4,527 research outputs found

    The Complexity of Codiagnosability for Discrete Event and Timed Systems

    Full text link
    In this paper we study the fault codiagnosis problem for discrete event systems given by finite automata (FA) and timed systems given by timed automata (TA). We provide a uniform characterization of codiagnosability for FA and TA which extends the necessary and sufficient condition that characterizes diagnosability. We also settle the complexity of the codiagnosability problems both for FA and TA and show that codiagnosability is PSPACE-complete in both cases. For FA this improves on the previously known bound (EXPTIME) and for TA it is a new result. Finally we address the codiagnosis problem for TA under bounded resources and show it is 2EXPTIME-complete.Comment: 24 pages

    A new approach for diagnosability analysis of Petri nets using Verifier Nets

    Get PDF
    In this paper, we analyze the diagnosability properties of labeled Petri nets. We consider the standard notion of diagnosability of languages, requiring that every occurrence of an unobservable fault event be eventually detected, as well as the stronger notion of diagnosability in K steps, where the detection must occur within a fixed bound of K event occurrences after the fault. We give necessary and sufficient conditions for these two notions of diagnosability for both bounded and unbounded Petri nets and then present an algorithmic technique for testing the conditions based on linear programming. Our approach is novel and based on the analysis of the reachability/coverability graph of a special Petri net, called Verifier Net, that is built from the Petri net model of the given system. In the case of systems that are diagnosable in K steps, we give a procedure to compute the bound K. To the best of our knowledge, this is the first time that necessary and sufficient conditions for diagnosability and diagnosability in K steps of labeled unbounded Petri nets are presented

    Formal Design of Asynchronous Fault Detection and Identification Components using Temporal Epistemic Logic

    Get PDF
    Autonomous critical systems, such as satellites and space rovers, must be able to detect the occurrence of faults in order to ensure correct operation. This task is carried out by Fault Detection and Identification (FDI) components, that are embedded in those systems and are in charge of detecting faults in an automated and timely manner by reading data from sensors and triggering predefined alarms. The design of effective FDI components is an extremely hard problem, also due to the lack of a complete theoretical foundation, and of precise specification and validation techniques. In this paper, we present the first formal approach to the design of FDI components for discrete event systems, both in a synchronous and asynchronous setting. We propose a logical language for the specification of FDI requirements that accounts for a wide class of practical cases, and includes novel aspects such as maximality and trace-diagnosability. The language is equipped with a clear semantics based on temporal epistemic logic, and is proved to enjoy suitable properties. We discuss how to validate the requirements and how to verify that a given FDI component satisfies them. We propose an algorithm for the synthesis of correct-by-construction FDI components, and report on the applicability of the design approach on an industrial case-study coming from aerospace.Comment: 33 pages, 20 figure

    Machine learning techniques for fault isolation and sensor placement

    Get PDF
    Fault isolation and sensor placement are vital for monitoring and diagnosis. A sensor conveys information about a system's state that guides troubleshooting if problems arise. We are using machine learning methods to uncover behavioral patterns over snapshots of system simulations that will aid fault isolation and sensor placement, with an eye towards minimality, fault coverage, and noise tolerance

    Stochastic DES Fault Diagnosis with Coloured Interpreted Petri Nets

    Get PDF
    [EN] This proposal presents an online method to detect and isolate faults in stochastic discrete event systems without previous model. A coloured timed interpreted Petri Net generates the normal behavior language after an identification stage.The next step is fault detection that is carried out by comparing the observed event sequences with the expected event sequences. Once a new fault is detected, a learning algorithm changes the structure of the diagnoser, so it is able to learn new fault languages. Moreover, the diagnoser includes timed events to represent and diagnose stochastic languages. Finally, this paper proposes a detectability condition for stochastic DES and the sufficient and necessary conditions are proved.This work was supported by a grant from the Universidad del Cauca, Reference 2.3-31.2/05 2011.Muñoz-Añasco, DM.; Correcher Salvador, A.; García Moreno, E.; Morant Anglada, FJ. (2015). Stochastic DES Fault Diagnosis with Coloured Interpreted Petri Nets. Mathematical Problems in Engineering. 2015:1-13. https://doi.org/10.1155/2015/303107S1132015Jiang, S., & Kumar, R. (2004). Failure Diagnosis of Discrete-Event Systems With Linear-Time Temporal Logic Specifications. IEEE Transactions on Automatic Control, 49(6), 934-945. doi:10.1109/tac.2004.829616Zaytoon, J., & Lafortune, S. (2013). Overview of fault diagnosis methods for Discrete Event Systems. Annual Reviews in Control, 37(2), 308-320. doi:10.1016/j.arcontrol.2013.09.009Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. (1995). Diagnosability of discrete-event systems. IEEE Transactions on Automatic Control, 40(9), 1555-1575. doi:10.1109/9.412626Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., & Teneketzis, D. C. (1996). Failure diagnosis using discrete-event models. IEEE Transactions on Control Systems Technology, 4(2), 105-124. doi:10.1109/87.486338Estrada-Vargas, A. P., López-Mellado, E., & Lesage, J.-J. (2010). A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems. Mathematical Problems in Engineering, 2010, 1-21. doi:10.1155/2010/453254Cabasino, M. P., Giua, A., & Seatzu, C. (2010). Fault detection for discrete event systems using Petri nets with unobservable transitions. Automatica, 46(9), 1531-1539. doi:10.1016/j.automatica.2010.06.013Prock, J. (1991). A new technique for fault detection using Petri nets. Automatica, 27(2), 239-245. doi:10.1016/0005-1098(91)90074-cAghasaryan, A., Fabre, E., Benveniste, A., Boubour, R., & Jard, C. (1998). Discrete Event Dynamic Systems, 8(2), 203-231. doi:10.1023/a:1008241818642Hadjicostis, C. N., & Verghese, G. C. (1999). Monitoring Discrete Event Systems Using Petri Net Embeddings. Application and Theory of Petri Nets 1999, 188-207. doi:10.1007/3-540-48745-x_12Benveniste, A., Fabre, E., Haar, S., & Jard, C. (2003). Diagnosis of asynchronous discrete-event systems: a net unfolding approach. IEEE Transactions on Automatic Control, 48(5), 714-727. doi:10.1109/tac.2003.811249Genc, S., & Lafortune, S. (2003). Distributed Diagnosis of Discrete-Event Systems Using Petri Nets. Lecture Notes in Computer Science, 316-336. doi:10.1007/3-540-44919-1_21Genc, S., & Lafortune, S. (2007). Distributed Diagnosis of Place-Bordered Petri Nets. IEEE Transactions on Automation Science and Engineering, 4(2), 206-219. doi:10.1109/tase.2006.879916Ramirez-Trevino, A., Ruiz-Beltran, E., Rivera-Rangel, I., & Lopez-Mellado, E. (2007). Online Fault Diagnosis of Discrete Event Systems. A Petri Net-Based Approach. IEEE Transactions on Automation Science and Engineering, 4(1), 31-39. doi:10.1109/tase.2006.872120Dotoli, M., Fanti, M. P., Mangini, A. M., & Ukovich, W. (2009). On-line fault detection in discrete event systems by Petri nets and integer linear programming. Automatica, 45(11), 2665-2672. doi:10.1016/j.automatica.2009.07.021Fanti, M. P., Mangini, A. M., & Ukovich, W. (2013). Fault Detection by Labeled Petri Nets in Centralized and Distributed Approaches. IEEE Transactions on Automation Science and Engineering, 10(2), 392-404. doi:10.1109/tase.2012.2203596Basile, F., Chiacchio, P., & De Tommasi, G. (2009). An Efficient Approach for Online Diagnosis of Discrete Event Systems. IEEE Transactions on Automatic Control, 54(4), 748-759. doi:10.1109/tac.2009.2014932Roth, M., Lesage, J.-J., & Litz, L. (2011). The concept of residuals for fault localization in discrete event systems. Control Engineering Practice, 19(9), 978-988. doi:10.1016/j.conengprac.2011.02.008Roth, M., Schneider, S., Lesage, J.-J., & Litz, L. (2012). Fault detection and isolation in manufacturing systems with an identified discrete event model. International Journal of Systems Science, 43(10), 1826-1841. doi:10.1080/00207721.2011.649369Chung-Hsien Kuo, & Han-Pang Huang. (2000). Failure modeling and process monitoring for flexible manufacturing systems using colored timed Petri nets. IEEE Transactions on Robotics and Automation, 16(3), 301-312. doi:10.1109/70.850648Ramirez-Trevino, A., Ruiz-Beltran, E., Aramburo-Lizarraga, J., & Lopez-Mellado, E. (2012). Structural Diagnosability of DES and Design of Reduced Petri Net Diagnosers. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 42(2), 416-429. doi:10.1109/tsmca.2011.2169950Cabasino, M. P., Giua, A., & Seatzu, C. (2014). Diagnosability of Discrete-Event Systems Using Labeled Petri Nets. IEEE Transactions on Automation Science and Engineering, 11(1), 144-153. doi:10.1109/tase.2013.2289360Yao, L., Feng, L., & Jiang, B. (2014). Fault Diagnosis and Fault Tolerant Control for Non-Gaussian Singular Time-Delayed Stochastic Distribution Systems. Mathematical Problems in Engineering, 2014, 1-9. doi:10.1155/2014/937583Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi:10.1109/5.24143Dotoli, M., Fanti, M. P., & Mangini, A. M. (2008). Real time identification of discrete event systems using Petri nets. Automatica, 44(5), 1209-1219. doi:10.1016/j.automatica.2007.10.014Muñoz, D. M., Correcher, A., García, E., & Morant, F. (2014). Identification of Stochastic Timed Discrete Event Systems with st-IPN. Mathematical Problems in Engineering, 2014, 1-21. doi:10.1155/2014/835312Latorre-Biel, J.-I., Jiménez-Macías, E., Pérez de la Parte, M., Blanco-Fernández, J., & Martínez-Cámara, E. (2014). Control of Discrete Event Systems by Means of Discrete Optimization and Disjunctive Colored PNs: Application to Manufacturing Facilities. Abstract and Applied Analysis, 2014, 1-16. doi:10.1155/2014/821707Cabasino, M. P., Giua, A., Lafortune, S., & Seatzu, C. (2012). A New Approach for Diagnosability Analysis of Petri Nets Using Verifier Nets. IEEE Transactions on Automatic Control, 57(12), 3104-3117. doi:10.1109/tac.2012.2200372Abdelwahed, S., Karsai, G., Mahadevan, N., & Ofsthun, S. C. (2009). Practical Implementation of Diagnosis Systems Using Timed Failure Propagation Graph Models. IEEE Transactions on Instrumentation and Measurement, 58(2), 240-247. doi:10.1109/tim.2008.200595

    Sequence-Oriented Diagnosis of Discrete-Event Systems

    Get PDF
    Model-based diagnosis has always been conceived as set-oriented, meaning that a candidate is a set of faults, or faulty components, that explains a collection of observations. This perspective applies equally to both static and dynamical systems. Diagnosis of discrete-event systems (DESs) is no exception: a candidate is traditionally a set of faults, or faulty events, occurring in a trajectory of the DES that conforms with a given sequence of observations. As such, a candidate does not embed any temporal relationship among faults, nor does it account for multiple occurrences of the same fault. To improve diagnostic explanation and support decision making, a sequence-oriented perspective to diagnosis of DESs is presented, where a candidate is a sequence of faults occurring in a trajectory of the DES, called a fault sequence. Since a fault sequence is possibly unbounded, as the same fault may occur an unlimited number of times in the trajectory, the set of (output) candidates may be unbounded also, which contrasts with set-oriented diagnosis, where the set of candidates is bounded by the powerset of the domain of faults. Still, a possibly unbounded set of fault sequences is shown to be a regular language, which can be defined by a regular expression over the domain of faults, a property that makes sequence-oriented diagnosis feasible in practice. The task of monitoring-based diagnosis is considered, where a new candidate set is generated at the occurrence of each observation. The approach is based on three different techniques: (1) blind diagnosis, with no compiled knowledge, (2) greedy diagnosis, with total knowledge compilation, and (3) lazy diagnosis, with partial knowledge compilation. By knowledge we mean a data structure slightly similar to a classical DES diagnoser, which can be generated (compiled) either entirely offline (greedy diagnosis) or incrementally online (lazy diagnosis). Experimental evidence suggests that, among these techniques, only lazy diagnosis may be viable in non-trivial application domains

    Diagnosis of Discrete Event Systems with Petri Nets

    Get PDF

    Supervisory Control and Analysis of Partially-observed Discrete Event Systems

    Get PDF
    Nowadays, a variety of real-world systems fall into discrete event systems (DES). In practical scenarios, due to facts like limited sensor technique, sensor failure, unstable network and even the intrusion of malicious agents, it might occur that some events are unobservable, multiple events are indistinguishable in observations, and observations of some events are nondeterministic. By considering various practical scenarios, increasing attention in the DES community has been paid to partially-observed DES, which in this thesis refer broadly to those DES with partial and/or unreliable observations. In this thesis, we focus on two topics of partially-observed DES, namely, supervisory control and analysis. The first topic includes two research directions in terms of system models. One is the supervisory control of DES with both unobservable and uncontrollable events, focusing on the forbidden state problem; the other is the supervisory control of DES vulnerable to sensor-reading disguising attacks (SD-attacks), which is also interpreted as DES with nondeterministic observations, addressing both the forbidden state problem and the liveness-enforcing problem. Petri nets (PN) are used as a reference formalism in this topic. First, we study the forbidden state problem in the framework of PN with both unobservable and uncontrollable transitions, assuming that unobservable transitions are uncontrollable. For ordinary PN subject to an admissible Generalized Mutual Exclusion Constraint (GMEC), an optimal on-line control policy with polynomial complexity is proposed provided that a particular subnet, called observation subnet, satisfies certain conditions in structure. It is then discussed how to obtain an optimal on-line control policy for PN subject to an arbitrary GMEC. Next, we still consider the forbidden state problem but in PN vulnerable to SD-attacks. Assuming the control specification in terms of a GMEC, we propose three methods to derive on-line control policies. The first two lead to an optimal policy but are computationally inefficient for large-size systems, while the third method computes a policy with timely response even for large-size systems but at the expense of optimality. Finally, we investigate the liveness-enforcing problem still assuming that the system is vulnerable to SD-attacks. In this problem, the plant is modelled as a bounded PN, which allows us to off-line compute a supervisor starting from constructing the reachability graph of the PN. Then, based on repeatedly computing a more restrictive liveness-enforcing supervisor under no attack and constructing a basic supervisor, an off-line method that synthesizes a liveness-enforcing supervisor tolerant to an SD-attack is proposed. In the second topic, we care about the verification of properties related to system security. Two properties are considered, i.e., fault-predictability and event-based opacity. The former is a property in the literature, characterizing the situation that the occurrence of any fault in a system is predictable, while the latter is a newly proposed property in the thesis, which describes the fact that secret events of a system cannot be revealed to an external observer within their critical horizons. In the case of fault-predictability, DES are modeled by labeled PN. A necessary and sufficient condition for fault-predictability is derived by characterizing the structure of the Predictor Graph. Furthermore, two rules are proposed to reduce the size of a PN, which allow us to analyze the fault-predictability of the original net by verifying that of the reduced net. When studying event-based opacity, we use deterministic finite-state automata as the reference formalism. Considering different scenarios, we propose four notions, namely, K-observation event-opacity, infinite-observation event-opacity, event-opacity and combinational event-opacity. Moreover, verifiers are proposed to analyze these properties
    • …
    corecore