be accom-

plished by minimizing the cost function

χ(T, h, λ) = λT2 +
P∑

p=1

L(yp,xp), (3.12)

where the first term is a regularization penalty that maximizes the margin. The

second term is the hinge loss function, L(yp,xp) = max
(
0, 1−yp(T ·xp+h)

)
, which

is non-zero only for points that transgress their class boundary, each such point

contributing an amount proportional to its distance from the margin. The parame-

ter λ is used to choose the relative weight of the penalty and loss terms. Two-class

logistic regression models the posterior probability of the ON/OFF state of a point

as a logit transformation of its distance from the switching hyperplane. The op-

timal switching hyperplane can be found by minimizing Equation (3.12) with a

Binomial deviance loss function L(yp,xp) = log
{
1 + e−yp(T·xp+h)

}
. Figure 3.1C,F,I

illustrate binary classification for an example two-gene network.

Minimization of Equation (3.12) is a convex optimization problem, which can

be solved by quadratic programming or the Newton-Raphson method quite effi-

ciently, even for large G. This is the key benefit of the separation of regulatory and

kinetic parameters enabled by the Glass equations.
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3.3.2.3 Determining kinetic parameters

Having identified the ON/OFF state of a gene, yp, for P measurements of its con-

centration, xp, the Glass equations (Eq. 3.3) can be rewritten as

vp =


R− λxp if yp = +1,

−λxp if yp = −1.
(3.13)

The velocities v = dx
dt

are estimated by differentiating cubic smoothing splines fit to

the time series data (Section Determining ON/OFF state). Thus, for any particular

gene, Eq. (3.13) takes the form of P equations that are linear in the two unknowns

R and λ. This is an overdetermined linear system, so best estimates for R and

λ can be extracted by least-squares linear regression. In practice, the error in the

spline, and hence in v, is the largest when a gene is switching states. We therefore

exclude a user-configurable number of time points nearest to switching events.

This method is implemented as the “slope” method of FIGR. Alternatively, R

and λ can also be determined by fitting Equation 3.5 to the concentration data (see

File S1).

3.3.3 Validation of FIGR on synthetic data

As a first test of FIGR, we tested its ability to recover known parameters from syn-

thetic data. In each test, 100 randomly generated gene circuits (Section Validation

of FIGR with synthetic data) were simulated using the Glass equations (Eq. 3.3).

For each gene circuit, N trajectories starting from random initial starting points
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were computed and sampled at Nt time points to obtain synthetic time series data

resulting in NO = N × Nt observations per simulation. The quality of the infer-

ence depends not only on the effectiveness of the method but also on how well

determined the inference problem is. A gene circuit of G genes has Np = G(G+3)

parameters. If NO � Np, then the problem is well determined and the accuracy

of the inference depends primarily on the effectiveness of the algorithm. On the

other hand if NO ∼ Np then there isn’t a sufficient amount of data to infer the pa-

rameters accurately irrespective of the effectiveness of the algorithm. We checked

how effective FIGR is at inferring parameters of gene circuits of various sizes by

exploring different combinations of the number of free parameters and the num-

ber of data points. With the exception of the 50-gene network, we also inferred the

parameters with SA (Section Inference with SA) to serve as a point of reference.

Inference of 100 random 20-gene networks took 5 days on 500 CPUs with SA, and

hence it was impractical to infer 50-gene networks.

The inferred parameter values were compared to the known values by com-

puting the discrepancies between them. From the viewpoint of correctly predict-

ing a gene’s ON/OFF state, the accuracy of individual genetic interconnectivity

coefficients Tgf is less important than the accuracy with which the switching hy-

perplane has been inferred. Accordingly, we judged the accuracy of the genetic

interconnectivity matrix by computing the magnitude of the vector difference

between the unit normals of the theoretical (Tg) and inferred (T̃g) hyperplanes,

δT = ‖T̃g − Tg‖. When the angle between the unit normals is small, δT gives the

angle between them. δT =
√
2 implies that the inferred hyperplane is orthogonal
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to the theoretical one, and δT = 2 is the maximum value possible, implying that

the two normals are in exactly opposite directions and the assignment of ON/OFF

state has been reversed. We also computed the null distribution of δT which re-

sults from choosing the inferred unit normal at random uniformly on the unit G-

sphere. The discrepancies in the other parameters were computed as δh = |h̃g−hg|,

δR = |R̃g − Rg|, and δλ = |λ̃g − λg|, where h̃g, R̃g, and λ̃g are inferred parameter

values.

In the first set of simulations, we simulated networks of size ranging from two

to fifty genes (Fig. 3.2A–E) with N = 100 trajectories sampled at Nt = 21 time

points. The switching hyperplane is inferred with high accuracy (δT < 0.1 or

6 angle to the theoretical normal) for the vast majority of two-gene random gene

circuits, showing that FIGR is capable of recovering the true values of the param-

eters if a sufficient amount of data is available. As the size of the gene circuit,

and consequently the number of free parameters, increases, the accuracy declines.

However the inference is still fairly accurate for 20-gene networks since 75% of

the inferred hyperplanes have δT < 0.5 or less than a 30 angle to the theoretical

hyperplane. Inferring the signs of the genetic interconnectivity coefficients Tgf ,

that is, whether a regulator activates or represses a target, is an important goal in

gene circuit analysis. FIGR achieves 90% accuracy in inferring the signs of Tgf for

20-gene networks (SFig. 3.3). For 50-gene networks, the accuracy of quantitative

inference is quite low and most inferred hyperplanes have δT > 0.5 or larger than

a 30 angle to the theoretical hyperplane. This is not entirely surprising since a 50-

gene network has 2,650 free parameters, while the model is being inferred from
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only 2,100 observations. Although 50-gene networks are inferred with poor accu-

racy, the δT distribution is significantly better than the null distribution, suggest-

ing that the inferred parameters still contain information about GRN structure. In

fact, the signs of 82% interconnectivity coefficients are inferred correctly (SFig. 3.1)

suggesting that FIGR still works reasonably well at a qualitative level in a highly

underdetermined problem.

Hyperplanes inferred with SA also show a trend of decreasing accuracy with

increasing network size, suggesting that declining accuracy is a result of progres-

sive reduction in the determinacy of the problem rather than an intrinsic inability

of FIGR to infer larger networks. In fact, in nearly all cases, SA’s inferences were

more variable than FIGR, and were slightly less accurate than FIGR on the 20-

gene problem. The relatively lower accuracy of SA is not a result of poor fitting

since the RMS of most of the random gene circuit fits is less than 0.04 (∼4% error;

SFig. 3.3).

In the second set of simulations, we simulated random 20-gene networks, but

varied the number of sampled time points Nt (Fig. 3.2F,G) or the number of tra-

jectories N (Fig. 3.2H–J). Increasing or decreasing the number of time points to

41 or 11 respectively had a minimal effect on the quality of the inference of the

switching hyperplanes by FIGR or SA (compare to Fig. 3.2D). This suggested that

11 time points were sufficient to reliably estimate the genetic interconnection coef-

ficients. In contrast, decreasing the number of trajectories progressively reduced

accuracy and both FIGR and SA inferences were indistinguishable from the null

distribution when only 10 trajectories were sampled. Once again, this is not sur-
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prising since the 460 free parameters of a 20-gene network are being inferred from

only 210 observations. These results imply that while increasing temporal resolu-

tion beyond a certain point provides diminishing gains in accuracy, the number of

trajectories or conditions the trajectories are sampled from is a crucial parameter

influencing the quality of the inference.

The inference of hg (SFig. 3.3) was quite accurate and behaved like the infer-

ence of the switching hyperplanes. Increasing gene network size or reducing the

amount of data tended to reduce accuracy, although the effects were less pro-

nounced than what was observed while inferring switching hyperplanes. The

kinetic parameters were also inferred accurately by FIGR (SFig. 3.3). The accu-

racy of both Rg and λg increased with increasing number of time points but did

not depend on the number of genes or trajectories. This can be understood as a

consequence of the separation of regulatory and kinetic parameters in Glass gene

circuits—the inference of the kinetic parameters occurs independently for each

gene and depends only on the sampling frequency.
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Figure 3.2: Inference of genetic interconnectivity coefficients from
synthetic data. The distribution of the discrepancy between inferred
and theoretical switching hyperplanes, δT = ‖T̃g −Tg‖, in inferring
100 random gene circuits with FIGR or SA is shown as boxplots. T̃g

and Tg are unit normals to the inferred and theoretical hyperplanes.

(continued)
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Figure 3.2: Inference of genetic interconnectivity coefficients from
synthetic data (continued). Note that each boxplot is constructed
from 100G discrepancies since each random parameter set contains
G switching hyperplanes, where G is the number of genes. The
box lines are the first quartile, median, and the third quartile. The
whiskers extend to the most extreme values lying within 1.5 times
the interquartile range, and any datapoints outside the whiskers
are shown as crosses. The blue violin plot (“RAND”) shows the
null discrepancy distribution that would be obtained, P0(δT ) ∝
δT

G−2(1 − δ2

4
)
G−3
2 , if T̃g were not inferred but instead picked ran-

domly from a uniform distribution over the surface of the G-sphere.
The width of the violin plot is proportional to P0(δT ), and blue and
red vertical lines indicate quartiles and median respectively. A–E.
Number of trajectories N = 100 and number of timepoints Nt = 21.
The number of genes G was varied between 2 and 50 for FIGR and
2 and 20 for SA, since SA was impractical for G = 50. F,G. Number
of trajectories N = 100 and number of genes G = 20. The number
of timepoints Nt was varied between 41 (panel F) and 11 (panel G).
H–J. Number of genes G = 20 and number of timepoints Nt = 21.
The number of trajectories Nt was varied between 10 and 50.

Although the inference is quite accurate, the discrepancies are not zero for

most gene circuits and can be fairly large for a small number of gene circuits,

even in the 2-gene case. This results from constraints imposed by the intrinsic

dynamics of gene circuits and finite sample size. For instance, trajectories move

away from the switching hyperplane for autoactivating genes. In this case, the

initial conditions act as support vectors for the inferred hyperplane, which then

strongly depends upon the random sample of starting points. Another situation

that arises is that of a hyperplane that divides the bounding hypercube into ON

and OFF regions in a lopsided manner. Since initial points are sampled uniformly,

this results in too few sampled points in the vicinity of the hyperplane and poor



140

inference. Given that FIGR was at least as accurate as SA, these failure modes are

not specific to the inference methodology but likely represent fundamental lim-

itations of inferring differential equations models. These considerations are also

valid when inferring GRNs from empirical data. Such insights and their implica-

tions for parameter identifiability will be described elsewhere. Notwithstanding

these constraints, our analysis demonstrates that FIGR is capable of inferring pa-

rameters quantitatively when provided with a sufficient number of data points

and qualitatively (signs of Tgf ) even when the problem is underdetermined as in

the 50-gene case.

3.4 DISCUSSION

Gene circuits (Reinitz & Sharp, 1995; Jaeger et al., 2004a; Manu et al., 2009b) pro-

vide many unique advantages for inferring and modeling developmental GRNs.

The differential equations are biologically realistic in representing gene regulation

as a nonlinear switch-like function of TF concentrations. Gene circuits not only

infer the topology of the network but the directionality (causality), sign (activa-

tion/repression), and strength of regulatory interconnections. Most importantly,

gene circuits are not limited to inference but are capable of accurately simulat-

ing and predicting gene expression patterns. Finally, the use of differential equa-

tions allows gene circuits to compute transient solutions, an important factor in

simulating development since fate determination can occur before equilibrium is

reached (Manu et al., 2009a; Simcox & Sang, 1983). Despite the promise held by

gene circuits, their application, as of other data-driven differential equation mod-
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els, has been limited to smaller networks so far. Analysis of larger networks is

limited to correlative approaches (Margolin et al., 2006; Segal et al., 2003) that nei-

ther infer causality nor simulate or predict the time evolution of GRN state.

A major challenge in broader application of gene circuits is the high computa-

tional expense of inferring the free parameters from time series data. Currently,

the approach for inferring parameter values (Chu et al., 1999; Reinitz & Sharp,

1995; Kozlov et al., 2012; Abdol et al., 2017) is to solve (“integrate”) the ODEs to

obtain trajectories, compare with experimental trajectories, and refine parameters

using global optimization techniques such as SA. This procedure is slow and ex-

pensive because it requires performing multidimensional optimization on a com-

plicated cost function χ2({T, h,R, λ}) with many local minima and each function

evaluation involves solving a system of ODEs. Moreover, the computational com-

plexity grows rapidly (O(G3)) so that global optimization approaches for gene

circuits scale poorly with G.

In contrast, FIGR directly attempts to fit the differential equations, which de-

scribe how the velocities vg depend upon the concentrations xg. Tg and hg are

determined using binary classification (support vector machines or logistic regres-

sion). Both of these algorithms reduce to quadratic programming, and thence to

convex optimization. Subsequently, Rg and λg can be determined by linear re-

gression against velocities or non-linear regression against concentrations using

the piece-wise analytical solutions of the ODEs, which are even simpler optimiza-

tion problems. Each inference can be completed in a fraction of a second on a

consumer-grade computer, even with interpreted MATLAB code.
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The computational efficiency of FIGR does not come at the expense of accuracy.

In testing the recovery of known parameters from synthetic data (Fig. 3.2, S1, and S3),

we found that FIGR and SA had comparable accuracy for smaller gene circuits,

while FIGR had slightly higher accuracy than SA for 20-gene networks. We spec-

ulate that the lower accuracy of SA results from “sloppiness” (Gutenkunst et al.,

2007; Ashyraliyev et al., 2008; Kozlov et al., 2012)—insensitivity of model out-

put to certain genetic interconnectivity coefficients. If a certain parameter gives

similar solutions over some interval, then SA can infer any value in the interval

rather than the true value. This insensitivity can result from the compensatory

and redundant roles many parameters play in the model (Ashyraliyev et al., 2008;

Kozlov et al., 2012). For example, a high expression level can be achieved by hav-

ing higher activating genetic interconnection coefficients, by having higher syn-

thesis rates, or by having lower degradation rates. The higher accuracy of FIGR

could perhaps be attributed to the separation of the regulatory and kinetic pa-

rameters, which limits the opportunities available for redundant parameters to

produce similar solutions.

In representing synthesis as a binary ON/OFF choice, Glass equations (Eq. 3.3)

are similar to Boolean or logical models, which have been applied to a broad range

of developmental GRNs (Theiffry et al., 1993; Sánchez & Thieffry, 2001; David-

son et al., 2002b; Thieffry & Sánchez, 2003; Collombet et al., 2017; Bonzanni et al.,

2013). Given this similarity between Boolean models and Glass equations, FIGR

should be readily applicable to a large class of GRN modeling problems. More-

over, Glass equations relax the assumption made in logical models—that genes
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are expressed at a small number of discrete levels—to allow expression at any ar-

bitrary level. This makes Glass models more general than Boolean models and

capable of simulating transient dynamics during development.

Although in our tests FIGR was shown to be at least as effective as, and much

faster than, SA, it does have a few limitations. First, in order to estimate the veloc-

ity and determine ON/OFF state reliably, FIGR requires that the data be sampled

sufficiently frequently in time. Roughly speaking, during each time period in

which a gene is in a particular state (ON or OFF), its product concentration would

have to be sampled at least three times in order to ascertain the velocity and state.

FIGR therefore would not be suitable for datasets that have been sampled sparsely

in time. Methods reliant on solving the ODEs will, in contrast, attempt to fit the

trajectories to a sparsely sampled dataset, even if the actual inference achieved is

poor (Fig. 3.2J).

Besides the problem of computational efficiency, the broader application of

gene circuits, and indeed all nonlinear differential equation models, is limited by

a lack of understanding of parameter identifiability. Most commonly, a posteri-

ori confidence intervals for the parameter estimates are computed (Ashyraliyev

et al., 2008). Such calculations are based on the strong assumption that the so-

lution is linear in the parameters and that the measurement errors are normally

distributed. a posteriori parameter identifiability analysis also does not provide

any hints to improve experimental design for achieving better identifiability in

future studies.

Although we have not directly addressed the problem here, we anticipate that
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conceiving of and visualizing gene circuit inference as a classification problem

will lead to insights into parameter identifiability. For example, it is evident from

state space plots (Fig. 3.1F,I) that sampling gene expression trajectories closer to

the true switching hyperplane of the gene will lead to less “wiggle room” for the

inferred hyperplane and result in more accurate parameter inference. This im-

plies that datasets that measure gene expression near steady state, for example in

differentiated cell types, are unlikely to lead to accurate parameter inference irre-

spective of the number of data points sampled or the precision of the experiment.

Sampling transient trajectories densely when genes are turning ON or OFF is the

best strategy for accurate parameter inference. Another less obvious implication is

that it is easier to infer the regulation of negatively autoregulated genes than pos-

itively autoregulated ones. Trajectories move toward or away from the switching

hyperplane for negatively or positively autoregulated genes respectively, making

it more likely that sampled data points will lie near the hyperplane in the former.

This analysis will be reported elsewhere.

In summary, we have exploited features of the mathematical structure of gene

circuits to break a difficult optimization problem into a series of two, much sim-

pler, optimization problems. We have demonstrated that FIGR is effective on syn-

thetic as well as experimental data from a biologically realistic GRN. We have

validated the inferred gap gene model by comparing its parameters against mod-

els inferred with SA as well as comparing its output against experimental data.

The improvement in computational efficiency and scalability should allow the in-

ference of much larger GRNs than was possible previously.
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3.5 SUPPLEMENTARY DATA
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SFigure 3.1: Fraction of genetic interconnectivity signs inferred
correctly from synthetic data. The fraction of genetic intercon-
nectivity coefficients for which the sign was inferred correctly
(sgn(T̃gf ) = sgn(Tgf )) is shown. T̃gf and Tgf are inferred and the-
oretical genetic interconnectivity coefficients. N = 100 and Nt = 21.
SA was not run for G = 50 since it was impractical.
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SFigure 3.2: Training error of SA-inferred gene circuits. Boxplots
show root mean square (RMS) error of gene circuits inferred from
100 synthetic datasets using SA. For each combination of the num-
ber of genes G, the number of trajectories N , and the number of
timepoints Nt , synthetic datasets corresponding to 100 random pa-
rameter sets were generated. SA was used to infer 5 replicate gene
circuits from each dataset. The replicate with the lowest RMS is in-
cluded in the plot. The box lines are the first quartile, median, and
the third quartile. The whiskers extend to the most extreme values
lying within 1.5 times the interquartile range, and any datapoints
outside the whiskers are shown as dots.
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boxplots. Note that each boxplot is constructed from 100G param-
eter values since each random parameters set contains G values of
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(continued)
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SFigure 3.3: Inference of h, g, and kinetic parameters from syn-
thetic data (continued).The box lines are the first quartile, median,
and the third quartile. The whiskers extend to the most extreme
values lying within 1.5 times the interquartile range, and any data-
points outside the whiskers are shown as crosses. AE. Number of
trajectories N = 100 and number of timepoints Nt = 21. The num-
ber of genes G was varied between 2 and 50 for FIGR and 2 and 20
for SA. F,G. Number of trajectories N = 100 and number of genes
G = 20. The number of timepoints Nt was varied between 41 (panel
F) and 11 (panel G). HJ. Number of genes G = 20 and number of
timepoints Nt = 21. The number of trajectories N t was varied be-
tween 10 and 50. SA was not run for G = 50 since it was impractical.

Alternative method for determining kinetic parameters In the diffusion-less case,

in addition to fitting the Glass equations to velocity data (Eq. 3.13), the kinetic

parameters R and λ can also be determined by fitting Glass equation solutions

(Eq. 3.5) to the concentration time series data. We identify time intervals during

which all y are either positive or negative so that

xm(tk) =


xm(t0)e

−λ∆tk + R
λ
(1− e−λ∆tk) if ym(tk) = +1 ∀k,

xm(t0)e
−λ∆tk if ym(tk) = −1 ∀k,

(3.14)

where m and k index the time intervals and the time points lying inside a partic-

ular interval respectively. Within a particular interval, xm(tk) is the concentration

at the kth time point, xm(t0) is the initial concentration, and ∆tk = tk − t0 is the

time elapsed from the start of the interval. Equations 3.14 are P � 2 non-linear

equations with two unknowns, R and λ, and can be fit relatively easily using

off-the-shelf non-linear optimization methods. We used MATLAB’s lsqnonlin
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STable 3.1: User-defined options and parameters utilized in FIGR
code

User-defined options and parameters utilized in FIGR code The spline smooth-
ing parameter is passed to the spline-fitting csaps function of MATLAB. It takes
values between 0 and 1, where 1 implies no smoothing while 0 results in a straight-
line fit

function that implements a Trust-Region algorithm. This is implemented as the

“conc” method of FIGR.
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CHAPTER 4
Neutrophil-macrophage differentiation in PUER cells

Chapter 2 presented a data-driven model simulating a 12-gene GRN for erythrocyte-

neutrophil differentiation inferred by training on a high temporal resolution dataset

(May et al., 2013). Inferring comprehensive and accurate GRN models requires

frequent sampling of gene expression over the entire course of differentiation. Be-

sides the requirement for frequent sampling, one of the insights gained in Chap-

ter 2 was that a limited training dataset may not contain sufficient information to

accurately infer regulatory parameters for certain genes. For example, the poorly

constrained parameters of Gata2 might have been the result of Gata2 having very

similar expression patterns in the two conditions. Potential remedies for the lack

of information in a dataset would be to either supplement with genetic pertur-

bation data or to include high temporal resolution data from other lineages dur-

ing training, to increase the amount of information for constraining parameters.

This chapter presents the analysis of a high-resolution time-series gene expression

dataset from the in vitro differentiation of macrophages and neutrophils. These

data provide an extra layer of information on gene expression dynamics in dif-

ferentiating neutrophils and macrophages that should help us further understand

the causality of regulatory events and develop more comprehensive models. The

differentiation experiment was performed by Andrea Repele. I performed the

data pre-processing and analysis.
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4.1 INTRODUCTION

Macrophages and neutrophils are developmentally closely related cell types that

share a common progenitor, the granulocyte-monocyte progenitor (GMP) (Gör-

gens et al., 2013; Keohane, 2020). PU.1, a member of the ets family of TFs, plays

a crucial role in the development of white blood cells (Scott et al., 1994). PU.1 is

expressed in a cell-type specific manner and different levels of PU.1 expression

are associated with different types of white blood cells. High levels of PU.1 pro-

duce macrophages, while intermediate levels of PU.1 induce the differentiation of

neutrophils (Scott et al., 1994; Zhang et al., 1997; Dahl et al., 2003). Another key TF

regulating macrophage-neutrophil differentiation is Cebpa. Cepba−/− mice have

neutropenia while enforced expression of Cebpa in B-cell precursors reprograms

them into macrophages (Xie et al., 2004). Based on overexpression experiments

in bone-marrow progenitors from Spi1−/− mice, the macrophage-neutrophil de-

cision is thought to be determined by the ratio of PU.1 and C/EBPα proteins,

with a larger ratio favoring the macrophage fate and a smaller ratio favoring

the neutrophil fate. PU.1 and C/EBPα are thought to promote the expression of

Egr1/Egr2/Nab2 and Gfi1 respectively that repress the alternative fate. This GRN

has been modeled as a bistable switch (Laslo et al., 2006). Genetic perturbations

and chromatin immunoprecipitation followed by sequencing from single murine

cells revealed another bistable switch regulating macrophage and neutrophil cell-

fates, this time comprised of mutually repressive Irf8 and Gfi1 (Olsson et al., 2016).

Aside from these few key regulators thought to govern the cell-fate decision, the

larger GRN remains uncharacterized (Wang et al., 2020). Furthermore, despite in-
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tensive study in this area, the how these TFs initiate the macrophage or neutrophil

gene expression programs and especially the temporal sequence and causality of

events remains poorly understood (Keightley et al., 2017; Guanglan et al., 2020).

In order to discover the larger GRNs controlling the macrophage-neutrophil

decision and the initiation of the macrophage and neutrophil gene expression pro-

grams, we acquired a high temporal resolution RNA-Seq dataset of in vitro macro-

phage-neutrophil differentiation. We utilized PU.1 estrogen receptor (PUER) cells,

an important model system for macrophage-neutrophil differentiation (Dahl et al.,

2003; Bertolino et al., 2016; Repele et al., 2019a). PUER cells are an IL-3 dependent

hematopoietic progenitor cell line derived from the fetal liver of PU.1−/− mice in

which PU.1 has been reintroduced after fusion to the ligand binding domain of

the estrogen receptor (Walsh et al., 2002). The estrogen receptor domain is pref-

erentially regulated by tamoxifen (OHT), which when present in the cells allows

the PUER fusion protein to act as a TF. PUER cells can be maintained indefinitely

as bipotential progenitors by culturing in IL-3 media and can be differentiated

into macrophages by OHT treatment. PUER cells can also be differentiated into

neutrophils by substituting G-CSF for IL-3 and inducing with OHT.

PUER cells were differentiated into macrophages and neutrophils and genome-

wide gene expression was assayed by RNA-Seq at 29 timepoints along both lin-

eages over the course of seven days (Fig. 4.8). The analysis of the RNA-seq data re-

vealed rich temporal gene expression patterns during the differentiation of PUER

cells and found thousands of differentially expressed genes (DEGs) between the

endpoints of differentiation. Correlations between samples and principal com-
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ponents analysis reveal there is a sudden large-scale transition occurring around

8− 12h after OHT addition. Furthermore, genes expressed differentially between

consecutive time points were also identified. The first 12h of differentiation had

the highest number of DEGs, suggesting that the differentiation has the highest

momentum at early time points. Moreover, gene ontology (GO) analysis of early

DEGs revealed that comparisons until 4h were enriched in myeloid differentiation

GO terms but the 4h/8h and 8h/12h comparisons were not enriched in terms for

myeloid differentiation but for metabolic and ribosome biogenesis terms. These

findings suggest that the first observed transition around 8h corresponds to large-

scale physiological reprogramming and that the cell-fate decision is made in the

first few hours of differentiation.

4.2 RESULTS

4.2.1 Global changes in the gene expression landscape during myeloid differ-

entiation

As a first step we sought to uncover temporal patterns of changes in genome-wide

gene expression. We computed Pearson correlation of genome-wide gene expres-

sion between all pairs of time points (Fig. 4.1). As one would expect, the correla-

tion coefficient is higher for nearby time points and reduces as the difference be-

tween the time points increases. The largest effect is that of G-CSF pre-treatment

(−48h vs. 0h; Fig. 4.1A), which can be understood as the result of the large time

difference of 48 hours and the important role that G-CSF plays in the growth and

maturation of hematopoietic cells (Franzke, 2006). Unexpectedly, we found that



160

time points could be divided into at least two groups, early (< 12 hours) and

late (≥ 12 hours), so that timepoints have much higher correlation within each

group than to timepoints from the other group. This is most easily discerned in

the macrophage differentiation in IL-3 conditions (Fig. 4.1B). For example, the 16h

timepoint has very low correlation, 0 ≥ r < 0.2, with the 2h timepoint in the early

group, occurring only 14 hours earlier, but has very high correlation, r > 0.8, with

the similarly spaced 32h timepoint in the late group. Although post-OHT time-

points have higher correlation overall, a similar pattern is discernible in the G-CSF

condition. That the differentiation can be divided into two phases suggests that

there is a large-scale transition in genome-wide gene expression patterns occur-

ring around 8− 12 hours.
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Figure 4.1: Heatmap of genome-wide gene expression correlation.
Pearson correlation coefficient between all pairs of timepoints in G-
CSF (A) and IL-3 (B) conditions. The Pearson correlation coefficient
was calculated between the mean genome-wide gene expression of
all pairs of time points. The expression of each gene was scaled
between 0 and 1 beforehand.

We further characterized the global patterns of gene expression time evolution

using principal component analysis (PCA) (Fig. 4.2). The first two principal com-

ponent axes accounted for 45% of the total variance in the data, hinting that there

are two main effects and that the two-dimensional space is a good approximation

to the high-dimensional gene expression space. The G-CSF and IL-3 conditions

follow distinct differentiation trajectories and are separated by a large shift along

the PC1 axis, occurring during the G-CSF pre-treatment, which implies that the

first principal component corresponds to the effect of G-CSF. In both the G-CSF

and IL-3 conditions, the trajectories move along the PC2 axis after OHT addition
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at 0h, suggesting that the second principal component corresponds to the effect of

PU.1 and time. The displacement between the 8h and 12h IL-3 time points is the

second largest after that of G-CSF pre-treatment, which implies a very large rate of

change in genome-wide gene expression given that it occurs in only 4 hours com-

pared to the 48 hour duration of G-CSF pre-treatment. Similar but smaller jumps

are observed between the 4h and 8h G-CSF and the 72h and 80h IL-3 time points,

while there is a sharp reversal of the direction of movement at the 136h IL-3 time-

point. These jumps corroborate the inference drawn from the Pearson correlation

analysis (Fig. 4.1) that there is a large-scale transition in the pattern of genome-

wide gene expression around 8− 12 hours after OHT induction, and indicate that

there are other such transitions occurring at later stages of the differentiation as

well.
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Figure 4.2: Principal components analysis of all the samples. Gene
expression was standardized to have zero mean and unit variance.
The samples are plotted along the first two principal components,
PC1 and PC2, that account for 45% of the total variance.

4.2.2 Diversity of temporal patterns of transient gene expression

In order to gain insight into the genome-wide transitions occurring during the

course of differentiation we next analyzed the temporal patterns of the expression

of individual genes. We enriched for genes likely to be regulated during the dif-

ferentiation process by first identifying genes expressed differentially between the

end points, undifferentiated PUER cells, −48h G-CSF or 0h IL-3, and 7-day OHT

treated samples, 168h G-CSF or IL-3 (Fig. 4.3A,D). 43% and 27% of genes were

differentially expressed between the end points in G-CSF and IL-3 conditions re-
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spectively. The neutrophil differentiation is the compounded effect of G-CSF and

OHT treatments and one may discern between the two by identifying genes differ-

entially expressed because of G-CSF pre-treatment, by comparing −48h samples

to 0h G-CSF samples, and those differentially expressed before and after 7 days

of OHT treatment, by comparing 0h to 168h G-CSF samples (Fig. 4.3B,C). Con-

sistent with both the correlation analysis and PCA, more genes are differentially

expressed due to G-CSF pre-treatment (37%) than due to OHT treatment (29%),

even though the latter is conducted over a larger time interval. There is significant

overlap in the genes differentially expressed in the two conditions with common

DEGs comprising 73% and 44% of all the genes differentially expressed between

IL-3 endpoints and G-CSF endpoints respectively (Fig. 4.3E,F).
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Figure 4.3: The identification of genes expressed differentially be-
tween the endpoints of the differentiation. A–D) Scatter plots of p-
value vs. fold change for all the genes. The p-value and fold change
thresholds used to identify DEGs (Section 2.4) are shown as hor-
izontal and vertical dashed lines respectively. (A) Comparison of
undifferentiated PUER cells (−48h) with cells treated with OHT for
7 days in G-CSF conditions (168h).

(continued)
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Figure 4.3: The identification of genes expressed differentially be-
tween the endpoints of the differentiation. (continued). (B) Com-
parison of PUER cells pre-treated with G-CSF for 48 hours (0h) with
cells treated with OHT for 7 days in G-CSF conditions (168h). (C)
Comparison of undifferentiated PUER cells (−48h) with those pre-
treated with G-CSF for 48 hours (0h). (D) Comparison of undiffer-
entiated PUER cells (−48h) with those treated with OHT for 7 days
in IL-3 conditions (168h). (E,F) Overlap of DEGs for selected time
points for up-regulated (E) and down-regulated (F) genes.

The temporal expression patterns of the differentially expressed genes are very

diverse and show extensive transient regulation, in which expression at the start

and end of differentiation is similar but is modulated in the middle (Fig. 4.4). In

order to better reveal broader patterns, the genes were clustered hierarchically ac-

cording to the similarity of their temporal expression patterns. Several patterns

are noticeable. Consistent with all the previous analyses, G-CSF pre-treatment ex-

erts significant effect on the gene expression, with a large number of genes turn-

ing off and a smaller but still sizeable group turning on at 0h in the G-CSF treat-

ment (Fig. 4.4A). Another significant shift in the gene expression occurs around

the 8−12h time point, when a large number of genes are upregulated and a smaller

number of genes are downregulated. Furthermore, the number of genes coordi-

nately regulated in this manner is greater in the IL-3 condition than the G-CSF

condition. Also discernible in the IL-3 condition, but less so in the G-CSF condi-

tion, are several waves of transient gene upregulation and downregulation during

the first 8 hours of differentiation, with different groups of genes peaking at dif-

ferent timepoints. To summarize, the temporal gene expression patterns further
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corroborate the transitions inferred previously, show that the first 8− 12 hours of

differentiation involve rapid changes in expression, and reveal extensive transient

and coordinated regulation of groups of genes.

Figure 4.4: Transient expression of differentially expressed genes.
The expression of all differentially expressed genes, scaled between
0 and 1, is shown as a color map. Genes are clustered hierarchically
according to the Pearson correlation of scaled temporal expression
patterns. (A) G-CSF. Plotted genes are the union of DEGs identified
in the comparisons between −48h and 168h, −48h and 0h, and 0h
and 168h (Fig. 4.3A–C). (B) IL-3. DEGs identified in the comparison
between 0h and 168h.



168

4.2.3 Gene expression changes most rapidly during the earliest stages of the

differentiation

Temporal gene expression patterns of differentially expressed genes suggested

that most of the changes in genome-wide gene expression are concentrated in the

first 12 hours of the differentiation. Next, we sought to check whether this was

the case for all genes. We determined the genes differentially expressed between

consecutive timepoints and utilized the number of such genes as a measure of the

rate of change (Fig. 4.5). The timing of sharp gene expression shifts during the

differentiation may indicate important moments when crucial lineage decisions

are made. Most DEGs between consecutive time points are detected before the

12h timepoint in both conditions. This implies that rapid, early changes during

the first 12 hours after OHT induction are general feature and not just restricted to

genes differentially expressed between the endpoints of the differentiation. Addi-

tionally, there is very little overlap between DEGs detected between different pair

of consecutive timepoints, implying that genes are undergoing rapid but short-

lived, transient changes during the early stages of the differentiation (Fig. 4.5B,C).
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Figure 4.5: The number of differentially expressed genes between
consecutive time points. (A) The number of DEGs detected be-
tween each pair of consecutive time points. The overlap between
the DEGs detected at different time points in (B) G-CSF and (C) IL-3
condition.

4.2.4 Functional enrichment analysis of early DEGs

We performed functional enrichment analysis to determine the biological pro-

cesses the early DEGs play a role in. We determined gene ontology (GO) terms en-

riched (α = 0.05) in the DEGs ascertained between consecutive early time points
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(Tables 4.1 and 4.2). The enriched GO terms show clear temporal patterns. As

expected by the long duration of the G-CSF pre-treatment and the large effect of

the cytokine (Fig. 4.2), a diverse array of terms ranging from intracellular signal-

ing, to blood cell differentiation, to the cell cycle are enriched in the set of genes

differentially expressed between the −48h and 0h G-CSF timepoints. Consistent

with the induction of immediate early genes (Tian et al., 1996), the DEGs from the

earliest timepoints, 0 − 2h, are enriched in the GO terms for intracellular signal-

ing, for example “inactivation of MAPK activity” or “negative regulation of Ras

protein signal transduction”. Following this, GO terms related to development

and cellular differentiation progressively rise in rank during the 1 − 3h time pe-

riod, suggesting that the cell-fate decision is made very early during the differen-

tiation process. Although biological functions related to myeloid differentiation,

highlighted in light gray, are common, GO terms related to the differentiation of

non-myeloid cell lineages, highlighted in light cyan, are also enriched, reflecting

the pleiotropic roles that most hematopoietic TFs play in multiple lineages.

The GO terms related to signal transduction, development, and cellular dif-

ferentiation are no longer present in the list of terms for comparisons between 4h

and 8h or between 8 and 12h. Interestingly, these terms were absent from the en-

tire list of enriched GO terms, not only from the top 50. Instead, GO terms related

to physiological processes such metabolism, ribosome biogenesis, ion homeosta-

sis, and cell-cell adhesion were highly ranked. This suggests that the cells initiate

the remodeling of physiological processes as early as 8h in the course of the dif-

ferentiation to implement a decision that’s already been made. Furthermore, this
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analysis identifies the 8 − 12h transition observed above (Figs. 4.1, 4.2, 4.4) as the

initiation of large-scale physiological changes in response to differentiation cues.

Finally, comparisons between later timepoints were also not enriched in myeloid

differentiation and cell-fate commitment GO terms but were instead linked to var-

ious physiological processes, strengthening the interpretation that the cell-fate de-

cision is made within the first 4 hours of OHT induction.

Table 4.1: GO analysis for biological functions performed on DEGs
estimated for −48h vs 0h, 0h vs 1h, 1h vs 2h, 2h vs 3h, 4h vs 8h, and
8h vs 12h in G-CSF condition. Table shows the first 50 GO terms
with the lowest adjusted p-values in ascending order. GO terms
highlighted in light gray correspond to myeloid differentiation and
in light cyan to functions related to the blood development or differ-
entiation of various cell lineages.

-48h vs 0h 0h vs 1h 1h vs 2h

cell-cell adhesion inflammatory response negative regulation of MAP kinase activity

regulation of cell adhesion regulation of inflammatory response peptidyl-threonine dephosphorylation

G protein-coupled receptor signaling pathway cellular response to molecule of bacterial origin negative regulation of protein serine/threonine kin. act.

negative regulation of cell cycle cellular response to lipopolysaccharide regulation of MAP kinase activity

negative regulation of cell cycle process cellular response to biotic stimulus cellular response to fibroblast growth factor stimulus

adaptive immune response interleukin-1 production inactivation of MAPK activity

meiotic cell cycle regulation of angiogenesis negative regulation of MAPK cascade

microtubule cytoskeleton organization blood vessel morphogenesis response to fibroblast growth factor

regulation of cell cycle process blood vessel development negative regulation of phosphorylation

epithelial cell differentiation interleukin-1 beta production negative regulation of phosphorus metabolic process

leukocyte cell-cell adhesion regulation of cytokine production negative regulation of phosphate metabolic process

lymphocyte activation regulation of cell adhesion negative regulation of protein phosphorylation

regulation of cytokine production angiogenesis regulation of myeloid cell differentiation

meiotic cell cycle process vasculature development peptidyl-tyrosine dephosphorylation

taxis regulation of vasculature development cellular response to growth factor stimulus

T cell activation regulation of interleukin-1 production response to growth factor

negative regulation of cell cycle phase transition regulation of interleukin-1 beta production regulation of protein serine/threonine kinase activity

chemotaxis inactivation of MAPK activity regulation of myeloid leukocyte differentiation

regulation of cell activation response to lipopolysaccharide negative regulation of locomotion

nuclear division response to molecule of bacterial origin negative regulation of cellular component movement

lymphocyte mediated immunity response to bacterium negative regulation of transferase activity

mitotic cell cycle phase transition regulation of defense response regulation of hemopoiesis

inflammatory response cell chemotaxis leukocyte differentiation

Continued on next page
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-48h vs 0h 0h vs 1h 1h vs 2h

negative regulation of mitotic cell cycle phase trans. ossification myeloid cell differentiation

cell cycle phase transition positive regulation of smooth muscle cell prolif. negative regulation of protein modification process

regulation of cell-cell adhesion heat generation inflammatory response

extracellular matrix organization peptidyl-tyrosine dephosphorylation regulation of epithelial cell differentiation

extracellular structure organization positive regulation of cytokine production skeletal system development

lymphocyte differentiation muscle cell proliferation myeloid leukocyte differentiation

regulation of mitotic cell cycle regulation of transcription from RNA Pol. II prom. regulation of leukocyte differentiation

response to bacterium myeloid leukocyte migration epithelial cell differentiation

leukocyte mediated immunity cell-cell adhesion ERK1 and ERK2 cascade

regulation of cell cycle phase transition regulation of smooth muscle cell proliferation negative regulation of protein kinase activity

T cell differentiation cellular response to lipid positive regulation of leukocyte differentiation

meiotic nuclear division regulation of MAPK cascade negative regulation of kinase activity

positive regulation of cytokine production leukocyte migration MAPK cascade

adaptive immune response based on somatic recomb. regulation of system process negative regulation of ERK1 and ERK2 cascade

regulation of mitotic cell cycle phase transition smooth muscle cell proliferation regulation of ERK1 and ERK2 cascade

cell fate commitment regulation of vasoconstriction regulation of cell adhesion

chromosome organization involved in meiotic cell cycle negative regulation of signal transduction in abs. positive regulation of programmed cell death

regulation of leukocyte activation negative regulation of extrinsic apoptotic sign. signal transduction by protein phosphorylation

mitotic cell cycle checkpoint regulation of cell-cell adhesion cellular response to drug

meiosis I cell cycle process positive regulation of cell migration regulation of small GTPase mediated signal transd.

organelle fission MAPK cascade chemotaxis

regulation of mononuclear cell proliferation response to chemokine response to radiation

regulation of adaptive immune response cellular response to chemokine positive regulation of hemopoiesis

regulation of leukocyte cell-cell adhesion regulation of DNA-templated transcription in resp. taxis

angiogenesis peptidyl-threonine dephosphorylation regulation of inflammatory response

positive regulation of immune response positive regulation of cell motility regionalization

blood vessel morphogenesis signal transduction by protein phosphorylation chemokine-mediated signaling pathway

2h vs 3h 4h vs 8h 8h vs 12h

endocytosis ribosome biogenesis pyruvate metabolic process

regulation of lipid localization fructose 6-phosphate metabolic process carbohydrate catabolic process

positive regulation of lipid localization ribonucleoprotein complex biogenesis nucleoside diphosphate phosphorylation

blood vessel development cellular response to hypoxia nucleotide phosphorylation

cellular response to hypoxia cellular chemical homeostasis glycolytic process

cellular response to decreased oxygen levels cellular metal ion homeostasis ATP generation from ADP

vasculature development peptidyl-proline hydroxylation to 4-hydroxy-L-proline ADP metabolic process

telencephalon development cellular response to decreased oxygen levels purine nucleoside diphosphate metabolic process

regulation of lipid transport regulation of cell adhesion purine ribonucleoside diphosphate metabolic pr.

response to ischemia rRNA processing nucleoside diphosphate metabolic process

cellular response to oxygen levels positive regulation of cytosolic calcium ion conc. ribonucleoside diphosphate metabolic process

positive regulation of myotube differentiation cellular cation homeostasis generation of precursor metabolites and energy

connective tissue development divalent inorganic cation homeostasis cellular response to oxygen levels

inactivation of MAPK activity response to hypoxia cellular response to hypoxia

lipid localization metal ion homeostasis cellular response to decreased oxygen levels

positive regulation of DNA-binding trans. fac. activity rRNA metabolic process carbohydrate metabolic process

Continued on next page
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2h vs 3h 4h vs 8h 8h vs 12h

positive regulation of lipid transport glial cell activation response to oxygen levels

positive regulation of cell migration cellular divalent inorganic cation homeostasis response to hypoxia

regulation of epithelial cell migration myeloid leukocyte activation response to decreased oxygen levels

mesenchyme development peptidyl-proline hydroxylation monocarboxylic acid metabolic process

regulation of myotube differentiation cellular ion homeostasis ATP metabolic process

positive regulation of epithelial cell migration calcium ion homeostasis purine nucleotide metabolic process

positive regulation of vasculature development response to decreased oxygen levels purine-containing compound metabolic process

positive regulation of cell motility positive regulation of Rho protein signal transduction peptidyl-proline hydroxyl.

positive regulation of cell development cellular response to oxygen levels hexose metabolic process

cell morphogenesis involved in differentiation positive regulation of cytosolic calcium ion conc. nucleotide metabolic process

positive regulation of striated muscle cell differentiation microglial cell activation nucleoside phosphate metabolic process

positive regulation of locomotion leukocyte activation involved in inflammatory response ribose phosphate metabolic process

positive regulation of cellular component movement cellular calcium ion homeostasis peptidyl-proline hydroxylation

regulation of endothelial cell migration protein homotetramerization glycolytic process through fructose-6-phosphate

fatty acid transport regulation of cytosolic calcium ion concentration purine ribonucleotide metabolic process

epithelial cell migration import across plasma membrane glucose metabolic process

tissue migration macrophage activation monosaccharide metabolic process

epithelium migration response to oxygen levels cellular chemical homeostasis

positive regulation of nervous system development embryo implantation ribonucleotide metabolic process

long-chain fatty acid transport sequestering of calcium ion protein hydroxylation

endothelial cell migration cation homeostasis metal ion homeostasis

pallium development positive regulation of cytokine production cellular metal ion homeostasis

plasminogen activation neuroinflammatory response leukocyte homeostasis

positive regulation of myoblast fusion cell chemotaxis divalent inorganic cation homeostasis

positive regulation of angiogenesis regulation of smooth muscle cell proliferation nucleobase-containing small molecule metab. proc.

regulation of fatty acid transport positive regulation of leukocyte migration cellular cation homeostasis

regulation of ion transport regulation of cytokine production cellular divalent inorganic cation homeostasis

response to hypoxia regulation of glial cell migration cellular ion homeostasis

cerebral cortex development cell-substrate adhesion blood circulation

interleukin-1 beta production inorganic ion homeostasis ion homeostasis

blood vessel morphogenesis smooth muscle cell proliferation glycolytic process through glucose-6-phosphate

positive regulation of nucleotide metabolic process metanephric nephron development hexose catabolic process

positive regulation of purine nucleotide metabolic proc. positive regulation of calcium ion import cellular carbohydrate metabolic process

response to decreased oxygen levels cation homeostasis
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Table 4.2: GO analysis for biological functions performed on DEGs
estimated for 0h vs 1h, 1h vs 2h, 2h vs 3h, 4h vs 8h, and 8h vs 12h
in IL-3 condition. Table shows the first 50 GO terms with the lowest
adjusted p-values in ascending order. GO terms highlighted in light
gray correspond to myeloid differentiation and in light cyan to func-
tions related to the blood development or differentiation of various
cell lineages.

0h vs 1h 1h vs 2h 2h vs 3h

inactivation of MAPK activity regulation of cell adhesion ovulation cycle

negative regulation of protein phosphorylation negative regulation of cell differentiation cell junction organization

negative regulation of protein serine/threonine kin. act. negative regulation of protein phosphorylation negative regulation of interleukin-6 production

negative regulation of MAP kinase activity blood vessel development ovulation cycle process

negative regulation of ERK1 and ERK2 cascade vasculature development negative regulation of response to external stimulus

cellular response to lipopolysaccharide positive regulation of cell adhesion regulation of epithelial cell differentiation

negative regulation of MAPK cascade leukocyte differentiation epithelial cell differentiation

cellular response to molecule of bacterial origin blood vessel morphogenesis postsynapse organization

response to lipopolysaccharide regulation of MAPK cascade regulation of hormone secretion

response to bacterium regulation of cellular response to growth factor stimulus synapse organization

negative regulation of phosphorylation epithelial cell differentiation actin cytoskeleton organization

negative regulation of phosphorus metabolic process pattern specification process regulation of system process

negative regulation of phosphate metabolic process negative regulation of phosphorylation regulation of peptide hormone secretion

response to molecule of bacterial origin MAPK cascade negative regulation of cell population proliferation

epithelial cell differentiation lymphocyte differentiation striated muscle cell development

negative regulation of intracellular signal transduction muscle structure development negative regulation of locomotion

cellular response to biotic stimulus response to growth factor rhythmic process

cellular response to lipid negative regulation of protein modification process hormone secretion

negative regulation of Ras protein signal transduction signal transduction by protein phosphorylation muscle cell development

negative regulation of inflammatory response negative regulation of catalytic activity metanephros development

negative regulation of small GTPase mediated sig. tr. T cell differentiation hormone transport

negative regulation of protein modification process cellular response to growth factor stimulus bone development

inflammatory response transmembrane receptor protein ser./thr. kin. organ growth

lens fiber cell differentiation negative regulation of ossification heart development

regulation of ERK1 and ERK2 cascade regulation of T cell differentiation muscle cell apoptotic process

regulation of epithelial cell differentiation negative regulation of vasculature development regulation of ion transport

negative regulation of protein kinase activity skeletal system development polysaccharide biosynthetic process

response to lipid negative regulation of cell population proliferation peptidyl-threonine dephosphorylation

negative regulation of transferase activity regulation of vasculature development cardiocyte differentiation

ERK1 and ERK2 cascade regulation of lymphocyte differentiation muscle cell differentiation

negative regulation of kinase activity response to transforming growth factor beta peptide hormone secretion

positive regulation of leukocyte differentiation negative regulation of protein ser./thre. kin. female gonad development

negative regulation of response to external stimulus regulation of protein serine/threonine kinase activity amino acid transmembrane transport

negative regulation of growth negative regulation of phosphorus metabolic process cellular polysaccharide biosynthetic process

regulation of epidermis development negative regulation of phosphate metabolic process vasculature development

peptidyl-threonine dephosphorylation regulation of epithelial cell differentiation regulation of release of cytochrome c from mitoch.

Continued on next page
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0h vs 1h 1h vs 2h 2h vs 3h

lens development in camera-type eye negative regulation of cell adhesion regulation of transmembrane transport

learning or memory response to decreased oxygen levels

regulation of defense response cellular response to transf. growth factor beta stimulus

cellular response to interferon-beta ERK1 and ERK2 cascade

regulation of MAP kinase activity taxis

negative regulation of locomotion regionalization

negative regulation of interleukin-1 production peptidyl-tyrosine dephosphorylation

keratinocyte proliferation heart morphogenesis

epidermis development cell surface receptor sig. pathway inv. in cell-cell sig.

regulation of protein serine/threonine kinase activity positive regulation of leukocyte differentiation

negative regulation of transcription from RNA pol. II pr. chemotaxis

negative regulation of epithelial to mesenchymal trans. coronary vasculature development

positive regulation of lymphocyte differentiation negative regulation of MAPK cascade

positive regulation of hemopoiesis regulation of transm. receptor protein ser./thr. ki.

4h vs 8h 8h vs 12h

cell-cell adhesion ribosome biogenesis

ion homeostasis rRNA processing

G protein-coupled receptor signaling pathway rRNA metabolic process

cellular divalent inorganic cation homeostasis cellular response to hypoxia

divalent inorganic cation homeostasis response to hypoxia

cellular calcium ion homeostasis ncRNA processing

metal ion transport response to decreased oxygen levels

cellular metal ion homeostasis cellular response to decreased oxygen levels

cellular cation homeostasis ribonucleoprotein complex biogenesis

calcium ion homeostasis response to oxygen levels

cellular ion homeostasis cellular response to oxygen levels

regulation of cytosolic calcium ion concentration ncRNA metabolic process

regulation of cell activation maturation of LSU-rRNA from tricist.

inorganic ion transmembrane transport maturation of LSU-rRNA

inflammatory response pyruvate metabolic process

regulation of leukocyte activation protein localization to nucleolus

positive regulation of leukocyte activation maturation of SSU-rRNA

cellular chemical homeostasis carbohydrate catabolic process

inorganic cation transmembrane transport amine metabolic process

positive regulation of cell activation glycolytic process through fructose-6-phosphate

regulation of cell adhesion purine nucleoside diphosphate metabolic process

cation transmembrane transport purine ribonucleoside diphosphate metabolic process

metal ion homeostasis maturation of 5.8S rRNA from tricistronic rRNA transcr.

inorganic ion homeostasis nucleotide phosphorylation

cation homeostasis nucleoside diphosphate metabolic process

regulation of cell-cell adhesion ribonucleoside diphosphate metabolic process

regulation of ion transport cellular amine metabolic process

positive regulation of cell adhesion ADP metabolic process

positive regulation of lymphocyte activation hexose metabolic process

Continued on next page
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4h vs 8h 8h vs 12h

regulation of leukocyte cell-cell adhesion maturation of 5.8S rRNA

T cell activation maturation of SSU-rRNA from tricistronic rRNA trans.

positive regulation of leukocyte cell-cell adhesion nucleoside diphosphate phosphorylation

regulation of ion transmembrane transport glycolytic process

regulation of lymphocyte activation ATP generation from ADP

leukocyte cell-cell adhesion peptidyl-proline hydroxylation to 4-hydroxy-L-proline

positive regulation of T cell activation glycolytic process through glucose-6-phosphate

regulation of transmembrane transport monosaccharide metabolic process

lymphocyte activation ribosomal small subunit biogenesis

positive regulation of cell-cell adhesion polyamine metabolic process

alpha-amino acid metabolic process polyamine biosynthetic process

chemotaxis negative regulation of smooth muscle cell proliferation

extracellular matrix organization carbohydrate metabolic process

extracellular structure organization dicarboxylic acid metabolic process

import into cell cellular biogenic amine metabolic process

positive regulation of cytosolic calcium ion conc. glucose catabolic process

taxis amine biosynthetic process

cellular amino acid metabolic process peptidyl-proline hydroxylation

regulation of T cell activation

regulation of metal ion transport

blood vessel morphogenesis

The genes differentially expressed during the first 4 hours of differentiation

and enriched in GO terms related to myeloid differentiation are likely to play a

role in the cell-fate decision. We focused on the genes differentially expressed

between consecutive timepoints from −48h to 3h that were also members of the

5 gene ontologies related to myeloid differentiation (highlighted in gray in Ta-

bles 4.1 and 4.2). Genes were clustered on the similarity of their G-CSF tempo-

ral expression patterns measured by the Pearson correlation coefficient (Fig. 4.6).

Remarkably, even though these genes were identified by virtue of being differ-

entially expressed at earlier stages, most continue to change in expression and

achieve their zenith or nadir at later timepoints. A second remarkable property
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is that the temporal expression patterns in the two conditions bear a striking re-

semblance to each other, implying that the difference in the macrophage and neu-

trophil phenotypes is generated by a small number of genes. Two groups of genes

that could be candidates for the divergence of the two lineages may be discerned.

The first, group I, comprises genes strongly induced by G-CSF pre-treatment that

decay gradually after OHT induction. Although this group of genes is also in-

duced in IL-3 conditions, the activation occurs later and is weaker than the activa-

tion caused by G-CSF treatment. Group II genes are downregulated strongly and

irreversibly by G-CSF pre-treatment but are transiently induced by OHT during

the first 4h of IL-3 differentiation. For both of these groups of genes, the G-CSF

and IL-3 conditions differ mainly in transient gene expression during the first 4h,

suggesting that the decision is made by short-lived differences very early in the

differentiation.

We further narrowed our attention to the TFs amongst the genes expressed dif-

ferentially between early timepoints and associated with myeloid differentiation

GO terms. Ten co-expression clusters or modules were extracted from the hierar-

chical cluster run on scaled G-CSF gene expressions (Fig. 4.7). Clusters I & II are

expressed in undifferentiated PUER cells but are downregulated in both G-CSF

and IL-3 conditions. Many of these TFs, such as Gata2, Gata3, Zfpm1, Pou2f2 and

Tal1, are known to be involved in the specification of non-myeloid lineages (May

et al., 2013; Cantor & Orkin, 2002). Clusters IV & V comprise transiently upreg-

ulated genes known to play a role in neutrophil specification such as Gfi1, Myb,

Cebpe, and Id2 (Hock et al., 2003; Li et al., 2010; Ward et al., 2000). Cluster X is
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comprised of TFs such as Egr1 that peak in expression within an hour of OHT

induction in IL-3 conditions and are known to be necessary for macrophage cell-

fate specification. Clusters IX and VIII feature a mixture of neutrophil-associated

(e.g. Cebpb, Rara, Rarg) and macrophage-associated (e.g. Jun, Fos, Junb) TFs; the

common theme connecting them is that the expression of these TFs peaks in the

latter half of the differentiation.
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Figure 4.6: The expression of genes differentially expressed during
the first 4 hours of OHT treatment and associated with the myeloid
differentiation GO terms “Leukocyte differentiation”, “Regulation
of myeloid leukocyte differentiation”, “Regulation of myeloid cell
differentiation”, “Cell-fate commitment”, and “Myeloid cellular dif-
ferentiation”. Each row corresponds to DEG. Genes were clustered
on the similarity of their G-CSF temporal expression patterns mea-
sured by the Pearson correlation coefficient. Left and right part of
the heatmap correspond to the G-CSF and IL-3 condition respec-
tively. Gray marks left to each gene signify GO terms the gene be-
longs to.
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Figure 4.7: Heatmap of gene expression in selected differentially
expressed TFs. The expression of TFs differentially expressed dur-
ing the first 4 hours of OHT treatment and associated with the
myeloid differentiation GO terms “Leukocyte differentiation”,

(continued)
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Figure 4.7: Heatmap of gene expression in selected differentially
expressed TFs. (continued) “Regulation of myeloid leukocyte dif-
ferentiation”, “Regulation of myeloid cell differentiation”, “Cell-fate
commitment”, and “Myeloid cellular differentiation”. The TFs were
clustered on the similarity of their G-CSF temporal expression pat-
terns measured by the Pearson correlation coefficient. Each row cor-
responds to DEG. Genes were clustered on the similarity of their
G-CSF temporal expression patterns measured by the Pearson cor-
relation coefficient. Left and right part of the heatmap correspond
to the G-CSF and IL-3 condition respectively. Gray squares left to
each gene signify GO terms the gene belongs to. The heatmap was
divided into 10 co-expression clusters.

4.3 DISCUSSION

As was shown in Chapter 2, time series datasets from differentiation experiments

are a powerful method for inferring GRNs and clarifying the causality of gene

regulatory events during development. While such data are acquired in vitro and

may be only an approximation to the in vivo phenomena, they provide a win-

dow into dynamics that is not available in static snapshots of developmental pro-

cesses. While pseudotime approaches (Tusi et al., 2018; Weinreb et al., 2018) have

been used to infer the developmental sequence of cells in scRNA-Seq data, it is

impossible to determine the rate of change of expression. Furthermore, in vitro

differentiation allow one to conduct carefully controlled experiments to minimize

the effect of animal-to-animal and technical variation. Despite these strengths,

high-resolution time series datasets are fairly uncommon and we are only aware

of one dataset (May et al., 2013) in hematopoiesis, the one utilized in Chapter 2,

that has been published so far.
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In our analysis of erythrocyte-neutrophil differentiation (Chapter 2), the regu-

latory interconnections were poorly constrained for Gata2. This failure of the infer-

ence methodology was traced to the upregulation of Gata2 in both lineages so that

its expression did not carry any information about regulation. A potential rem-

edy for this problem is to acquire gene expression data from other hematopoietic

lineages—the greater the number of sampled gene switching events, the greater

the amount of information to constrain model parameters. Furthermore, most

hematopoietic regulators act in a pleiotropic manner (Rothenberg, 2014; Laslo

et al., 2008; Friedman, 2007) and building more comprehensive models requires

time series data from multiple lineages.

In this chapter, we have described the generation and analysis of the second

high-temporal resolution dataset in hematopoiesis. Our technical goals were to

densely sample in time while ensuring high technical and biological reproducibil-

ity. In order to accomplish this, we utilized a liquid handling workstation to ex-

tract RNA in a high throughput manner while ensuring a high level of technical

reproducibility. We employed a rigorous quality control scheme to ensure low ge-

nomic DNA contamination, which confounds the quantification of the RNA, and

a high level of RNA integrity (median RIN was 9.9). Finally, all the samples were

sequenced to an average depth of ∼30 million reads per sample to ensure that

low abundance transcripts, such as those encoding TFs, were estimated reliably.

Our analysis of the data suggests that these measures were effective. Most genes

have a low coefficient of variation and we can successfully detect small changes

in gene expression. The data have a dynamic range of five orders of magnitude,
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with transcripts detected between ∼ 101 (e.g. Gata3) and ∼ 106 (e.g. Lyz2). The

high temporal resolution and technical quality of the data appear to have paid

off as we were able to observe transient phenomena that haven’t been described

previously.

Our analyses suggest that there is a large-scale sudden change in gene expres-

sion, reminiscent of phase transitions, occurring around 8−12h after the induction

of PU.1 by OHT. We confirmed this conclusion in multiple different analyses: the

Pearson correlation of genome-wide gene expression (Fig. 4.1), PCA (Fig. 4.2), and

visualization of differentially expressed genes (Fig. 4.5). Furthermore there is an-

other transition occurring around 80h. Similar to our data, it has been observed

that there is relatively low rate of change between 12h and 48 hours and from 72h

to 168h in the reprogramming of B cells into macrophages by the enforced expres-

sion of Cebpa (Choi et al., 2021). This suggests perhaps that these transitions are

a general phenomenon and not an idiosyncrasy of the PUER system. However, it

wasn’t clear whether the jumps between 0h and 12h and 48h and 72h during B cell

transdifferentiation were the result of the relatively large time intervals, 12h and

24h, or a significantly higher velocity of gene expression change. The much higher

temporal resolution of our data unambiguously establishes that the jumps are the

result of increased velocity—the shift between 8h and 12h in IL-3 conditions is the

second largest shift after the one induced by G-CSF pre-treatment but occurs in

4h instead of 48h.

The second main conclusion from our analysis is that the cell-fate decision ap-

pears to have been made by the time of the 8 − 12h transition. GO terms related
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to myeloid differentiation were in the top 50 terms enriched amongst the differen-

tially expressed genes in the comparisons between consecutive time points up to

3h. However, in the comparisons between 4h and 8h and 8h and 12h, myeloid dif-

ferentiation terms were no longer in the top 50. Instead, terms related to metabolic

processing and ribosome biogenesis were highly enriched, suggesting that the

cells are already remodeling their physiology by 12h and the transition corre-

sponds to this physiological change.

This dataset is a rich resource and the analysis reported here probably scratches

the surface of the biological insights harbored within. One of the main goals of fu-

ture work would be clarifying the causality of event at a finer granularity both in

time and at the level of genes. These data could also be combined with TF foot-

printing assays such as ATAC-Seq (Buenrostro et al., 2013) or DNase-Seq (Pique-

Regi et al., 2011) assays to distinguish between direct and indirect effects and cre-

ate a “blow-by-blow” description of cellular differentiation. Finally, the high re-

producibility and quantitative nature of the data enable future gene circuit mod-

els of macrophage-neutrophil differentiation or of multiple lineages, if combined

with other datasets (May et al., 2013; Tusi et al., 2018).

4.4 METHODS

4.4.1 PUER cell culture

PUER cells were cultured according to standard procedures (Repele et al., 2019b).

PUER cells were routinely maintained in complete Iscove’s Modified Dulbecco’s

Glutamax medium (IMDM; Gibco, 12440061) supplemented with 10% FBS, 50µM
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β-mercaptoethanol and 5ng/mL IL-3 (Peprotech, 213-13).

4.4.2 PUER differentiation

PUER cells were expanded in T-75 flasks prior to the initiation of differentiation.

G-CSF pre-treatment was initiated by washing the cells 3 times with PBS and then

seeding in 48-well plates at a concentration of 5 × 105 cells/ml in PUER cell cul-

ture medium in which IL-3 had been replaced by 10ng/mL Granulocyte Colony

Stimulating Factor (G-CSF; Peprotech, 300-23). At the same time, the PUER cells

destined for the macrophage differentiation were seeded in 48-well plates at a con-

centration of 5× 105 cells/ml in IL-3 PUER cell culture medium. After 48 hours of

G-CSF pre-treatment, the neutrophil differentiation was commenced by the addi-

tion of 100nM 4-hydroxy-tamoxifen (OHT; Sigma, H7904-5MG). The macrophage

differentiation was initiated at the same time by the addition of 200nM OHT. In

this chapter, we regard time zero (0h) of differentiation as occurring just before the

addition of OHT. With this starting point, the initiation of G-CSF pre-treatment

occurs immediately after −48h while cells pre-treated with G-CSF for 48h but not

yet induced by OHT are at 0h. Since both treatments start with uninduced PUER

cells, the data for the −48h time point of the neutrophil differentiation and 0h

time point of the macrophage differentiation are derived from the same samples

and are identical. Half the medium was replaced and fresh OHT was added at

40h, 88h, and 136h since OHT converts from the Z isomer to the E isomer having

100-fold lower activity in cell culture media.



186

4.4.3 Sample collection

In addition to undifferentiated PUER cells, which correspond to the −48h neu-

trophil and 0h macrophage timepoints, samples were collected after 48h G-CSF

pre-treatment (0h neutrophil), every hour for the first four hours, every four hours

for the first day, and every eight hours until the end of the seventh day (Fig. 4.8). 4

biological replicates were collected for each timepoint. Cells had been seeded into

one 48-well plate for each time point so that the samples for a timepoint could

be collected without disturbing the remaining samples. Since the differentiation

produces adherent cells, the cells were detached with trypsin using standard pro-

tocols for all timepoints after 24h. The cells were transferred into a 96-well plate,

which was centrifuged at 1500rpm for 5 min, the majority of the medium was

aspirated, the cell pellet was snap-frozen in liquid nitrogen, and stored at −80C

until RNA extraction.

4.4.4 Total RNA extraction, quality control, and spike in of ERCC standards

Total RNA was extracted on a Bio-Mek FXP liquid handling workstation (Beckman

Coulter) using the RNAdvance Tissue total RNA isolation kit (Beckman Coul-

ter, A32649) in a 96-well format following the manufacturer’s protocol. Genomic

DNA contamination was assessed by reverse transcribing the RNA with and with-

out reverse-transcriptase and detecting GAPDH using qPCR. The number of addi-

tional cycles required to reach a threshold (∆Ct) was utilized to assess the fraction

of genomic DNA (2−∆Ct) and only samples with less than 1% genomic DNA were

utilized. The quality of the RNA was assessed by capillary gel electrophoresis
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on the Agilent 2100 Bioanalyzer using the Eukaryote Total RNA Nano kit (Agi-

lent, 5067-1511). Only samples with RNA integrity numbers (RIN) greater than or

equal to 9.5 were utilized, although there was only one sample with a RIN of 9.5

and the median RIN was 9.9. The concentration of RNA was determined using the

Qubit fluorometer and the Qubit RNA High Sensitivity kit (Invitrogen, Q32855).

With the exception of 8 samples with lower RNA yield, the samples were stan-

dardized to a mass of 1, 875ng in a 25µl volume. The samples with lower yield

were standardized to a mass of 1, 437.5ng in a 25µl volume. 3.75µl or 2.88µl of a

1 : 100 dilution of the External RNA Control Consortium (ERCC) ExFold RNA

Spike-In mix (Invitrogen, 4456739) was added to the high- and low-yielding sam-

ples respectively.
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Figure 4.8: The PUER differentiation experiment and sampling
scheme. (A) PUER progenitor cells are maintained in IL-3 condi-
tion. G-CSF pre-treatment for neutrophil differentiation was initi-
ated at −48h by substituting G-CSF for IL-3 in the culture medium.
Neutrophil and macrophage differentiation was initiated at 0h by
adding OHT to the G-CSF and IL-3 cultures respectively. The num-
bers indicate the timepoints at which the cells were sampled for
RNA-seq. (B) Wright Giemsa stains of PUER cells in uninduced IL-
3 (progenitor), 7 days after OHT induction in G-CSF (neutrophils),
and 7-days after OHT induction in IL-3 (macrophage) conditions.
Uninduced cells have a blast morphology with high nucleocytoplas-
mic ratio. Cells induced in G-CSF condition have segmented nuclei,
while induction in IL-3 results in cells with vacuolated cytoplasm
and low nucleocytoplasmic ratio.

4.4.5 Library preparation and RNA sequencing

Illumina libraries were prepared by Novogene Corporation Inc. (Chula Vista, CA)

using the NEB Ultra II RNA Library Prep Kit for Illumina according to manufac-

turer protocols. The libraries were sequenced on an Illumina Novaseq 6000 S2 2×
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150 bp flow cell to an average depth of 29.24×106 raw reads per sample for a total

of 4.829 reads. The sequencing provider filtered the reads to remove ones contain-

ing Illumina adaptors, or more than 10% indeterminate bases (“N”s), or having

more than half bases with a phred score below 5. The remaining “clean” reads,

representing 95.52% of raw reads, were processed further as described below.

4.4.6 Alignment and quantification

To assess the expression level of each gene from the sequence data, the RNA-

seq reads have to be mapped to either genome or transcripts. This mapping in-

volves several challenges such as the high computational cost of aligning billions

of reads, the ambiguity in assigning reads to alternative splice isoforms, and the

non-uniform sampling of reads due to sequence-selectivity of sequencers, GC-

content bias, and other technical biases. We utilized Salmon (Patro et al., 2017), a

tool for processing RNA-seq data, which overcomes these challenges. Salmon in-

fers the percentage of nucleotides corresponding to a particular transcript present

in the sample and models the probability of observing the sequenced fragments

parameterized by the unknown abundance of each transcript, including the ef-

fects of various biases described above. The abundances are then estimated using

Maximum Likelihood approach. Salmon can be used to both align reads and

quantify transcript abundances (“quasi-mapping” mode) or to quantify a set of

reads that have already been aligned to a transcriptome (“quantification” mode).

We utilized the former. We utilized the Mus musculus GRCm38 genome primary

assembly and GRCm38.100 transcript annotation for mapping and quantifying
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the reads.

4.4.7 Normalization of reads

To compare estimated transcript abundances between samples, they must be nor-

malized to correct for variation in library size from sample to sample due to tech-

nical factors. A major hindrance to library size normalization is that a few highly

expressed genes can dominate the library size, masking the effect of technical vari-

ation (Gierlinski et al., 2015). We utilized the estimateSizeFactors() func-

tion of the DESEq2 R package, which computes the ratio of each gene’s expres-

sion in each sample to the geometric mean of the expression across samples and

determines the normalization factor of each sample as the median of these ratios,

which is robust to the influence of a few highly expressed genes.

4.4.8 Outlier detection

RNA-seq read counts are influenced by the many stages of the experiment, such

as sample collection, extraction of RNA, library preparation, and sequencing. De-

tection and removal of outlier samples is essential for an accurate comparisons

between samples (George et al., 2015). The detection of outlier samples was per-

formed with the help of the Principal Component Analysis (PCA). PCA was run

on normalized samples, in both conditions, considering only genes with mean

expression above 5 reads in all samples. Genes with mean expression of < 5

reads in all samples are referred hereafter as lowly expressed genes. For each

time point and replicate i from a total of N replicates, the z-scores of the first two
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principal components (PCs) were calculated as |zi|k = |
PCi

k−
∑N

i=1 PCi
k

N∑N
i=1

(PCi
k−

∑N
i=1

PCi
k

N
)2

N

|, where

k = 1, 2, 3, 4 are the top four PCs that explain 96% of the total variation in the data.

If a replicate i had a z-score |zi| > 2 for any of the first four PCs, this replicate was

considered as an outlier. No outliers were detected in the data using this method.

This method does not detect unusual non-replicate samples. In an effort to

visually identify potentially unusual samples, we first removed lowly expressed

genes and clustered all samples hierarchically using Pearson correlation as a dis-

tance metric after scaling each gene’s expression between 0 and 1 (Figs. 4.9 and

4.10). All three replicates for 96h and 144h visually appeared to be significantly

different than neighboring samples. Given that these timepoints were immedi-

ately preceded by supplementation with OHT (see above), we excluded these two

timepoints from further analyses. The level of variation in the total gene expres-

sion for times close to 96h and 144h further justified the exclusions of those sam-

ples (Fig. 4.11).
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Figure 4.9: Hierarchical clustering of G-CSF samples using Pearson
correlation as a distance measure. Color indicates the expression of
a gene (y-axis) at each timepoint (x-axis) scaled from 0 to 1.
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Figure 4.10: Hierarchical clustering of IL-3 samples using Pearson
correlation as a distance measure. Color indicates the expression of
a gene (y-axis) at each timepoint (x-axis) scaled from 0 to 1.
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Figure 4.11: Correlation in gene expression between selected sam-
ples. Correlation in gene expression between suspected outliers and
immediate neighbors (88h vs 96h, 96h vs 104h, 136h vs 144h, and
144h vs 152h). Correlation between the timepoint immediately pre-
ceding and the timepoint immediately following the suspected out-
lier (88h vs 104h and 136h vs 152h).

4.4.9 Correlation between samples

The Pearson correlation coefficient of mean genome-wide gene expression at each

timepoint was computed between each pair of timepoints. Lowly expressed genes

were excluded from this analysis. The expression of genes was scaled between 0

and 1. The pheatmap R function was used to plot the correlation coefficient as

heat maps without clustering the timepoints.
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4.4.10 Principal component analysis

Principal component analysis (PCA) was carried out with the prcomp R function.

Lowly expressed genes were excluded from this analysis. The parameter "scale"

was set to true so that the gene expression at each timepoint was scaled to have

zero mean and unit variance to avoid highly expressed genes from unduly influ-

encing the principal components.

4.4.11 Hierarchical clustering and gene expression heatmaps

Samples or timepoints were clustered hierarchically on gene expression scaled

between 0 and 1 using Pearson correlation as a similarity metric. Lowly expressed

genes were excluded from the analysis. The pheatmap R function was used to

cluster genes and plot expression as a heatmap.

4.4.12 Differential gene expression analysis

Differential expression analysis was conducted using the DESeq2 (Love et al.,

2014) R package. DESeq2 uses a Generalized Linear Model (GLM) to model the

read counts given a design matrix and associated coefficients. The read counts

are modeled with the negative binomial distribution whose mean depends on the

independent variables through the log link function. The estimates of the coeffi-

cients are used to determine the fold change between conditions. DESeq2 uses the

Wald test statistic to determine the p-values of estimated fold change. Adjustment

for multiple testing is performed with the Benjamini-Hochberg procedure. We

utilized an adjusted p-value threshold of 0.05 and log2 fold change (FC) threshold
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of 0.58 (±50% change) to infer differentially expressed genes (DEGs).

4.4.13 Functional analysis

clusterProfiler was used as a functional analysis tool to identify over-repre-

sented Gene Ontology (GO) terms associated with the DEGs. GO categorizations

or terms comprise a universal and consistent description and roles of genes and

gene products (Ashburner et al., 2000). We utilized Biological Process (BP) GO

classification. Significant gene list contained DEGs with adjusted p-value < 0.05

and |log2FC| ≥ 0.58 while the background gene list contained all annotated genes

used in the analysis.



197

BIBLIOGRAPHY

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis,
A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-
Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald,
M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: tool for the unification
of biology. the gene ontology consortium. Nat. Genet., 25(1), 25–29.

Bertolino, E., Reinitz, J., & Manu (2016). The analysis of novel distal cebpa en-
hancers and silencers using a transcriptional model reveals the complex regula-
tory logic of hematopoietic lineage specification. Dev Biol, 413(1), 128–44.

Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013).
Transposition of native chromatin for fast and sensitive epigenomic profiling of
open chromatin, dna-binding proteins and nucleosome position. Nat Methods,
10(12), 1213–8.

Cantor, A. B., & Orkin, S. H. (2002). Transcriptional regulation of erythropoiesis:
an affair involving multiple partners. Oncogene, 21(21), 3368–76.

Choi, J., Lysakovskaia, K., Stik, G., Demel, C., Sding, J., Tian, T. V., Graf, T., &
Cramer, P. (2021). Evidence for additive and synergistic action of mammalian
enhancers during cell fate determination. eLife, 10, e65381.

Dahl, R., Walsh, J. C., Lancki, D., Laslo, P., Iyer, S. R., Singh, H., & Simon,
M. C. (2003). Regulation of macrophage and neutrophil cell fates by the
pu.1:c/ebpalpha ratio and granulocyte colony-stimulating factor. Nat Immunol,
4(10), 1029–36.

Franzke, A. (2006). The role of G-CSF in adaptive immunity. Cytokine Growth
Factor Rev., 17(4), 235–244.

Friedman, A. D. (2007). Transcriptional control of granulocyte and monocyte de-
velopment. Oncogene, 26(47), 6816–28.

George, N. I., Bowyer, J. F., Crabtree, N. M., & Chang, C.-W. (2015). An iterative
leave-one-out approach to outlier detection in rna-seq data. PLOS ONE, 10(6),
1–10.

Gierlinski, M., Cole, C., Schofield, P., Schurch, N. J., Sherstnev, A., Singh, V., Wro-
bel, N., Gharbi, K., Simpson, G., Owen-Hughes, T., Blaxter, M., & Barton, G. J.



198

(2015). Statistical models for RNA-seq data derived from a two-condition 48-
replicate experiment. Bioinformatics, 31(22), 3625–3630.

Görgens, A., Radtke, S., Horn, P. A., & Giebel, B. (2013). New relationships of
human hematopoietic lineages facilitate detection of multipotent hematopoi-
etic stem and progenitor cells. Cell cycle (Georgetown, Tex.), 12(22), 3478–3482.
24189527[pmid].

Guanglan, L., Wenke, H., & Wenxue, H. (2020). Transcription factor PU.1 and
immune cell differentiation (review). Int. J. Mol. Med., 46(6), 1943–1950.

Hock, H., Hamblen, M. J., Rooke, H. M., Traver, D., Bronson, R. T., Cameron, S.,
& Orkin, S. H. (2003). Intrinsic requirement for zinc finger transcription factor
gfi-1 in neutrophil differentiation. Immunity, 18(1), 109–120.

Keightley, M.-C., Carradice, D. P., Layton, J. E., Pase, L., Bertrand, J. Y., Wittig,
J. G., Dakic, A., Badrock, A. P., Cole, N. J., Traver, D., Nutt, S. L., McCoey, J.,
Buckle, A. M., Heath, J. K., & Lieschke, G. J. (2017). The pu.1 target gene zbtb11
regulates neutrophil development through its integrase-like hhcc zinc finger.
Nature Communications, 8(1), 14911.

Keohane, E. (2020). Rodak’s hematology : clinical principles and applications. St. Louis,
Missouri: Elsevier.

Laslo, P., Pongubala, J. M. R., Lancki, D. W., & Singh, H. (2008). Gene regulatory
networks directing myeloid and lymphoid cell fates within the immune system.
Semin Immunol, 20(4), 228–35.

Laslo, P., Spooner, C. J., Warmflash, A., Lancki, D. W., Lee, H.-J., Sciammas, R.,
Gantner, B. N., Dinner, A. R., & Singh, H. (2006). Multilineage transcriptional
priming and determination of alternate hematopoietic cell fates. Cell, 126(4),
755–66.

Li, H., Ji, M., Klarmann, K. D., & Keller, J. R. (2010). Repression of id2 expression
by gfi-1 is required for b-cell and myeloid development. Blood, 116(7), 1060–9.

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change
and dispersion for rna-seq data with deseq2. Genome Biology, 15(12), 550.

May, G., Soneji, S., Tipping, A. J., Teles, J., McGowan, S. J., Wu, M., Guo, Y.,
Fugazza, C., Brown, J., Karlsson, G., Pina, C., Olariu, V., Taylor, S., Tenen,



199

D. G., Peterson, C., & Enver, T. (2013). Dynamic analysis of gene expression
and genome-wide transcription factor binding during lineage specification of
multipotent progenitors. Cell Stem Cell, 13(6), 754–68.

Olsson, A., Venkatasubramanian, M., Chaudhri, V. K., Aronow, B. J., Salomonis,
N., Singh, H., & Grimes, H. L. (2016). Single-cell analysis of mixed-lineage states
leading to a binary cell fate choice. Nature, 537(7622), 698–702. 27580035[pmid].

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2017). Salmon
provides fast and bias-aware quantification of transcript expression. Nature
methods, 14(4), 417–419. 28263959[pmid].

Pique-Regi, R., Degner, J. F., Pai, A. A., Gaffney, D. J., Gilad, Y., & Pritchard, J. K.
(2011). Accurate inference of transcription factor binding from dna sequence
and chromatin accessibility data. Genome Res, 21(3), 447–55.

Repele, A., Krueger, S., Bhattacharyya, T., Tuineau, M. Y., & Manu (2019a). The
regulatory control of cebpa enhancers and silencers in the myeloid and red-
blood cell lineages. PLoS One, 14(6), e0217580.

Repele, A., Krueger, S., Bhattacharyya, T., Tuineau, M. Y., & Manu (2019b). The
regulatory control of cebpa enhancers and silencers in the myeloid and red-
blood cell lineages. PLOS ONE, 14(6), 1–24.

Rothenberg, E. V. (2014). Transcriptional control of early t and b cell developmen-
tal choices. Annu Rev Immunol, 32, 283–321.

Scott, E. W., Simon, M. C., Anastasi, J., & Singh, H. (1994). Requirement of tran-
scription factor pu.1 in the development of multiple hematopoietic lineages.
Science, 265(5178), 1573–7.

Tian, S. S., Tapley, P., Sincich, C., Stein, R. B., Rosen, J., & Lamb, P. (1996). Multiple
signaling pathways induced by granulocyte colony-stimulating factor involv-
ing activation of jaks, stat5, and/or stat3 are required for regulation of three
distinct classes of immediate early genes. Blood, 88(12), 4435–44.

Tusi, B. K., Wolock, S. L., Weinreb, C., Hwang, Y., Hidalgo, D., Zilionis, R., Wais-
man, A., Huh, J. R., Klein, A. M., & Socolovsky, M. (2018). Population snapshots
predict early haematopoietic and erythroid hierarchies. Nature, 555(7694), 54–
60. 29466336[pmid].



200

Walsh, J. C., DeKoter, R. P., Lee, H. J., Smith, E. D., Lancki, D. W., Gurish, M. F.,
Friend, D. S., Stevens, R. L., Anastasi, J., & Singh, H. (2002). Cooperative and
antagonistic interplay between pu.1 and gata-2 in the specification of myeloid
cell fates. Immunity, 17(5), 665–76.

Wang, L., Gao, S., Wang, H., Xue, C., Liu, X., Yuan, H., Wang, Z., Chen, S., Chen,
Z., de Thé, H., Zhang, Y., Zhang, W., Zhu, J., & Zhou, J. (2020). Interferon
regulatory factor 2 binding protein 2b regulates neutrophil versus macrophage
fate during zebrafish definitive myelopoiesis. Haematologica, 105(2), 325–337.

Ward, A. C., Loeb, D. M., Soede-Bobok, A. A., Touw, I. P., & Friedman, A. D.
(2000). Regulation of granulopoiesis by transcription factors and cytokine sig-
nals. Leukemia, 14(6), 973–90.

Weinreb, C., Wolock, S., & Klein, A. M. (2018). Spring: a kinetic interface for
visualizing high dimensional single-cell expression data. Bioinformatics, 34(7),
1246–1248.

Xie, H., Ye, M., Feng, R., & Graf, T. (2004). Stepwise reprogramming of b cells into
macrophages. Cell, 117(5), 663–76.

Zhang, D. E., Zhang, P., Wang, N. D., Hetherington, C. J., Darlington, G. J., &
Tenen, D. G. (1997). Absence of granulocyte colony-stimulating factor signaling
and neutrophil development in ccaat enhancer binding protein alpha-deficient
mice. Proc Natl Acad Sci U S A, 94(2), 569–74.



201

CHAPTER 5

Summary

Cell-fate decisions and cellular differentiation are remarkable and highly complex

developmental processes during which progenitor and stem cells choose their fate

and gradually acquire the characteristics of mature cells. This dissertation used

hematopoiesis, i.e., the process of blood cell formation, as a model to study cellu-

lar differentiation and cell-fate decisions. A fundamental aspect of hematopoiesis,

and differentiation in general, is the complex dynamics of gene expression that

drives cell-fate decisions, commitment, and maturation of the cells. TFs play a

crucial role in the process of hematopoiesis by regulating each other’s expression,

and so form complex and dynamic GRNs. Precise knowledge of the architecture

of GRNs and their dynamics could uncover the main drivers and progression of

regulatory events during differentiation. Despite their importance, most GRNs

remain poorly understood since traditional genetic experiments are low through-

put, labor intensive, and are usually conducted at steady state.

In this dissertation, I applied the gene circuit methodology (Reinitz & Sharp,

1995) to infer hematopoietic GRNs from high temporal resolution genome-wide

gene expression data. In gene circuits, the architecture of a GRN is not specified

beforehand but is encoded in the values of the free parameters, so that it may be

learned by fitting the model to gene expression time-series data. Being an in-silico

method, gene circuits provide an easier and faster approach to GRN inference

than targeted genetic experiments while also being capable of simulating the dy-

namics of biological processes such as differentiation.
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Most models of hematopoietic GRNs have been confined to a few TFs (Laslo

et al., 2006; Huang et al., 2007; Chickarmane et al., 2009; Narula et al., 2010; May

et al., 2013) and assume a bistable or a tristable switch architecture. The fact that

TFs bind thousands of locations in the genome and that there is widespread co-

regulation (Novershtern et al., 2011; Wilson et al., 2010; Vierstra et al., 2020) sug-

gests that GRNs are comprised of tens to hundreds of genes and are highly inter-

connected. Chapter 2 presented a comprehensive 12-gene dynamic model trained

on time-series gene expression data from the in vitro differentiation of erythrocytes

and neutrophils. The model was able to quantitatively predict the consequences

of perturbation experiments and demonstrated positive feedback loops from cy-

tokines receptors. Importantly, the analysis of the model lead to interesting ob-

servations about the erythrocyte-neutrophil development. According to the anal-

ysis, Gfi1 and Cebpa act as upstream regulators of Spi1 and other key TFs during

neutrophil differentiation, and the cell-fate decision is driven by early repression

reinforced by later activation. The inference of the regulatory causality was made

possible by the coupling of gene circuit to time-series data. The resultant 12-gene

GRN is based on a mechanistically accurate ODE formulation that is capable of

simulating the differentiation in two lineages and is a significant advance over

previous modeling attempts that were either restricted to a single lineage, used

the non-mechanistic Boolean formalism, or were restricted to GRNs of only 2− 3

genes (Bonzanni et al., 2013; Collombet et al., 2017; Hamey et al., 2017; Magnusson

et al., 2017).

A few issues arise during the inference of GRNs from time-series gene ex-
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pression data. One issue is the high computational cost of model training, which

usually requires access to and expertise in high-performance computing, particu-

larly during the phase of selecting the proper set of genes or finding the optimal

optimization conditions. For example, fitting 100 replicate gene circuit models in

Chapter 2 took about 2.5 days on 100 CPUs, with each fit carried out in parallel

on 10 CPUs. This computational cost proves to be particularly heavy in the initial

phases of building a model when multiple rounds of model fitting are required to

determine optimal conditions such as the Λ parameter in the penalty term (Eq. 2.3)

in simulated annealing (Chu et al., 1999; Manu et al., 2009). Chapter 3 of this dis-

sertation presented a novel method called FIGR that allows GRN inference on a

desktop computer in a matter of seconds. FIGR is a binary classification-based

method that takes advantage of the switch-like nature of gene regulation to di-

vide the GRN inference problem into two simpler optimization problems that

are much easier to solve. For example, FIGR inferred the gap gene system of

Drosophila melanogaster 600x faster than SA (Fehr et al., 2019). The speed and user

friendliness of FIGR could help advance modeling of GRNs in hematopoiesis and

beyond in the future.

Another problem in modeling GRNs is the subjectivity involved in choosing

the genes to model. In Chapter 2, the genes were selected based on their impor-

tance in erythrocyte-neutrophil differentiation as described in the current litera-

ture. One immediate issue with that approach is that not all genes have been

studied equally and important regulators might have been omitted. Therefore,

methods for recognizing important genes in differentiation independently of prior
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knowledge are required.

Accurate inference of GRNs using gene circuits requires high temporal res-

olution measurements of gene expression during differentiation. Time-resolved

data are crucial for avoiding overfitting during model inference. Having suffi-

cient measurements restricts the parameter space and mitigates the problem of

parameter uncertainty. Very few high-resolution time-series experiments of dif-

ferentiating hematopoietic cells that capture the full dynamics of gene expression

have been performed so far (May et al., 2013). Chapter 4 presented one such

dataset of high-resolution time-series gene expression measurement of in vitro

differentiation of macrophages and neutrophils. We showed that the high tem-

poral resolution reveals a “phase transitions” at 12 after induction, when there

are sudden large-scale changes in the transcriptome of PUER cells, and that the

cell-fate decision is made very early and involves transient rather than perma-

nent changes in gene expression. Further improvement of gene circuit accuracy

requires high-resolution time-series data from many different lineages to allow

bigger and better constrained gene circuits. This dataset therefore will enable fu-

ture gene circuit models of macrophage-neutrophil differentiation or of multiple

lineages when combine with other datasets (May et al., 2013).

The rapid development in single-cell RNA sequencing (scRNA-Seq) technol-

ogy coupled to fluorescent-activated cell sorting (FACS) and single-cell lineage

tracing has enabled the detailed analysis of in vivo lineage relationships. scRNA-

Seq data could potentially be a valuable resource for training gene circuits in the

future since they do not suffer from potential artefacts of in vitro experiments
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such as the exposure of cells to non-physiological levels of cytokines, oxygen, glu-

cose, or other metabolites (Rodriguez-Fraticelli & Camargo, 2021). In addition

to these technical improvements, single-cell resolution data could enable a new

class of gene circuits that can simulate heterogeneous mixtures of populations and

stochastic gene expression (Paul et al., 2015; Nestorowa et al., 2016; Velten et al.,

2017). Gene circuits presented in this dissertation have been limited to population

averages but could be modified using stochastic modeling frameworks (van Kem-

pen & van Vliet, 2000) although they would have to take into account the lack of

time information and the low depth of coverage of scRNA-Seq data (Lähnemann

et al., 2020).

In this dissertation I have demonstrated that coupling gene circuit models of

relatively large GRNs with high-temporal resolution gene expression data is feasi-

ble and yields mechanistic models that provide insight into GRN architecture and

the causality of events during development. The speedup of FIGR makes the in-

ference of even larger GRNs computationally feasible, while the dataset and anal-

ysis presented in Chapter 4 enables the modeling of macrophage-neutrophil dif-

ferentiation while also providing novel insights into the timing of cell-fate choice.

Taken as a whole this study opens up avenues for future research where scRNA-

Seq data or time-series datasets from multiple lineages could enable a unified gene

circuit model capable of simulating the differentiation of all blood cell types from

the hematopoietic stem cell. Such a model, if successful, could then also be ap-

plied to other developmental systems to gain broad and general insights in the

genetic architectures underlying development.
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