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ABSTRACT 

Nowadays, a variety of real-world systems fall into discrete event systems (DES). 

In practical scenarios, due to facts such as limited sensor technique, sensor failure, 

unstable network and even the intrusion of malicious agents, it might occur that some 

events are unobservable, multiple events are indistinguishable in observations, and 

observations of some events are nondeterministic. Taking into account various practical 

scenarios, increasing attention in the DES community has been paid to partially-

observed DES, which in this thesis refer broadly to those DES with partial and/or 

unreliable observations. 

In this thesis, we focus on two topics of partially-observed DES, namely, 

supervisory control and analysis.  

The first topic includes two research directions in terms of system models. One is 

the supervisory control of DES with both unobservable and uncontrollable events, 

focusing on the forbidden state problem in this thesis; the other is the supervisory 

control of DES vulnerable to sensor-reading disguising attacks (SD-attacks), which 

may also be interpreted as DES with nondeterministic observations, addressing not only 

the forbidden state problem but also the liveness-enforcing problem. Specifically, Petri 

nets (PN) are used as a reference formalism in this topic. First, we study the forbidden 

state problem in the framework of PN with both unobservable and uncontrollable 

transitions, assuming that unobservable transitions are uncontrollable. Focusing on 

ordinary PN subject to an admissible Generalized Mutual Exclusion Constraint 

(GMEC), an optimal on-line control policy with polynomial complexity is proposed 

provided that a particular subnet, called observation subnet, satisfies certain conditions 

in structure. It is then discussed how to obtain an optimal on-line control policy for PN 

subject to an arbitrary GMEC. Next, we still consider the forbidden state problem but 
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in PN vulnerable to SD-attacks. Assuming the control specification in terms of a GMEC, 

we propose three methods to derive on-line control policies. The first two lead to an 

optimal policy but are computationally inefficient when applied to large-size systems, 

while the third method computes a policy with timely response even for large-size 

systems but at the expense of optimality. Finally, we investigate the liveness-enforcing 

problem still assuming that the system is vulnerable to SD-attacks. In this problem, the 

plant is modelled as a bounded PN, which allows us to off-line compute a supervisor 

starting from constructing the reachability graph of the considered PN. Then, based on 

repeatedly computing a more restrictive liveness-enforcing supervisor under no attack 

and constructing a so-called basic supervisor, an off-line method that synthesizes a 

liveness-enforcing supervisor tolerant to an SD-attack is proposed. 

In the second topic, we care about the verification of properties related to system 

security. Two properties are considered, i.e., fault-predictability and event-based 

opacity. The former is a property proposed in the literature, characterizing the situation 

that the occurrence of any fault in a system is predictable, while the latter is a newly 

proposed property in the thesis, which is a confidentiality property basically 

characterizing the fact that secret events of a system should not be revealed to an 

external observer within their critical horizons. In the case of fault-predictability, DES 

are modeled by labeled PN. A necessary and sufficient condition for fault-predictability 

is derived by characterizing the structure of the Predictor Graph. Furthermore, two 

rules are proposed to reduce the size of a PN, which allow one to analyze the fault-

predictability of the original net by verifying the fault-predictability of the reduced net. 

When studying event-based opacity, we use deterministic finite-state automata as the 

reference formalism. Considering different scenarios from the simplest one to the most 

complicated one, we propose four notions, namely, K-observation event-opacity, 

infinite-observation event-opacity, event-opacity and combinational event-opacity. 

Moreover, appropriate verifiers are proposed to analyze the proposed four properties. 
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CHAPTER I   

Introduction 

Discrete event systems (DES) are a class of dynamical systems whose states are 

discrete and whose state evolution is driven by the occurrence of asynchronous events. 

There are a variety of examples in the real world, ranging from flexible manufacturing 

systems and intelligent transportation systems to communication systems and 

distributed software systems. They are either inherently state-discrete and event-driven 

or modeled in a discrete-abstraction level for the study of problems concerning with 

their “high-level” logical behavior. In the framework of DES, a lot of problems may be 

addressed in an elegant manner, related to issues like the safety, information security, 

and performance of systems in the real world. 

For external observers, the behavior of a DES is typically acquired by observing the 

occurrence of events. Initially, the study on DES is commonly performed under the 

assumption that we have the complete and reliable observation on its behavior, i.e., the 

occurrence of events in the system. This is actually an ideal situation and not common 

to see in practical scenarios, which leads to solutions under such an assumption with 

limited applications. Indeed, in practical scenarios, the observation on events is realized 

by getting readings or signals from equipped sensors in the system. Due to facts like 

limited sensor technique, high cost of sensor installation, and failure of communication 

and sensors, it could happen that not all events are observable and it could also happen 

that multiple observable events share the same output reading or signal, i.e., they are 

indistinguishable in observations. Moreover, some observations of events may be 

nondeterministic due to sensor failure, unstable network and even the intrusion of 
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malicious agents. Consequently, taking into account various practical scenarios, more 

and more attention in the DES community has been turned to partially-observed DES, 

which in this thesis refer broadly to those DES with partial and/or unreliable 

observations. 

Mathematically, to model the observation ability on a partially-observed DES, a 

projection is defined on the event set. It can be a projection that simply erases the 

outputs of some events that coincide with unobservable events. It can be a more general 

projection that associates to each event a label so that indistinguishable events may be 

taken into account. More general, it can be a projection that associates to each event a 

set of labels, which allows one to capture events with nondeterministic observations. 

Different projections are used depending on specific problems to be studied.  

In this thesis, we focus on two topics of partially-observed DES, namely, 

supervisory control and analysis. The first topic further includes two research directions 

in terms of system models. One is the supervisory control of DES with both 

unobservable and uncontrollable events, focusing on the forbidden state problem in this 

thesis; the other is the supervisory control of DES vulnerable to network attacks, which 

may also be interpreted as DES with nondeterministic observations, taking into account 

not only the forbidden state problem but also the liveness-enforcing problem. In the 

second topic, we care about the verification of properties related to system security. 

Two properties are considered in this thesis, i.e., fault-predictability and event-based 

opacity. The former is a property proposed in the literature, characterizing the situation 

that the occurrence of any fault in a system is predictable, while the latter is a newly 

proposed property in the thesis, which is a confidentiality property considering that 

secret events of a system should not be revealed to an external observer within their 

critical horizons. The outline of the thesis is shown in Fig. 1.1. In what follows, the 

motivation and related works of the studied problems are introduced, respectively. 
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Supervisory 
Control

Analysis

Study on 
partially-observed 

DES 

Plant: DES with unobservable and 
uncontrollable events

Plant: DES vulnerable to network attacks 
(i.e., DES with nondeterministic observations)

Verification of fault-predictability
(Chapter VI)

Verification of event-based opacity
(Chapter VII)

forbidden state problem 
(Chapter III)

forbidden state problem 
(Chapter IV)

liveness-enforcing problem 
(Chapter V)

Fig. 1.1 Outline of the thesis 

1.1 Motivation and Literature Review 

1.1.1 Forbidden State Problem of DES with Unobservable and Uncontrollable 
Events 

The forbidden state problem of DES is a classic problem. It consists in the 

supervisory control of a DES so that no forbidden states are reached during its evolution 

(or equivalently, only allowed states are reached during its evolution). Forbidden states 

refer to those states that a system is not expected to reach, which vary with different 

control goals and different practical scenarios. They are often the states that possibly 

cause unnecessary costs and/or lead to catastrophic results; such as the deadlocks in 

manufacturing systems, the buffer overflow in network communication systems, the 

collision between trains on the track in transportation systems, and even the leakage of 

radioactive materials in nuclear power plants. Forbidden states also can be the states 

that violate some property to be enforced. For example, opacity, an important 

information flow property related to the information security of a system, whose 

enforcement can be realized via supervisory control on the considered system. Indeed, 

many problems in the DES area can be transformed into the forbidden state problem as 

long as a set of forbidden or allowed states is obtained. Consequently, it is significantly 

important to investigate the forbidden state problem. 

The problem has been well addressed in the case that events of a DES are all 
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controllable and observable. By taking into account real scenarios where some events 

may be unobservable and/or uncontrollable, many researchers reconsider the forbidden 

state problem in the presence of unobservable and/or uncontrollable events. In 

particular, the problem has been mostly investigated under the assumption that certain 

events are uncontrollable, but all of them are observable. In this thesis, we use Petri 

nets (PNs) as a modelling tool to deal with the forbidden state problem in the most 

general setting where transitions (i.e., events) may be unobservable and/or 

uncontrollable. As typically done in this framework and as it actually occurs in several 

real applications [68], an assumption is made in this work, namely, unobservable 

transitions are also uncontrollable. Recently, for such PN under the above assumption, 

Luo et al. [63] propose two approaches to design control policies. The first approach is 

applicable to arbitrary PN with the state specification being an arbitrary GMEC. Such 

an approach is efficient but the optimality is not guaranteed. In more detail, this policy 

requires the transformation of the given GMEC into a disjunction of multiple 

admissible GMEC. However, the two admissible marking sets before and after 

transformation, are not coincident and the policy is thereby not optimal. The second 

approach guarantees an optimal policy with low computational complexity but it only 

applies under very restrictive assumptions. It is indeed only applicable to the state 

specification being a GMEC with binary coefficients. Besides, it requires that the 

uncontrollable subnet is a state machine that satisfies some restrictive assumptions. 

Inspired by [63], this thesis aims to propose an efficient and optimal control policy that 

can be applied to more general cases.  

 Literature Review 

The forbidden state problem of DES has a long history [49]. Many researchers use 

PNs as the reference formalism to deal with the forbidden state problem. Usually, a 

state specification is given to define the state space where a system is allowed to evolve, 

which is called the legal marking set in the framework of PNs. This problem has been 

addressed since nineties in the case of PNs where all transitions are controllable and 

observable [38, 109]. For a PN with uncontrollable and/or unobservable transitions, the 

problem becomes more complicated. 



5 
 

The problem has been mostly investigated for PNs with all transitions observable 

but some transitions uncontrollable. To make such a PN meet the state specification, it 

is not sufficient to restrict its behavior within the legal marking set. It could happen that 

a forbidden marking is reached from some legal markings by firing uncontrollable 

transitions. Instead, its behavior should be restricted within a subset of the legal marking 

set, called the admissible marking set, as proposed by Krogh and Holloway [49]. 

Thereafter, the key to solving the forbidden state problem of such PNs turns to the 

computation of the admissible marking set. A lot of efforts have been made on 

developing constraint transformation techniques that can efficiently convert 

Generalized Mutual Exclusion Constraints (GMECs) describing the legal marking set 

into GMECs characterizing the admissible marking set [7, 34, 40, 60-62, 68, 100-103]. 

In addition, some works study the existence of supervisory policies in the presence of 

uncontrollable transitions; see, e.g., [26, 85].  

When unobservable transitions are also taken into consideration, the forbidden state 

problem becomes more difficult to handle. Moody et al. [68] develop a supervisory 

synthesis technique for PNs with uncontrollable and unobservable transitions that 

provides a model of the closed-loop system but cannot guarantee the optimality (namely, 

maximal permissiveness) of the synthesized supervisor. Achour et al. [1] propose an 

optimal control policy for a subclass of PNs, called marked graphs, with unobservable 

transitions. However, it is only applicable to the case that the marked graph is live and 

the given GMECs meet some conditions. Ru et al. [75] also design an optimal 

supervisor that is applicable to a much more general case where the state specification 

is not necessarily a GMEC but can be an arbitrary bounded set. However, the approach 

requires on-line calculations that are of exponential complexity with respect to the 

number of places of the net, so it may be not feasible for complex real problems. 

Cabasino et al. [12] deal with a more general problem where the initial marking of the 

PN is unknown but belongs to a given convex set and indistinguishable transitions are 

also considered. They propose two solutions to derive control policies. The first one 

requires the computation of the marking observer and the solution of an integer linear 

programming problem for each controllable transition. Unfortunately, the optimality is 
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not guaranteed by this approach. On the contrary, the second approach guarantees the 

optimality of the solution and moves the most burdensome parts of the computations 

off-line. However, it may be too computationally demanding in real complex problems. 

A very rich literature also exists on supervisory control of DES with partial 

observations based on automata models. The control specifications in this framework 

are typically language specifications instead of state specifications considered in this 

work. Specifically, a language specification is defined by a sublanguage K of the system 

language. It is known that a sublanguage L⊆ K being controllable and observable is a 

necessary and sufficient condition for the existence of a supervisor that exactly enforces 

L [22, 59]. Under the partial observation setting, there may not exist a supremal 

controllable and observable sublanguage of K. Some efforts have thereby been made 

on solving this problem. Initially, the concept of normality is proposed in [22, 59] and 

it is proved that the supremal controllable and normal sublanguage exists, which 

however is usually too restrictive. Thereafter, two different approaches developed in 

[13] and [90], respectively, provide solutions that are larger than the supremal 

controllable normal sublanguage but neither of them is the maximal solution. Hadj-

Alouane et al. [37] propose on-line control algorithms that could derive a maximal 

solution for prefix-closed language specifications. Yin and Lafortune consider in [114] 

the specification that is a non-prefix-closed sublanguage. Based on constructing a 

bipartite transition system named Non-blocking All Inclusive Controller, they develop 

an algorithm that synthesizes a safe, non-blocking and maximally permissive supervisor, 

if it exists. Moreover, they consider in [115] the property enforcement on DESs by 

supervisory control, where a supervisor that is property-enforcing and maximally 

permissive can be computed by constructing a transition system called All Enforcement 

Structure. In addition, they consider in [116] a more generalized supervisory control 

problem called the range control problem, where both a standard upper bound 

specification that captures the legal behavior and a lower bound specification that 

captures the minimum required behavior are taken into consideration. An algorithm is 

provided in [116] that solves this problem by effectively synthesizing a maximally-

permissive safe supervisor.  
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Compared with automata, PN models have the advantage that structural 

characteristics may be utilized to solve the supervisory control problem. Besides, PN 

models allow the study on infinite state systems. Due to such advantages, we adopt PN 

as a modelling tool to deal with the forbidden state problem in this work.  

1.1.2 Supervisory Control of DES Vulnerable to Network Attacks 

Nowadays, communication networks are increasingly used in practical systems such 

as various cyber-physical systems whose components are often connected via 

communication networks for information exchange. The use of networks, however, 

might compromise the security of a system, making it vulnerable to various network 

attacks. The attack issues thereby receive more and more attention in both academia 

and industry.  

In DES community, attack issues are typically considered in the closed-loop control 

system abstracted in Fig. 1.2, where the plant is modelled as a DES and a supervisor 

enforces a control specification on the plant by enabling/disabling some events 

according to the current observation on events generated by the plant. In a realistic 

scenario, the supervisor observes the occurrence of events by getting readings from 

sensors and enables/disables events by issuing commands to control actuators. In the 

case that the supervisor communicates with sensors and actuators via networks, the 

potential attacks may be divided into two categories in terms of locations, i.e., attacks 

in sensor and actuator channels. The former indicates the tampering with sensor-

readings in vulnerable sensor channels, while the latter indicates the tampering with the 

control commands on actuators in vulnerable actuator channels. 

 
Fig. 1.2 Closed-loop control system 
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In this thesis, we consider attacks in sensor channels that we call sensor-reading 

disguising attacks (SD-attacks for short), which are a subclass of the replacement-

removal attacks in [97]. In more detail, the intruder may disguise the occurrence of an 

event in the plant as the occurrence of another event by tampering with the sensor-

readings transmitted in vulnerable sensor channels. We study the synthesis of a 

supervisor tolerant to such attacks. It means that the supervisor is able to enforce a 

control specification to the plant even in the presence of such attacks. We note that in 

this work we deal with a plant whose events are all controllable and observable but the 

potential existence of attacks makes the considered system with nondeterministic 

observations. Thus, the studied problem can also be interpreted as the supervisory 

control of DES with nondeterministic observations. 

Two control specifications are studied in this thesis, respectively. One is the state 

specification characterized by GMEC and the other is liveness.  

When the control specification takes the form of GMEC, we use PN as a reference 

formalism to study the control problem, which allows us to handle both bounded and 

unbounded DES. We note that [97] and [112] are closely related to this work. Both of 

them consider the supervisor synthesis problem. Specifically, their focus is that of 

synthesizing a supervisor off-line represented by an automaton. Once such a supervisor 

is synthesized, little on-line computation is needed. However, computing such a 

supervisor requires an exhaustive reachability analysis, which makes such approaches 

hardly applicable to DESs with a large number of states and unfeasible in the case of 

DES with an unbounded state space. In this work, we develop an on-line control policy 

for a plant modelled by a PN system that can be bounded or unbounded. To ensure the 

timely response of a control policy, we make efforts on improving its on-line 

computational efficiency. 

Consider the control specification that is liveness. Liveness is an important property 

for many practical systems, which characterizes a specific dynamical behavior of a 

system. The problem of liveness enforcing on DES in the framework of PNs has been 

extensively studied, resulting in a variety of approaches under different problem 

settings [5, 19, 21, 36, 39, 53, 64, 65, 99, 101, 105, 110, 126, 129]. However, how to 
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enforce liveness in the presence of network attacks has not been yet investigated. As 

well known, even under no attacks, reachability analysis is inevitable in solving a 

liveness enforcing problem if no restrictions are made on the considered PN class, 

which leads to solutions with a complexity that is exponential in the size of the net. 

Now, in the presence of attacks, observations produced by a system might be 

inconsistent with the real evolution of the system. Thus, it could happen that a control 

action associated with an observation forbids/permits some sequences that it does not 

intend to forbid/permit, whereas the property of liveness is easy to be damaged if 

sequences are forbidden/permitted in a casual way. Consequently, the difficulty of 

enforcing liveness is further increased under attacks. We aim to get a solution for such 

a problem. Specifically, we study the off-line synthesis of a liveness-enforcing 

supervisor tolerant to SD-attacks considering the plant modelled as a bounded PN 

system.  

 Literature Review 

Thorsley and Teneketzis [92] study intrusion detection in the supervisory control of 

DES. The focus of their work is on finding a control specification that can be realized 

by a supervisor when there is no attack and the supervisor is capable of preventing 

damages caused by attacks. The attacks considered in their work are attacks in actuator 

channels. Carvalho et al. [14] consider a more explicit type of attacks in actuator 

channels named actuator enablement attacks (AE-attacks), which overwrites the 

control command on some actuators from “disable” to “enable”. They model the 

behavior of the controlled system under AE-attacks and then develop a method to 

determine if the system is AE-safe controllable. For AE-safe controllable systems, the 

defense strategy is straightforward, consisting in detecting AE-attacks online and 

disabling all controllable events once an attack is detected. Later, they consider actuator 

disablement attacks and also extend the detection and defense strategy to two types of 

attacks in sensor channels named sensor erasure attacks and sensor insertion attacks. 

Lima et al. [55, 56] carry out similar works on proposing defense strategies but deal 

with a more general attack called the man-in-the-middle attack [23], where the 

intruder/attacker can observe, hide, create or even replace information transiting in a 
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communication channel. In [57], Lima et al. improve the defense strategies. In 

particular, a security module is designed that carefully disables controllable events 

whose occurrence leads to unsafe states rather than “abruptly” disabling all controllable 

events once an attack is detected. In essence, the works [14, 55-57, 92] share some 

similarity with the works on fault detection and diagnosis [24, 127, 132]. 

Wakaiki et al. [97] also investigate the supervisory control of DESs vulnerable to 

attacks in sensor channels. To be precise, they study the robust control with respect to 

a set of attackers with different attack abilities. They assume that only one attacker in 

the set may appear in the system but they do not know which one it is. Then, given a 

language specification, they want to find a supervisor that enforces the specification to 

the controlled system no matter whether or not there exist attacks and no matter which 

attacker they are facing. To this end, they define a new notion of observability of a 

language specification in the presence of attacks and characterize the existence of a 

supervisor by the usual notion of controllability and the new notion of observability of 

the language specification. In particular, for replacement-removal attacks, they 

construct a robust supervisor in the automaton framework and propose a sufficient 

condition under which a maximally permissive supervisor exists. We notice that the 

DES under attacks in [97] is actually a DES with nondeterministic observations. In 

other words, this work has some similarities with the works on supervisory control of 

DES with nondeterministic observations [96, 108, 112]. Specifically, [96, 108] mainly 

deal with the supervisor existence problem given a language specification, while [112] 

solves the supervisor synthesis problem by proposing a model transformation method. 

Compared with [96, 108, 112], the work [97] handles a more general case on the 

nondeterministic observation function that is uncertain. 

Recently, some works [31, 35, 86, 131] handle intelligent attacks in closed-loop 

control systems. An intelligent attacker typically has the knowledge of the supervisor 

and is covert to the system user while inflicting damages. The existing works usually 

first synthesize an intelligent attack strategy from the viewpoint of the external 

malicious agent and then consider the design of a control policy. Note that the attacks 

considered in this thesis are not intelligent. 
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We conclude that almost all the aforementioned studies address attack issues using 

automata as a reference formalism, which usually limits their applicability to bounded 

DES. Moreover, they consider either a state specification or a language specification, 

which motivates us to consider the liveness specification.  

1.1.3 Fault-predictability 

A faulty behavior is a deviation of a system from its regular evolution. In a DES 

framework, faults typically correspond to undesirable events, which may either be 

observable or unobservable. As an example, in Heating, Ventilation, and Air 

Conditioning (HVAC) systems, faults are valves that get stuck open or closed, pumps 

that fail on or off, and controller modules that fail on or off [83, 84].  

Rich literature exists to study the problem of fault diagnosis in the case that faults 

are unobservable, which consists in providing a systematic approach to detect the 

occurrence of a fault based on the partial observation of the system evolution. Besides, 

it is fundamental to preliminarily investigate if the occurrence of a fault can be detected 

within a finite delay, or more precisely, after the occurrence of a finite number of events. 

Such a problem is known as diagnosibility analysis [6, 10, 32, 45, 46, 51, 73, 83, 122], 

or codiagnosability analysis when performed in a decentralized setting [72]. Some 

works also deal with the application of various diagnosis approaches in real systems, 

such as HVAC systems [84]; manufacturing systems [71]; document processing 

systems [82]; telecommunication networks [74]; and cloud systems [130]. 

In this thesis, we study a problem strictly related to diagnosability, namely fault-

predictability (or fault-prognosability). In such a case, faults are not necessarily 

unobservable events. They could be simply undesirable events, whose occurrence 

should be predicted in advance. Compared with fault diagnosis, fault prediction allows 

the system operator to be more proactive than passive when facing potential faults. 

Indeed, once the occurrence of a fault is predicted, timely reactions can be provided for 

the impending fault, such as limiting the possible future evolution of the system or even 

halting it. That way, disastrous consequences caused by faults may be avoided, which 

is of great importance especially for safety-critical systems.  
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The notion of fault-predictability has been first formalized in [33] and [42] for 

formal languages. Specifically, a system is fault-predictable if, for any fault that the 

system may suffer from, its occurrence could be predicted, i.e., we can know for sure 

from an observation that the fault will definitely occur after the occurrence of a finite 

number of events. In [33], Genc and Lafortune provide two approaches for testing the 

predictability of systems modeled by regular languages and present applications of the 

proposed approaches in HVAC systems and computer intrusion detection problems. 

Thereafter, many methods emerge to address the problem of fault prediction under 

different frameworks, such as probabilistic systems [70], stochastic systems [20], 

hybrid systems [18], and timed systems [17]. Moreover, some works deal with this 

problem in a decentralized [48, 50, 119, 120] or distributed framework [89, 111]. 

Besides, Takai introduces in [87] the concept of robust prognosability and investigates 

the robust fault prognosis problem.  

Most of the above works are based on automata. More recently, taking advantage 

from PN features, some researchers adopt PNs as the reference formalism. Madalinski 

et al. [66] reduce the predictability problem to that of linear time temporal logic-X 

model checking. In particular, PN unfolding is used in their work. Lefebvre [51] studies 

the problem of fault prognosis as well as fault diagnosis using partially observed 

stochastic PNs. Ammour et al. [2, 3] also investigate fault prognosis in the context of 

partially observed stochastic PNs. Specifically, they propose an incremental approach 

in [3] to compute the probability of the occurrence of a fault in a future time interval 

and in [2] develop an approach that can bound the estimation error when the probability 

of a future fault occurrence is estimated. 

Recently, Yin [113] studies the verification of fault-predictability in unbounded 

labeled PNs. He transforms the verification problem to a PN model checking problem 

and derives a necessary and sufficient condition for the fault-predictability, which 

requires to determine whether or not there exists a particular transition sequence in a 

particular PN associated with the original one. However, how to implement this 

condition (i.e., how to search particular transition sequences) to verify the fault-

predictability is not further investigated. 
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Motivated by the work of Yin [113], in this thesis, we propose a new approach to 

verify the fault-predictability of bounded and unbounded labeled PNs still based on PN 

model checking. As in [113], we construct a new PN that we call Predictor Net, which 

is a more compact PN than the auxiliary PN used in [113]. Most importantly, we 

construct a special graph called Predictor Graph, which is similar to the reachability 

graph/coverability graph of the Predictor Net but with some appropriate modifications, 

and then propose a necessary and sufficient condition for the fault-predictability by 

looking at the structure of the Predictor Graph. Finally, we propose two rules to reduce 

the size of the given labeled PN and show that the fault-predictability of the original 

net can be studied by verifying the fault-predictability of the reduced net. 

1.1.4 Event-based Opacity 

An ever growing amount of information is being exchanged in nowadays society. 

Opacity is one of the most important information flow properties related to privacy and 

security arising in cyber/cyber-physical systems. It characterizes the situation in which 

a “secret” of a system can never be revealed to a potentially malicious intruder who has 

full knowledge of the system model but partial observability on its behavior. More 

precisely, a system is opaque if for any of its “secret” behavior, there exists a “non-

secret” behavior that provides the same observation to the intruder. The notion of 

opacity has been first  proposed in [67] for the analysis of cryptographic protocols in 

computer science. Later on, Bryans et al. extend the notion to the area of DES both in 

the framework of PN [9] and transition systems [8]. Saboori and Hadjicostis [76] as 

well as Badouel et al. [4] study opacity problems in the framework of finite-state 

automata. Since then, increasing attention has been devoted to opacity problems in the 

DES community, leading to a lot of works including the verification and enforcement 

of opacity [16, 25, 29, 30, 43, 44, 47, 58, 77-81, 88, 93-95, 106, 107, 117, 118, 121, 

128]. The reader is referred to the survey in [41] for more references.  

In the context of DES, several definitions of opacity have been formalized with the 

purpose of characterizing different security requirements in different practical scenarios. 

Opacity notions in the literature may be classified into two main groups, i.e., language-
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based opacity and state-based opacity. The former defines the secret as a sublanguage 

of the considered system, while the latter defines the secret as a subset of the system 

state space. In more detail, the language-based opacity is formulated in [4, 28, 58] with 

slightly different definitions. In simple words, the secret consists in a set of strings 

whose occurrence should not be discovered by the intruder. This happens provided that 

all such strings produce the same observation of non-secret strings. In contrast, the 

state-based opacity has many different notions like current-state opacity [76], initial-

state opacity [80], initial-and-final-state opacity [106], K-step opacity [76] and infinite-

step opacity [79].  

In this thesis, we propose event-based opacity notions which are different from 

language-based opacity and state-based opacity notions. They are motivated by the 

scenario in which the intruder is interested in detecting some specific unobservable 

events rather than strings or states in a system. In other words, the secret in event-based 

opacity consists of some unobservable events. Moreover, it is assumed that each secret 

event has its critical horizon, which is characterized by associating a positive integer to 

each secret event. Specifically, a positive integer K associated to a secret event defines 

the critical horizon that is the interval from the instant when the secret event occurs 

until the instant when the K-th observable event occurs after the secret. The intruder 

aims to establish within the critical horizon of a secret event if the secret has occurred, 

namely, to establish if a secret event has occurred at the latest when the K-th event is 

observed after the occurrence of the secret. A motivation example in the domain of 

business administration is illustrated in the thesis, where it could happen that if a secret 

is discovered too late (beyond its critical horizon), no strategy can be implemented by 

the intruder to take advantage of such a private information. Consequently, the event-

based opacity of a system basically refers to the property that the intruder may never 

establish the occurrence of a secret event within its critical horizon.  

We study event-based opacity using deterministic finite-state automata (DFA) as 

the reference formalism. First, we consider the case that the same critical horizon (i.e., 

the same positive integer K) is associated to each secret event and thus propose the 

notion of K-observation event-opacity, which becomes infinite-observation event-
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opacity in the case that K is infinite. We observe that the notions of K-observation and 

infinite-observation event-opacity share some similarity with (K-step) diagnosability 

[83, 127]. Thus, the relationship among them is analyzed in our work. In simple words, 

diagnosability indicates that, every time a fault occurs, as long as a sufficiently long 

observable word is produced after that, the fault can be detected. In contrast, infinite-

observation event-opacity implies that, every time a secret occurs, no matter how long 

the observable word produced after that is, the secret can never be discovered. If we do 

not distinguish between secret events and fault events, infinite-observation event-

opacity is a sufficient condition for a system not being diagnosable. Now, let us focus 

on K-step diagnosability and K-observation event-opacity. The former requires that, 

every time a fault occurs, at the latest when the K-th observable event occurs after that, 

a fault can be detected. In contrast, the latter requires that, every time a secret occurs, 

starting from that moment, until the K-th observable event occurs, it can never be 

established that a secret has occurred in the middle of the past K+1 observable events. 

It is shown in the work that K-observation event-opacity is a sufficient condition for the 

system not being K-step diagnosable. In addition, K-observation event-opacity is 

incomparable with diagnosability. Later on, we generalize the problem setting 

assuming that different critical horizons (i.e., different positive integers) may be 

associated to different secret events. In this scenario, the notion of event-opacity is 

presented. Furthermore, we also consider the case where the intruder may distinguish 

among secret events, which motivates us to propose the notion of combinational event-

opacity w.r.t. multiple sets of secret events. Next, we develop methods for the 

verification of the proposed properties. To do so, we construct verifiers that allow us to 

do the verification by checking nodes in them. 

1.2 Main Contributions and Organization  

The main contributions and the organization of this thesis are summarized as follows. 

We notice that the content of Chapters III and VI is published in Information Sciences 

and IEEE Transactions on Automatic Control, respectively; see [124] and [125], the 
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content of Chapter V is accepted by IEEE Transactions on Systems, Man, and 

Cybernetics: Systems, and the content of Chapters IV and VII is under review by IEEE 

Transactions on Automatic Control.  

Chapter II  Basic Notions 

In this chapter, we recall basic notions used in this thesis, including the notion of 

languages, graph theory, two modelling formalisms, i.e., Automata and PN, and control 

policies in the framework of PN. 

Chapter III  Forbidden state problem of DES with unobservable and 

uncontrollable events 

In this chapter, we use PN as a modelling tool to deal with the forbidden state 

problem of DES in the presence of both unobservable and uncontrollable events, 

assuming that unobservable events are uncontrollable.  

First of all, it is proved that two state specifications are equivalent if their admissible 

marking sets coincide. Motivated by this result, we focus on studying how to compute 

optimal policies with respect to a state specification that is an admissible GMEC. 

Thanks to many approaches in the literature that allow one to efficiently transform an 

arbitrary GMEC into an admissible one with the admissible marking set unchanged, the 

proposed result remains useful in the more general case of arbitrary GMECs. 

Specifically, focusing on ordinary PNs subject to an admissible GMEC, we propose an 

optimal control policy whose computation mainly lies in the computation of the 

unobservable minimal decrease, a parameter depending on the current observation and 

the given GMEC. A procedure to compute such a parameter with polynomial 

complexity is proposed provided that a particular subnet, called observation subnet, is 

acyclic, backward-conflict and backward-concurrent free (BBF). As a result, under 

such assumptions, the optimal control policy could be computed with polynomial 

complexity. 

Chapter IV  Forbidden state problem of DES vulnerable to network attacks 

In this chapter, we address the forbidden state problem of DES assuming that events 

are all controllable and observable but the system is vulnerable to network attacks. We 
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consider the so-called sensor-reading disguising attacks (SD-attacks for short) that may 

disguise the occurrence of an event as another by tampering with the sensor-readings 

in sensor communication channels. In particular, we use PNs as a reference formalism 

to model a plant that is allowed to be bounded or unbounded and assume a control 

specification in terms of a GMEC. We propose three different methods to derive on-

line control policies. The first two lead to an optimal (i.e., maximally permissive) policy 

but are computationally inefficient when applied to large-size systems. On the contrary, 

the third method computes a policy with timely response even for large-size systems 

but at the expense of optimality. 

Chapter V  Liveness enforcement on DES vulnerable to network attacks 

In this chapter, we study the problem of liveness enforcement on DES still assuming 

that events are all controllable and observable but the system is vulnerable to SD-attacks. 

Specifically, we consider the plant modelled as a bounded PN and the control 

specification consisting in liveness enforcing. Based on repeatedly computing a more 

restrictive liveness-enforcing supervisor under no attack and constructing a so-called 

basic supervisor, an off-line method that synthesizes a liveness-enforcing supervisor 

tolerant to an SD-attack is proposed. 

Chapter VI  Verification of fault-predictability 

In this chapter, we study the verification of fault-predictability in bounded and 

unbounded DES modeled by labeled PNs. An approach based on the construction of a 

Predictor Net and a Predictor Graph is proposed. In particular, a necessary and 

sufficient condition for fault-predictability is derived by characterizing the structure of 

the Predictor Graph. Furthermore, two rules are proposed to reduce the size of a given 

PN, which allow one to analyze the fault-predictability of the original net by verifying 

the fault-predictability of the reduced net. 

Chapter VII  Event-based opacity and its verification 

In this chapter, we use deterministic finite-state automata (DFA) as the reference 

formalism, proposing four notions of event-based opacity, namely, K-observation 

event-opacity, infinite-observation event-opacity, event-opacity and combinational 
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event-opacity. In simple words, these properties characterize situations in which an 

intruder, based on a partial observation of the system evolution, may never establish the 

occurrence of a secret event within its critical horizon. The critical horizon of a secret 

event is characterized by a positive integer, e.g., K, which defines the horizon from the 

instant when the secret event occurs until the instant when the K-th observable event 

occurs after the secret. A motivation example is presented in the chapter, relative to a 

business company taking decisions, some of which should remain secret to external 

observers. In addition, the relationship between K-observation/infinite-observation 

event-opacity and (K-step) diagnosability is analyzed. Moreover, appropriate verifiers 

are proposed to verify the proposed four properties. 

Chapter VIII  Conclusions and future work 

In this chapter, we conclude the thesis and discuss several potential future lines of 

research. 
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CHAPTER II   

Basic Notions 

In this chapter, we recall basic notions [15, 38] used in this thesis. Section 2.1 

introduces the notion of languages, which provides a formal way to capture the behavior 

of a DES. Section 2.2 introduces a directed graph and characterizes some structures in 

it. Two modelling tools, Automata and PNs, are introduced in Section 2.3 together with 

their related notions. Section 2.4 mainly presents control policies in the framework of 

PNs. Note that we denote by  the set of natural numbers,  the set of integers, and + 

the set of positive integers. 

2.1 Languages 

Let Σ be an alphabet, i.e., a set of symbols. Σ* is the Kleene star on Σ, defining the 

set of all finite-length strings over elements in Σ including the empty string ϵ. The length 

of a string is the number of symbols contained in it, counting multiple occurrences of 

the same symbol. We use |σ| to denote the length of a string σ∈Σ* and it is |ϵ|=0. Given 

a string σ∈Σ*, a string u∈Σ* is  

- a prefix of σ if ∃v∈Σ* such that uv=σ ; 

- a suffix of σ if ∃v∈Σ* such that vu=σ . 

Given the set of events of a DES as an alphabet Σ, a language L defined over Σ is a 

set of strings formed from symbols in Σ, i.e., L ⊆ Σ*. We denote the set of all prefixes 

of a string σ∈Σ* asσ , i.e.,  

σ ={u∈Σ*| ∃v∈Σ* s.t. uv=σ}. 

The prefix-closure of a language L ⊆ Σ* is denoted as L , that is,  
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=
L

L
σ

σ
∈ . 

The concatenation of two languages L1, L2⊆ Σ* is denoted as L1L2, that is, 

L1L2={σ∈Σ*| (σ=σ1σ2) ∧(σ1∈L1) ∧ (σ2∈L2)}. 

Given a language L ⊆ Σ* and a string σ∈L, the post-language of L after σ is denoted as 

L/σ, that is,  

L/σ={u∈Σ*| σu∈L}. 

2.2 Graph Theory  

A directed graph is an ordered pair G =(X, E) comprising a set X of nodes (or vertices) 

together with a set E of ordered pairs of nodes, called directed arcs. Given a node x∈X, 
•x ={y |(y, x)∈E} is the set of inputs of x and x•={y |(x, y)∈E} is the set of outputs of x. 

A node x is said to be a sink node if x•=∅ and is said to be a source node if •x=∅. A 

sequence of nodes π=x1x2…xn∈X* is called  

- a path if ∀i∈{1, 2, ..., n−1}, xi+1∈ xi•; 

- a cycle if π is a path with x1=xn; 

- an elementary path if π is a path and its nodes are all different (except, perhaps, 

x1 and xn).  

A strongly connected component (SCC) of G is a subgraph of G that is strongly 

connected and maximal.  

2.3 Formalisms 

Automata and Petri nets (PNs) are two of the most popular mathematical tools for 

the modeling, control, analysis, and performance evaluation of DES. In this thesis, 

Chapters III-VI use PNs as the reference formalism and Chapter VII uses Automata as 

the reference formalism. We note that Automata and PNs are both directed graphs. In 

particular, PNs are bipartite graphs with two kinds of nodes, i.e., places and transitions. 

The formal definitions of Automata and PNs are presented as follows.  
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2.3.1 Automata 

A deterministic finite-state automaton (DFA) is  

G=(X, Σ, δ, x0), 

where  

- X is the finite set of states; 

- Σ is the set of events; 

- δ: X×Σ→X is the deterministic transition function; 

- x0∈X is the unique initial state.  

Transition function δ is also extended to the domain X×Σ* recursively such that ∀x∈X, 

δ(x, ϵ)=x and δ(x, uv)=δ(δ(x, u), v), ∀u∈Σ*, v∈Σ. The set L(G)={σ∈Σ*| δ(x0, σ)!} is the 

language generated by G, where “!” means “is defined”.  

2.3.2 Petri Nets 

A Petri net (PN) is a four-tuple N= (P, T, F, W) where P and T are finite, nonempty, 

and disjoint sets: P is the set of places and T is the set of transitions. Graphically, places 

and transitions are represented by circles and bars, respectively. The set F ⊆ (P × T) ∪ 

(T × P) is the flow relation, which is represented by directed arcs from places to 

transitions or from transitions to places. W is a mapping that assigns a weight to each 

arc such that W(x, y)>0 if (x, y)∈F, and W(x, y)=0 otherwise, where x, y∈P∪T. N is said 

to be ordinary, denoted as N=(P, T, F), if ∀(x, y)∈F, W(x, y)=1.  

A marking or state of a PN N is a mapping m: P→ . Generally, m is also denoted by 

the multi-set notation p P∈ m(p)p, where m(p) is the number of tokens in place p at m. 

For instance, m=[1, 0, 3, 0]T is denoted by m=p1+3p3. A place p is said to be marked at 

m if m(p)>0. The initial marking of a PN is denoted as m0 and (N, m0) is called a net 

system with initial marking m0. 

The incidence matrix of N is a matrix [N]: P×T→ such that [N](p, t) =W(t, p)−W(p, 

t), ∀p∈P, ∀t∈T. For a place p (transition t), its incidence vector, i.e., a row (column) 

in [N], is denoted by [N](p, ⋅) ([N](⋅, t)). 

Given a node x∈P∪T, the set of inputs of x is •x ={y∈P∪T |(y, x)∈F}, while the set 
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of outputs of x is x•={y∈P∪T |(x, y)∈F}. Furthermore, ∀X⊆P∪T, •X=
x X x•

∈  and X• 

=
x X x •

∈ .  

A transition t is enabled at marking m, denoted as m[t, if ∀p∈•t, m(p) ≥ W(p, t). The 

set of transitions enabled at m is denoted by En(m). Transition t can fire at m if it is 

enabled at m. If t fires at m and a marking m' is reached, we denote this as m[tm' and it 

holds that m'(p)=m(p)+[N](p, t), ∀p∈P. Given a transition sequence σ=t1t2...tk∈T*, σ is 

enabled at m, denoted as m[σ, if there exist markings m1, m2, … , mk-1 such that 

m[t1m1[t2m2[t3 … mk-1[tk. We denote as m[σmk if mk is reached by firing σ at m.  

Given a net system (N, m0), we use R(N, m0) to denote the set of all reachable 

markings of N from m0, i.e., R(N, m0)={m| ∃σ∈T*, m0[σm}, called the reachability set 

of (N, m0) and L(N, m0) the set of all transition sequences of N that are enabled at m0, 

i.e., L(N, m0)={σ∈T*| m0[σ}, called the language of (N, m0).  

A PN system (N, m0) is bounded if the number of tokens in each place does not exceed 

a finite number B∈ + for any marking m∈R(N, m0). Otherwise, it is unbounded. 

Given a transition sequence σ∈T*, the Parikh vector of σ is s : T→ , which maps 

t in T to the number of occurrences of t in σ. For an arbitrary finite transition sequence 

σ∈T* such that m[σm', it holds m'=m+[N]⋅s .  

A transition t is live at a marking m if ∀m'∈R(N, m), ∃m''∈R(N, m') such that m''[t. 

A net system (N, m0) is live if ∀t∈T, t is live at m0. A transition t is dead at a marking 

m if ∀m'∈R(N, m), t is not enabled at m'. A state m is said to be a global deadlock state 

if no transition can fire at m. Usually, a global deadlock state is simply said to be a 

deadlock. 

2.4 Supervisory Control 

In this thesis, the supervisory control of DES is investigated in the framework of PNs 

(see Chapters III-V). Thus, we introduce control policies (or equivalently, supervisors) 

in the framework of PNs, taking into account the existence of both unobservable and 

uncontrollable transitions. In addition, we introduce the notion of Generalized Mutual 
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Exclusion Constraints (GMECs), which often characterize a state specification on a PN 

system. 

2.4.1 Uncontrollable and Unobservable Transitions 

In a practical scenario, a PN may contain unobservable and/or uncontrollable 

transitions. As discussed in the Introduction, the presence of unobservable transitions 

is due to facts like limited sensor technique, high cost of sensor installation, and failure 

of communication and sensors. There are also many reasons for the presence of 

uncontrollable transitions: it is inherently uncontrollable (for example, it models a fault 

or a change of sensor-readings not due to a command); its firing cannot be prevented 

due to hardware or actuation limitations; or it is modeled as uncontrollable by choice, 

as for example when the transition has high priority and thus should not be disabled. 

Thus, there is a partition of the set of transitions in a PN such that  

T=Tc ∪ Tuc, 

where  

- Tc is the set of controllable transitions; 

- Tuc is the set of uncontrollable transitions. 

Also, there is a partition of the set of transitions such that 

T=To ∪ Tuo, 

where  

- To is the set of observable transitions; 

- Tuo is the set of unobservable transitions. 

The observation function O: T*→ To* is defined recursively such that  

1) O(ε)=ε;  

2) ∀σ∈T*, t∈T, 
( ) if

( )
( ) otherwise

oO t t T
O t

O
σ

σ
σ

∈
= 


.  

Given a net system (N, m0), the observed language of (N, m0) is 

Lo(N, m0)={δ=O(σ) | σ∈L(N, m0)}. 
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Given a transition sequence σ∈L(N, m0), δ=O(σ) is said to be the observed sequence of 

σ. Given an observed sequence δ∈Lo(N, m0), we define ON−1(δ)=O−1(δ)∩L(N, m0) the 

set of transition sequences consistent with δ in the net system (N, m0). 

2.4.2 Supervisors 

We introduce two definitions of control policies (or supervisors). One is used in 

Chapter III and the other is used in Chapters IV and V. We notice that the two 

definitions are essentially the same, only differing in expressions.  

In Chapter III, we define a control action as a function u: Tc→{0, 1}, associating a 

binary value to each controllable transition such that ∀t∈Tc, u(t)=1 if t is permitted to 

fire and u(t)=0 otherwise. The set of all such control actions is denoted by U. A control 

policy (or supervisor) of a PN system (N, m0) is a function  

ρ: Lo(N, m0) → U, 

i.e., ρ associates a control action to each observed sequence of the system. In simple 

words, a control policy decides which controllable transitions should be prevented from 

firing or permitted to fire according to the current observation. 

In Chapters IV and V, a control policy (or supervisor) of a PN system (N, m0) is a 

function  

ρ: Lo(N, m0)→2Tc, 

i.e., ρ associates to each observation a set of controllable transitions. We call ρ(δ) the 

disabled set, indicating the set of controllable transitions that should be prevented from 

firing at the observation δ∈Lo(N, m0). 

We denote the system (N, m0) controlled by supervisor ρ as (N, m0)|ρ. The language 

of (N, m0)|ρ, denoted by L(N, m0)|ρ, is defined recursively as follows (the first definition 

of ρ is used here as an example): 

1. ε∈L(N, m0)|ρ; 

2. [(σ∈L(N, m0)|ρ) ∧ (σt∈L(N, m0)) ∧( t∈Tuc ∨ρ[O(σ)](t)=1)] ⇔ [σt∈L(N, m0)|ρ]. 

Accordingly, the observed language and the reachability set of (N, m0)|ρ, denoted by 

Lo(N, m0)|ρ and R(N, m0)|ρ, are defined as:  



25 
 

Lo(N, m0)|ρ ={O(σ)|σ∈L(N, m0)|ρ}; 

R(N, m0)|ρ={m | ∃σ∈L(N, m0)|ρ, s.t. m0[σm}. 

Given two supervisors ρ1 and ρ2 associated with a PN system (N, m0), we denote 

ρ1⪰ρ2 (resp., ρ1⪯ρ2), if  

L(N, m0)|ρ1 ⊇ L(N, m0)|ρ2  

(resp., L(N, m0)|ρ1 ⊆ L(N, m0)|ρ2). 

Moreover, ρ1 is said to be more permissive (resp., restrictive) than ρ2, denoted as ρ1

ρ2 (resp., ρ1ρ2), if 

L(N, m0)|ρ1 ⊃ L(N, m0)|ρ2 

(resp., L(N, m0)|ρ1 ⊂ L(N, m0)|ρ2). 

Given a control specification, a supervisor is said to be optimal (i.e., maximally 

permissive) if it guarantees that its controlled system meets the control specification 

and any other supervisor more permissive than the supervisor cannot guarantee that its 

controlled system meets the control specification. We note that the optimal supervisor 

is not necessarily a unique one. In this thesis, we will consider two control 

specifications. One is a state specification and the other is the property of liveness. The 

notion of optimal supervisors is detailed as follows in the two control specifications.  

1) State specification  

Given a PN system (N, m0) and a state specification Q⊆ |P|, a control policy ρ is said 

to be acceptable if R(N, m0)|ρ ⊆ Q; and is said to be optimal if 1) R(N, m0)|ρ ⊆ Q; and 2) 

∀ρ'ρ, R(N, m0)|ρ' ⊄Q.  

2) Liveness 

Given a PN system (N, m0), a supervisor ρ is said to be a liveness-enforcing supervisor 

if the controlled system (N, m0)|ρ is live, i.e., ∀t∈T, ∀m'∈R(N, m0)|ρ, ∃m''∈R(N, m')|ρ, 

such that m''[t. A liveness-enforcing supervisor ρ is said to be optimal if, for any 

supervisor ρ' more permissive than ρ, the controlled system (N, m0)|ρ' is not live. 

We finally note that in Chapters IV and V where we investigate the control policies 

in the presence of attacks, the observed language of a system will be redefined since 

attacks may change observations. 
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2.4.3 Generalized Mutual Exclusion Constraints (GMEC) 

A Generalized Mutual Exclusion Constraint (GMEC) on the state space of a PN N is 

defined as a pair (ω, k), where ω: P→  is a weight vector and k∈ , which identifies 

the legal marking set:  

L(ω, k)={m∈ |P| | ω⋅m≤k}. 

Moreover, we denote ϖ =ω⋅[N]. Given a transition t, it holds that ϖ(t)=ω⋅m'−ω⋅m, for 

any pair of markings m and m' such that m' is the marking reached from m by firing t. 

In other words, ϖ(t) is the change of the ω-weighted sum of tokens in the net caused by 

firing t. Note that, given an ordinary PN, it holds that ϖ(t)= ( ) ( )
p t p t

p pω ω• •∈ ∈
−   

for any t∈T. 

Given a set of GMECs W={(ω1, k1), (ω2, k2), …, (ωn, kn)}, where n∈ +, the 

conjunction of GMECs in W is denoted as ∧W, which defines the legal marking set: 

( , ) ( , )L LW k W kω ω∧ ∈= . 

We finally note that a GMEC is also simply said to be a linear constraint in the 

literature.  
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CHAPTER III   

Forbidden State Problem of DES with 
Unobservable and Uncontrollable Events 

3.1  Introduction  

In this chapter, we use PN as a modelling tool to deal with the forbidden state 

problem of DES in the presence of both unobservable and uncontrollable events, 

assuming that unobservable events are uncontrollable. First of all, it is proved that two 

state specifications are equivalent if their admissible marking sets coincide. Motivated 

by this result, we focus on studying how to compute optimal policies with respect to a 

state specification that is an admissible GMEC. Thanks to many approaches in the 

literature that allow one to efficiently transform an arbitrary GMEC into an admissible 

one with the admissible marking set unchanged, the proposed result remains useful in 

the more general case of arbitrary GMEC. Specifically, focusing on ordinary PN subject 

to an admissible GMEC, we propose an optimal control policy whose computation 

mainly lies in the computation of the unobservable minimal decrease, a parameter 

depending on the current observation and the given GMEC. A procedure to compute 

such a parameter with polynomial complexity is proposed provided that a particular 

subnet, called observation subnet, is acyclic, backward-conflict and backward-

concurrent free (BBF). As a result, under such assumptions, the optimal control policy 

could be computed with polynomial complexity. 

This chapter is organized as follows. Section 3.2 recalls the notions used in the 

chapter. Section 3.3 investigates the equivalence between state specifications. Section 
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3.4 computes an optimal control policy for PN subject to an admissible GMEC with 

exponential complexity. The observation subnet is introduced in Section 3.5 and a 

procedure to compute the unobservable minimal decrease starting from the observation 

subnet is provided with polynomial complexity. Section 3.6 proposes an optimal and 

polynomial complexity control policy for a class of PN subject to an admissible GMEC. 

How to obtain an optimal policy for special classes of PN subject to an arbitrary GMEC 

is discussed in Section 3.7. Finally, Section 3.8 draws conclusions of this chapter. 

We notice that the work of this chapter has been published in Information Sciences; 

see [124]. 

3.2  Preliminaries 

In this section, we introduce an assumption made on uncontrollable and unobservable 

transitions and a class of PNs used in this chapter. We also note that in this chapter we 

simply use mσ to denote the marking reached by firing a transition sequence σ∈T* at the 

initial marking m0 of a PN, i.e., m0[σmσ. 

 Assumption on uncontrollable and unobservable transitions  

In this chapter, we assume that an unobservable transition is also uncontrollable, i.e., 

Tuo ⊆ Tuc and Tc ⊆ To. This assumption, which is common to most of the literature in 

this framework such as [1, 63, 68], is applicable to several real applications. A 

discussion in this respect can be found in [68]. Transitions in a PN can thus be divided 

into three categories: controllable transitions, uncontrollable but observable transitions, 

and unobservable transitions. Graphically, they are depicted as white, dashed, and black 

bars, respectively, as shown in Fig. 3.1. 

Transitions:
controllable (and observable)  
uncontrollable but observable 
unobservable (and uncontrollable)

 
Fig. 3.1 Three different kinds of transitions in this chapter 
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 Backward-conflict and backward-concurrent free net 

Definition 3.1 [54]: A PN N=(P, T, F) is backward-conflict and backward-concurrent 

free (BBF) if ∀p∈P, |•p|=1 and ∀t∈T, |t•|=1. 

3.3  Equivalence between State Specifications 

In this section we investigate the equivalence between state specifications in the 

general setting that transitions may be uncontrollable and/or unobservable. The major 

consequence of this is that, if a control policy is optimal with respect to a certain state 

specification, it is also optimal with respect to any equivalent state specification. Note 

that, as in [63], we assume that the initial marking of the considered system is known. 

3.3.1 Admissible Observed Sequence Set 

This subsection introduces a notion called admissible observed sequence set. Before 

that, we recall “the attaching language” defined in [63], which is reformulated and 

renamed as “set of potential firing sequences” in the following just for better 

understanding.  

Definition 3.2: Given a PN system (N, m0) and a transition sequence σ∈L(N, m0),  

e(σ)={σ'∈L(N, m0) | σ'=σσ'', where σ''∈Tuc*} 

is called the set of uncontrollable extending sequences of σ. Furthermore, given an 

observed sequence δ∈Lo(N, m0),  

Λ(δ)= 1( )
( )

NO
eσ δ σ−∈

  

is called the set of potential firing sequences consistent with δ. 

Example 3.1: Consider the PN system (N, m0) in Fig. 3.2(a), whose reachability graph 

[69] is shown in Fig. 3.2(b). Let us consider the observed sequence δ=t3t1∈Lo(N, m0). It 

is ON−1(δ)={t2t3t1, t2t3t1t2}. Thus, Λ(δ)=e(t2t3t1) ∪ e(t2t3t1t2)={t2t3t1, t2t3t1t2, t2t3t1t2t3} ∪ 

{t2t3t1t2, t2t3t1t2t3}={t2t3t1, t2t3t1t2, t2t3t1t2t3}.                                  ♦ 
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t2

p3

p2

t1

t3

p1

           

t1

(1, 1, 0)
t2

(0, 2, 0)
t2

(0, 1, 1)
t2

(0, 0, 2)

t3

(0, 1, 0)
t3

(0, 0, 1)
t3

(0, 0, 0)

t2

(1, 0, 1)
t1 t3

(1, 0, 0)
t1

 

(a)                            (b) 
Fig. 3.2 (a) PN system (N, m0) with Tc={t1}, Tuc={t2, t3}, To={t1, t3}, Tuo={t2}  

and (b) its reachability graph 
 

Definition 3.3: Given a PN system (N, m0), a state specification Q, and an observed 

sequence δ∈Lo(N, m0), δ is called admissible if ∀δ'∈ δ , ∀σ∈Λ(δ'), mσ∈Q. The 

admissible observed sequence set of (N, m0) w.r.t. Q is denoted as G(Q), i.e.,  

G(Q)={δ∈Lo(N, m0)| ∀δ'∈δ , ∀σ∈Λ(δ'), mσ ∈Q}. 

Example 3.2: Consider again the PN system (N, m0) in Fig. 3.2(a). Let Q={m∈ |P|| 

m(p2)≤1} be the state specification. Let us establish if the observed sequence δ=t3 is 

admissible. Clearly, δ ={ε, t3}. For each δ'∈δ , we check if ∀σ∈Λ(δ'), mσ∈Q holds: 

1) Consider δ'=ε. It is Λ(ε)={ε, t2, t2t3} and mε=(1, 1, 0), mt2=(1, 0, 1), mt2t3=(1, 0, 0). 

Hence, ∀σ∈Λ(ε), mσ∈Q. 2) Now, consider δ'=t3. It is Λ(t3)={t2t3} and mt2t3=(1, 0, 0). 

Hence, ∀σ∈Λ(t3), mσ∈Q. As a result, δ=t3 is admissible. On the contrary, δ=t1 is not 

admissible since ∃t1∈δ , t1∈Λ(t1), such that mt1=(0, 2, 0)∉Q. Furthermore, we can see 

that G(Q)={ε, t3, t3t1, t3t1t3}.                                              ♦ 

Next, we present some results related to control policies. We note that, although 

conditions for the existence and the optimality of a control policy have been established 
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in the literature [38, 49], Theorems 3.1 and 3.2 in the following give new 

characterizations of them based on the admissible observed sequence set. 

Theorem 3.1: Given a PN system (N, m0) and a state specification Q, there exists a 

control policy ρ such that R(N, m0)|ρ ⊆ Q iff ε∈G(Q), i.e., ∀σ∈Λ(ε), mσ∈Q. 

Proof: Trivially follows from the supervisory control theory in [49].            ■                

Theorem 3.2: Given a PN system (N, m0), a state specification Q, and a control policy 

ρ, ρ is optimal iff Lo(N, m0)|ρ = G(Q). 

Proof: It is easy to see that  

R(N, m0)|ρ={mσ| σ∈ON-1(δ), δ∈Lo(N, m0)|ρ}={mσ| σ∈Λ(δ), δ∈Lo(N, m0)|ρ}.  (1)   

(=>) Since Lo(N, m0)|ρ =G(Q), then ∀δ∈Lo(N, m0)|ρ, it holds ∀σ∈Λ(δ), mσ∈Q. Hence, 

R(N, m0)|ρ ⊆ Q by (1). Let ρ' be a policy more permissive than ρ. Clearly, a policy 

permits or forbids controllable transitions to fire. Furthermore, by assumption, 

controllable transitions are observable. Hence, it can be concluded that Lo(N, m0)|ρ' ⊃ 

Lo(N, m0)|ρ since L(N, m0)|ρ' ⊃ L(N, m0)|ρ. Let δ'∈Lo(N, m0)|ρ'\Lo(N, m0)|ρ. δ'∉G(Q) since 

δ'∉Lo(N, m0)|ρ. Hence, ∃δ''∈ 'δ , ∃σ∈Λ(δ''), such that mσ∉Q. Clearly, δ''∈Lo(N, m0)|ρ'. 

It is mσ∈R(N, m0)|ρ' by (1). Since mσ∉Q, R(N, m0)|ρ' ⊄ Q. Thus, ρ is optimal. 

(<=) We know that 1) R(N, m0)|ρ ⊆ Q; and 2) ∀ρ'ρ, R(N, m0)|ρ' ⊄Q. Based on 1), it 

is {mσ| σ∈Λ(δ), δ∈Lo(N, m0)|ρ}⊆ Q. Note that ∀δ∈Lo(N, m0)|ρ, δ⊆ Lo(N, m0)|ρ. Hence, 

it can be seen that Lo(N, m0)|ρ ⊆ G(Q). Based on 2), it is ∀ρ'ρ, {mσ| σ∈Λ(δ), δ∈Lo(N, 

m0)|ρ'}⊄Q. In other words, ∀ρ'ρ, ∃δ∈Lo(N, m0)|ρ' such that δ∉G(Q). Hence, we may 

conclude that Lo(N, m0)|ρ = G(Q).                                          ■                

The above theorem implies that the admissible observed sequence set exactly 

characterizes the observed sequence set of a PN system when it is supervised by an 

optimal control policy. Therefore, the role of the admissible observed sequence set in 

supervisory control of PNs with both uncontrollable and unobservable transitions is 
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analogous to the role of the admissible marking set [49] in supervisory control of 

entirely observable but partially controllable PNs. 

3.3.2 Condition for State Specifications Being Equivalent 

By Theorem 3.2, the equivalence of state specifications can be formally defined in 

terms of the admissible observed sequence set as follows.  

Definition 3.4: Given a PN system (N, m0) and two state specifications Q1 and Q2, we 

say that Q1 is equivalent to Q2, denoted as Q1≡Q2, if G(Q1)=G(Q2). 

Now, we recall the notion of the admissible marking set. 

Definition 3.5 [49]: Given a PN system (N, m0) and a state specification Q, the 

admissible marking set w.r.t. Q is 

A(Q)={m∈Q |∀σ∈Tuc* s.t. m[σm', it holds m'∈Q}. 

The following proposition reveals that the set G(Q) can be characterized in terms of 

the admissible marking set of Q. 

Proposition 3.1: Given a PN system (N, m0), a state specification Q, it holds that 

G(Q)={δ∈Lo(N, m0)| ∀δ'∈δ , ∀σ∈Λ(δ'), mσ ∈A(Q)}. 

Proof: Let X={δ∈Lo(N, m0)| ∀δ'∈δ , ∀σ∈Λ(δ'), mσ∈A(Q)}. We prove that G(Q)⊇ 

X and G(Q)⊆ X. 

--G(Q)⊇ X : Clearly, A(Q) ⊆ Q. Hence, ∀δ∈X, it holds that ∀δ'∈δ , ∀σ∈Λ(δ'), 

mσ∈Q. Therefore, G(Q)⊇ X. 

--G(Q)⊆ X: By contradiction, suppose that ∃δ∈G(Q), such that δ∉X. It means that 

∃δ'∈δ , ∃σ∈Λ(δ'), such that mσ∉A(Q). Then, a marking outside of Q can be reached 

from mσ by firing uncontrollable transitions since mσ∉A(Q). In other words, ∃σ'∈Tuc* 

such that mσ[σ'm', m'∉Q. Let σ''=σσ'. Clearly, m' is exactly mσ''. Besides, we can see 
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that σ''∈Λ(δ'). Since δ'∈δ, σ''∈Λ(δ'), and mσ''∉Q, δ is not admissible, which contradicts 

the fact that δ∈G(Q). Hence, G(Q)⊆ X .                                    ■               

Theorem 3.3: Given a PN system (N, m0) and two state specifications Q1 and Q2, 

Q1≡Q2 if A(Q1)=A(Q2). 

Proof: According to Proposition 3.1, G(Q1)=G(Q2) since A(Q1)=A(Q2). Hence, 

Q1≡Q2 by Definition 3.4.                                                 ■                

We know that for entirely observable but partially controllable PNs, two state 

specifications are equivalent if they have the same admissible marking set [49]. Theorem 

3.3 claims that, even when PNs contain both uncontrollable and unobservable transitions, 

this result still holds. Consequently, it allows us to focus on proposing optimal policies 

for the state specification being an admissible GMEC. Indeed, if a certain GMEC is 

preliminarily transformed into an equivalent admissible GMEC, then an optimal control 

policy for the given GMEC could be obtained implementing a control policy that is 

optimal for the equivalent admissible GMEC. 

3.4  Optimal Exponential-complexity Control Policy for PN Subject to 

an Admissible GMEC 

In this section, we focus on PNs with the state specification being an admissible 

GMEC.  

Recall that a GMEC (ω, k) characterizes the legal marking set L(ω, k)={m∈  |P| | 

ω⋅m≤k}. For simplicity, we use A(ω, k) and G(ω, k) to respectively denote the admissible 

marking set and the admissible observed sequence set of a PN system w.r.t. L(ω, k). 

Besides, we define some transition sets w.r.t. a PN and a given GMEC. 

Definition 3.6: Let N be a PN subject to a GMEC (ω, k). We define 

- Tω+={t∈T|ϖ(t)>0} the set of increasing transitions w.r.t. (ω, k); 
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- Tω−={t∈T|ϖ(t)<0} the set of decreasing transitions w.r.t. (ω, k); and 

- Tω#=Tω−∩Tuo the set of unobservable decreasing transitions w.r.t. (ω, k). 

Now, we present the notion of admissible GMECs. 

Definition 3.7 [68]: Let N be a PN subject to a GMEC (ω, k). (ω, k) is said to be an 

admissible GMEC if ∀t∈Tuc, ϖ(t)≤0. 

Remark 3.1: The above definition of admissible GMEC takes into account 

uncontrollable transitions only. It is different from the one provided by Luo et al. in 

[63], where they not only consider uncontrollable transitions but also enforce particular 

limitations on unobservable transitions.                                    ♣                

In the following, we introduce two key notions in developing control policies in this 

work. 

Definition 3.8: Let (N, m0) be a PN system subject to a GMEC (ω, k), and δ∈Lo(N, 

m0) be an observed sequence.  

Φω,δ = 1 #( )min | ( ) | ( )- TNO t
t t

ωσ δ ϖ σ∈ ∈
⋅


 

is called the unobservable minimal decrease w.r.t. (ω, k) induced by δ and  

Ψω,δ = ϖ ⋅ 𝛿 

is called the observable change w.r.t. (ω, k) induced by δ. 

In other words, when the sequence δ is observed, Φω,δ is the minimal decrease of the 

ω-weighted sum of tokens in the PN system induced by the firing of unobservable 

decreasing transitions; Ψω,δ is the change of the ω-weighted sum of tokens in the PN 

system induced by the firing of observable transitions. 

Example 3.3: Consider again the PN system (N, m0) in Fig. 3.2(a). Let (ω, k): m(p2)≤1 

be the GMEC and δ=t3t1 be the observed sequence. It is easy to compute that Ψω,δ = ϖ 

⋅𝛿 =[1, −1, 0]⋅[1, 0, 1]T=1. Now, let us focus on the computation of Φω,δ. We can see 

that ON-1(δ)={σ1, σ2}, where σ1=t2t3t1 and σ2=t2t3t1t2. Note that Tω#={t2}. Hence, Φω,δ 

=min{ 1| ( ) | ( )
t

t t
ω

ϖ σ
∈

⋅


#T
, 2| ( ) | ( )

t
t t

ω
ϖ σ

∈
⋅


#T
}= min{ 2 1 2| ( ) | ( )t tϖ σ⋅


, 2 2 2| ( ) | ( )t tϖ σ⋅


}=1. ♦ 
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Property 3.1: Let (N, m0) be a PN system subject to a GMEC (ω, k). It is Φω,ε =0 and 

Ψω,ε =0. 

Proposition 3.2: Let (N, m0) be a PN system subject to an admissible GMEC (ω, k) 

and δ∈Lo(N, m0). It holds that ( )maxσ δ ϖ σ∈Λ ⋅


= 1 ( )
max -

NOσ δ ϖ σ
∈

⋅


=Ψω,δ − Φω,δ. 

Proof: See Appendix.                                                  ■                

In the rest of this chapter, even if not explicitly claimed, it is assumed that ε∈G(ω, k) 

holds for any given PN system and any given GMEC (ω, k). 

In the following, an on-line control policy ρ (denoted as Policy 3.1) is proposed for 

PNs subject to an admissible GMEC. It can be explained as follows. Every time the 

firing of a transition is detected, an observed sequence δ is obtained. According to δ, 

the policy ρ determines a control action u=ρ(δ) that establishes which controllable 

transitions are forbidden to fire, or alternatively, permitted to fire. Specifically, for each 

controllable transition t, we decide that it is forbidden to fire if Ψω,δ' − Φω,δ' >k−ω⋅m0, 

where δ'=δt, and permitted to fire otherwise. Note that the policy ρ firstly determines 

the control action for the observed sequence being empty. In other words, when no 

transition in the PN system is observed, u=ρ(ε) is determined in advance.  

 

Policy 3.1: An on-line control policy ρ 

Plant: A PN system (N, m0);  

State specification: An admissible GMEC (ω, k). 

Every time a transition sequence δ∈Lo(N, m0) is observed, determine the 

corresponding control action u=ρ(δ) as follows: 

∀t∈Tc, u(t):=0, if Ψω,δ' − Φω,δ' >k−ω⋅m0, where δ'=δt, 

u(t):=1, otherwise. 

 

Theorem 3.4: Given a PN system (N, m0) and an admissible GMEC (ω, k), Policy 3.1 

is optimal. 
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Proof: By Proposition 3.2, the decision condition in Policy 3.1 is equivalent to 

“ ( ')maxσ δ ϖ σ∈Λ ⋅


>k−ω⋅m0, where δ'=δt”. Furthermore, it is equivalent to “∃σ∈Λ(δt), 

s.t. ϖ ⋅ s >k−ω⋅m0”. Since ϖ ⋅ s =ω⋅mσ−ω⋅m0, the decision condition is further 

equivalent to “∃σ∈Λ(δt), s.t. mσ∉L(ω, k)”. Trivially, we can see that Lo(N, m0)|ρ = G(ω, k). 

According to Theorem 3.2, Policy 3.1 is optimal.                             ■               

Remark 3.2: Every time Policy 3.1 establishes whether a controllable transition t is 

permitted to fire in the case that a transition sequence δ is observed, it requires the 

computation of the unobservable minimal decrease Φω,δ' and the observable change 

Ψω,δ'. The computation of Ψω,δ' is quite easy, while the computation of Φω,δ' by 

Definition 3.8 is complicated. In more detail, according to Definition 3.8, Φω,δ' is 

computed as follows: first, we enumerate all transition sequences consistent with δ', i.e., 

we compute the set ON−1(δ'). Next, for each σ∈ON−1(δ'), we compute 

# | ( ) | ( )
Tt

t t
ω

ϖ σ
∈

⋅


, i.e., the decrease of the ω-weighted sum of tokens in the PN system 

induced by the firing of unobservable decreasing transitions in σ. Finally, we pick the 

minimal decrease that is exactly the value of Φω,δ'.  

We can see that, for arbitrary PN systems, the computation of ON−1(δ') is of 

exponential complexity w.r.t. the number of unobservable transitions in a PN. As a 

result, the computational complexity of Policy 3.1 is also exponential w.r.t. the number 

of unobservable transitions in a PN. Clearly, the key to reducing the complexity of 

Policy 3.1 is to reduce the complexity related to the computation of the unobservable 

minimal decrease Φω,δ'. In the following sections, we propose an efficient approach to 

compute Φω,δ' in PNs with specific structures and thereby develop an efficient and 

optimal control policy for a special class of PNs subject to an admissible GMEC.   ♣  



37 
 

3.5  Observation Subnet and Efficient Computation of Unobservable 

Minimal Decrease 

In this section we introduce a series of notions and results that are the basis for the 

computation of an efficient and optimal control policy for a special class of PNs subject 

to an admissible GMEC, which is presented in the next section.  

In particular, here we define a special subnet of the given net under control, called 

the observation subnet. Besides, we define the so-called extended observation subnet 

that is indeed the observation subnet together with all its related transitions in the given 

net. Provided that the observation subnet satisfies some specific assumptions, a 

procedure to compute the unobservable minimal decrease is provided with polynomial 

complexity by looking at the extended observation subnet. The efficient procedure 

allows us to compute an optimal control policy with polynomial complexity in the next 

section.  

Note that in the rest of this chapter, PNs are assumed to be ordinary even without 

explicit claim. 

3.5.1 Observation Subnet 

Let us first introduce some notation. Given a path π in a PN, P(π) and T(π) denote 

the sets of places and transitions in π, respectively. Furthermore, given a set of paths, 

denoted as Π, P(Π) and T(Π) denote the sets of all places and transitions in all paths in 

Π, respectively, i.e., P(Π)= ( )Pπ π∈Π and T(Π)= ( )Tπ π∈Π . Besides, an unobservable 

path is a path in which each transition is unobservable. 

Definition 3.9: Given a PN N=(P, T, F) and an unobservable transition t∈Tuo, a path 

π=ti1pj1ti2pj2…tinpjn is an elementary observation path w.r.t. t if  

1) ti1=t; 

2) T(π) ⊆ Tuo;  

3) pjn•∩To≠∅. 
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The set of all elementary observation paths w.r.t. t is denoted as Πt. Given a set of 

unobservable transitions TX⊆Tuo, it is defined that Π(TX)=
X

tt T∈
∏ . 

Example 3.4: Consider the PN in Fig. 3.3 and the unobservable transition t3. By 

Definition 3.9, π1=t3p3t4p5t5p6 is an elementary observation path w.r.t. t3 since all 

transitions in π1 are unobservable and an output transition of p6 is observable. 

Furthermore, Πt3={π1, π2}, where π2=t3p7. Similarly, it is Πt10=∅.                ♦ 

Definition 3.10: Let N=(P, T, F) be a PN subject to a GMEC (ω, k). The observation 

subnet w.r.t. (ω, k) is defined as Nωβ=(Pωβ, Tωβ, Fωβ) where  

 Pωβ= P0∪ P1∪…∪Pn, where 

--P0={p∈P | p can reach p'∈P(Π(T0)) via an unobservable path π s.t. T(π)∩T(Π(T0))=∅, 

where T0=Tω#}, 

--P1={p∈P | p can reach p'∈P(Π(T1)) via an unobservable path π s.t. T(π)∩T(Π(T1))=∅, 

where T1=(P0•\•P0)∩Tuo}, 

--… 

--Pn={p∈P | p can reach p'∈P(Π(Tn)) via an unobservable path π s.t. T(π)∩T(Π(Tn))=∅, 

where Tn=(Pn−1•\•Pn−1)∩Tuo}, 

   Tωβ is the set of unobservable input transitions of places in Pωβ, and  

 Fωβ is the restriction of F to (Pωβ × Tωβ)∪(Tωβ×Pωβ). 

By default, a place p can reach itself by path π=p and this path can be regarded as an 

unobservable path. In other words, P(Π(Ti)) ⊆ Pi holds, ∀i∈{0, 1, …, n}. 

We explain in detail how to determine Pωβ by Definition 3.10. First, let T0=Tω#. P0 

can be determined by the following steps:  

1) Compute the set of elementary observation paths w.r.t. T0, i.e., Π(T0);  

2) Determine the sets of places and transitions in Π(T0), i.e., P(Π(T0)) and T(Π(T0));  

3) Search places not in P(Π(T0)) but that can reach a place in P(Π(T0)) via an 

unobservable path π satisfying T(π)∩T(Π(T0))=∅.  

Consequently, P0 is obtained. It consists of all places in P(Π(T0)) and all places 

considered in Step 3. Next, let T1=(P0•\•P0)∩Tuo; P1 can be determined following steps 

analogous to those used to determine P0. Similarly, P2, P3, … , Pn can be determined 
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one after the other. Note that once a place set Pi is determined to be empty, it is Pj=∅, 

∀j>i. This implies that Pωβ= P0∪P1∪…∪Pi once Pi=∅ is determined. 
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Fig. 3.3 PN system (N, m0) subject to a GMEC (ω, k): m(p3)+2m(p2)+3m(p1)≤8 
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Fig. 3.4 Extended observation subnet of the PN in Fig. 3.3 
(The part inside the dashed line is the observation subnet) 
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Example 3.5: Consider the PN system (N, m0) in Fig. 3.3 subject to the GMEC (ω, k): 

m(p3)+2m(p2)+3m(p1)≤8. It is Tω#={t3, t4, t7, t10}. Note that in figures we use “#” to 

mark transitions in Tω# to make them more visible. Now, let us compute the observation 

subnet Nωβ by Definition 3.10. We determine the place set Pωβ as follows.  

1) Compute P0. T0=Tω#. First, Π(T0)={π1-π4} is computed, where π1=t3p7, 

π2=t3p3t4p5t5p6, π3=t4p5t5p6, π4=t7p4t4p5t5p6. Hence, P(Π(T0))={p3-p7} and 

T(Π(T0))={t3-t5, t7}. Next, we search places who can reach a place in P(Π(T0)) via an 

unobservable path π such that T(π)∩T(Π(T0))=∅. It is P0=P(Π(T0))∪{p10, p11}={p3-p7, 

p10, p11}. 

2) Compute P1. It is T1= (P0•\•P0)∩Tuo={t11, t17} and Π(T1)={π5, π6}, where π5=t17p13 

and π6=t17p13t22p17. By searching places as shown above, we obtain 

P1=P(Π(T1))∪{p16}={p13, p16, p17}. 

3) Compute P2. It is T2=(P1•\•P1)∩Tuo={t24} and Π(T2)={π7}, where π7=t24p18. 

Similarly, we obtain that P2=P(Π(T2))={p18}. 

4) Compute P3. It is T3=(P2•\•P2)∩Tuo=∅. Hence, P3=∅ and we stop. 

Therefore, Pωβ=P0∪P1∪P2={p3-p7, p10, p11, p13, p16-p18}. The observation subnet is 

shown in Fig. 3.4 inside the dashed line.                                    ♦ 

Finally, we analyze the computational complexity of computing the observation 

subnet. It is clear that its complexity mainly depends on the complexity of computing 

Pωβ and the computation of Pωβ consists in the computation of P0, P1, …, Pi, …. We 

can see that every time we compute the place set Pi, we need to search all elementary 

observation paths starting from transitions of Ti, i.e., we need to compute the set Π(Ti), 

which is in general complicated. We note that Π(Ti) is computed to determine places 

and transitions in Π(Ti), i.e., determine P(Π(Ti)) and T(Π(Ti)). Actually, P(Π(Ti)) and 

T(Π(Ti)) could be computed by the following procedure:  

1) Initialization: PX:=∅ and TX:=Ti; 

2) Search all output places of TX and then search all output unobservable transitions 

from those places. In other words, it is PX:= TX • and then TX:= TX ∪(PX •∩Tuo). 



41 
 

Repeat the above search procedure until no new places and transitions can be 

found; 

3) Denote NX the subnet of the given PN N determined by PX and TX computed above. 

Delete from NX those transitions that are sink transitions in NX and those places 

that are sink places in NX and have no observable output transitions in N. Update 

NX as the resultant net. Repeat the above deleting procedure until no new places 

and transitions can be deleted. 

Clearly, places and transitions in the resultant net are exactly those constituting the sets 

P(Π(Ti)) and T(Π(Ti)), respectively. We can see that the above procedure to compute 

P(Π(Ti)) and T(Π(Ti)) is of polynomial complexity with respect to the size of the PN 

model. Moreover, it is known that P(Π(Ti))⊆Pi. Then, the computation of Pi requires 

finding places in Pi but not in P(Π(Ti)). These places could be searched simply one after 

another following the reverse unobservable paths that start from the input unobservable 

transitions of places in P(Π(Ti)). Consequently, the computation of Pi is still of 

polynomial complexity with respect to the size of the PN model. We note that there 

exists a finite number n such that Pωβ= P0∪ P1∪…∪Pn since a PN has finite places and 

we always search places that have never been searched in a PN. As a result, we can 

conclude that the computation of the observation subnet is of polynomial complexity 

with respect to the size of the PN model. 

Remark 3.3: We note that the observation subnet is defined for the purpose of 

studying the computation of unobservable minimal decrease. Roughly speaking, the 

unobservable minimal decrease is related to the “least” firing times of unobservable 

decreasing transitions, i.e., transitions in Tω#. Hence, the observation subnet is 

constructed starting from unobservable decreasing transitions. Then, necessary 

unobservable paths are taken into consideration step by step, through which it can be 

inferred how many times the unobservable decreasing transitions definitely fire in 

advance when a transition sequence is observed. In order to efficiently compute the 

unobservable minimal decrease, it is necessary to avoid the exhaustive enumeration of 

all the possible transition sequences consistent with an observed sequence. To this aim, 



42 
 

our basic idea is restricting the observation net to special structures and applying 

appropriate computations on it. In the next subsection, we show that, in the case that the 

observation subnet satisfies specific assumptions, a “bottom-up” method can be used 

to efficiently compute the “least” firing times of unobservable decreasing transitions 

when a sequence is observed. Consequently, the unobservable minimal decrease is also 

efficiently computed.                                                  ♣ 

3.5.2 Efficient Computation of Unobservable Minimal Decrease 

The computation of the unobservable minimal decrease requires the preliminary 

definition of a special subnet related to the given GMEC. In the following, we call such 

a net extended observation subnet. 

Definition 3.11: Let N=(P, T, F) be a PN subject to a GMEC (ω, k) and Nωβ=(Pωβ, 

Tωβ, Fωβ) be the observation subnet. The extended observation subnet w.r.t. (ω, k) is 

defined as ( ), ,N P T Fβ β β β
ω ω ω ω= such that Pβ

ω = Pωβ, T β
ω =•Pωβ∪Pωβ•, and Fβ

ω is the 

restriction of F to ( Pβ
ω ×T β

ω ) ∪ (T β
ω × Pβ

ω ). Furthermore, E(Nωβ)=T β
ω \Tωβ is called the 

set of external related transitions of Nωβ. 

The extended observation subnet associated with the PN and the GMEC in Example 

3.5, is shown in Fig. 3.4. 

Now, we introduce some transition sets related to the extended observation subnet, 

which are fundamental in the computation of the unobservable minimal decrease. We 

use Toβ and Tuoβ to denote the sets of observable and unobservable transitions, 

respectively, in an extended observation subnet N β
ω . We can see that observable 

transitions in N β
ω  are all external related transitions of the corresponding observation 

subnet, i.e., Toβ⊆E(Nωβ). We thus further divide Toβ into two sets, namely, Toβ(in) and 

Toβ(out) , denoting the sets of input and output observable transitions of Nωβ, respectively, 

i.e., Toβ(in)=Toβ∩•Pωβ and Toβ(out)= Toβ∩Pωβ•. Note that it is possible that t∈Toβ is both 
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an input and an output observable transition of an observation subnet. Besides, we note 

that Tuoβ includes all transitions in Nωβ and may include some transitions outside of Nωβ. 

Example 3.6: Consider the extended observation subnet in Fig. 3.4. Clearly, 

Toβ⊆E(Nωβ). Besides, Toβ(in)={t8, t9, t13, t20} and Toβ(out)={t6, t8, t18, t23, t25}. Tuoβ consists 

of all transitions in Nωβ and the transition t11.                                 ♦ 

 Some other concepts and results need to be introduced before presenting the 

computation method. 

Definition 3.12: Let (N, m0) be a PN system, δ∈Lo(N, m0) and t∈Tuo. The least firing 

times of t induced by δ is  

ϕδ(t) = 1( )min ( )
NO tσ δ σ−∈


. 

In words, ϕδ(t) denotes the least times that the unobservable transition t fires when the 

transition sequence δ is observed.  

Given a marking m and a transition sequence σ, we use mβ and bs


to denote the 

marking and the Parikh vector obtained restricting m and s to the place set and the 

transition set of the extended observation subnet N β
ω , respectively. Besides, we use 

[N]β to denote the restriction of the incidence matrix [N] to the extended observation 

subnet N β
ω . 

Definition 3.13: Let (N, m0) be a PN system subject to a GMEC (ω, k) and δ∈Lo(N, 

m0). We define  

Bv
β(δ)={ bs


| σ∈ON−1(δ) and/$ σ'∈ON−1(δ) s.t. 's β < bs


} 

as the set of basic partial sequence vectors consistent with δ w.r.t. N β
ω ; and  

Bm
β(δ)={ m0β+[N]β⋅ �⃗� | �⃗�∈Bv

β(δ)} 

as the set of basic partial marking consistent with δ w.r.t. N β
ω . 

We observe that, by the firing law of transitions in PN, given a transition sequence 

σ∈L(N, m0), it holds that mσβ=m0β+[N]β⋅ �⃗�β. Thus, it is true that Bm
β(δ)={ mσβ | σ∈ON−1(δ) 

s.t. �⃗�β∈Bv
β(δ)}.  
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It could happen that Bv
β(δ) contains more than one vector and thus Bm

β(δ) might also 

contain more than one marking. The following property shows that Bv
β(δ) contains 

only one vector if and only if there exists a sequence σ∈ON−1(δ) such that each 

unobservable transition in the extended observation subnet fires a number of times 

equal to its least times.  

Property 3.2: |Bv
β(δ)|=1 iff ∃σ∈ON−1(δ) such that ( )ts

 =ϕδ(t), ∀t∈Tuoβ. 

Proof: Straightforward from Definitions 3.12 and 3.13.                       ■               

 

p2 p3

p1

t4 t5

t2 t3

t1  
Fig. 3.5 An extended observation subnet  

(The part inside the dashed line is the observation subnet) 
 

Example 3.7: Consider the extended observation subnet in Fig. 3.5. Let δ=t1t1t1 be an 

observed sequence. We can see that ∃σ1∈ON−1(δ) s.t. σ1⃗ β=(σ1⃗ (t1), σ1⃗ (t2), σ1⃗ (t3), σ1⃗(t4), σ1⃗(t5))T=(3, 0, 3, 0, 3)T and /$ σ'∈ON−1(δ) s.t. 𝜎′⃗β<σ1⃗β. Moreover, ∃σ2∈ON−1(δ) 

s.t. σ2⃗β=(σ2⃗(t1), σ2⃗(t2), σ2⃗(t3), σ2⃗(t4), σ2⃗(t5))T=(3, 3, 0, 1, 0)T and /$ σ'∈ON−1(δ) s.t. 𝜎′⃗β<σ2⃗β. Hence, Bv
β(δ)={(3, 0, 3, 0, 3)T, (3, 3, 0, 1, 0)T}. Clearly, Tuoβ={t2-t5}. By 

Definition 3.12, we have ϕδ(t1)=3 and ϕδ(t2)=ϕδ(t3)=ϕδ(t4)=ϕδ(t5)=0. For this case, we 

can see that /$ σ∈ON−1(δ) s.t. �⃗�β=(�⃗�(t1), �⃗�(t2), �⃗�(t3), �⃗�(t4), �⃗�(t5))T=(3, 0, 0, 0, 0)T.  ♦ 

The following theorem indicates that |Bv
β(δ)|=1 and |Bm

β(δ)|=1 when the observation 

subnet satisfies certain conditions. 
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Theorem 3.5: Let (N, m0) be a PN system subject to a GMEC (ω, k) such that the 

observation subnet Nωβ is acyclic and BBF, and δ∈Lo(N, m0). Then, it is |Bv
β(δ)|=1 and 

|Bm
β(δ)|=1. 

Proof: See Appendix.                                                ■                

In the remainder of this chapter, when given a PN system (N, m0) subject to a GMEC 

(ω, k) such that Nωβ is acyclic and BBF, and an observed sequence δ∈Lo(N, m0), we use 

Mω,δ to denote the unique basic partial marking consistent with δ w.r.t. N β
ω , i.e., 

{Mω,δ}=Bm
β(δ). We observe that the basic partial marking Mω,δ is reached when each 

unobservable transition in the extended observation subnet fires its least firing times in 

the case that the firing of the transition sequence δ is observed. 

Property 3.3: Let (N, m0) be a PN system subject to a GMEC (ω, k) such that Nωβ is 

acyclic and BBF. Then, it is Mω,ε = m0β. 

Proof: Straightforward from Definition 3.13.                               ■               

Property 3.4: Let (N, m0) be a PN system subject to a GMEC (ω, k) such that Nωβ is 

acyclic and BBF and δ∈Lo(N, m0). Then, it is Φω,δ = # | ( ) | ( )
Tt

t t
ω

δϖ ϕ
∈

⋅ . 

Proof: Since Nωβ is acyclic and BBF, ∃σ∈ON−1(δ) such that ( )ts
 =ϕδ(t), ∀t∈Tuoβ. 

Due to Definition 3.8, it is easy to see Φω,δ = # | ( ) | ( )
Tt

t t
ω

δϖ ϕ
∈

⋅ .                  ■               

In the following, we present a method to compute the unobservable minimal decrease, 

which applies under the assumption that the observation subnet is acyclic and BBF. It 

also returns the basic partial marking, which is necessary to implement the proposed 

optimal control policy.  

Given two sequences δ, δ'∈Lo(N, m0), we call δ' a next observed sequence of δ (or δ 

the last observed sequence of δ') if ∃t∈To such that δ'=δt. In what follows, we present 

Function NextUnobseValue, by which the unobservable minimal decrease and the basic 

partial marking w.r.t. an observed sequence can be computed, provided that those w.r.t. 

its last observed sequence are known. Function BottomUpHandle is called in Function 

NextUnobseValue. 
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(Φ,M)=NextUnobseValue (Φω,δ,Mω,δ, t) 

Input: Unobservable minimal decrease Φω,δ, basic partial marking Mω,δ, and t∈To;

Output: Φ and M. /* The output Φ and M are Φω,δ' and Mω,δ', where δ'=δt.*/ 

1) (Φ, M):=(Φω,δ, Mω,δ);  

/* Φ and M are global variables that can be updated in Function BottomUpHandle. */ 

2)  if t∈Toβ(out) then  

3)       BottomUpHandle(t); 

4)  end if 

5)  if t∈Toβ(in) then  

6)       for each p∈t•∩Pωβ do 

7)              M(p):= M(p)+1；   

8)       end for 

9)   end if 

10) Output: Φ and M. 

 

BottomUpHandle(t) 

Input: a transition t. 

1) if •t∩Pωβ≠∅ then 

2)   for each p∈•t∩Pωβ do 

3)      if M(p)≠0 then 

4)          M(p):= M(p)−1; 

5)      else 

6)          let {t'}:=•p ∩Tωβ;  /* Nωβ is BBF. */ 

7)          if t'∈Tω# then      

8)              Φ:=Φ+|ϖ(t')|; 

9)          end if 

10)          BottomUpHandle(t'); 

11)    end if 

12)   end for 

13) end if 
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Let us briefly explain Function NextUnobseValue. First, variables Φ and M are 

initialized at Φω,δ and Mω,δ. Then, four cases may occur, depending on the current 

transition t. 

Case 1: t∉Toβ. In this case, Φ and M are directly output without further computations. 

Case 2: t∈Toβ(out)\Toβ(in). BottomUpHandle(t) is called. Essentially, its execution 

determines from bottom up which transitions in Nωβ definitely fire a number of times 

larger than their least firing times induced by δ in the case that the firing of t is observed 

following δ. Such a computation relies on the basic partial marking. Specifically, when 

the place p∈•t∩Pωβ contains no token at M, we can determine that its single input 

unobservable transition definitely fires one more time since otherwise t cannot fire. 

Moreover, every time it is determined that a transition definitely fires one more time, 

Function BottomUpHandle is called again to determine whether its upper transitions in 

Nωβ definitely fire one more time. We can see that Φ and M are accordingly updated 

during the execution of BottomUpHandle(t). Φ and M are output when the function 

ends. 

Case 3: t∈Toβ(in)\Toβ(out). In this case, M is updated by adding one token to each 

output place of t in Nωβ, while Φ remains unchanged.  

Case 4: t∈Toβ(in)∩Toβ(out). In this case, BottomUpHandle(t) is called first and then M 

is updated again by adding one token to each output place of t in Nωβ. 

Proposition 3.3: Let (N, m0) be a PN system subject to a GMEC (ω, k) such that Nωβ 

is acyclic and BBF, and δ, δ'∈Lo(N, m0) such that δ'=δt. Function NextUnobseValue 

outputs Φω,δ' and Mω,δ' when Φω,δ, Mω,δ, and t are the inputs. 

Proof: See Appendix.                                                  ■                
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Fig. 3.6 PN system (N, m0) subject to a GMEC (ω, k): 

m(p5)+2m(p3)+2m(p14)+2m(p13)+2m(p12)≤8 
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Fig. 3.7 Extended observation subnet of the PN in Fig. 3.6  
(The part inside the dashed line is the observation subnet) 
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The following example is given to illustrate Function NextUnobseValue. Here, we 

define a reverse path as a string x1x2…xn∈(P∪T)* such that xi+1∈•xi for all i=1, 2, …, 

n−1. 

Example 3.8: Consider the PN system (N, m0) in Fig. 3.6. Let (ω, k): 

m(p5)+2m(p3)+2m(p14)+2m(p13)+2m(p12)≤8 be a GMEC on it. Then, Tω#={t3, t4, t6, t20, 

t25}. By Definitions 3.10 and 3.11, we obtain the observation subnet Nωβ and the 

extended one N β
ω , as depicted in Fig. 3.7. Nωβ is clearly acyclic and BBF. Hence, we 

compute Φω,δ and Mω,δ for δ=t12 by Function NextUnobseValue. It is easy to see Φω,ε 

=0 and Mω,ε =m0β= p6+p8. We input Φω,ε , Mω,ε and t12 into Function NextUnobseValue. 

First, Φ=Φω,ε=0 and M=Mω,ε =p6+p8. Next, BottomUpHandle(t12) is called since t12 is 

an output observable transitions of Nωβ. Following the reverse path π1=t12p10t11p8, we 

can see that the firing of t12 consumes a token from p8 and t11 definitely fires one time. 

Hence, M is updated to M=p6 and Φ remains unchanged since t11∉Tω#. As a result, 

Φω,δ =0 and Mω,δ=p6. Consider the observed sequence δ'=t12t13. We can compute Φω,δ' 

and Mω,δ' using Function NextUnobseValue since δ=t12 is the last observed sequence 

of δ' and Φω,δ and Mω,δ are known. We input Φω,δ, Mω,δ, and t13 into Function 

NextUnobseValue. First, Φ=Φω,δ=0 and M=Mω,δ=p6. Next, BottomUpHandle(t13) is 

called since t13 is an output observable transitions of Nωβ. Following the reverse path 

π2=t13p9t10p7t8p6, we can see that the firing of t13 consumes a token from p6 and both t10 

and t8 are required to fire one time. Accordingly, M is updated to M=0. We observe 

that t10 has another input place p8. Hence, following the reverse path π3=p8t9p6t6p5t3, we 

can see that all transitions in π3 are also required to fire one time since t10 is required to 

fire one time. In particular, since t6, t3∈Tω#, Φ is updated with Φ=Φ+|ϖ(t6)|+|ϖ(t3)|=2. 

Besides, we observe that t9 has another input place p16. Similarly, following the reverse 

path π4=p16t21p15t20, all transitions in π4 are required to fire one time since t9 is required 
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to fire one time. Since t20∈Tω#, Φ is thus updated again with Φ=Φ+|ϖ(t20)|=4. Then, 

considering that t13 is also an input observable transition of Nωβ, M is updated again by 

adding a token to p6, i.e., M=p6. Finally, Φ=4 and M=p6 are output that are exactly 

Φω,δ' and Mω,δ'.                                                       ♦ 

Remark 3.4: We observe that the computational time of Function NextUnobseValue 

mainly depends on the times of the recursive calls of Function BottomUpHandle. 

Besides, it is decided from bottom up in the observation subnet Nωβ whether Function 

BottomUpHandle needs to be called. Since Nωβ is acyclic, the times of recursive calls 

of Function BottomUpHandle are polynomial w.r.t. the number of unobservable 

transitions of Nωβ in the worst case. Hence, Function NextUnobseValue is of polynomial 

complexity w.r.t. the unobservable transitions of the considered PN.             ♣ 

3.6  Optimal Polynomial-complexity Control Policy for a Class of PN 

Subject to an Admissible GMEC 

This section presents an optimal and efficient control policy for ordinary PNs subject 

to an admissible GMEC such that the observation subnet is acyclic and BBF. First, we 

introduce the following function, by which the observable change w.r.t. an observed 

sequence is computed.  

 

Ψ=NextObseValue (Ψω,δ, t) 

Input: The observable change Ψω,δ and t∈To; 

Output: Ψ. /*The output Ψ is exactly the observable change Ψω,δ', where δ'=δt.*/ 

1) Ψ:=Ψω,δ+ϖ(t); 

2) Output: Ψ. 

 

Proposition 3.4: Let (N, m0) be a PN system subject to a GMEC (ω, k) and δ, δ'∈Lo(N, 

m0) such that δ'=δt. Function NextObseValue outputs Ψω,δ' when Ψω,δ and t are given 

as inputs. 
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Based on Functions NextUnobseValue and NextObseValue, the following Function 

ComputeControlAction computes a control action corresponding to an observed 

sequence δ given Ψω,δ, Φω,δ and Mω,δ.  

 

u=ComputeControlAction(Ψω,δ, Φω,δ, Mω,δ) 

Input: The observable change Ψω,δ, the unobservable minimal decrease Φω,δ , and 

the basic partial marking Mω,δ; 

Output: The control action u=ρ(δ). 

1) for each tc∈Tc\Tω+ do 

2)    u(tc):=1; 

3) end for 

4) for each tc∈Tc∩Tω+ do 

5)    (Φω,δ', Mω,δ'):=NextUnobseValue(Φω,δ,Mω,δ, tc); 

6)    Ψω,δ' := NextObseValue (Ψω,δ, tc); 

7)    if Ψω,δ' −Φω,δ' >k−ω⋅m0 then 

8)        u(tc):=0; 

9)    else 

10)        u(tc):=1; 

11)    end if 

12) end for 

13) Output: u. 

 

Finally, Policy 3.2 provides a polynomial complexity optimal control policy to 

enforce an admissible GMEC, which could be applied provided that the observation 

subnet is acyclic and BBF. 

We explain Policy 3.2 in more detail. The variables Ψ, Φ, M in Policy 3.2 correspond 

to the observable change, the unobservable minimal decrease, and the basic partial 

marking w.r.t. the current observed sequence, respectively. The policy works as follows: 

First, Ψ, Φ, M are initialized at “0”, “0”, m0β, respectively, and the control action u=ρ(ε) 
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is computed using Function u:=ComputeControlAction(Ψ, Φ, M). Then, every time 

the firing of a transition t is observed, a control action is computed via the following 

two steps:  

1) Update Ψ, Φ, M using Functions (Φ, M):= NextUnobseValue (Φ, M, t) and then 

Ψ:=NextObseValue (Ψ, t);  

2) Compute the control action u=ρ(δ) using Function u:=ComputeControlAction(Ψ, Φ, 

M). 

More intuitively, Policy 3.2 is summarized in Fig. 3.8. 

 

Policy 3.2: An on-line control policy ρ 

Plant: A PN system (N, m0);  

State specification: An admissible GMEC (ω, k). 

Condition: The observation subnet Nωβ is acyclic and BBF 

Initialization: Ψ:=0, Φ:=0, M:=m0β. 

First, the control action u=ρ(ε) is determined by calling Function 

u:=ComputeControlAction(Ψ, Φ, M). 

Then, every time the firing of a transition t∈To is observed, a control action is 

determined by calling the following functions one after another:  

(Φ,M):=NextUnobseValue (Φ,M, t); 

Ψ:=NextObseValue (Ψ, t); and 

u:=ComputeControlAction(Ψ, Φ, M). 
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Sensor

 Ψ=0, Φ=0, M=m0
β

PN system (N, m0)

Compute u=ρ(ε) using Function 
u=ComputeControlAction (Ψ, Φ, M)

Update Ψ, Φ, M using Functions  
(Φ, M)=NextUnobseValues (Φ, M, t) 

and  then Ψ=NextObseValue (Ψ, t)

Enforce u on the PN

An observed transition t 

Enforce u on the PNCompute u=ρ(δ) using Function 
u=ComputeControlAction (Ψ, Φ, M)

Initialization:

 

Fig. 3.8 Flow chart describing Policy 3.2 

                                                                                      

Theorem 3.6: Given a PN system (N, m0) and an admissible GMEC (ω, k) such that 

the observation subnet Nωβ is acyclic and BBF, Policy 3.2 is optimal. 

Proof: See Appendix.                                                  ■               

Remark 3.5: Considering that Function NextUnobseValue has polynomial complexity 

w.r.t. the number of unobservable transitions of the considered PN, it is trivial to see 

that Policy 3.2 is also of polynomial complexity w.r.t. the number of unobservable 

transitions.                                                          ♣ 

Recall Example 3.8: The PN in Fig. 3.6 is subject to the GMEC (ω, k): 

m(p5)+2m(p3)+2m(p14)+2m(p13)+2m(p12)≤8. It can be verified that (ω, k) is an 

admissible GMEC and the observation subnet Nωβ in Fig. 3.7 is acyclic and BBF. Hence, 

Policy 3.2 can be applied. Furthermore, it is optimal and has polynomial complexity. 
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3.7  Optimal Control Policy for Special Classes of PN Subject to a 

GMEC 

In this section, we discuss how to develop an optimal policy for PNs subject to an 

arbitrary GMEC. We present the following theorem first.  

Theorem 3.7: Given a PN system (N, m0), two GMECs (ω1, k1) and (ω2, k2) such that 

A(ω1, k1)=A(ω2, k2), and a control policy ρ, it holds that 

ρ is optimal for (ω1, k1) ⇔ ρ is optimal for (ω2, k2). 

Proof: Straightforward from Definition 3.4 and Theorems 3.2 and 3.3.          ■ 

According to Theorem 3.7, given a PN system subject to an arbitrary GMEC (ω, k), 

if (ω, k) can be equivalently transformed into an admissible GMEC (ω', k'), the optimal 

control policy designed for (ω', k') is also optimal for (ω, k). (Note that an equivalent 

transformation from (ω, k) to (ω', k') implies A(ω, k)=A(ω', k').) Moreover, if the 

observation subnet w.r.t. the admissible GMEC (ω', k') is acyclic and BBF, Policy 3.2 

designed for (ω', k') is also an optimal policy for the PN system subject to (ω, k). Hence, 

what we need to consider now is how to equivalently transform an arbitrary GMEC into 

an admissible one. This problem has been extensively studied for PNs being entirely 

observable but partially controllable. It is worth noting that all proposed methods still 

work for PNs with unobservable transitions since unobservable transitions are assumed 

to be uncontrollable. Also, note that such a transformation is related to a subnet called 

uncontrollable influence subnet [38]. 

Based on the above considerations, we develop an optimal policy for a PN system (N, 

m0) subject to an arbitrary GMEC (ω, k), which consists in the following two steps: 

Stage 1: Compute the uncontrollable influence subnet w.r.t. (ω, k). Determine if there 

exists a method that can equivalently transform (ω, k) into an admissible GMEC (ω', 

k'). If so, compute the equivalent admissible GMEC (ω', k'); otherwise, stop. 

Stage 2: Compute the observation subnet Nω'β w.r.t. (ω', k'). Determine if Nω'β is 

acyclic and BBF. If so, compute and enforce Policy 3.2 with (ω, k):=(ω', k') on the PN 

system; otherwise stop. 
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Clearly, the above method does not work for all arbitrary PNs subject to all arbitrary 

GMECs. The first reason is that not all GMECs can be equivalently transformed into a 

single admissible GMEC [103]. Fortunately, various efficient constraint transformation 

approaches, such as [60, 62, 100, 102, 123], have been proposed in the literature that 

are applicable to PNs with uncontrollable influence subnets having different structures. 

Therefore, in most of the practical cases of interest, depending on the given PN and the 

given GMEC, a different transformation method can be chosen in Stage 1. Furthermore, 

the observation subnet w.r.t. the computed admissible GMEC is required to be acyclic 

and BBF when Policy 3.2 is computed in Stage 2. 

We finally notice that the computational complexity of the two stages depends on the 

computational complexity of Stage 1 since Policy 3.2 is of polynomial complexity. 

Hence, the whole method has polynomial complexity when the approach in Stage 1 

also has polynomial complexity. 

Example 3.9: Consider again the PN system (N, m0) in Fig. 3.6. Now, let (ω, k): 

m(p5)+2m(p3)+2m(p14)≤8 be the GMEC. We can easily verify that it is not an admissible 

GMEC. However, the approach in [123] can equivalently transform a GMEC into an 

admissible one with polynomial complexity provided that the uncontrollable influence 

subnet is forward-concurrent-free (i.e., each transition has only one input place). The 

uncontrollable influence subnet is reported in Fig. 3.9 and satisfies such a condition. 

Therefore, the approach can be applied in this case, resulting in an equivalent 

admissible GMEC (ω', k'): m(p5)+2m(p3)+2m(p14)+2m(p13)+2m(p12)≤8. As we 

analyzed in Example 3.8, the observation subnet w.r.t. (ω', k') is the net inside the 

dashed line in Fig. 3.7, which is acyclic and BBF. Hence, Policy 3.2 computed for the 

GMEC (ω', k') is exactly an optimal control policy for the PN system subject to (ω, k): 

m(p5)+2m(p3)+2m(p14)≤8. Since the approach in [123] is of polynomial complexity, it 

is easy to see that the whole method has polynomial complexity.                 ♦ 



56 
 

p3

t3

t16t17

t18

t19

p13p14

p5

p12

 
Fig. 3.9 Uncontrollable influence subnet of the PN system in Fig. 3.6 w.r.t. (ω, k): 

m(p5)+2m(p3)+2m(p14)≤8 

3.8  Conclusions 

This chapter focuses on the forbidden state problem of PNs with both uncontrollable 

and unobservable transitions, assuming that unobservable transitions are all 

uncontrollable. For ordinary PNs subject to an admissible GMEC, we propose an 

optimal policy with polynomial complexity, provided that a certain subnet of the 

original net, called the observation subnet, is acyclic and backward-conflict and 

backward-concurrent free. We also prove that for any two GMECs with the same 

admissible marking set, a control policy is optimal with respect to one GMEC if and 

only if it is optimal with respect to the other one. This allows us to apply the proposed 

approach to more general cases. Indeed, efficient transformations exist that allow us to 

transform an arbitrary GMEC to an equivalent admissible one. 

The work of this chapter has been published in Information Sciences; see [124]. 

 

 

 

 

 

 

 



57 
 

3.9  Appendices 

3.9.1 Proof of Proposition 3.2  

Since (ω, k) is an admissible GMEC, it holds that ∀t∈Tuc, ϖ(t)≤0. Thus, it follows 

that  

( )maxσ δ ϖ σ∈Λ ⋅


= 1 ( )max -
NOσ δ ϖ σ∈ ⋅  .                     (2) 

It is clear that 

1 ( )max -
NOσ δ ϖ σ∈ ⋅  = ( )1( )max ( ) ( ) ( ) ( )-

N o uoO t T t T
t t t tσ δ ϖ σ ϖ σ

∈ ∈ ∈
⋅ + ⋅ 
 

 

= 1 ( )max ( ) ( )-
N uoO t T

t tσ δϖ δ ϖ σ
∈ ∈

⋅ + ⋅
 

.                (3) 

Since Tuo ⊆ Tuc, it holds that for any σ∈ON-1(δ), if a transition t∈Tuo appears in σ, it is 

ϖ(t)≤0. Thus, it is  

1 ( )max ( ) ( )-
N uoO t T

t tσ δ ϖ σ
∈ ∈

⋅


= 1 ( )max ( ) ( )- TN uoO t T
t t

ωσ δ ϖ σ−∈ ∈ ∩
⋅


 

= 1 #( )min | ( ) | ( )- TNO t
t t

ωσ δ ϖ σ
∈ ∈

− ⋅


.        (4) 

By (2)-(4), we have  

( )maxσ δ ϖ σ∈Λ ⋅


= 1 #( )min | ( ) | ( )- TNO t
t t

ωσ δϖ δ ϖ σ
∈ ∈

⋅ − ⋅
 

 

=Ψω,δ − Φω,δ.                               ■                

 

3.9.2 Proof of Theorem 3.5  

We first introduce a new notion. Given a transition t∈Tuo, t'∈Tuo is called a 

downstream unobservable transition w.r.t. t if t' can be reached from t following an 

unobservable path. The set of all downstream unobservable transitions w.r.t. t∈Tuo is 

denoted by Tuo∨(t). Note that transitions in Tuoβ can be divided into transitions inside 

and outside of Nωβ. More precisely, Tuoβ=Tωβ∪(Tuoβ∩E(Nωβ)). 

Let us first consider t∈Tuoβ∩E(Nωβ). We observe that t cannot reach any observable 

transition following a path since otherwise t is a transition in Nωβ. Hence, the firing 

times of t and all its downstream unobservable transitions are unrelated to the firing 
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times of observable transitions. In other words, t and all its downstream unobservable 

transitions can remain unfired no matter how observable transitions fire. 

Next, we consider t∈Tωβ. Since Nωβ is BBF, t has a single output place in Nωβ. Let 

{p}= t•∩Pωβ. Moreover, p has a single input transition in Nωβ since Nωβ is BBF. Clearly, 

{t}= •p∩Tωβ. Consider p'∈t•\{p}. We can see p' cannot reach any observable transition 

following a path since otherwise p' is a place in Nωβ. Hence, the firing times of 

unobservable transitions in p'• and all of their downstream unobservable transitions are 

unrelated to the firing times of observable transitions. In other words, unobservable 

transitions in p'• and all their downstream unobservable transitions can remain unfired 

no matter how observable transitions fire. Consider t'∈•p\{t}. We can see t' is definitely 

an observable transition since otherwise t' is a transition in Nωβ. Based on the above 

analysis, when a transition sequence δ is observed, t fires its least times only in the case 

that transitions in p•∩Tuo all fire their least times and transitions in (t•\{p})• all remain 

unfired. 

Due to that Nωβ is acyclic, we observe that, from bottom up in N β
ω , it holds that 

∀t∈Tuoβ, ∃σ∈ON-1(δ) such that ( )ts
 =ϕδ(t) and σ satisfies ( )t 's

 =ϕδ(t'), ∀t'∈Tuo∨(t). 

Trivially, ∃σ∈ON-1(δ) such that ( )ts
 =ϕδ(t), ∀t∈Tuoβ. By Property 3.2, |Bv

β(δ)|=1. 

Thus, it also holds that |Bm
β(δ)|=1 by Definition 3.13.                         ■ 

 

3.9.3 Proof of Proposition 3.3 

We can see that Φ and M are initialized as Φω,δ and Mω,δ. Then, we have the 

following four cases related to t.  

Case 1: t∉Toβ. The firing of t does not require the firing of any transition in Tuoβ in 

advance. Hence, ϕδ'(t)=ϕδ(t), ∀t∈Tuoβ. Trivially, Mω,δ' =Mω,δ. Besides, Φω,δ' = Φω,δ by 

Property 3.4 since Tω#⊆Tuoβ. Hence, the outputted Φ and M are exactly Φω,δ' and Mω,δ'. 

Case 2: t∈Toβ(out)\Toβ(in). In this case, BottomUpHandle(t) is called. The execution of 

BottomUpHandle(t) is essentially a procedure that determining from bottom up which 
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transitions in Nωβ definitely fire more times than their least firing times induced by δ in 

the case that the firing of t is observed following δ. Such a determination relies on the 

basic partial marking Mω,δ. According to Definition 3.13, we can see that the firing of 

σ s.t. �⃗�β∈Bv
β(δ) leads to the distribution of tokens in Nωβ being Mω,δ. In other words, 

when all transitions in Tuoβ fire their least firing times in the case that δ is observed, the 

distribution of tokens in Nωβ is Mω,δ. Let p be a place in •t∩Pωβ and t' be the single 

input unobservable transition of p. There are two cases related to p. Subcase a): p 

contains tokens at Mω,δ. It implies that t' fires ϕδ(t') times that are enough to enable t 

regardless of the distribution of tokens in other input places of t. Hence, t' does not need 

to fire more than ϕδ(t') times when the firing of t is observed following δ. In this case, 

M needs to be updated by removing a token in p since t fires. Subcase b): p contains 

no token at Mω,δ. Now that the firing of t is observed following δ, t' at least fires one 

more time than ϕδ(t') times since otherwise t cannot fire. Hence, if t'∈Tω#, Φ needs to 

be updated by adding |ϖ(t')| to itself. Let p' be a place in •t'∩Pωβ and t'' be the single 

input unobservable transition of p'. In the case that t' at least fires one more time than 

ϕδ(t') times, it can be determined similarly whether t'' at least fires one more time than 

ϕδ(t'') times. Accordingly, Φ and M are updated. The determination is performed from 

bottom up similarly and Φ and M are updated similarly. Consequently, the outputted 

Φ and M are exactly Φω,δ' and Mω,δ'. 

Case 3: t∈Toβ(in)\Toβ(out). The firing of t does not require the firing of any transition 

in Tuoβ in advance. Hence, ϕδ'(t)=ϕδ(t), ∀t∈Tuoβ. As a result, Φω,δ' =Φω,δ. We can see 

that the firing of t increases tokens in its output places in Nωβ. Hence, M is updated by 

adding one token to each output place of t in Nωβ. Therefore, the outputted Φ and M 

are exactly Φω,δ' and Mω,δ'. 
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Case 4: t∈Toβ(in)∩Toβ(out). Based on the analysis in Cases 2 and 3, it can be concluded 

that the outputted Φ and M are exactly Φω,δ' and Mω,δ'.                        ■               

 

3.9.4 Proof of Theorem 3.6  

Before proving it, we introduce the following lemma. 

Lemma 3.1: Let (N, m0) be a PN system subject to an admissible GMEC (ω, k), and 

δ1, δ2∈Lo(N, m0). Ψω,δ2−Φω,δ2 ≤Ψω,δ1−Φω,δ1 if ∃δ∈Tuc* such that δ2=δ1δ. 

Proof: We can see that Λ(δ2)⊆Λ(δ1) and thus 
2( )maxσ δ ϖ σ∈Λ ⋅


≤

1( )maxσ δ ϖ σ∈Λ ⋅


. 

Since (ω, k) is admissible, Ψω,δ2−Φω,δ2≤Ψω,δ1−Φω,δ1 by Proposition 3.2.           ■                

In the following, we prove Theorem 3.6. 

We use ρ1 and ρ2 to denote Policies 3.1 and 3.2 respectively. First, we prove Lo(N, 

m0)|ρ2⊆ Lo(N, m0)|ρ1. Let δ∈Lo(N, m0)|ρ2. Consider δ=ε. It is assumed that ε∈G(ω, k), i.e., 

∀σ∈Λ(ε), ω⋅mσ≤k. Thus, Ψω,ε−Φω,ε ≤k−ω⋅m0. Consider δ=t1t2…tn∈Lo(N, m0)|ρ2. Clearly, 

∀δ'∈δ, δ'∈ Lo(N, m0)|ρ2. Since t1∈Lo(N, m0)|ρ2, we have the following cases related to 

t1 according to Policy 3.2.  

Case 1: t1∈Tuc. We can see Ψω,t1 − Φω,t1 ≤Ψω,ε − Φω,ε by Lemma 3.1. Since Ψω,ε−Φω,ε 

≤k−ω⋅m0, we have Ψω,t1 − Φω,t1 ≤k−ω⋅m0.  

Case 2: t1∈Tc\Tω+. Since ϖ(t1)≤0, Ψω,t1≤Ψω,ε. Besides, it is trivial to see that 

Φω,t1≥Φω,ε. Hence, Ψω,t1−Φω,t1≤Ψω,ε−Φω,ε. Furthermore, we have Ψω,t1−Φω,t1 ≤k−ω⋅m0.  

Case 3: t1∈Tc∩Tω+ and Ψω,t1 − Φω,t1≤k−ω⋅m0.  

Clearly, it always holds Ψω,t1 − Φω,t1 ≤k−ω⋅m0. Now, consider t1t2∈Lo(N, m0)|ρ2. There 

are three similar cases related to t2. By the similar analysis, we have 

Ψω,t1t2−Φω,t1t2≤k−ω⋅m0 since Ψω,t1 − Φω,t1≤k−ω⋅m0. By repeating the above analysis, it 

can be concluded that Ψω,δ−Φω,δ≤k−ω⋅m0. Furthermore, we can see ∀δ'∈δ , Ψω,δ'−Φω,δ' 

≤k−ω⋅m0. Observing Policy 3.1, it is δ∈Lo(N, m0)|ρ1. Hence, Lo(N, m0)|ρ2⊆ Lo(N, m0)|ρ1.  

Next, we prove Lo(N, m0)|ρ2 ⊇ Lo(N, m0)|ρ1. By contradiction, suppose that Lo(N, 

m0)|ρ1⊄ Lo(N, m0)|ρ2. Hence, there exists δ∈Lo(N, m0)|ρ1\ Lo(N, m0)|ρ2. Since δ∈Lo(N, 
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m0)|ρ1, it is clear that δ∈Lo(N, m0). Moreover, since δ∉Lo(N, m0)|ρ2, we can see ∃δ't∈δ

such that δ'∈Lo(N, m0)|ρ2, t∈Tc∩Tω+ and Ψω,δ't−Φω,δ't >k−ω⋅m0. Observing Policy 3.1, 

we have δ't∉Lo(N, m0)|ρ1. Thus, δ∉Lo(N, m0)|ρ1, which contradicts the fact that δ∈Lo(N, 

m0)|ρ1. Hence, Lo(N, m0)|ρ2⊇ Lo(N, m0)|ρ1. Consequently, Lo(N, m0)|ρ2=Lo(N, m0)|ρ1. 

According to Theorem 3.2, Policy 3.2 is optimal since Policy 3.1 is optimal.       ■ 
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CHAPTER IV   

Forbidden State Problem of DES 
Vulnerable to Network Attacks 

4.1 Introduction 

In this chapter, we address the forbidden state problem of DES assuming that events 

are all controllable and observable but the system is vulnerable to network attacks. We 

consider the so-called sensor-reading disguising attacks (SD-attacks for short) that may 

disguise the occurrence of an event as another by tampering with the sensor-readings 

in sensor communication channels. In particular, we use PNs as a reference formalism 

to model a plant that is allowed to be bounded or unbounded and assume a control 

specification in terms of a GMEC. We propose three different methods to derive on-

line control policies. The first two lead to an optimal policy but are computationally 

inefficient when applied to large-size systems. On the contrary, the third method 

computes a policy with timely response even for large-size systems but at the expense 

of optimality. 

This chapter is organized as follows. Section 4.2 introduces the considered attacks 

and formalizes the problem statement. Section 4.3 presents a method that computes an 

optimal control policy based on the enumeration of markings consistent with the current 

observation. In Section 4.4, we develop two control policies based on constructing a 

monitor-controlled PN system. One is an optimal policy that still requires the marking 

enumeration and the other is computationally more efficient even for large-size systems 

but at the expense of optimality. Section 4.5 draws conclusions of this chapter. 
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We notice that the work of this chapter is now under review by IEEE Transactions 

on Automatic Control. 

4.2 Problem Statement 

In this section, we first introduce the type of attacks considered in this chapter and 

then formalize the problem statement. We note that in the next chapter we consider the 

same type of attacks as in this chapter but deal with a different control problem. 

4.2.1 Sensor-reading Disguising Attacks (SD-attacks) 

We consider a type of attacks that we call sensor-reading disguising attacks (SD-

attacks for short). In an SD-attack scenario, the intruder has the ability to disguise the 

occurrence of an event as the occurrence of another event by modifying sensor-readings 

in vulnerable sensor communication channels. Formally, we define an SD-attack as 

A∈ ( ) \{( , )| }2 T T t t t T´ Î , i.e., as a set of ordered transition-pairs excluding those with identical 

transitions. Each pair in A, e.g., (t, t'), denotes the possible action taken by the intruder 

disguising the firing of transition t as the firing of transition t'. In other words, A 

characterizes the capability of an intruder on disguising transitions.  

We assume that we have prior knowledge of A, i.e., it is a given set in our problem 

statement. How to derive A is application-dependent. It may be derived based on 

analyzing the vulnerability of sensor channels, the potential goal of an intruder, the 

similarity of sensor-readings, and so on. The focus of our work is enforcing a control 

specification to the considered system when given such a potential intruder. We notice 

that a similar assumption is made in [97], where the authors assume that they do not 

know exactly which intruder they are facing but they have prior knowledge of all the 

possible intruders, namely, multiple SD-attacks are given. In addition, we note that A 

is assumed to be not empty since the case that A is empty implies that no attack threat 

exists, which is not the concern of our work.  
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In what follows, we introduce notation related to SD-attacks. 

Definition 4.1: Given an SD-attack A, the set of vulnerable transitions is Tv={t |(t, 

t')∈A} and the set of uncertain transitions is Tu={t' |(t, t')∈A}. Moreover, given a 

transition t, we denote  

A(t)= {t}∪{t' |(t, t')∈A} and A-1(t)= {t}∪{t' |(t', t)∈A}. 

The set A(t) enumerates all those transitions that could appear firing when transition 

t actually has fired, while A-1(t) is the set of transitions that may have actually fired 

when transition t is observed. We can see that when a vulnerable transition t fires, its 

observation is not necessarily transition t; when the firing of an uncertain transition t is 

observed, the transition that has actually fired is not necessarily transition t. 

Example 4.1: Consider a PN with T={t1-t5} and an SD-attack A={(t1, t2), (t2, t3), (t2, 

t4), (t3, t4)}. It is Tv={t1, t2, t3} and Tu={t2, t3, t4}. It holds: A(t1)={t1, t2}, A(t2)={t2, t3, t4}, 

A(t3)={t3, t4}, A(t4)={t4}, A(t5)={t5}. Moreover, A-1(t1)={t1}, A-1(t2)={t1, t2}, A-1(t3)={t2, 

t3}, A-1(t4)={t2, t3, t4}, and A-1(t5)={t5}.                                     ♦ 

Furthermore, we extend the notations A(⋅) and A-1(⋅) to a transition sequence, 

respectively. The extension of A(⋅) to a transition sequence σ∈T* is defined recursively 

such that  

1) A(ε)=ε; and 

2) A(σ)=A(σ')A(t), where σ'∈T* and t∈T s.t. σ=σ't. 

Note that A(σ')A(t) denotes the concatenation of A(σ') and A(t). The extension of A-1(⋅) 

to a transition sequence is similarly defined. 

We can see that A(σ) is the set of possible observations when the sequence σ∈T* 

actually fires, whereas A-1(σ) is the set of sequences that may produce the observation 

σ∈T*. In general, not all sequences in A-1(σ) are enabled at the initial marking of the 

considered system. 

In the following, we introduce the observation language of a PN system under an 

SD-attack and then reformulate a control policy in the presence of such an attack.  
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Definition 4.2: Let (N, m0) be a PN system vulnerable to an SD-attack A. The 

observation language of (N, m0) under the attack A is  

LoA(N, m0)=
0( , )

( )
L N m

A
σ

σ
∈ . 

Example 4.2: Consider the PN system (N, m0) in Fig. 4.1 vulnerable to the SD-attack 

A={(t2, t3)} and the sequence t2t3∈L(N, m0). It is A(t2t3)=A(t2)A(t3)={t2t3, t3t3}. 

Moreover, consider the sequence t2t3t4∈LoA(N, m0). It is A-1(t2t3t4)= A-1(t2)A-1(t3)A-

1(t4)={t2t3t4, t2t2t4}. Note that when the sequence t2t3t4 is observed, we know for sure 

that t2t3t4 has fired since t2t2t4 is not enabled at the initial marking.               ♦ 

 

 

Fig. 4.1 PN system (N, m0) in Examples 4.2-4.6 

 

As discussed in Section 2.4.2, a control policy (or supervisor) of a PN system (N, m0) 

is a function ρ: Lo(N, m0)→2Tc. Clearly, it is reduced as ρ: L(N, m0)→2T in the case that 

all transitions are observable and controllable. Now, although all transitions are 

observable and controllable, considering the existence of an SD-attack A, the observed 

language of the system should be LoA(N, m0) rather than L(N, m0). Thus, a control policy 

(or supervisor) of a PN system (N, m0) in the presence of an SD-attack A is 

ρ: LoA(N, m0)→2T. 
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4.2.2 Problem Statement 

In this chapter we study the following control problem under the assumption that all 

transitions are controllable and observable. 

Problem 4.1: Given a PN system (N, m0) vulnerable to an SD-attack A and a GMEC 

(ω, k), design a control policy ρ: LoA(N, m0)→2T that enforces GMEC (ω, k). 

The control policy to be designed in Problem 4.1 is actually a tolerant control policy 

w.r.t. the considered attack. The “tolerant control problem” is often discussed in the 

scenario where a system suffers from faults, referring to the design of a control method 

that enables the system to continue operating properly even in the case that some faults 

occur. Likewise, in the context of attack issues, a control policy (or supervisor) tolerant 

to an attack indicates that the control policy enforces a control specification to the 

considered system even in the presence of the attack.  

Like many studies dealing with the supervisory control problem, we assume that the 

initial marking m0 is legal, i.e., ω⋅m0≤k. 

In this chapter, initially, Problem 4.1 is investigated with the goal of determining an 

optimal control policy. Then, such a requirement is relaxed, in order to provide a more 

efficient approach in terms of computational complexity. 

4.3 Optimal Control Policy 

In this section, we present an on-line control policy for Problem 4.1. To this end, we 

introduce the notion of violating transitions at a given set of markings. Recall that En(m) 

denotes the set of transitions enabled at marking m. Now, we extend the notation to a 

marking set M such that En(M)= ( )Mm En m∈ . Besides, in this chapter, given a 

marking m and a transition t∈En(m), we denote mt the marking reached by firing t at m; 

given a transition sequence α enabled at marking m, we denote mα the marking reached 

by firing α at m. Note that the notation is defined differently from that in Chapter III. 

Definition 4.3: Given a PN N, a GMEC (ω, k) and a set of markings M, the set of 
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violating transitions at M is 

Γ(ω, k)(M)={t∈En(M) | ∃m∈M, s.t. ω⋅mt >k}. 

In words, Γ(ω, k)(M) includes all those transitions whose firing leads a marking in M 

to a marking violating the GMEC (ω, k).  

Now, we compute an on-line control policy by Method 4.1, where δ denotes the 

current observation and M contains all possible markings consistent with δ. When 

nothing is observed, δ is initialized at ε that denotes the empty sequence and M is 

initialized at {m0}. Accordingly, the disabled set ρ(ε) is computed and enforced on the 

plant, which is exactly the set of violating transitions at {m0}, namely, Γ(ω, k)({m0}). 

Then, every time a new transition t is observed, we update the set M of markings 

consistent with the observation and compute the new set Γ(ω,k)(M) of violating 

transitions. In particular, the updating of M is done in Step 4, where the new set M 

contains the markings reached from a marking in the old set M by firing a transition 

that possibly produces the observation t and is not a disabled transition. 

 

Method 4.1: On-line computation of an optimal policy 

Input: 1) plant: a PN system (N, m0) vulnerable to an SD-attack A; and  

2) specification: a GMEC (ω, k). 

Output: A control policy ρ. 

1. Initialization: δ ←ε; M←{m0};  

2. ρ(δ)←Γ(ω, k)(M); 

3. while there is an observation t∈T do 

4.      M←{mt' | t' is enabled at m∈M, t'∈A-1(t)\ρ(δ)}; 

5.      δ ←δ t; 

6.      ρ(δ)←Γ(ω, k)(M); 

7. end while 
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Example 4.3: Consider the PN system (N, m0) in Fig. 4.1 with specification (ω, k): 

m(p2)≤1, and assume that the system is vulnerable to an SD-attack A={(t2, t3)}. Method 

4.1 computes the control policy as follows. 

1) Nothing is observed, i.e., δ=ε. It is M={m0}={[2, 0, 0]T} and thus ρ(ε)=Γ(ω, 

k)(M)=∅; 

2) Suppose that t3 is observed. M is updated to {[1, 1, 0]T, [1, 0, 1]T} since A-1(t3)={t2, 

t3} and ρ(ε)=∅. Accordingly, it is ρ(t3)=Γ(ω, k)(M)={t2}; 

3) Suppose that t3 is observed again. It is A-1(t3)\ρ(t3)={t3}. Hence, M is updated to 

{[0, 1, 1]T, [0, 0, 2]T} and ρ(t3t3)=Γ(ω,k)(M) ={t4}. 

Similarly, every time a new transition is observed, the disabled set is recomputed.  

Theorem 4.1: Let (N, m0) be a PN system vulnerable to an SD-attack A and (ω, k) be 

the imposed GMEC. The policy computed by Method 4.1 is optimal. 

Proof: Let ρ be the policy computed by Method 4.1. It is trivial to see that ρ is 

acceptable, i.e., R(N, m0)|ρ ⊆ L(ω, k). Let ρ' be a policy more permissive than ρ. It means 

that there exists an observed sequence δ∈T* generated by the plant such that 1) 

ρ'(δ')=ρ(δ'), ∀δ'∈δ \{δ}; and 2) ρ'(δ)⊂ρ(δ). Let M be the set of markings consistent 

with the observation obtained before the last transition in δ is observed. Clearly, it is 

M⊆L(ω, k). Since ρ'(δ)⊂ρ(δ), there exists a violating transition associated with M that 

is not included in ρ'(δ). Hence, the system possibly reaches an illegal marking by firing 

such a transition. In other words, R(N, m0)|ρ' ⊄ L(ω, k). This proves that ρ is optimal.  ♦ 

Remark 4.1: Method 4.1 computes a control action every time the firing of a transition 

is observed. Thus, as long as the considered net system may keep running, the 

computation of control actions is always needed and will not terminate. This is why we 

describe the proposed control policy as “method” rather than “algorithm” since an 

algorithm should be able to terminate. Besides, we notice that Method 4.1 is not limited 
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to GMECs. It is actually applicable to any control specification that requires a system 

to evolve within a marking set.                                           ♣ 

Remark 4.2: We analyze the computational complexity of Method 4.1. In Method 4.1, 

we record a set M of markings consistent with an observation. At the beginning, it 

contains the initial marking only. When we observe the first transition, we update the 

set M. Since, in the worst case, all the transitions in the net may have fired, the updated 

set M contains at most |T| markings. Then, we compute Γ(ω, k)(M) that is the disabled 

set relative to the current observation. By its definition, we should check for each 

marking in M and each enabled transition. Thus, the complexity of computing such a 

control action is O(|T|2). When we observe the second transition, we update again the 

set M. Similarly, considering the worst case, the updated set M contains at most |T|2 

markings. Then, we compute again Γ(ω, k)(M) and its complexity is O(|T|3). By repeating 

the above reasoning, when we observe the nth transition, the updated set M contains at 

most |T|n markings and the complexity of computing a control action is O(|T|n+1). We 

notice that the set M is always bounded although its size grows exponentially with the 

length of the observed sequence. Nevertheless, since the size of M grows exponentially, 

the computation of a control action might become inefficient particularly in large-size 

systems. Consequently, we look for control policies with a smaller computational 

complexity.                                                                     ♣                  

4.4 Control Policies Based on a Monitor-controlled PN System 

In this section, we develop two control policies based on the off-line construction of 

a monitor-controlled PN system, which is an auxiliary supervisory system allowing us 

to establish, more efficiently than Method 4.1, which transitions should be disabled 

corresponding to an observation.  
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4.4.1 Monitor-controlled PN System 

In this subsection, we introduce a monitor-controlled PN system and define its related 

notations. 

Given a plant (N, m0) and a GMEC (ω, k), the monitor-controlled PN system, denoted 

as (Nc, m0c), is an augmented system obtained by adding, to the net system to be 

controlled, monitor pc that enforces GMEC (ω, k) via the place-invariant method [109]. 

In more detail, it is 

[Nc]=
[ ]

[ ]
N

Nω
 
 − ⋅ 

= 
[ ]N

ϖ
 
 − 

  and  m0c= 0

0

m
k mω
 
 − ⋅ 

, 

where [Nc] and [N] are the incidence matrices of Nc and N, respectively. Note that the 

last rows of [Nc] and m0c correspond to monitor pc. 

Example 4.4: Consider the PN system (N, m0) in Fig. 4.1 and the GMEC (ω, k): 

m(p2)≤1. The corresponding monitor-controlled PN system (Nc, m0c) is shown in Fig. 

4.2.                                                                 ♦ 

 
Fig. 4.2 Monitor-controlled PN system (Nc, m0c) relative to the PN system in Fig. 4.1 

and the GMEC (ω, k): m(p2)≤1 

 

In the following, we use mc to indicate the marking of the monitor-controlled PN Nc. 

By default, mc is divided into two parts, that is,  

T T T[ ]c
pcm m m= ,  

where m denotes the marking corresponding to the original PN N and mpc denotes the 

marking of the monitor place pc. 

We now introduce some notation to be used in the rest of the chapter.  

Definition 4.4: Given a monitor-controlled PN Nc=(Pc, Tc, Fc, Wc) and a marking mpc 
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of the monitor place pc, we define the set of monitor-disabled transitions as 

Dis(mpc)={t∈pc• | mpc<Wc(pc, t)}. 

Definition 4.5: Given a monitor-controlled PN Nc=(Pc, Tc, Fc, Wc) and a marking 

mc=[mT  mpcT]T, we define: 

Ψ(mc)=Dis(mpc)∩En(m). 

In other words, Ψ(mc) is the set of transitions that are enabled in the original net system 

but are disabled by monitor pc. Furthermore, given a set of markings Mc of Nc, we 

define: 

Ψ(Mc)= ( )
Mc c

c
m

m
∈

Ψ . 

Example 4.5: Consider the monitor-controlled PN Nc in Fig. 4.3 at marking mc=[1, 1, 

0, 0]T. It is m=[1, 1, 0]T and mpc=0. Hence, Dis(mpc)={t2, t4} and Ψ(mc)={t2} by 

Definitions 4.4 and 4.5.                                                  ♦ 

 

 
Fig. 4.3 Monitor-controlled PN Nc at marking mc=[1, 1, 0, 1]T 

 

4.4.2 Optimal Control Policy 

In this subsection, we propose the second approach, that we call Method 4.2, to derive 

a control policy. The procedure of Method 4.2 is similar to Method 4.1. The main 

difference is that Method 4.2 constructs a monitor-controlled PN system (Nc, m0c) off-

line and the policy is computed on-line based on (Nc, m0c). Every time a transition is 

observed, Method 4.2 computes the set Mc of all possible reachable markings of (Nc, 
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m0c) and determines the disabled set based on Mc. Actually, the policy computed by 

Method 4.2 is the same as that computed by Method 4.1. It means that Method 4.2 also 

derives an optimal solution, which is formally presented and proven as follows. 

 

Method 4.2: Computation of an optimal policy based on monitors 

Input: 1) plant: a PN system (N, m0) vulnerable to an SD-attack A; and  

2) specification: a GMEC (ω, k). 

Output: A control policy ρ. 

Off-line computation: 

1. Compute the monitor-controlled PN system (Nc, m0c) with respect to the 

net (N, m0) and the GMEC (ω, k).  

On-line computation and control: 

1. Initialization: δ ←ε; Mc←{m0c};  

2. ρ(δ)←Ψ(Mc) ; 

3. while there is an observation t∈T do  

4.       Mc ←{mct' | t' is enabled at mc∈Mc, t'∈A-1(t)\ρ(δ)}; 

5.       δ ←δ t; 

6.       ρ(δ)←Ψ(Mc); 

7. end while 

 

The following results hold. 

Property 4.1 [109]: Let (N, m0) be a PN system, (ω, k) be a GMEC, and (Nc, m0c) be 

the corresponding monitor-controlled PN system. Given a marking mc∈R(Nc, m0c), it 

holds that  

1) ω⋅m+mpc=k; and 

2) Dis(mpc)={t∈T | ω⋅m+ϖ(t)>k}. 

Property 4.2: Let (N, m0) be a PN system, (ω, k) be a GMEC, and (Nc, m0c) be the 

corresponding monitor-controlled PN system.  

1) Given a marking mc∈R(Nc, m0c), it holds that Ψ(mc)={t∈En(m) | ω⋅mt >k};  
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2) Given a set of markings Mc⊆ R(Nc, m0c), it holds that Ψ(Mc)=Γ(ω, k)(M), where 

M is the set of markings derived by restricting markings in Mc to the net N. 

Proof: Straightforward from Property 4.1 and Definitions 4.3 and 4.5.           ■  

Theorem 4.2: Let (N, m0) be a PN system vulnerable to an SD-attack A and (ω, k) be 

a GMEC. The policy computed by Method 4.2 is optimal. 

Proof: Let ρ2 and ρ1 be policies computed by Methods 4.2 and 4.1, respectively. It is 

trivial to see that ρ2=ρ1 by Property 4.2. As a result, ρ2 is optimal since ρ1 is optimal. ■  

Example 4.6: Consider again the PN system (N, m0) in Fig. 4.1 subject to GMEC (ω, 

k): m(p2)≤1 and vulnerable to an SD-attack A={(t2, t3)}. Now, we use Method 4.2 to 

compute a control policy. First, a monitor-controlled PN system (Nc, m0c) is constructed 

off-line, as shown in Fig. 4.2. Next, the on-line computation and control is performed 

based on (Nc, m0c). We show a part of the procedure as follows. 

1) Nothing is observed, i.e., δ=ε. It is Mc={m0c}={[2, 0, 0, 1]T} and thus 

ρ(ε)=Ψ(Mc)=∅; 

2) Suppose that t3 is observed. Since A-1(t3)={t2, t3} and ρ(ε)=∅, either t2 or t3 may 

have actually fired, resulting in Mc={m1c, m2c}={[1, 1, 0, 0]T, [1, 0, 1, 1]T}. For the 

sake of clarity, markings m1c and m2c are both shown in Fig. 4.4(a) in blue and black 

color, respectively. We can see that ρ(t3)=Ψ(Mc) =Ψ(m1c)∪Ψ(m2c)={t2}∪∅={t2}; 

3) Suppose that t3 is observed again. It is A-1(t3)\ρ(t3)={t3}, i.e., t3 has fired for sure. 

Hence, Mc is updated at Mc={m3c, m4c}={[0, 1, 1, 0]T, [0, 0, 2, 1]T}, which is shown 

in Fig. 4.4(b) with m3c in blue and m4c in black. We can see that 

ρ(t3t3)=Ψ(Mc)=Ψ(m3c)∪Ψ(m4c)={t4}∪∅={t4}.                             ♦ 

 



74 
 

            
(a)                                   (b) 

Fig. 4.4 (a) Marking set Mc={m1c, m2c} consistent with δ=t3; and  
(b) marking set Mc={m3c, m4c} consistent with δ=t3t3. 

 

Remark 4.3: Method 4.2 provides an alternative way to compute an optimal control 

policy. It consists of both off-line and on-line computations. Regarding the off-line 

computations, the complexity is proportional to the number of GMECs. The on-line 

computations are similar to Method 4.1. The differences lie in that when implementing 

Method 4.2 we record the set Mc of markings of the monitor-controlled system 

consistent with an observation and based on that, we compute the disabling set Ψ(Mc). 

Thus, as in Method 4.1, when we observe the nth transition, the updated set Mc contains 

no more than |T|n markings. Then, the complexity of computing Ψ(Mc) is O(|T|n). 

Clearly, compared with Method 4.1, computing a control action using Method 4.2 is 

faster. However, the applicability of Method 4.2 could still become prohibitive for long 

evolutions of the system.                                                  ♣ 

4.4.3 Non-optimal Control Policy with Improved Computational Efficiency 

In this subsection, we present a more efficient method (Method 4.3) to compute a 

control policy, which is still based on constructing the monitor-controlled PN system. 

The derived policy is acceptable but not necessarily optimal. 
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Method 4.3: Computation of a non-optimal policy based on monitors 

Input: 1) plant: a PN system (N, m0) vulnerable to an SD-attack A; and  

2) specification: a GMEC (ω, k). 

Output: A control policy ρ. 

Off-line computation: 

1. Compute the monitor-controlled PN system (Nc, m0c) with respect to the 

net (N, m0) and the GMEC (ω, k). 

On-line computation and control: 

1. Initialization: δ ←ε; mc←m0c; Flag←True;  

2. ρ(δ)←Dis(mpc); 

3. while there is an observation t∈T do 

4.     if Flag=True then 

5.           Treal ←A-1(t)∩En(mc); 

6.           if Treal is a singleton and t'∈Treal then 

7.                 mc ← mc+[Nc](⋅, t'); 

8.            else  
9.                 mpc ← mpc+ 'min [ ]( ), '

real

c
t T cN p t∈ ;  

10.                Flag←False;  

11.           end if 

12.      else 

13.            Treal ←A-1(t)\ρ(δ); 
14.           mpc ← mpc+ 'min [ ]( ), '

real

c
t T cN p t∈ ;  

15.      end if 

16.      δ ←δ t; 

17.      ρ(δ)←Dis(mpc); 

18.  end while 

 

We explain Method 4.3 as follows. As in Method 4.2, we construct off-line the 

monitor-controlled PN system (Nc, m0c) and then perform the on-line computation and 

control based on it when the plant starts its evolution.  

We introduce a variable Flag∈{True, False}. In particular, Flag=True indicates that 
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we know with certainty the marking of the considered system before making a new 

observation, while Flag=False means the opposite, i.e., we do not know with certainty 

at which marking the system is when a new observation is done. Hence, Flag is 

initialized at “True” since we know the system is at marking m0c when we start our 

observation. Besides, mc is initialized at m0c, representing the system marking and the 

disabled set ρ(ε) enforced on the plant is the set of monitor-disabled transitions 

computed based on the initial token-count of pc. Whenever a new observation is 

produced, the token-count of monitor pc is updated and the disabled set enforced on the 

plant is updated accordingly based on the token-count of pc. In what follows, we focus 

on the way the token-count of pc is updated when a new observation is produced. In 

particular, two different cases are considered: 

Case 1: We know with certainty in which marking the system is before such an 

observation (i.e., Flag=True); and 

Case 2: We do not know with certainty in which marking the system is before such 

an observation (i.e., Flag=False). 

For the former case, we compute the set of transitions that may have fired (stored in 

Treal) based on the known current marking and the observed transition as in Step 5. 

Clearly, if Treal contains only one transition, the new marking can be uniquely 

determined including the token-count in pc. Otherwise, as it typically occurs, we do not 

know the new marking of the system. In this case, Method 4.3 does not enumerate 

possible new markings of the system but only updates the token-count in pc considering 

the firing effect of each transition in Treal on pc. More precisely, the token-count in pc is 

updated considering the firing of a transition in Treal such that pc contains the fewest 

tokens. In such a case, Flag is updated to “False” and remains like that until the end of 

the system observation.  

When Flag=False, i.e., the current marking of the system is not known, we do not 

reconstruct the marking of the system but update the token-count in pc only. In this case, 

we compute the set of transitions that may have fired only based on the observed 

transition and the enforced disabled set as in Step 13. Then, we update again the token-

count in pc considering the firing of a transition in Treal such that pc contains the fewest 
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tokens. 

Theorem 4.3: Let (N, m0) be a PN system vulnerable to an SD-attack A and (ω, k) be 

a GMEC. The policy computed by Method 4.3 is acceptable. 

Proof: Let (Nc, m0c) be the monitor-controlled PN system w.r.t. (N, m0) and (ω, k). 

By Property 4.1, ∀mc∈R(Nc, m0c), ω⋅m+mpc=k and Dis(mpc)={t∈T | ω⋅m+ϖ(t)>k}. 

Let ρ be the policy computed by Method 4.3. By assumption, m0 is legal. Let mpc0 be 

the marking of monitor pc such that m0c=[m0, mpc0]. Since ρ(ε)=Dis(mpc0), any firable 

transition t at m0 satisfies the inequality: ω⋅m0+ϖ(t)≤k, i.e., any marking reachable from 

m0 by firing a transition is legal.  

Let t1 be the first observed transition. Suppose that t1' is the really fired transition 

producing observation t1. Let m1 and m1c be the markings reached by N and Nc after 

firing t1' from m0 and m0c, respectively. It is m1c=[m1, mpc1], where mpc1=k−ω⋅m1 and 

mpc1=mpc0+[Nc](pc, t1'). Let mpc1*=mpc0+ 'min [ ]( ), '
real

c
t T cN p t∈ , where Treal=A-1(t1) 

∩En(m0c) since Flag=True. We can see that mpc1*≤ mpc1 since t1'∈Treal. Hence, 

Dis(mpc1*)⊇Dis(mpc1). We observe that ω⋅m1≤k and Dis(mpc1)={t∈T|ω⋅m1+ϖ(t)>k}. 

Since ρ(t1)=Dis(mpc1*), any firable transition t at m1 satisfies the condition: 

ω⋅m1+ϖ(t)≤k, i.e., any marking reachable from m1 by firing a transition is legal.  

If Flag is still “True”, when the next transition is observed, by repeating the above 

reasoning, the reachable markings in the next step are all legal. Let us consider now the 

case that Flag is changed to “False”. Let t2 be the next observed transition. Suppose that 

t2' is the really fired transition producing observation t2. Let m2 and m2c be the markings 

reached by N and Nc after firing t2' from m1 and m1c, respectively. Clearly, m2c=[m2, 

mpc2], where mpc2=k−ω⋅m2 and mpc2=mpc1+[Nc](pc, t2'). Let mpc2*=mpc1*+

'min [ ]( ), '
real

c
t T cN p t∈ , where Treal = A-1(t2)\ρ(t1) since Flag=False. Since mpc1*≤ mpc1 and 

t2'∈Treal, it holds that mpc2*≤mpc2. Hence, Dis(mpc2*)⊇Dis(mpc2). We observe that 

ω⋅m2≤k and Dis(mpc2)={t∈T|ω⋅m2+ϖ(t)>k}. Since ρ(t1t2)=Dis(mpc2*), any firable 

transition t at m2 satisfies the condition: ω⋅m2+ϖ(t)≤k, i.e., any marking reachable from 

m1 by firing a transition is legal.  

By repeating the above reasoning, every time we observe a transition, the computed 



78 
 

disabled set guarantees that the reachable markings in the next step are all legal. As a 

result, R(N, m0)|ρ ⊆ L(ω, k), i.e., the policy ρ is acceptable.                      ■  

 

p1t1 p2 p3t2 t3 t4

pc

p1t1 p2 p3t2 t3 t4

  
Fig. 4.5 (a) Plant: a PN system (N, m0); and 

(b) Monitor-controlled PN system (Nc, m0c) associated with GMEC (ω, k): m(p2)≤1 
 

0

1

0

0

t3: +1
t4: 0

1

ρ(ε) =

ρ(   ) = ∅ 

ρ(     ) =

ρ(        ) =

ρ(          ) = ∅ 

 
Fig. 4.6 Illustration of the on-line control in Example 4.7 

 

Example 4.7: Consider the PN system (N, m0) in Fig. 4.5(a) subject to a GMEC (ω, 

k): m(p2)≤1 and vulnerable to an SD-attack A={(t3, t4)}. Let us see how Method 4.3 

works. First, the monitor-controlled PN system (Nc, m0c) is constructed off-line, as 

shown in Fig. 4.5(b). Next, the on-line computation and control is performed based on 

(Nc, m0c). We explain a part of the procedure as follows, which is also shown in Fig. 

4.6 for the sake of clarity.  
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1) Nothing is observed, i.e., δ=ε. We initialize Flag=True and mc=m0c=[1, 1, 0, 0]T. 

Note that the last entry of mc indicates the token-count of pc. Thus, 

ρ(ε)=Dis(mpc)={t2}.  

2)  Suppose that t4 is observed. Since Flag=True, it is Treal=A-1(t4)∩En(mc)={t3}. Hence, 

mc is updated by firing t3 instead of t4, resulting in mc=[1, 0, 1, 1]T. Hence, 

ρ(t4)=Dis(mpc)=∅.   

3)  Suppose that t2 is observed. Since Flag=True, Treal=A-1(t2)∩En(mc)={t2}. Hence, mc 

is updated at mc=[0, 1, 1, 0]T by firing t2. Thus, ρ(t4t2)=Dis(mpc)={t2}.  

4)  Suppose that t4 is observed. Since Flag is still “True”, it is Treal=A-1(t4)∩En(mc)={t3, 

t4}. Now, |Treal|=2. Thus, we only update the token-count of pc. Since [Nc](pc, t3)=1 

and [Nc](pc, t4)=0, it follows that mpc=mpc+min{[Nc](pc, t3), [Nc](pc, t4)}=0. Hence, 

ρ(t4t2t4)=Dis(mpc)={t2}. Finally, Flag is updated to False. 

5)  Suppose that t3 is observed. Since Flag=False, it is Treal=A-1(t3)\ρ(t4t2t4)={t3}. Hence, 

mpc= mpc+[Nc](pc, t3)=1. Accordingly, ρ(t4t2t4t3)=Dis(mpc)=∅.                 ♦ 

Example 4.8: Consider again the problem in Example 4.6. Now, we use Method 4.3 

to compute a control policy. The monitor-controlled PN system (Nc, m0c) is still the 

system in Fig. 4.2. Let us see a part of the on-line computation procedure. 

1) Nothing is observed, i.e., δ=ε. It is Flag=True and mc=m0c=[2, 0, 0, 1]T. Thus, 

ρ(ε)=Dis(mpc)=∅; 

2) Suppose that t3 is observed. Since Flag=True, it is Treal=A-1(t3)∩En(mc)={t2, t3}. 

Hence, we update mpc such that mpc=mpc+min{[Nc](pc, t2), [Nc](pc, t3)}=1+min{−1, 

0}=0. Then, ρ(t3)=Dis(mpc)={t2, t4} and Flag is updated to False. 

3) Suppose that t3 is observed again. Since Flag=False, Treal= A-1(t3)\ρ(t3)={t3}. Hence, 

mpc is updated at mpc= mpc+[Nc](pc, t3)=0. Accordingly, ρ(t3t3)=Dis(mpc)={t2, t4}.     

We observe that compared with the policy computed by Method 4.2, which is shown 

in Example 4.6, the policy computed by Method 4.3 is more restrictive.           ♦ 

Remark 4.4: The non-optimality of Method 4.3 can be explained as follows. Method 

4.3 does not enumerate the set of markings in which the system can be when such a set 

is not a singleton. Indeed, in such a case, it only updates the token-count in monitor pc 
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to make it restrictive enough to prevent the system from entering an illegal marking. 

Since the enumeration of markings is avoided, the computation is much more efficient. 

However, it results in a control policy not necessarily optimal. In particular, the set Treal 

of possible really fired transitions computed at Flag=False may include non-enabled 

transitions since we do not have the information on the marking of the system. As a 

result, the set of transitions disabled by the computed monitor pc can be larger than it 

needs to be, which turns out a more restrictive control policy. Such an effect could 

increase when the evolution of the system proceeds.                           ♣  

 Remark 4.5: As Method 4.2, the complexity of the off-line computations in Method 

4.3 is proportional to the number of GMECs. Regarding the on-line computations of 

Method 4.3, the complexity of computing a control action is always O(|T|) since we 

always record one marking only and every time we observe a transition, no more than 

|T| transitions should be enumerated. As a result, Method 4.3 is also applicable to large-

size nets.                                                            ♣ 

In what follows, we show that the optimality of the policy computed by Method 4.3 

is guaranteed when a certain condition on the SD-attack is satisfied. The condition can 

be interpreted as that the variation of the token-count in the monitor pc is identical for 

all transitions that could have fired corresponding to an observed transition under the 

SD-attack. 

Theorem 4.4: Let (N, m0) be a PN system vulnerable to an SD-attack A and (ω, k) be 

a GMEC. The policy computed by Method 4.3 is optimal if ∀t∈T, it holds that 

ϖ(t1)=ϖ(t2)=…=ϖ(tn), where {t1, t2, …, tn}=A-1(t). 

Proof: Let ρ3 and ρ2 be the policies computed by Methods 4.3 and 4.2, respectively. 

We prove that ρ3 is as permissive as ρ2, i.e., L(N, m0)|ρ3=L(N, m0)|ρ2. 

We preliminarily introduce a new notation. Given a policy ρ and δ∈Lo(N, m0), we 

denote Nextρ(δ)={t∈T |σt∈L(N, m0)|ρ, where σ∈A-1(δ)}, i.e., the set of transitions that 

are firable in the next step under the control policy ρ after observing δ. 

First, consider δ=ε. It is clear that ρ2(ε)=Ψ(m0c)=Dis(mpc0)∩En(m0), while 

ρ3(ε)=Dis(mpc0), where mpc0 is the marking of monitor pc s.t. m0c=[m0 mpc0]T. Note that 
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Nextρ2(ε)=En(m0)\ρ2(ε) and Nextρ3(ε)=En(m0)\ρ3(ε). Hence, it obviously holds that 

Nextρ2(ε)=Nextρ3(ε). 

Next, let t1 be the first observed transition, i.e., δ=t1. Consider Method 4.2. Let Mc 

be the set of possible reached markings of (Nc, m0c) consistent with t1 under control 

policy ρ2. We observe that, ∀mc∈Mc, mpc=mpc0−ϖ(t1'), where t1'∈A-1(t1). Since 

ϖ(t11)=ϖ(t12)=…=ϖ(t1n), where {t11, t12, …, t1n}=A-1(t1), all the markings in Mc have 

the identical token-count in monitor pc. Let a be such a number. It holds that Ψ(Mc)= 

( )
Mc c

c
m

m
∈

Ψ = ( ( ) ( ))
Mc c pc

m
Dis m En m

∈
∩ . As a result, ρ2(t1)=Ψ(Mc)= 

En(M)∩Dis(a), where M is the set of markings by restricting markings in Mc to the 

net N, which is exactly the set of possible reached markings of (N, m0) consistent with 

t1 under control policy ρ2. Hence, Nextρ2(t1)=En(M)\ρ2(t1)=En(M)\Dis(a). Consider 

Method 4.3.  ρ3(t1)=Dis(mpc*), where mpc*=mpc0+ 'min ( ( '))
realt T tϖ∈ −  and Treal ⊆A-1(t1). 

Hence, mpc*= a. Since Nextρ2(ε)= Nextρ3(ε), the set of possible reached markings of (N, 

m0) consistent with t1 under the control of ρ3 is also M. Hence, Nextρ3(t1)= 

En(M)\ρ3(t1)=En(M)\Dis(a). Clearly, Nextρ2(t1)=Nextρ3(t1). 

By repeating the same procedure, we can see Nextρ2(δ)=Nextρ3(δ), ∀δ∈Lo(N, m0). 

This implies that L(N, m0)|ρ3=L(N, m0)|ρ2. Thus we conclude that, since ρ2 is optimal, 

ρ3 is also optimal.                                                     ■                

If the condition in Theorem 4.4 is satisfied, Method 4.3 can be simplified by reducing 

Steps 4-15 to the following two steps: 

1. wait for an observation t∈T from the plant; 

2. mpc ← mpc+[ ]( ),c
cN tp ; /*Equivalently, mpc ← mpc−ϖ(t);*/ 
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p1t1 p2 p3t2 t3 t4

pc

2

 
Fig. 4.7 Monitor-controlled PN system (Nc', m0c') associated with the plant (N, m0) in 

Fig. 4.5 (a) and the GMEC (ω', k'): 2m(p2)+m(p3)≤3 
 

Remark 4.6: Inspired by Theorem 4.4, we have another idea to compute a control 

policy with timely response. That is, we may transform the given GMEC into a more 

restrictive GMEC that satisfies the condition in Theorem 4.4 and then perform the 

simplified Method 4.3 to compute a control policy. Clearly, the optimality is sacrificed 

to enhance the computational efficiency. For instance, GMEC (ω, k): m(p2)≤1 in 

Example 4.7 can be transformed into a more restrictive GMEC (ω', k'): 2m(p2)+m(p3)≤3 

such that ϖ'(t3)=ϖ'(t4)= −1. The corresponding monitor-controlled PN system (Nc', m0c') 

is shown in Fig. 4.7. We thus can compute an on-line efficient control policy by the 

simplified Method 4.3, which is optimal for GMEC (ω', k'): 2m(p2)+m(p3)≤3 but only 

acceptable for the original GMEC (ω, k): m(p2)≤1. Normally, we want to get a 

transformed GMEC as permissive as possible. How to do systematically such GMEC 

transformation is left as future work.                                       ♣                

We finally note that the proposed methods can be easily extended to a control 

specification that is a conjunction of multiple GMECs. Suppose that a set of GMECs is 

W={(ω1, k1), (ω2, k2), …,  (ωi, ki)}. Let us see how the proposed methods are modified 

to handle the specification ∧W. 

Consider Method 4.1. In this case, we only need to extend the set of violating 

transitions Γ(ω, k)(M) to W such that  

ΓW(M)={t∈En(M) | ∃m∈M, ∃(ω, k)∈W, s.t. ω⋅mt >k}. 

Consider Method 4.2. The monitor-controlled PN system (Nc, m0c) is now an 

augmented system by adding monitors pc1, pc2, …, pci to (N, m0), each monitor enforcing 

a GMEC in W by the place-invariant method. Specifically, it is  
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[Nc]=[ ]T
1 2[ ], , , ..., iN ϖ ϖ ϖ− − − ; 

m0c=[ ]T
0 1 0 2 0 0, , , ..., im k m k m k mω ω ω− ⋅ − ⋅ − ⋅ , 

where the last i rows of [Nc] and m0c correspond to monitors pc1, pc2, …, and pci, 

respectively. We use Pc to denote the set of monitors, i.e., Pc={pc1, pc2, …, pci}. Thus, 

given a marking mc of the monitor-controlled PN Nc, it can be divided into two parts, 

that is, [ ]c T
Pcm m m= , where m and mPc denote markings by restricting mc within N 

and Pc, respectively. In addition, the set of monitor-disabled transitions is extended to 

marking mPc of Pc such that Dis(mPc)= ( )pcpc Pc
Dis m

∈ . Accordingly, given a marking 

mc of a monitor-controlled PN Nc, Ψ(mc) is re-defined as Ψ(mc)=Dis(mPc)∩En(m).  

It is trivial to see that Methods 4.1 and 4.2, appropriately modified as mentioned 

above, both result in an optimal control policy when handling a conjunction of GMECs. 

Consider Method 4.3. In addition to computing a monitor-controlled PN system (Nc, 

m0c) w.r.t. the conjunction of GMECs ∧W, Steps 9 and 14 are replaced by the step:  

∀pc∈Pc, mpc ← mpc+ 'min [ ]( ), '
real

c
t T cN p t∈  

and Steps 2 and 17 are replaced by ρ(δ)←Dis(mPc). In this way, the modified Method 

4.3 leads to an acceptable control policy with timely response. Furthermore, it is 

optimal if ∀t∈T, ∀(ω, k)∈W, ϖ(t1)=ϖ(t2)=…=ϖ(tn), where {t1, t2, …, tn}=A-1(t).   

4.5 Study Case 

We consider a tourist attraction consisting of four areas A-D, as shown in Fig. 4.8. 

The entrance and exit of the tourist attraction are located in area A and there are several 

one-way gates between areas. A PN system modelling the flow of visitors in the tourist 

attraction is depicted in Fig. 4.9. In more detail, places p1-p4 model areas A-D, 

respectively. Each transition models the transit of one visitor in the corresponding gate, 

which is physically detected by a sensor installed on the gates. Moreover, each token 

models one visitor. Initially, the PN system is in a state where each area contains one 

visitor. 
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Suppose that there is a restriction on the number of visitors in area C (modeled by 

place p3) due to safety constraints. Assume that a malicious attacker wants to interfere 

with the control system with the goal of compromising its safety. Here, we consider a 

practical scenario in which the control center communicates with sensors/actuators 

related to all the gates via a communication network. In terms of PNs, this means that 

a control policy to be designed works by observing the firing of transitions and 

controlling transitions according to the current observation. Now, suppose that the 

controller knows that the communication channel related to sensors installed with gate 

gBC is vulnerable to attacks and its sensor signals are prone to be disguised as the sensor 

signals produced by gate gBD. In this case, when designing a control policy, we need to 

take into account the SD-attack A={(t3, t4)}.  

A

B
C

D

entrance

exit

gAB

gBC

gBD

gCD

gDA

gDC

 
Fig. 4.8 Sketch map of a tourist attraction 
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Fig. 4.9 PN model of the tourist attraction in Fig. 4.8 vulnerable to  

the SD-attack A={(t3, t4)} 
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Fig. 4.10 Monitor-controlled PN system relative to the PN system in Fig. 4.9  

and the GMEC (ω, k): m(p3)≤3 
 

 

In what follows, we apply Methods 4.1-4.3 to control the system. We assume that the 

number of visitors in area C cannot be more than three, i.e., we enforce the GMEC (ω, 

k): m(p3)≤3. The monitor-controlled PN system relative to the GMEC (ω, k): m(p3)≤3 

is shown in Fig. 4.10. Table 4.1 illustrates the application of Methods 4.1-4.3 for a 

possible system evolution. In more detail, the first column shows the observed 

transitions, the second column records the set M of markings consistent with the 

current observation, which is computed in Method 4.1, the third column records the set 

Mc of markings of the monitor-controlled system consistent with the current 

observation, which is computed in Method 4.2, and the forth column provides the 

disabled set computed by Methods 4.1 and 4.2. The last three columns refer to Method 

4.3 and contain the marking, Flag, and the disabled set computed in Method 4.3, 

respectively. Note that, for sake of clarity, the number of tokens in the monitor place pc 

are highlighted in bold in the table. Besides, we write “×” to indicate that we do not 

record the token count in the corresponding place.  

For this example, it can be verified that the condition of Theorem 4.4 is not satisfied. 

In more detail, we observe that A-1(t4)={t3, t4} but ϖ(t3)≠ϖ(t4) since ϖ(t3)=1 and ϖ(t4)=0. 

Thus, the policy computed by Method 4.3 is not guaranteed to be optimal. Indeed, from 

Table 4.1, we can see that the policy computed by Method 4.3 is more restrictive than 

those computed by Methods 4.1 and 4.2. Nevertheless, we note that Method 4.3 records 

one marking only while Methods 4.1 and 4.2 both record multiple markings. 
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Table 4.1 Application of Methods 4.1-4.3 

 Method 4.1&4.2 Method 4.3 

ti M Mc ρ(δ) mc Flag ρ(δ) 

ε [1, 1, 1, 1]T [1, 1, 1, 1, 2]T ∅ [1, 1, 1, 1, 2]T True ∅ 

t1 [2, 1, 1, 1]T [2, 1, 1, 1, 2]T ∅ [2, 1, 1, 1, 2]T True ∅ 

t1 [3, 1, 1, 1]T [3, 1, 1, 1, 2]T ∅ [3, 1, 1, 1, 2]T True ∅ 

t2 [2, 2, 1, 1]T [2, 2, 1, 1, 2]T ∅ [2, 2, 1, 1, 2]T True ∅ 

t4 [2, 1, 2, 1]T; 

[2, 1, 1, 2]T 

[2, 1, 2, 1, 1]T;

[2, 1, 1, 2, 2]T

∅ [×,×,×,×, 1]T 

 
False ∅ 

t7 [3, 1, 2, 0]T; 
[3, 1, 1, 1]T 

[3, 1, 2, 0, 1]T;
[3, 1, 1, 1, 2]T

∅ [×,×,×,×, 1]T 
 

False ∅ 

t2 [2, 2, 2, 0]T; 
[2, 2, 1, 1]T 

[2, 2, 2, 0, 1]T;
[2, 2, 1, 1, 2]T

∅ [×,×,×,×, 1]T 
 

False ∅ 

t4 [2, 1, 3, 0]T; 
[2, 1, 2, 1]T; 
[2, 1, 1, 2]T 

[2, 1, 3, 0, 0]T;
[2, 1, 2, 1, 1]T;
[2, 1, 1, 2, 2]T

{t3} [×,×,×,×, 0]T 
 

False {t3, t6} 

t4 [2, 0, 3, 1]T; 
[2, 0, 2, 2]T; 
[2, 0, 1, 3]T 

[2, 0, 3, 1, 0]T;
[2, 0, 2, 2, 1]T;
[2, 0, 1, 3, 2]T

{t6} [×,×,×,×, 0]T False {t3, t6} 

t2 [1, 1, 3, 1]T; 
[1, 1, 2, 2]T; 
[1, 1, 1, 3]T 

[1, 1, 3, 1, 0]T;
[1, 1, 2, 2, 1]T;
[1, 1, 1, 3, 2]T

{t3, t6} [×,×,×,×, 0]T False {t3, t6} 

t5 [1, 1, 2, 2]T; 
[1, 1, 1, 3]T; 
[1, 1, 0, 4]T 

[1, 1, 2, 2, 1]T;
[1, 1, 1, 3, 2]T;
[1, 1, 0, 4, 3]T

∅ [×,×,×,×, 1]T False ∅ 

t2 [0, 2, 2, 2]T; 
[0, 2, 1, 3]T; 
[0, 2, 0, 4]T 

[0, 2, 2, 2, 1]T;
[0, 2, 1, 3, 2]T;
[0, 2, 0, 4, 3]T

∅ [×,×,×,×, 1]T False ∅ 

t7 [1, 2, 2, 1]T; 
[1, 2, 1, 2]T; 
[1, 2, 0, 3]T 

[1, 2, 2, 1, 1]T;
[1, 2, 1, 2, 2]T;
[1, 2, 0, 3, 3]T

∅ [×,×,×,×, 1]T False ∅ 

t6 [1, 2, 3, 0]T; 
[1, 2, 2, 1]T; 
[1, 2, 1, 2]T 

[1, 2, 3, 0, 0]T;
[1, 2, 2, 1, 1]T;
[1, 2, 1, 2, 2]T

{t3} [×,×,×,×, 0]T False {t3, t6} 

t5 [1, 2, 2, 1]T; 
[1, 2, 1, 2]T; 
[1, 2, 0, 3]T 

[1, 2, 2, 1, 1]T;
[1, 2, 1, 2, 2]T;
[1, 2, 0, 3, 3]T

∅ [×,×,×,×, 1]T False ∅ 

… … … … … … … 
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4.6 Conclusions 

In this chapter, we investigate the tolerant control problem for PN systems vulnerable 

to SD-attacks considering the control specification in terms of a GMEC. Three methods 

are proposed to obtain on-line control policies. Method 4.1 derives an optimal policy 

requiring marking enumeration; so it is limited by the size of the considered system and 

the number of alterations caused by the SD-attack. Method 4.2 also provides an optimal 

policy. It introduces monitors to the plant by a place-invariant method but still requires 

marking enumeration and thus suffers from similar problems as Method 4.1 does. To 

improve the on-line computational efficiency, we propose Method 4.3 that is modified 

based on Method 4.2 and computes a control policy by avoiding marking enumeration. 

Consequently, Method 4.3 ensures the timely response of the computed policy but at 

the expense of its optimality.  

The work of this chapter is now under review by IEEE Transactions on Automatic 

Control. 
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CHAPTER V   

Liveness Enforcement on DES Vulnerable 
to Network Attacks 

5.1 Introduction 

In this chapter, we study the problem of liveness enforcement on DES still assuming 

that events are all controllable and observable but the system is vulnerable to SD-attacks. 

Specifically, we consider the plant modelled as a bounded PN and the control 

specification consisting in liveness enforcing. Based on repeatedly computing a more 

restrictive liveness-enforcing supervisor under no attack and constructing a so-called 

basic supervisor, an off-line method that synthesizes a liveness-enforcing supervisor 

tolerant to an SD-attack is proposed. 

This chapter is organized as follows. Section 5.2 formalizes the problem statement. 

In Section 5.3, we introduce a so-called supervisor graph that is used to intuitively 

represent supervisors. In Section 5.4, we show how to enforce liveness on a bounded 

PN system in the presence of SD-attacks. Study cases are presented in Section 5.5. 

Conclusions are finally discussed in Section 5.6.  

We notice that the work of this chapter is now accepted by IEEE Transactions on 

Systems, Man, and Cybernetics: Systems. 
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5.2 Problem Statement 

In this section, we formalize the problem studied in this chapter. As in the last chapter, 

we deal with a plant vulnerable to an SD-attack, assuming that events are all 

controllable and observable. Differently from the last chapter where the state 

specification characterized by GMEC is considered, we consider in this chapter the 

control specification that is liveness enforcing. Besides, the plant we consider in this 

chapter is a bounded system, which differs from the plant in the last chapter that can be 

bounded or unbounded.  

Problem 5.1: Given a bounded PN system (N, m0) vulnerable to an SD-attack A, 

design a liveness-enforcing supervisor that is tolerant to the SD-attack A. 

A liveness-enforcing supervisor tolerant to an SD-attack indicates that the supervisor 

guarantees the liveness of the controlled system even in the presence of the SD-attack. 

We recall that a supervisor in the presence of an SD-attack A is ρ: LoA(N, m0)→2T. 

Furthermore, a liveness-enforcing supervisor tolerant to an SD-attack A is ρ : LoA(N, 

m0)→2T, such that the controlled system (N, m0)|ρ is live.  

We note that, differently from the last chapter that computes on-line control policies, 

the focus of this chapter is to synthesize a supervisor off-line. Once the supervisor is 

synthesized off-line, little on-line computation is required. In Problem 5.1, the 

restriction of the considered PN system to be bounded allows us to synthesize such a 

supervisor based on constructing its reachability graph, which leads to our solution to 

Problem 5.1 inevitably exponential with the PN size.  

We recall that a reachability graph (RG) [69] is a graph representation of the 

evolution of a bounded PN system (N, m0), where each node represents a unique 

reachable marking m∈R(N, m0) and arcs represent the firing of transitions, which lead 

from one marking to another one (which may also be coincident with the previous one). 

Example 5.1: Consider the PN system (N, m0) in Fig. 5.1. Its RG is shown in Fig. 

5.2.                                                                ♦ 
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Fig. 5.1 PN system (N, m0)           Fig. 5.2 RG of the PN system in Fig. 5.1 

5.3 Supervisor Graph 

In this section, we propose a structure called supervisor graph, which is used 

throughout this chapter to intuitively represent a supervisor. 

Definition 5.1: Given a PN system (N, m0), a supervisor graph is a 5-tuple Gs=(X, 

E, x0, le, Fb), where 

 (X, E) is a directed graph with set of nodes X and set of ordered pairs of nodes 

E, called directed arcs;  

 x0 is a node in X called the initial node;  

 le: E→2T is the arc labelling function that labels arcs with sets of transitions;  

 Fb: X→2T is the forbidden function that associates to a node a set of transitions 

that are forbidden at such a node. 

In simple words, a supervisor graph is a directed graph with an initial node, where 

each arc is labeled with a set of transitions and each node is associated with a set of 

transitions that are forbidden to fire by the supervisor, which is called the forbidden set. 

Graphically, an arc labelled by a set of transitions can also be depicted as a set of arcs, 

each one labeled with a single transition. Besides, given a node x in a supervisor graph, 

each transition t∈Fb(x) is depicted as “
tx ”. 

We note that a control policy requires that the control action corresponding to an 

observed sequence is uniquely determined. Hence, a supervisor graph representing a 

control policy should be deterministic. In other words, given a node x and a sequence 

σ∈T*, the node accessible from x via sequential arcs labeled σ is uniquely determined. 
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We use ac(x, σ) to denote such a node in this work. Note that ac(x, σ) is not defined if 

this node does not exist. Besides, we simply write ac(x, σ) as ac(σ) if x is the initial 

node x0. Specifically, given a supervisor graph, when a sequence σ is observed, the 

control action is forbidding the firing of transitions in Fb(x), where x=ac(σ). 

Example 5.2: The graph in Fig. 5.3 is a supervisor graph with initial node x0. We 

can see that Fb(x4)={t4} and Fb(x')=∅, ∀x'∈{x0-x3, x5, x6}. Obviously, it is 

deterministic. As an example, consider a sequence σ=t2t3. Looking at the supervisor 

graph we know that it is ac(σ)=x4 and we should forbid the firing of transition t4 after 

observing σ.                                                         ♦ 

t1

x0

t3

x1

x3

t2

x2

t4

t4

t4

t5

t1

x4

x5

x6

t3

t5

 
Fig. 5.3 Supervisor graph 

 
An RG can be regarded as a supervisor graph with the initial marking m0 as the 

initial node and Fb(x)=∅ for each node x, i.e., the firing of no transition is forbidden 

by the supervisor during the evolution of the net system (N, m0). 

Finally, we partition nodes in a supervisor graph into two categories as follows. 

Definition 5.2: Given a supervisor graph Gs=(X, E, x0, le, Fb) and a node x∈X, we 

define S(x) the set of sequences that lead to node x from the initial node x0, i.e., 

S(x)={σ∈T*| ac(σ)=x}. Moreover, given a sequence σ∈S(x), we call σ an elementary 

sequence of x if ' ( ) \{ }S xσ σ∃ ∈/  such that σ' is the prefix of σ, i.e., σ=σ'σ'', where 

σ''∈T*. We use Se(x) to denote the set of elementary sequences of x. Furthermore, x is 

said a multi-sequence node if |Se(x)|≥2, otherwise it is said a single-sequence node. 

Equivalently, an elementary sequence of a node x is a transition sequence associated 

with an elementary path (excluding cycles) from the initial node x0 to node x. Clearly, 

the initial node x0 is a single-sequence node with Se(x)={ε}. 
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Example 5.3: Consider again the supervisor graph in Fig. 5.3. We can see that x1 and 

x3 are multi-sequence nodes, while the other nodes are single-sequence nodes. 

Specifically, Se(x1)={t1, t5} and Se(x3)={t1t3, t5t3}.                            ♦ 

5.4 Liveness Enforcement Under SD-attacks 

In this section, we investigate how to solve Problem 5.1. Firstly, we propose a way 

to synthesize a maximally permissive liveness-enforcing supervisor under no attack. 

Secondly, we introduce the construction of the so-called “basic supervisor” Gs|A relative 

to a supervisor Gs under no attack and a given SD-attack A. Thirdly, an approach is 

proposed to compute a liveness-enforcing supervisor tolerant to the given SD-attack. 

5.4.1 Maximally Permissive Liveness-enforcing Supervisor Under No Attack 

In this subsection, we introduce a function called MaxLiveEnforce. Given an arbitrary 

supervisor Gs and the set of transitions of the considered PN as inputs, it computes a 

liveness-enforcing supervisor Gs' that is as permissive as possible but no more 

permissive than Gs. When Gs coincides with the RG of the PN system, the function 

returns a maximally permissive liveness-enforcing supervisor. Note that supervisors in 

this chapter are provided in the form of supervisor graphs. Besides, given an SCC φ in 

the supervisor graph, we use T(φ) to denote the set of transitions labeling the arcs in φ. 

In words, given a supervisor Gs and the transition set T of a PN as inputs, Function 

MaxLiveEnforce works as follows: First, it computes all SCCs in Gs, excluding those 

that are exactly a single node. Next, for every SCC not containing all transitions in T, 

it merges all nodes and arcs in the SCC into a node. Then, it repeatedly deletes sink 

nodes and updates accordingly the forbidden sets of the input nodes of sink nodes. 

When no sink node exists, merged nodes, if any, are unfolded into their original SCCs 

and the resulting graph is the supervisor Gs'.  



93 
 

Function Gs'=MaxLiveEnforce(Gs, T) 

Input: A supervisor Gs=(X, E, x0, le, Fb) and the transition set T of a PN; 

Output: A supervisor Gs'=(X', E', x0', le', Fb'). 

1) Φ:=Tarjan(Gs); /*Function Tarjan [91] here returns the set of SCCs excluding those that are 

exactly a single node in Gs */  

2) for each φ∈Φ do 

3)   if  T ⊄T(φ)  then  

4)     merge all nodes and arcs in the SCC φ into a single node denoted as xφ; 

5)   end if 

6) end for 

7) while there exists a sink node x in Gs do  

8)    for each x'∈•x do 

9)       Fb(x'):= Fb(x')∪T', where T' is the set of transitions labeling the arcs 

from x' to x; 

10)    end for 

11)    delete x and its input arcs from Gs; 

12) end while 

13) unfold merged nodes (if any) into the original SCCs; 

14) let Gs':=Gs; 

15) output: Gs'. 

 

An example is given next to illustrate Function MaxLiveEnforce more intuitively. 

Note that we do not present the PN system for saving space but simply give its transition 

set T. 

Example 5.4: Consider the supervisor Gs in Fig. 5.4(a) for a PN system with T ={t1-

t5}. Let us see how MaxLiveEnforce(Gs, T) works. First, all SCCs excluding single 

nodes in Gs are computed, which are shown in Fig. 5.4(b) denoted as A, B1, B2, 

respectively. Next, since SCCs B1 and B2 do not contain all transitions in T, nodes and 

arcs in them are merged into nodes B1 and B2, respectively. The resulting graph is 

depicted in Fig. 5.4(c). Now, we repeatedly delete sink nodes and update the forbidden 
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sets. Nodes m9, m10 and B2 are thereby deleted. Finally, after unfolding node B1, we get 

the supervisor Gs' in Fig. 5.4(d) that is the output of Function MaxLiveEnforce(Gs, T). 

♦ 
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Fig. 5.4 Example to illustrate the computation of Gs'=MaxLiveEnforce(Gs, T), where 

T ={t1-t5} 
 

Proposition 5.1: Consider a PN system (N, m0) with N=(P, T, F, W), a supervisor Gs 

and Gs'=MaxLiveEnforce(Gs, T). 

1) Gs' is a liveness-enforcing supervisor of (N, m0) if Gs'≠∅; 

2) for any liveness-enforcing supervisor Gs'' of (N, m0) s.t. Gs''⪯Gs, it holds that 

Gs''⪯Gs'.  

Proof: We preliminarily define that an SCC is a sink SCC if none of the nodes in the 

SCC can reach a node outside the SCC. 
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1) We observe that Gs'≠∅ satisfies the following two conditions: (a) it contains no 

sink node; (b) if a sink SCC exists, it contains all transitions in T. Hence, an SCC 

containing all transitions in T can always be reached from any node in Gs'. Trivially, 

∀t∈T, t is live at m0 in the system supervised by Gs'. Hence, Gs' is a liveness-enforcing 

supervisor.  

2) Suppose by contradiction that Gs'' /Gs'. Since by assumption, it is Gs''⪯Gs, then 

in Gs'' there exists either a sink node or a sink SCC that does not contain all transitions 

in T. The system supervised by Gs'' thereby contains deadlocks or local deadlocks, 

which contradicts the assumption that Gs'' is a liveness-enforcing supervisor. Hence, it 

is Gs''⪯Gs'.                                                          ■ 

Straightforward from Proposition 5.1, the following conclusion is drawn in the case 

that the RG of a PN system is the input of Function MaxLiveEnforce. 

Corollary 5.1: Given a PN system (N, m0) with N=(P, T, F, W) and its RG G,  

1) no liveness-enforcing supervisor exists for (N, m0) if and only if 

MaxLiveEnforce(G, T)=∅; and  

2) Gs=MaxLiveEnforce(G, T) is a maximally permissive liveness-enforcing 

supervisor for (N, m0) if Gs≠∅. 

Proof: The RG G can be viewed as a maximally permissive supervisor for (N, m0). 

Hence, the two results trivially hold by Proposition 5.1.                       ■ 

Example 5.5: Consider the PN system (N, m0) in Fig. 5.1 with T ={t1-t5} and its RG 

G in Fig. 5.2. Function MaxLiveEnforce(G, T) returns the maximally permissive 

liveness-enforcing supervisor Gs in Fig. 5.5.                                ♦ 

Note that, if there is no ambiguity, we may identify the nodes of a supervisor graph 

Gs using their corresponding markings. As an example, if we consider the supervisor 
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Gs in Fig. 5.5, we say that Fb(m1)={t2}, Fb(m3)={t4}, and Fb(x)=∅ for any other node 

x in Gs. 
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Fig. 5.5 Maximally permissive liveness-enforcing supervisor Gs  

of the PN system in Fig. 5.1 
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Fig. 5.6 Basic supervisor Gs|A relative to the supervisor Gs in Fig. 5.5  

and the SD-attack A={(t2, t3)} 
 

Remark 5.1: Various approaches exist in the literature [53] to compute a maximally 

permissive liveness-enforcing supervisor for a PN system under no attack. Function 

MaxLiveEnforce is presented here for making the chapter self-contained. In addition, 

as indicated by Proposition 5.1, given an arbitrary supervisor Gs as the input, it 

computes a liveness-enforcing supervisor Gs' that is as permissive as possible but no 

more permissive than Gs. This will be a fundamental step in the approach we propose 

to find a liveness-enforcing supervisor tolerant to an SD-attack.                 ♣        
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Remark 5.2: A liveness-enforcing supervisor under no attack typically cannot 

guarantee the liveness of the controlled system in the presence of an SD-attack. In 

addition, it could even be an “infeasible” supervisor in the presence of an SD-attack. In 

other words, it does not associate a control action with every observable sequence since 

unexpected sequences may be observed due to the SD-attack. 

To clarify the above issue, let us assume that the PN system (N, m0) in Fig. 5.1 is 

vulnerable to the SD-attack A={(t2, t3)}. Let us see what may happen if the system is 

supervised by Gs in Fig. 5.5. Clearly, Gs does not forbid the occurrence of any transition 

when the firing of t3 is observed. However, due to the attack A={(t2, t3)}, it could 

happen that the observation of t3 corresponds to the occurrence of t2. Now, since Gs 

forbids no transition after the observation of t3, then t2 is enabled to fire. In other words, 

the sequence t2t2 may fire in the supervised system, which however is a sequence that 

prevents liveness. Therefore, to avoid the occurrence of the sequence t2t2 in the system 

vulnerable to the attack A={(t2, t3)}, it is necessary to forbid the occurrence of t2 when 

the firing of t3 is observed.                                               ♣ 

In essence, to design an SD-attack-tolerant liveness-enforcing supervisor, when a 

sequence is observed, we have to consider all possible sequences consistent with the 

observation and forbid all the “bad” ones, namely all those who lead the system to be 

not live. In the following subsections, we show how to solve this problem.  

5.4.2 Basic Supervisor Under SD-attacks 

In this subsection, we introduce the so-called “basic supervisor” Gs|A relative to a 

given supervisor Gs under no attack and an SD-attack A. We show that the basic 

supervisor Gs|A is a “feasible” supervisor in the presence of the SD-attack A and 

guarantees that the sequences forbidden by Gs can never occur in the controlled system. 
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Before formally presenting it, we introduce more notation related to supervisor 

graphs. Given a supervisor graph Gs=(X, E, x0, le, Fb) and a node x∈X, we use Tout(x) 

to denote the set of transitions labeling output arcs of x. The notation is extended to a 

set of nodes X'⊆X such that Tout(X')= ( )'x outX
T x

∈ . In addition, given a set of nodes X'⊆X 

and a sequence σ∈T*, we denote Ac(X', σ) the set of nodes accessible from X' via 

sequential arcs labeled σ, i.e.,  

Ac(X', σ)={ac(x, σ) | x∈X' ∧ ac(x, σ)!}, 

where “!” means “is defined”.  

Example 5.6: Consider the supervisor in Fig. 5.5 and node m1. It is Tout(m1)={t3, t5}. 

Now, let X'={m1, m2}. It is Tout(X')=Tout(m1)∪Tout(m2)={t2-t5}. Furthermore, given a 

sequence σ1=t3, it holds Ac(X', σ1)={ac(m1, σ1), ac(m2, σ1)}={m3, m4}. Finally, given a 

sequence σ2=t3t1, it is Ac(X', σ2)={ac(m1, σ2)}={m0}.                          ♦ 

Let us now discuss how the basic supervisor Gs|A is constructed. Note that each node 

in Gs|A is labeled by a subset of nodes of Gs. Formally, we introduce a node labelling 

function  

lv: Y→2X, 

where Y is the set of nodes of Gs|A and X is the set of nodes of Gs. Besides, to distinguish 

functions in Gs from those in Gs|A, we use the superscript Gs to mark functions in Gs, 

while we use no superscript to indicate the corresponding functions in Gs|A.  

The construction of a basic supervisor Gs|A is done using Function ConstructBasicSG, 

where Function CreateNode is called. In addition to the basic supervisor Gs|A, Function 

ConstructBasicSG outputs a so-called pruning set Γ that will be useful to develop a 

liveness-enforcing supervisor tolerant to SD-attacks. 
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Function (Gs|A, Γ)=ConstructBasicSG(Gs, A) 

Input: A supervisor Gs=(X, EGs, x0, leGs, FbGs) under no attack and an SD-attack A. 

Output: The basic supervisor Gs|A=(Y, E, y0, le, Fb) and the pruning set Γ. 

1) Γ:=∅; /*Γ is a global variable updated in Function CreateNode*/ 

2) initialize a graph G with initial node y0 such that lv(y0):={x0} and Fb(y0):= 

FbGs(x0), and tag y0 “new”;  

3) while there exists a “new” node y in G do 

4)    Treal(y):=ToutGs(lv(y))\Fb(y);  

/*Treal(y) denotes the set of all possible really firable transitions at node y. */ 

5)    Tout(y):=
' ( )

( ')
realt T y

A t
∈ ; 

/*Tout(y) denotes the set of all possible observed transition firings at node y due to the 

existence of SD-attack A. */ 

6)    for  each t∈Tout(y)  do 

7)        if t∉Tu then 

8)           X' :=AcGs(lv(y), t); 

9)        else 

10)           X' := 1' ( ) ( )
( ( ), ')Gs

realt A t T y vAc y tl−∈ ∩  ; 

11)        end if 

12)        G :=CreateNode(G, y, t, X'); 

13)    end for  

14)    untag “new” from node y; 

15) end while 

16) let Gs|A:=G; 

17) Output: Gs|A and Γ. 

 

Function G =CreateNode(G, y, t, X') 

Input: A graph G=(Y, E, y0, le, Fb), a node y, a transition t and a node set X'; 

Output: An updated graph G=(Y, E, y0, le, Fb). 

1) if there exists a node y' in G with lv(y')=X' then 

2)    add an arc from y to y' labeled t; 
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3) else 

4)    create a node y' with lv(y'):=X' and add an arc from y to y' labeled t; 

5)    Fb(y'):= ( )' ( )G
v

s
lx y Fb x∈ ;  

6)    tag node y' “new”; 

*****Steps 7-13 update the pruning set Γ***** 

7)    if |lv(y')|≥2 then 

8)       for each x∈lv(y') do 

9)          if ToutGs(x)∩Fb(y')≠∅ then 

10)             Γ:=Γ∪{(x, y')}; 

11)          end if 

12)        end for 

13)    end if 

*************************************** 

14) end if 

15) denote the update graph as G; 

16) Output: G. 

 

We explain the construction of the basic supervisor Gs|A by calling Function 

ConstructBasicSG(Gs, A). First, a graph G is initialized with initial node y0 labeled by 

set {x0} and associated with a forbidden set equal to the forbidden set of x0 in Gs. This 

node is tagged “new”. Next, we select a “new” node, denoted as y, to generate its output 

nodes by Steps 3-15: 

1) We determine Tout(y), i.e., the set of transitions labeling the output arcs of node y. 

Note that Gs|A describes the possible observed behavior of the system in the presence 

of the attack A. Thus, Tout(y) enumerates all possible transition firings that could be 

observed at node y. Clearly, the firing of some transitions may be disguised as the firing 

of other transitions by the intruder. Hence, it is Tout(y)⊇Treal(y), where Treal(y) denotes 
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the set of all possible really firable transitions at node y and it is computed at Step 4. 

Furthermore, by Step 5 it is Tout(y)=
' ( )

( ')
realt T y

A t
∈ . 

2) For each t∈Tout(y), we first compute the labeling set of the output node of node y 

reached via transition t in Steps 7-11. It indeed consists of the nodes in Gs reachable 

from the nodes constituting the labeling set of y via a transition whose observation may 

be t. If t is not an uncertain transition, we know for sure that t has fired if it has been 

observed. Thus, the labeling set denoted by X' is computed at Step 8. In the case that t 

is an uncertain transition, other transitions could have fired apart from t when t is 

observed. As a result, we need to consider all the possible transitions that produce the 

observation of t and the labeling set X' is thereby computed at Step 10. Next, 

CreateNode(G, y, t, X') is called to update the graph G. In particular, we create a “new” 

node y' labeled with the set X', if it does not exist already. We add an arc from y to y' 

labeled t and compute its forbidden set at Step 5, which is the union of forbidden sets 

associated with the nodes in Gs that constitute the labeling set of node y'. 

After generating all the output nodes of y, we untag it. Then, we repeatedly look for 

“new” nodes to generate their output nodes by iteratively executing the above 

operations. Finally, in the case that no “new” node exists, the graph G is exactly the 

basic supervisor Gs|A. 

Now, let us focus on the pruning set Γ. Clearly, it is initialized at the empty set and 

every time a new node is constructed, the pruning set Γ is considered to be updated at 

Steps 7-13 of function CreateNode. Specifically, we only consider new nodes whose 

labeling sets contain two or more elements. Let y' be such a new node. For each element 

x∈lv(y'), we check if it holds ToutGs(x)∩Fb(y')≠∅. If so, the pruning set Γ is updated by 

including the pair (x, y'). 

The following example illustrates the computation of the basic supervisor and the 

pruning set, and their physical meaning is clarified then. 



102 
 

Example 5.7: Consider again the PN system (N, m0) in Fig. 5.1 and the supervisor Gs 

in Fig. 5.5 under no attack. Let us see how to compute the basic supervisor Gs|A in the 

presence of the SD-attack A={(t2, t3)} and the pruning set Γ by calling 

ConstructBasicSG(Gs, A). 

First, we initialize the pruning set Γ at the empty set and initialize the graph at the 

initial node y0 tagged “new” with label lv(y0)={m0} and forbidden set 

Fb(y0)=FbGs(m0)=∅. Next, we generate the output nodes of y0 as follows. 

1) We compute Tout(y0). Clearly, Treal(y0)=ToutGs(lv(y0))\Fb(y0) ={t2, t3, t5}. Moreover, 

Tout(y0)=
0' ( )

( ')
realt T y

A t
∈ ={t2, t3, t5}. 

2) For each t∈Tout(y0), we compute the labeling set of the output node of y0 reached 

via the arc labeled t and update the graph by generating such a node. Note that Tu={t3} 

since A={(t2, t3)}. Now, consider t2∈Tout(y0). Clearly, set X'=AcGs({m0}, t2)={m1}. 

Then, by calling CreateNode(G, y0, t2, X'), the “new” node y1 with lv(y1)={m1} and 

Fb(y1)=FbGs(m1)={t2} is created as the output of y0 reached via the arc labeled t2. 

Consider t3∈Tout(y0). We can see that A-1(t3)∩Treal(y0)={t2, t3}. Accordingly, it is X' =

2 3
0' { , }

({ }, ')Gs
t t t

Ac m t
∈ ={m1, m2}. Then, by calling CreateNode(G, y0, t3, X'), the “new” 

node y2 with lv(y2)={m1, m2} and Fb(y2)=FbGs(m1)∪FbGs(m2)={t2} is created as the 

output of y0 reached via the arc labeled t3. Note that Γ is now updated as Γ={(m2, y2)} 

since ToutGs(m2)∩Fb(y2)={t2}. Similarly, the “new” node y3 with lv(y3)={m2} and 

Fb(y3)=FbGs(m2) =∅ is created as the output of y0 reached via the arc labeled t5. 

Then, we untag y0 and select another “new” node to generate its output nodes. By 

repeating the above operations, when no “new” node can be found, we finish the 

construction of the basic supervisor Gs|A, which is shown in Fig. 5.6. Besides, we obtain 

the final pruning set Γ={(m2, {m1, m2}), (m4, {m3, m4})}. Note that, for sake of clarity, 
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the nodes of Gs|A are identified by their corresponding sets of markings (which can also 

be a singleton as a special case).                                          ♦               

We notice that Gs not only is a supervisor under no attack but also shows the real 

evolution of the controlled system. Roughly speaking, the basic supervisor Gs|A is like 

an observer of Gs in the presence of the SD-attack A but is typically more restrictive 

than Gs.  

In more detail, Gs|A describes all possible observations of the controlled system in the 

presence of the SD-attack A and uses the label of each node, which is a subset of nodes 

in Gs, to store the real evolution information of the controlled system corresponding to 

the observed evolution information. Indeed, the label of a node y in Gs|A reached via a 

certain sequence δ, is the set of nodes in Gs that are really reachable when the 

observation is δ, taking into account all possible corruptions by the attack A. In 

addition, the forbidden set associated with the generic  node y in Gs|A is the union of 

the forbidden sets associated with the nodes of Gs whose union generates the labeling 

set of node y, namely, it is Fb(y)= ( ) ( )Gs

vlx y Fb x∈ . This guarantees that none of the 

sequences forbidden by Gs can occur in the system supervised by Gs|A even in the 

presence of the SD-attack A. This also typically results in having Gs|A more restrictive 

than Gs.  

Considering that Gs|A is typically more restrictive than Gs, the pruning set Γ is 

computed to save the information on which behavior of the plant may be additionally 

restricted by Gs|A compared with Gs. Formally, it is 

Γ={(x, y)∈X×Y| x∈lv(y) ∧ (ToutGs(x)∩Fb(y)≠∅)}, 

where X and Y are the sets of nodes of Gs and Gs|A, respectively. 
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In words, the pruning set is a set of node pairs, where the first entry is a node in Gs 

and the second entry is a node in Gs|A. Consider a generic pair (x, y) in Γ. Node x is an 

element in the labeling set of node y, indicating that x is a possible really reached node 

corresponding to any observation leading to node y, and there exists a transition that is 

firable at node x in the supervisor Gs but forbidden to fire at node y in the supervisor 

Gs|A.  

Note that, for each node y in Gs|A with |lv(y)|=1, assuming that x is the single node in 

lv(y), it holds ToutGs(x)∩Fb(y)=∅. This is because ToutGs(x)∩FbGs(x)=∅ and 

Fb(y)=FbGs(x). As a result, it is enough to consider each node y in Gs|A with |lv(y')|≥2 to 

update the pruning set Γ in Function CreateNode. 

Based on the above analysis, we formally present the following results. 

Proposition 5.2: Consider a PN system (N, m0), a supervisor Gs under no attack, and 

an SD-attack A. Let (Gs|A, Γ)=ConstructBasicSG(Gs, A). The following three items 

hold: 

1) Gs|A is a supervisor for (N, m0) associating a control action with each observation 

in the presence of the SD-attack A; 

2) any sequence σ∈L(N, m0) forbidden by Gs can never occur in the system supervised 

by Gs|A;  

3) there exists a sequence σ∈L(N, m0) such that σ is permitted by Gs but forbidden by 

Gs|A if and only if Γ≠∅. 

Proof: 1) Since Gs is a supervisor under no attack, it associates a forbidden set with 

each observation when there is no attack. Supervisor Gs|A is constructed based on Gs. 

At the initial node y0 of Gs|A, it is Treal(y0)=ToutGs(x0). Furthermore, Tout(y0) computed at 

Step 5 enumerates all the transitions that may be observed as the first one during the 
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evolution of the system (N, m0) vulnerable to the SD-attack A. Assume t1 is a transition 

in Tout(y0) and let y1=ac(t1). Clearly, when t1 is observed, lv(y1) is the set of nodes in Gs 

that are reached from x0 due to the firing of a transition t1' s.t. t1'∈A-1(t1) and t1'∉Fb(y0). 

Hence, according to Step 4, Treal(y1) is the set of all possible really firable transitions 

after the observation of t1, while Tout(y1) computed at Step 5 enumerates all the possible 

observable transitions after the observation of t1. Now, assume that t2 is a transition in 

Tout(y1) and let y2=ac(y1, t2). Similarly, when t2 is observed, lv(y2) is the set of nodes in 

Gs that are reached from nodes in lv(y1) due to the firing of a transition t2' s.t. t2'∈A-1(t2) 

and t2'∉Fb(y1). It also implies that when t1t2 is observed, lv(y2) is the set of nodes in Gs 

that are reached from x0 due to the firing of a sequence t1't2' s.t. t1't2'∈A-1(t1t2) and 

t1'∉Fb(y0) and t2'∉Fb(y1). Summarizing, given a node y in Gs|A and an observed 

sequence δ leading to y in Gs|A, the labeling set lv(y) is the set of nodes in Gs that are 

reached from x0 firing a sequence σ s.t. σ∈A-1(δ) and σ is not restricted by Gs|A. Finally, 

it is trivial to see that Gs|A associates with each observed sequence a forbidden set when 

there exists the SD-attack A. In other words, it is a supervisor for (N, m0) vulnerable 

to the SD-attack A. 

2) Let σ∈L(N, m0) be a sequence forbidden by Gs. This means that there exist σ1, 

σ2∈T* and t∈T s.t. σ=σ1tσ2 and there exists a node x in Gs s.t. acGs(σ1)=x and t∈FbGs(x). 

By the rules of constructing Gs|A, two cases may occur: (a) σ1 is forbidden by Gs|A; and 

(b) σ1 is not forbidden by Gs|A. In case (a), σ is clearly forbidden by Gs|A. Consider case 

(b). For any node y in Gs|A with x∈lv(y), it holds that t∈Fb(y) since Fb(y)= 

( ) ( )Gs

vlx y Fb x∈ . Hence, σ is also forbidden by Gs|A.  

3) (=>) The pruning set Γ≠∅ implies that there exists a pair (x, y)∈X×Y with x∈lv(y), 

s.t. ToutGs(x)∩Fb(y)≠∅. Let δ be an observed sequence s.t. ac(δ)=y and σ1 be a sequence 
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s.t. acGs(σ1)=x, σ1∈A-1(δ), and σ1 is not restricted by Gs|A. Moreover, let 

t∈ToutGs(x)∩Fb(y). Sequence σ=σ1t∈L(N, m0) is permitted by Gs since t∈ToutGs(x). When 

δ is observed, σ may be forbidden by Gs|A since t∈Fb(y). 

(<=) Since σ is forbidden by Gs|A, there exist σ1, σ2∈T* and t∈T s.t. σ=σ1tσ2 and 

t∈Fb(y), where y=ac(δ) and δ∈A(σ1). Since σ is permitted by Gs, it is t∈ToutGs(x), where 

x=ac(σ1). Hence, ToutGs(x)∩Fb(y)≠∅. Trivially, x∈lv(y). As a result, Γ≠∅.         ■  

Based on Proposition 5.2, we can easily derive a sufficient but not necessary 

condition under which a basic supervisor Gs|A is a liveness-enforcing supervisor tolerant 

to the SD-attack A. 

Proposition 5.3: Consider a PN system (N, m0), a liveness-enforcing supervisor Gs 

under no attack, and an SD-attack A. The supervisor Gs|A is a liveness-enforcing 

supervisor tolerant to the SD-attack A for (N, m0) if Γ=∅, where (Gs|A, 

Γ)=ConstructBasicSG(Gs, A). 

Proof: By Proposition 5.2, in the case that Γ=∅, the behavior of the system controlled 

by the basic supervisor Gs|A is the same as that of the system controlled by the 

supervisor Gs. Since Gs is a liveness-enforcing supervisor under no attack, the 

supervisor Gs|A is a liveness-enforcing supervisor tolerant to the SD-attack A.     ■                

Remark 5.3: Consider the basic supervisor Gs|A relative to a liveness-enforcing 

supervisor Gs under no attack. In the case that Γ≠∅, the basic supervisor Gs|A might not 

guarantee the liveness of the supervised system since it restricts more behavior than Gs. 

Fortunately, the real evolution of the system supervised by Gs|A can be checked based 

on Gs and Γ. If the supervised system is not live, one way to guarantee its liveness is 

designing a supervisor more restrictive than Gs|A. Based on this idea, a method is 
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developed in the next subsection to compute a liveness-enforcing supervisor tolerant to 

SD-attacks.                                                          ♣ 

Remark 5.4: As mentioned before, given a node x in a supervisor Gs under no attack, 

the forbidden set of x and the set of transitions labeling output arcs of x are disjoint sets, 

i.e., ToutGs(x)∩FbGs(x)=∅. Specifically, it is ToutGs(x)=En(m)\FbGs(x), where m is the 

corresponding marking of x. In contrast, given a node y in a basic supervisor Gs|A, it 

could happen that Tout(y)∩Fb(y)≠∅. Indeed, it is true that Treal(y) and Fb(y) are disjoint 

sets since Treal(y) is the set of all possible really firable transitions at node y. However, 

Tout(y)=
' ( )

( ')
realt T y

A t
∈ . Hence, Tout(y) and Fb(y) are not necessarily disjoint sets. This 

shows the necessity of associating a forbidden set with each node to represent a control 

policy in the case that there exists an SD-attack.                              ♣ 

5.4.3 Liveness-enforcing Supervisor Tolerant to SD-attacks 

In this subsection, we propose an approach that computes a liveness-enforcing 

supervisor tolerant to SD-attacks. Before that, we introduce two functions as follows. 

First, we introduce a function called SeparateNode. Specifically, it is 

Gs'=SeparateNode(Gs, Xm), where Gs and Gs' are supervisor graphs and Xm is a set of 

multi-sequence nodes in Gs. The function works like this: For each node x∈Xm that 

corresponds to n elementary sequences, the supervisor graph Gs is updated such that 

node x is separated into n nodes x1, x2, …, xn with each node xi, i∈{1, 2, …, n}, 

corresponding to a single and different elementary sequence associated with x. Note 

that the multi-sequence nodes in the paths from the initial node to node x have to be 

separated as well to guarantee that each separated node of x is a single-sequence node. 

Example 5.8: Consider the supervisor Gs in Fig. 5.5 and let Xm={m2, m4}. By 

computing Gs=SeparateNode(Gs, Xm), we obtain the updated Gs as shown in Fig. 5.7. 

♦ 
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We note that Function SeparateNode actually performs the state space refinement 

[15]. It is clear that the supervisors before and after calling Function SeparateNode are 

the same. They only differ for their graphical representation.  
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Fig. 5.7 Supervisor Gs=SeparateNode(Gs, Xm), where the input Gs is the supervisor 

in Fig. 5.5 and Xm={m2, m4} 
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Fig. 5.8 Basic supervisor Gs|A relative to the supervisor Gs in Fig. 5.7 and the  

SD-attack A={(t2, t3)} 
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Fig. 5.9 Supervisor Gs'=GsPruning(Gs, Gs|A, Γ), where Gs is the supervisor in Fig. 5.5, 

Gs|A the basic supervisor in Fig. 5.6, and Γ the corresponding pruning set 
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Function Gs'=GsPruning(Gs, Gs|A, Γ) 

Input: A supervisor Gs=(X, EGs, x0, leGs, FbGs), the basic supervisor Gs|A=(Y, E, y0, le, 

Fb), and the pruning set Γ≠∅. 

Output: The updated supervisor Gs'=(X', EGs', x0', leGs', FbGs'). 

1) if ∃x∈Γx, s.t. x is a multi-sequence node in Gs then 

2)       Xm:={x∈Γx| x is a multi-sequence node in Gs}; 

3)      Gs:=SeparateNode(Gs, Xm); 

4)      (Gs|A, Γ):=ConstructBasicSG(Gs, A);  

5) end if 

6) for each (x, y)∈Γ do 

7)    Tdel:=ToutGs(x)∩Fb(y); 

8)    FbGs(x):=FbGs(x)∪Tdel;  

9)    delete every output arc of x whose transition label t∈Tdel; 

10) end for 

11) delete nodes that are not accessible from the initial node x0 and their related arcs 

from Gs and denote the resulting supervisor graph as Gs'; 

12) Output: Gs'. 

 

Next, we introduce a function called GsPruning. To this aim the following definition 

is provided.  

Definition 5.3: Consider a supervisor Gs, an SD-attack A, and the pruning set Γ 

output by ConstructBasicSG(Gs, A). The set of affected nodes in Gs is defined as   

Γx={x |(x, y)∈Γ}. 

Now, looking at the function GsPruning, given a supervisor Gs, it indeed computes 

a more restrictive supervisor Gs' than Gs by removing sequences in Gs whose firing is 

possibly forbidden by Gs|A based on the pruning set Γ. Provided that each affected node 

x∈Γx is a single-sequence node in Gs, it can be simply done as in Steps 6-12, which can 

be explained as follows: For each pair (x, y) in the pruning set Γ, we delete from Gs the 
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output arcs of node x that are labeled by transitions forbidden to fire at node y in Gs|A, 

i.e., transitions in Fb(y), and FbGs(x) is accordingly updated by including the deleted 

transitions. Then, inaccessible parts from the initial node x0 are deleted from Gs, 

resulting in the supervisor Gs'.  

Note that in the case that any of the affected nodes x∈Γx is a multi-sequence node in 

Gs, Steps 1-5 are required in advance to update Gs by separating each multi-sequence 

affected node x∈Γx into several single-sequence nodes and then update accordingly the 

basic supervisor Gs|A and the pruning set Γ. 

Example 5.9: Consider the supervisor Gs in Fig. 5.5 and the SD-attack A={(t2, t3)}. 

As discussed before, calling Function ConstructBasicSG(Gs, A) we obtain the basic 

supervisor Gs|A in Fig. 5.6 and the pruning set Γ={(m2, {m1, m2}), (m4, {m3, m4})}. Now, 

let us see how Function Gs'=GsPruning(Gs, Gs|A, Γ) works. Clearly, the affected nodes 

m2 and m4 in Gs are both multi-sequence nodes. Thus, we have to separate both of them 

into several single-sequence nodes, which results in the updated supervisor Gs in Fig. 

5.7. Accordingly, we get the updated basic supervisor Gs|A in Fig. 5.8 and the pruning 

set now is Γ={(m21, {m1, m21}), (m41, {m3, m41}), (m42, {m3, m42}), (m43, {m3, m43})}. 

Now, we remove sequences in Gs whose firing is possibly forbidden by Gs|A. As an 

example, consider the affected node m21. Its output arc with label t2 should be deleted 

from Gs and FbGs(m21) is updated to {t2} since ToutGs(m21)∩Fb({m1, m21})={t2}. 

Similarly, the output arcs of nodes m41, m42, m43 with label t4 are deleted from Gs and 

FbGs(m41)=FbGs(m42)=FbGs(m43)={t4}. The resulting supervisor is denoted as Gs' and 

depicted in Fig. 5.9.                                                    ♦ 

We note that separating each multi-sequence affected node into several single-

sequence nodes is a necessary step to guarantee that only sequences whose firing is 
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possibly forbidden by the basic supervisor Gs|A are removed from the supervisor Gs. To 

clarify this, suppose that we directly execute Steps 6-12 of Function GsPruning in the 

above example. In other words, we directly handle the supervisor Gs in Fig. 5.5 based 

on the basic supervisor Gs|A in Fig. 5.6 and the pruning set Γ={(m2, {m1, m2}), (m4, {m3, 

m4})}. Consider the affected node m2 of Gs in Fig. 5.5. We delete its output arc with 

label t2 from Gs and update the corresponding forbidden set as FbGs(m2)={t2} since 

Fb({m1, m2})={t2} in Gs|A in Fig. 5.6. We can see that in this case some sequences 

whose firing is permitted by Gs|A are also removed, e.g. the sequence t5t2. 

Now, we propose Algorithm 5.1 to compute a liveness-enforcing supervisor tolerant 

to SD-attacks.  

 

Algorithm 5.1: Computation of a liveness-enforcing supervisor tolerant to SD-

attacks 

Input: A PN system (N, m0) and an SD-attack A; 

Output: A supervisor Gs#, “no liveness-enforcing supervisor exists”, or “failure”. 

1) Construct the RG G of the net system (N, m0);  

2) Gs:=MaxLiveEnforce(G, T);  

3) if Gs is empty then 

4)   exit and output “no liveness-enforcing supervisor exists”; 

5) end if 

6) (Gs|A, Γ):=ConstructBasicSG(Gs, A);  

7) while Γ≠∅ do  

8)   Gs':=GsPruning(Gs, Gs|A, Γ); 

9)   Gs'':=MaxLiveEnforce(Gs', T); 

10)   if Gs''=∅ then 

11)     exit and output “failure”; 

12)   end if 

13)   Gs:=Gs''; 
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14)   (Gs|A, Γ):=ConstructBasicSG(Gs, A); 

15) end while 

16) Gs#:=Gs|A; 

17) Output:. Gs#. 

 

Let us explain Algorithm 5.1. First, we construct the maximally permissive liveness-

enforcing supervisor Gs under no attack. Then, we construct the basic supervisor Gs|A 

and compute the pruning set Γ. If it is Γ=∅, Gs|A is the resulting supervisor provided as 

an output by the algorithm. It is a liveness-enforcing supervisor tolerant to the SD-

attack A by Proposition 5.3. On the contrary, if Γ≠∅, Gs|A might not guarantee the 

liveness of the supervised system. In this case, the following steps are executed: we 

repeatedly compute a more restrictive liveness-enforcing supervisor Gs under no attack 

and compute the basic supervisor Gs|A, as well as the pruning set Γ. In the case that the 

pruning set Γ=∅, the iterative procedure stops and the corresponding basic supervisor 

Gs|A is provided as an output. It is a liveness-enforcing supervisor tolerant to the SD-

attack A. 

Now, let us see in more detail the individual steps in the case that Γ≠∅. By 

Proposition 5.2, Γ≠∅ indicates that Gs|A leads to a more restrictive behavior of the plant 

compared to Gs. The supervisor Gs reflects the real evolution of the controlled system. 

Thus, we want to check the real evolution of the system supervised by Gs|A based on 

Gs. Here, we simply compute a more restrictive supervisor Gs' than Gs by removing 

sequences in Gs whose firing is possibly forbidden by Gs|A, which is done by computing 

Gs'=GsPruning(Gs, Gs|A, Γ). Now, Gs' is typically not a liveness-enforcing supervisor 

under no attack. Thus, Gs''=MaxLiveEnforce(Gs', T) is computed, which is a liveness-

enforcing supervisor more restrictive than Gs under no attack. Then, Gs'' is renamed as 
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Gs, the basic supervisor Gs|A as well as the pruning set Γ are computed again, and the 

above operations are repeated until Γ=∅. 

We note that, in addition to Γ=∅, there is another termination condition for the 

iterative procedure (Steps 7-15), i.e., when we want to get a more restrictive liveness-

enforcing supervisor under no attack, the solution turns out to be empty. In this case, 

Algorithm 5.1 terminates and outputs “failure” (see Steps 10-12). Trivially, these two 

termination conditions ensure that the iterative procedure of Algorithm 5.1 cannot 

proceed infinitely since the PN system is assumed to be bounded. Besides, we note that 

the output “failure” does not mean that there is no liveness-enforcing supervisor 

tolerant to the given SD-attack for the given net system. It only implies that Algorithm 

5.1 fails to get such a solution although it might exist.  

Theorem 5.1: Given a PN system (N, m0) and an SD-attack A as the inputs of 

Algorithm 5.1,  

1) no liveness-enforcing supervisor exists for (N, m0) if Algorithm 5.1 outputs “no 

liveness-enforcing supervisor exists”; 

2) Gs# output by Algorithm 5.1 is a liveness-enforcing supervisor tolerant to the SD-

attack A for (N, m0). 

Proof: 1) Straightforward from Corollary 5.1. 2) Clearly, Gs# is actually a basic 

supervisor Gs|A and the corresponding pruning set Γ=∅. Moreover, the supervisor Gs 

that generates the basic supervisor Gs|A is a liveness-enforcing supervisor for (N, m0) 

under no attack. Hence, according to Proposition 5.3, Gs# is a liveness-enforcing 

supervisor tolerant to the SD-attack A for (N, m0).                           ■                

Example 5.10: Consider the PN system (N, m0) in Fig. 5.1 vulnerable to the SD-attack 

A={(t2, t3)}. Let us compute a liveness-enforcing supervisor tolerant to the SD-attack 

A for (N, m0) by Algorithm 5.1. Firstly, the maximally permissive liveness-enforcing 

supervisor Gs under no attack is computed, as shown in Fig. 5.5. Next, the basic 
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supervisor Gs|A is constructed as depicted in Fig. 5.6. The pruning set is Γ={(m2, {m1, 

m2}), (m4, {m3, m4})}. Since Γ≠∅, we remove sequences in Gs whose firing is possibly 

forbidden by Gs|A by calling GsPruning(Gs, Gs|A, Γ), resulting in the graph Gs' in Fig. 

5.9. Then, a liveness-enforcing supervisor more restrictive than Gs, can be obtained by 

calling MaxLiveEnforce(Gs', T), which is shown in Fig. 5.10 (a) denoted as Gs1. Again, 

we compute the basic supervisor Gs1|A shown in Fig. 5.10 (b) and the pruning set 

Γ1={(m1, {m1, m21})}. Similarly, we get the graph Gs1' in Fig. 5.10 (c) by calling 

GsPruning(Gs1, Gs1|A, Γ1) and then a liveness-enforcing supervisor more restrictive 

than Gs1, denoted as Gs2 is obtained as shown in Fig. 5.10 (d). Again, the basic 

supervisor Gs2|A in Fig. 5.10 (e) is computed and the pruning set Γ2=∅. Since Γ2=∅, 

the basic supervisor Gs2|A is the output of Algorithm 5.1, which is a liveness-enforcing 

supervisor tolerant to the SD-attack A={(t2, t3)} for the PN system (N, m0) in Fig. 5.1.  

♦ 
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Fig. 5.10 Computation of a liveness-enforcing supervisor tolerant to the SD-attack  
A ={(t2, t3)} for the PN system (N, m0) in Fig. 5.1 
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5.4.4 Further Comments 

In this subsection, we make some comments on the proposed supervisor synthesis 

method and provide the reason why we use PNs as a formalism in this work.  

1) Permissiveness 

We note that, given a PN system vulnerable to an SD-attack, there could exist more 

than one maximally permissive liveness-enforcing supervisor tolerant to the SD-attack. 

They are incomparable solutions in terms of the language of the controlled system. Let 

us see an illustrative example. Suppose that Fig. 5.11(a) shows part of a supervisor 

under no attack. In the case that the system is vulnerable to the SD-attack A={(t1, t2)}, 

it might lead to two maximal solutions, as shown in Fig. 5.11(b). One is permitting the 

firing of both t1 and t2 at node 1. In this case, when t2 is observed at node 1, the firing 

of t3 has to be forbidden since otherwise the bad sequence t1t3 may fire if the observation 

t2 is produced by the firing of t1. The second supervisor (on the right) is forbidding the 

firing of t1 at node 1. In this case, when t2 is observed at node 1, we know for sure it is 

the firing of t2. Hence, there is no need to forbid the firing of t3 at node 2. We can see 

that both of the solutions permit the firing of a sequence that is forbidden by the other 

solution.  
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(a) Supervisor under no attack (b) Two incomparable maximal solutions 
under the SM-attack A={(t1, t2)}

1

23

1

2

1

23

 
Fig. 5.11 Illustration of multiple maximal solutions 

 

Concerning Algorithm 5.1, its solution is not guaranteed to be maximally permissive. 

In other words, there may exist a liveness-enforcing supervisor tolerant to the given 

SD-attack for the given net system that is more permissive than the supervisor obtained 

by Algorithm 5.1. Besides, Algorithm 5.1 might fail to get a solution even when it exists 
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(i.e., “failure” is the output). In what follows, we give intuitive explanations for such 

shortcomings.  

We start with a maximally permissive liveness-enforcing supervisor Gs under no 

attack. In the case that there is an SD-attack A, some different transitions may produce 

the same observation. We know that a supervisor associates a control action with an 

observation. Thus, transition sequences producing the same observation correspond to 

the same control action. Due to the control mechanism, to guarantee that sequences 

forbidden by Gs are still forbidden under the attack, a supervisor in the presence of the 

attack has to forbid all sequences whose observations are the same as those forbidden 

by Gs. The basic supervisor Gs|A is such a supervisor and it does not forbid any other 

sequences. As discussed before, when the pruning set is not empty, the system 

supervised by Gs|A is not guaranteed to be live. Thus, the proposed method performs 

the pruning operation on Gs and then computes a new liveness-enforcing supervisor 

under no attack by removing more sequences. It is worth noting that a sequence (e.g., 

α) removed for enforcing liveness might be a sequence whose existence before has led 

to some sequences being forbidden due to the same observation. Since sequence α is 

removed now, those sequences forbidden before due to the existence of sequence α are 

unnecessarily forbidden. Consequently, after iterative computations, the final solution 

might not be maximally permissive and it could happen that no solution is found 

although it does exist.  

Consider again Example 5.10. The solution computed by Algorithm 5.1 is not 

maximally permissive. Look at the computation procedure in Fig. 5.10. When we 

enforce liveness on Gs1', sequence t2 is removed (see Gs2). However, some sequences 

have been forbidden due to the existence of sequence t2 before. For example, sequence 

t3t2 has been forbidden. Specifically, because the firing of transition t2 is forbidden after 

sequence t2 in Gs (Fig. 5.5), considering the existence of the attack A={(t2, t3)}, the 
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firing of transition t2 is also forbidden after sequence t3 in Gs' (Fig. 5.9). Now, since 

sequence t2 is removed, sequence t3t2 is unnecessarily forbidden.  

One preliminary remedial idea for getting a maximal solution is that, during iterative 

computation, once it happens that a sequence whose existence has led to the forbidding 

of other sequences is removed, we “roll back” to remove the sequence in advance. Then, 

some sequences can be made up, resulting in a maximal solution. Consider Example 

5.10. Since sequence t2 is eventually removed, we can pre-handle Gs in Fig. 5.5 by 

forbidding t2 in advance and then compute a liveness-enforcing supervisor under no 

attack as permissive as possible, which is named as Gs* shown in Fig. 5.12(a). Starting 

with supervisor Gs* instead of Gs, we perform Algorithm 5.1. After iterative 

computations, it finally outputs a more permissive solution than the original one. The 

new solution is shown in Fig. 5.12(b), which is actually maximally permissive. 
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Fig. 5.12 (a) Liveness-enforcing supervisor Gs* under no attack; and (b) Maximally 

permissive liveness-enforcing supervisor tolerant to the SD-attack A={(t2, t3)}  
 

How to formalize the idea will be investigated in our future work so that an improved 

approach is developed that is capable of getting one (among possibly several) 

maximally permissive liveness-enforcing supervisor tolerant to a given SD-attack. 

2) Computational Complexity 

We analyze the complexity of Algorithm 5.1. It is clear that the first step, consisting 

in the construction of the RG of the given PN system, has exponential complexity with 

the net size (i.e., the number of places, transitions, and tokens initially in the net). Next, 
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we focus on functions MaxLiveEnforce, ConstructBasicSG, and GsPruning in 

Algorithm 5.1.  

-MaxLiveEnforce computes a liveness-enforcing supervisor under no attack when 

given a supervisor under no attack. It is of polynomial complexity with the size of the 

given supervisor since function Tarjan used in it is known to be polynomial in the size 

of the given supervisor [91].  

-ConstructBasicSG computes a basic supervisor when given a liveness-enforcing 

supervisor under no attack. Suppose that the given supervisor has a nodes. In the worst 

case, the computed basic supervisor contains no more than 2a nodes since every node 

in the basic supervisor consists of nodes in the given supervisor under no attack.  

-GsPruning prunes sequences in a supervisor under no attack. It involves functions 

SeparateNode and ConstructBasicSG when affected nodes in the considered supervisor 

are multi-sequence nodes. SeparateNode separates each multi-sequence affected node 

into several single-sequence nodes. In the worst case, each node has to be separated 

into single-sequence nodes but the number of nodes in the resulting supervisor by 

SeparateNode cannot be more than b=1+|T|+|T|2+…+|T|n, where n is the length of the 

longest elementary sequence of a node in the considered supervisor. Then, the 

computed basic supervisor contains no more than 2b nodes. The following pruning 

procedure is straightforward.  

Algorithm 5.1 is basically an iterative procedure of calling the above three functions 

after constructing the RG. In the worst case, the number of iterations cannot be more 

than the size (i.e., the number of nodes and arcs) of a graph derived by separating each 

multi-sequence node in the RG into single-sequence nodes. Consequently, based on the 

above analysis, the overall complexity of Algorithm 5.1 is exponential with the size of 

the RG constructed in the first step and is also obviously exponential with the size of 

the handled PN. Thus, it could happen that Algorithm 5.1 can hardly obtain a solution 

in a reasonable time if the handled PN has a very large size.  
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3) About PN formalism 

Problem 5.1 may be formulated in the formalism of finite-state automata (FSA). The 

property of liveness for PNs can be transformed into an equivalent specification on the 

behavior of FSA. However, to our best knowledge, regardless of the modelling tools, 

the problem studied in this chapter has never been investigated in the literature. The 

advantages of using the formalism of PNs are as follows. First, PNs could be promising 

on investigating the problem in more general cases in the future work. In the case of 

partial observation, we may modify the approach in order to use the basis reachability 

graph instead of the reachability graph, thus avoiding exhaustive enumeration [11]. 

Moreover, we may extend the proposed approach to unbounded systems, which can be 

modelled by a PN but not by an FSA. When dealing with an unbounded PN system, we 

may construct the coverability graph or some special finite reachability graphs/trees [98, 

104]. Thus, the proposed approach can be adapted to get a solution by handling such a 

graph. Second, we could have a PN model of the system that is used for the solutions 

of other problems where the PN features are greatly important, e.g., fault diagnosis or 

many other problems that can be solved using structural analysis. Finally, the PN 

formalism allows us to consider if the liveness property can be transformed into a state 

specification in terms of GMECs for some particular class of PNs. If so, a tolerant 

monitor-based supervisor is possibly designed.  

5.5 Study Cases 

In this section, we present two study cases where the proposed approach is applied. 

5.5.1 Study Case 1 

An automatic control system is designed for playing a game on chemical reactions, 

where chemical equations (1)-(5) are involved. 

Na2CO3 +CO2+H2O =2NaHCO3                          (1) 

NaHCO3+NaOH= Na2CO3+H2O                          (2) 

NaHCO3+HCl=NaCl+CO2↑+H2O                         (3) 
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CO2+ 2NaOH= Na2CO3+H2O                           (4) 

NaHCO3+HNO3=NaNO3+CO2↑+H2O                      (5) 

Suppose that NaOH, HCl, HNO3 and H2O are sufficiently provided and the chemical 

transformation among Na2CO3, CO2, and NaHCO3 is the focus of the game. 

Consequently, the chemical reactions can be modelled by the PN in Fig. 5.1, where p1-

p3 represent NaHCO3, Na2CO3 and CO2, respectively, and t1-t5 represent the chemical 

reactions (1)-(5), respectively. To be intuitive, the PN is redrawn in Fig. 5.13, where 

the meanings of places and the needed substances triggering chemical transformation 

are annotated. Place p1 contains two tokens in the initial marking, which models the 

initial condition that two copies of NaHCO3 are provided. The control specification on 

the system requires that any of the five chemical equations (1)-(5) can always be 

performed after finite times of other chemical reactions. This exactly corresponds to the 

liveness specification on the PN system in Fig. 5.13.  
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Fig. 5.13 PN system (N, m0) modelled for chemical reactions 

 

The supervisor in the closed-loop control system observes the occurrence of chemical 

reactions by receiving signals from sensors and gives control actions based on 

observations. The supervisor communicates with sensors/actuators via communication 

networks, which makes the system possibly suffer from the intrusion of malicious 

agents. Suppose that we have the prior knowledge that the sensor signals produced by 

the chemical equation (2) are prone to be disguised as the sensor signals produced by 

the chemical equation (3) in related sensor communication channels by an intruder. We 
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can see that it is exactly the SD-attack A={(t2, t3)}. Recalling Example 5.10, we may 

design a liveness-enforcing supervisor tolerant to the attack A using the proposed 

approach (Algorithm 5.1), which is shown in Fig. 5.10(e).  

5.5.2 Study Case 2 

Consider a flexible manufacturing system (FMS). It contains two types of robotic 

arms r1 and r2 for processing parts and each type has two copies. Raw parts may enter 

the FMS via loading buffers I1 and I2 and finished products may leave the FMS via 

unloading buffer O1 and O2. Two types of products P1 and P2 are produced by the 

FMS. Their production routes are:  

P1: I1→r1→ 2r2→O1; 

P2: I2→r2→ 2r1→O2. 

In words, producing type P1 requires first one robotic arm r1 and then two robotic arms 

r2, whereas producing type P2 requires first one robotic arm r2 and then two robotic 

arms r1. The loading buffers I1 and I2 both can contain at most three raw parts. 

Moreover, it is assumed that when a finished product leaves the FMS, a new raw part 

is added to the corresponding loading buffer. Consequently, in the case that the loading 

buffers I1 and I2 are fully loaded, the FMS can be modelled by the PN system shown 

in Fig. 5.14.  
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Fig. 5.14 PN system (N, m0) modelled for an FMS 
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Typically, it is required that any production route in an FMS cannot be blocked. This 

actually corresponds to the liveness specification on the PN model in Fig. 5.14. Note 

that the system in Fig. 5.14 now is not live. For example, neither of two production 

routes can continue in the reachable state where two robotic arms r1 are occupied for 

processing P1-type raw parts and two robotic arms r2 are occupied for processing P2-

type raw parts.  

When computing a liveness-enforcing supervisor, we need to consider the existence 

of network attacks in the scenario that sensors and actuators are used respectively to 

detect and actuate the occurrence of transitions and the supervisor communicates with 

sensors/actuators via communication networks. Suppose that we have the prior 

knowledge that the sensor signals produced by the occurrence of transition t1 are prone 

to be disguised as those of transition t2 and the sensor signals produced by the 

occurrence of transition t5 are prone to be disguised as those of transition t4. In other 

words, we need to consider the SD-attack A={(t1, t2), (t5, t4)}. Hence, we may compute 

a liveness-enforcing supervisor tolerant to the SD-attack A by Algorithm 5.1. Firstly, 

the maximally permissive liveness-enforcing supervisor Gs under no attack is computed, 

as shown in Fig. 5.15. Note that the concrete markings are omitted here. Next, 

considering the attack A={(t1, t2), (t5, t4)}, we obtain the basic supervisor Gs|A, as 

depicted in Fig. 5.16. It is worth noting that the pruning set Γ, which is computed 

together with Gs|A, is empty. Hence, the basic supervisor Gs|A in Fig. 5.16 is exactly a 

solution, i.e., a liveness-enforcing supervisor tolerant to the SD-attack A. Moreover, it 

is trivial to see that the solution is maximally permissive.  
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Fig. 5.15 Maximally permissive liveness-enforcing supervisor Gs of the PN system 

in Fig. 5.14 under no attack 
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Fig. 5.16 Basic supervisor Gs|A relative to the supervisor Gs in Fig. 5.15 and the  

SD-attack A={(t1, t2), (t5, t4)} 
 

5.6 Conclusions 

This chapter investigates the problem of synthesizing a liveness-enforcing supervisor 

tolerant to sensor-reading disguising attacks (SD-attacks) in a closed-loop control 

system, with the plant modelled as a bounded PN system. In particular, given a 

supervisor Gs under no attack and an SD-attack A, we propose an approach that 

constructs the basic supervisor Gs|A, which guarantees that the behavior forbidden by 

Gs can never occur in the controlled system vulnerable to the SD-attack A, but possibly 
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restricts the behavior of the plant more than Gs. Based on basic supervisors, we develop 

a method that computes a liveness-enforcing supervisor tolerant to SD-attacks.  

The work of this chapter is now accepted by IEEE Transactions on Systems, Man, 

and Cybernetics: Systems. 
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CHAPTER VI   

Verification of Fault-predictability 

6.1  Introduction  

Starting from this chapter, we enter the second topic of this thesis, i.e., analysis of 

partially-observed DES. In this chapter, we verify the fault-predictability of such DES 

and in the next chapter, we propose a new property called event-based opacity and study 

its verification in partially-observed DES. 

A fault-predictable DES is a system where any fault can be correctly predicted 

before its occurrence. In this chapter, we study the verification of fault-predictability in 

bounded and unbounded DESs modeled by labeled PNs. An approach based on the 

construction of a Predictor Net and a Predictor Graph is proposed. In particular, a 

necessary and sufficient condition for fault-predictability is derived by characterizing 

the structure of the Predictor Graph. Furthermore, two rules are proposed to reduce the 

size of a given PN, which allow one to analyze the fault-predictability of the original 

net by verifying the fault-predictability of the reduced net. 

This chapter is organized as follows. Section 6.2 introduces the background on 

labeled PNs. Section 6.3 formulates the notion of fault-predictability in the framework 

of labeled PNs. The verification of fault-predictability is investigated in Section 6.4. 

Section 6.5 concludes this chapter.  

We notice that the work presented in this chapter has been published in IEEE 

Transactions on Automatic Control; see [125]. 
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6.2  Background on Labeled PN 

A labeled PN system is a triple (N, m0, l), where (N, m0) is a PN system and l is a 

function l: T→Σ∪{ε} that associates with each transition, either a symbol from a given 

alphabet Σ, or the empty string ε. In this framework, the associated symbol of a 

transition decides if or not it is observable. Specifically, it is T=To∪Tuo, where To is the 

set of transitions with their labels being a symbol in Σ, defining observable transitions, 

and Tuo is the set of transitions with their labels being the empty string, defining 

unobservable transitions. Furthermore, the function l can be extended as l: T*→Σ* such 

that (a) l(ε)=ε; and (b) for any α∈T* and t∈T, l(αt)=l(α)l(t). We usually use w to denote 

the label sequence that corresponds to a transition sequence α∈T*, i.e., w=l(α) and call 

w the observed word of α. Also, we define the inverse function l−1: Σ*→2T* such that 

for any w∈Σ*, l−1(w)={α∈L(N, m0)| l(α)=w}. We use l(L(N, m0)) to denote the set of 

words generated by transition sequences of N that are enabled at m0, i.e., l(L(N, 

m0))={l(α)| α∈L(N, m0)}, called the language of the labeled PN (N, m0, l).  

We note that in this chapter, when no ambiguity occurs, a PN refers to a PN system 

and we simply write L instead of L(N, m0). Besides, we modify the notion of prefixes 

of a transition sequence such that the set of all prefixes of a sequence excludes the 

sequence itself. In more detail, given a sequence α∈T*, we denote the set of all prefixes 

of α as pr(α) such that pr(α)={α1∈T*| ∃α2∈T*\{ε} such that α=α1α2}. Clearly, 

α∉pr(α). Moreover, we may view a transition sequence as a set of transitions. We use 

t∈α (t∉α) to indicate that the transition t appears (does not appear) in the sequence α. 

Furthermore, given a set of transitions T'⊆T, we use α∩T'≠∅ to indicate that ∃t∈T' 

such that t∈α, and α∩T'=∅ indicate that ∀t∈T', t∉α. 

6.3  Fault-predictability of Labeled PN 

We consider a labeled PN with fault transitions, under the following two assumptions: 

A1: The PN does not enter a deadlock before the occurrence of a fault. 

A2: The PN suffers from a single class of faults. 
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Assumption A1 is a technical assumption and its importance will appear in the 

following. It is the counterpart of the assumption typically done when performing 

diagnosability analysis: the system does not enter a deadlock after the firing of any fault 

transition. Assumption A2 means that we are not interested in distinguishing among 

fault transitions. Therefore, transitions could be partitioned into two subsets, i.e., 

T=TN∪TF, where TN is the set of normal (non-fault) transitions, and TF is the set of fault 

transitions. 

Typically in the framework of fault diagnosis, fault transitions are modeled as 

unobservable transitions and the goal is to detect their occurrence. In this work, we do 

not make such an assumption since our goal is to predict the occurrence of a fault before 

its occurrence. Therefore, the proposed approach applies regardless of the fact that fault 

transitions are observable or not. 

Before presenting the definition of fault-predictability, we introduce three kinds of 

transition sequences. Given a sequence σ∈L, we call σ  

- a normal sequence if σ∈TN*;  

- a fault-reached sequence if σ ends with a fault transition f∈TF;  

- a fault-end sequence if σ=σ'f, where σ'∈TN* and f∈TF.  

Therefore, a fault-end sequence is a fault-reached sequence where all of its transitions 

before the last one are normal transitions. We use Ψ(TF) to denote the set of fault-

reached sequences and Θ(TF) the set of fault-end sequences.  

Let us now introduce the definition of fault-predictability, which is the PN 

counterpart of the fault-predictability definition given by Genc et al. [33] for regular 

languages. 

Definition 6.1: A labeled PN (N, m0, l) is said to be fault-predictable w.r.t. a set of 

fault transitions TF if 

( ( ))( ( ) : )[ ]F FT pr Tα β α β∀ ∈Ψ ∃ ∈ ∩ = ∅ A , 

where A: ( : ( ( ) ( )) ( ))FL l l Tθ θ β θ∀ ∈ = ∧ ∩ = ∅  
(∃K∈ ) ( ' )Lθθ∀ ∈ [(| ' | ) ( ' )]FK Tθ θ>  ∩ ≠ ∅ , 

otherwise it is said to be fault-unpredictable w.r.t. TF. 
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In words, a labeled PN is fault-predictable if for any fault-reached sequence, there 

exists at least one of its normal prefixes whose observation can be used to set a fault 

alarm. In more detail, once the word corresponding to this prefix is observed, a fault 

alarm can be launched implying that a fault will definitely occur within a finite number 

of event occurrences, which is indeed the true situation for the PN. On the other hand, 

a labeled PN is fault-unpredictable if there exists a fault-reached sequence, e.g. α, such 

that for any of its normal prefixes, e.g. β, there exists a normal sequence θ producing 

the same observation of β that may either be continued infinitely never including a fault, 

or enter a deadlock. However, for sake of simplicity in the formulation of the following 

results, the latter case is excluded by Assumption A1. In other words, none of the 

normal prefixes of α produces an observation that can be used to set a fault alarm.  
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Example 6.1: Consider the labeled PN in Fig. 6.1(a), where TF={f1} and TN={t1-t4}. 

Transition f1 is unobservable, while the other transitions are observable. Clearly, for 

any α∈Ψ(TF), α is in the form (t1)it2f1, i∈  and we can accordingly find a normal prefix 

of α, namely, β=(t1)it2 such that by looking at the observed word l(β)=bia, we know for 

sure that f1 will occur within the following one step. Hence, the labeled PN is fault-

predictable.  

Consider now the labeled PN in Fig. 6.1(b), which is the same as that in Fig. 6.1(a) 

with the only difference that t3 is labeled “a”. Let us consider the fault-reached sequence 

t1t2f1. Its set of prefixes is pr(t1t2f1)={ε, t1, t1t2}. Let us focus on t1t2. There exists another 

sequence t1t3∈L, which produces the same observation, i.e., l(t1t3)=l(t1t2)=ba and 

transition t4 may fire an arbitrarily large number of times after t1t3. In other words, when 

we observe ba, it is possible that no fault will occur in the following steps, i.e., ba 

cannot be used to set a fault alarm, claiming that a fault will surely happen after the 

occurrence of a finite number of events. Similarly, none of the prefixes of t1t2f1 

corresponds to an observation that can be used to set a fault alarm. Hence, the labeled 

PN in Fig. 6.1(b) is fault-unpredictable.                                    ♦  

A greedy approach to determine whether a labeled PN is fault-predictable, clearly 

consists in considering all the normal prefixes of all the fault-reached sequences, and 

check if A is satisfied. In the following, we provide an alternative approach that only 

requires the examination of the longest prefixes of all the fault-end sequences. It is 

based on the following proposition, which claims that we can determine that a labeled 

PN is fault-unpredictable if we can find a fault-end sequence σf and a normal sequence 

θ with l(θ)=l(σ) such that an arbitrarily long normal sequence can occur following θ. 

Otherwise, we conclude that the labeled PN is fault-predictable. 

Proposition 6.1: A labeled PN (N, m0, l) is fault-unpredictable w.r.t. a set of fault 

transitions TF iff  
*( ( ) : )F N Ff T T f Tσ σ∃ ∈Θ ∈ ∧ ∈   

( : ( ( ) ( )) ( ))FL l l Tθ θ σ θ∃ ∈ = ∧ ∩ = ∅  

(∀K∈ ) ( ' )[(| ' | ) ( ' )]FL K Tθθ θ θ∃ ∈ > ∧ ∩ = ∅ . 
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Proof: (=>) It is clear that ( )Ff Tσ ∈Ψ since Θ(TF)⊆Ψ(TF). Let β∈pr(σ). Since 

l(θ)=l(σ), we can see that there exists θ1∈pr(θ) such that l(θ1)=l(β). Let θ=θ1θ2. Clearly, 

θ2∩TF=∅. Since (∀K∈ ) ( ' )[(| ' | ) ( ' )]FL K Tθθ θ θ∃ ∈ > ∧ ∩ = ∅ , it holds that (∀K∈ ) 

1 2 2 2( ' )[(| ' | ) ( ' )]FL K Tθ θ θ θ θ θ θ∃ ∈ > ∧ ∩ = ∅ . In other words, 

( ( ))( ( ))[ ]Ff T pr fσ β σ∃ ∈ Ψ ∀ ∈ A , where A  denotes the opposite of A in Definition 

6.1. By Definition 6.1, the labeled PN (N, m0, l) is fault-unpredictable w.r.t. TF.  

(<=) Since (N, m0, l) is fault-unpredictable w.r.t. TF, it holds that 

( ( ))( ( ) : )[ ]F FT pr Tα β α β∃ ∈ Ψ ∀ ∈ ∩ = ∅ A by Definition 6.1. Clearly, there exists 

σf∈pr(α) or σf=α such that σf∈Θ(TF). It is trivial to see that ( ( ))[ ]pr fβ σ∀ ∈ A . 

Hence, for the case β=σ, it holds A . Specifically, due to Assumption A1, it holds: 

( : ( ( ) ( )) ( ))FL l l Tθ θ σ θ∃ ∈ = ∧ ∩ = ∅  

 (∀K∈ ) ( ' )[(| ' | ) ( ' )]FL K Tθθ θ θ∃ ∈ > ∧ ∩ = ∅ .                  ■ 

6.4  Verification of Fault-predictability 

In this section, we first propose a method to verify fault-predictability of labeled PNs 

based on a special net and a special graph, called respectively, Predictor Net and 

Predictor Graph. Then we show how some rules can be applied to reduce the 

computational complexity of the analysis. 

6.4.1 Predictor Net 

Let us introduce a preliminary definition. Given a labeled PN (N, m0, l), its unfaulty 

net, denoted by (Nu, m0u, lu), is a net derived from (N, m0) by deleting all fault transitions 

as well as their related arcs, and the labeling function lu coincides with l restricted to 

the remaining transitions, i.e., transitions in TN. 

Example 6.2: The nets in Fig. 6.2(a) and (b) are the unfaulty nets of the labeled PNs 

in Fig. 6.1(a) and (b), respectively. To distinguish transitions and places in unfaulty nets 
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from those in the original nets, we use the superscript “u” to mark transitions and places 

in unfaulty nets.                                                       ♦ 

We now define the Predictor Net of a labeled PN. 

Definition 6.2: Let (N, m0, l) be a labeled PN and (Nu, m0u, lu) its unfaulty net, where 

N=(P, TN∪TF, F, W) and Nu=(Pu, Tu, Fu, Wu). The Predictor Net (N, m0), where N 

=(P, T, F, W), is defined as follows: 

1. P =P∪Pu; 

2. m0=[m0T, (m0u)T]T; 

3.  

a) For any t∈TN and tu∈Tu with l(t)=lu(tu)≠ε, let (t, tu)∈T and 

--for any (p, t)∈F, let (p, (t, tu))∈F and W (p, (t, tu))=W(p, t); 

--for any (t, p)∈F, let ((t, tu), p)∈F and W((t, tu), p)=W(t, p); 

--for any (pu, tu)∈Fu, let (pu, (t, tu))∈F and W(pu, (t, tu))=Wu(pu, tu); 

--for any (tu, pu)∈Fu, let ((t, tu), pu)∈F and W((t, tu), pu)= Wu(tu, pu); 

b) For any t∈TN with l(t)=ε, let (t, ε)∈T and  

--for any (p, t)∈F, let (p, (t, ε))∈F and W(p, (t, ε))= W(p, t); 

--for any (t, p)∈F, let ((t, ε), p)∈F and W((t, ε), p)=W(t, p); 

c) For any tu∈Tu with lu(tu)=ε, let (ε, tu)∈T and  

--for any (pu, tu)∈Fu, let (pu, (ε, tu))∈F and W(pu, (ε, tu))=Wu(pu, tu); 

--for any (tu, pu)∈Fu, let ((ε, tu), pu)∈F and W((ε, tu), pu)= Wu(tu, pu); 

d) For any f∈TF, let (f, ε)∈T and 

--for any (p, f)∈F, let (p, (f, ε))∈F and W(p, (f, ε))=W(p, f); 

--for any (f, p)∈F, let ((f, ε), p)∈F and W((f, ε), p)=W(f, p); 
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e) For any tu∈Tu, let tu∈T and for any arc (x, y)∈Fu, let (x, y)∈F with W(x, y)=Wu(x, 

y). 

In simple words, the Predictor Net is derived in two main steps.  

1) The original labeled PN and its unfaulty net are combined by synchronizing 

transitions in the two nets according to their labels. In more detail, every two observable 

normal transitions with the same label are synchronized (item a in Definition 6.2), while 

each unobservable transition and each fault transition is synchronized with an empty 

transition (items b, c and d in Definition 6.2).  

2) All transitions in the unfaulty net are additionally connected to the above 

combination net via exactly the same arcs in the unfaulty net (item e in Definition 6.2). 

As a result, the Predictor Net can be viewed as the composition of two nets. The first 

net is the parallel composition of the original labeled PN and its unfaulty net, where the 

synchronization is done on the labels. The second net is the unfaulty net. These two 

nets share places from the unfaulty net. 

Based on the above Definition 6.2, we can partition transitions in a Predictor Net N 

as T = T 2∪T 1, where T 2 denotes the set of transitions that are in the form of pairs of 

transitions and T 1 denotes the set of transitions that are exactly a single transition from 

the unfaulty net. Finally, we use TF⊆T2 to denote the set of pairs of transitions 

containing a fault transition as a component. 

Example 6.3: The net in Fig. 6.3 is the Predictor Net of the labeled PN in Fig. 6.1(a) 

and the net in Fig. 6.4 is the Predictor Net of the labeled PN in Fig. 6.1(b). In both cases, 

transitions in T1 are denoted with biased bars. In the Predictor Net in Fig. 6.3, it is 

T1={t1u, t2u, t3u, t4u }, T 2={(t1, t1u), (t2, t2u), (t3, t3u), (t4, t4u), (f1, εu)} and TF={(f1, εu)}. 

In the Predictor Net in Fig. 6.4, it is: T1={t1u, t2u, t3u, t4u }, T 2={(t1, t1u), (t2, t2u), (t3, t3u), 

(t4, t4u), (f1, εu), (t2, t3u), (t3, t2u)} and TF={(f1, εu)}.                            ♦ 



133 
 

(f1, ε 
u)

(t1, t1
u)

p1 p2

p3

ε b a

p1
u p2

u

p3
u

dc

(t2, t2
u)

(t3, t3
u) (t4, t4

u)

t1
u

b

t2
u

t3
u

a

c

t4
u

d

 
Fig. 6.3 Predictor Net of the labeled PN in Fig. 6.1(a) 
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Fig. 6.4 Predictor Net of the labeled PN in Fig. 6.1(b) 

 

Remark 6.1: The Predictor Net has strong similarities with the Verifier Net proposed 

by Cabasino et al. [10] used to verify the fault-diagnosability of a PN. However, the 

Verifier Net is basically the concurrent composition of the original net and the unfaulty 

net, where synchronization is done on the labels associated with transitions. In contrast, 

the Predictor Net also contains a replication of the unfaulty net.                 ♣ 
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The following proposition reveals the relationship among sequences in the Predictor 

Net, the original net and the unfaulty net. 

Proposition 6.2: Consider a labeled PN (N, m0, l), its unfaulty net (Nu, m0u, lu) and its 

Predictor Net (N, m0),  

1) for any sequence σ= 1 1 2 2( , )( , )...( , )u u u
i j i j ik jkt t t t t t ∈L(N, m0)∩(T2)*, it holds that 

σ1=ti1ti2…tik∈L(N, m0), σ2=tj1utj2u…tjku ∈L(Nu, m0u) and 1 2( ) ( )ul lσ σ= ; and 

2) for any two sequences σ1=ti1ti2…tik∈L(N, m0)∩TN* and σ2=tj1utj2u…tjku∈L(Nu, m0u) 

with ( ) ( )u u
iq jql t l t= , ∀q∈{1, 2, …, k}, it holds that σ=(ti1, tj1u)(ti2, tj2u)…(tik, tjku)∈L(N, 

m0)∩(T2)*. 

Proof: Trivially follows from Definition 6.2.                              ■ 

6.4.2 Predictor Graph 

Before introducing the formal definition of Predictor Graph, we provide some 

preliminary notation. Given a path π in a graph, we use X(π) to denote the set of nodes 

in π. We say that a node x1 is accessible from another node x2 if there exists a path from 

x2 to x1. By default, every node is accessible from itself. Furthermore, we say that a cycle 

c is accessible from a node x if ∃x'∈X(c) such that x' is accessible from x. 

The Predictor Graph (PG) is similar to the reachability graph or the coverability 

graph [69] of the Predictor Net but with some modifications clearly highlighted in the 

following. Furthermore, some nodes could be tagged "dangerous". Algorithm 6.1 

provides the main steps for its construction. Note that, analogously to the coverability 

graph, in the case of unbounded nets, a node in PG may correspond to a special marking 

where some entries coincide with the symbol inf, implying that tokens can grow 

infinitely in the corresponding places. We assume that ∀k∈ , inf>k and it holds that 

inf±k=inf. 
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Algorithm 6.1: Construction of the Predictor Graph (PG) 

Input: A labeled PN (N, m0, l); 

Output: The PG of (N, m0, l). 

1. Generate the Predictor Net (N, m0) according to Definition 6.2; 

2. create the root node x0 with the initial marking m0 and tag it “new”;  

3. while there exists a node x tagged “new” do 

4.     let m be the marking of x;  

5.     if ∃t∈TF such that t is enabled at m then 

6.        tag node x “dangerous”; 

7.        execute SonNodes(x) defined in Algorithm 6.2; 

8.     end if 

9.     for each t∈T2\TF enabled at m do 

10.       compute the reachable marking m' from m by firing t; 

11.       if there exists a node on the path from x0 to x such that its marking is 

smaller than m' then 

12.            select the first-met node on the reverse path from x to x0 such that 

its marking m''<m' and let m'(p):=inf for each p∈P such that m'(p)>m''(p); 

13.       end if 

14.       if there already exists a node x' with the marking m' then 

15.           add an arc from x to x' labeled t; 

16.       else 

17.           create a node x' with marking m', add an arc from x to x' labeled t, 

and tag x' “new”; 

18.       end if 

19.     end for 

20.     untag “new” from node x; 

21.  end while 

22.  End. 
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Algorithm 6.2: Function SonNodes (x) 

1. Let x0:= x and tag it “novel” and “a”; 

2. while there exists a node x tagged “novel” do 

3.     let m be the marking of x; 

4.     for each t∈T1 enabled at m do  

5.         compute the reachable marking m' from m by firing t; 

6.         if there exists a node on the path from x0 to x such that its marking is 

smaller than m' then 

7.            select the first-met node on the reverse path from x to x0 such that 

its marking m''< m' and let m'(p):=inf for each p∈P such that m'(p)>m''(p); 

8.         end if 

9.         if there already exists a node x' tagged “a” with marking m' then 

10.             add an arc from x to x' labeled t; 

11.         else 

12.             create a node x' with marking m', add an arc from x to x' labeled 

t, and tag x' “a” and “novel”; 

13.         end if 

14.     end for 

15.     untag “novel” from node x; 

16.  end while 

17.  untag “a” from all nodes. 

 

Let us now provide some comments on Algorithm 6.1. If we ignore Steps 5-8 and 

replace T2\TF by T in Step 9, then the resulting graph coincides with the reachability 

graph or the coverability graph of the Predictor Net. Now, by Step 9, every time we 

generate son nodes of a “new” node, we consider transitions in T2\TF only. Moreover, 

considering Steps 5-8, for each “dangerous” node, Function SonNodes is additionally 

called, where only transitions in T1 is permitted to fire. Essentially, starting from a 

“dangerous” node, Function SonNodes generates the reachability graph or the 

coverability graph of the unfaulty net.  
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Note that the tag “a” used in Function SonNodes guarantees that all nodes generated 

by Function SonNodes are not connected to nodes generated outside the current 

execution of the function, except the starting node. As a consequence, given a cycle c 

in the PG, it holds that either σ(c)∈(T1)* or σ(c)∈(T2)*, where σ(c) is the corresponding 

transition sequence associated with c. 

Example 6.4: The graph in Fig. 6.5 is the PG of the labeled PN in Fig. 6.1(a) and the 

graph in Fig. 6.6 is the PG of the labeled PN in Fig. 6.1(b). Dangerous nodes are 

highlighted in grey. Besides, the first entries of each marking with no superscript 

correspond to places of the original PN, while the other entries with superscript “u” 

correspond to places of the unfaulty net.                                    ♦ 
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Fig. 6.5 PG of the labeled PN in Fig. 6.1(a) 
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Fig. 6.6 PG of the labeled PN in Fig. 6.1(b) 
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6.4.3 Necessary and Sufficient Condition for Fault-predictability 

In this subsection, we propose a necessary and sufficient condition for the fault-

predictability of a labeled PN based on its PG. Before that, we introduce the notion of 

repeatable cycle. 

Definition 6.3: Given a labeled PN (N, m0, l) and its PG, a cycle c in the PG is called 

repeatable if its related transition sequence ( )cσ  is such that [ ] ( )N cσ⋅


≥0, where 

[ ]N  is the incidence matrix of the Predictor Net. 

Next, we provide a preliminary result involving repeatable cycles. We note that a 

marking is called an ordinary marking if none of its entries is inf, otherwise it is called 

an inf-marking. Indeed, an inf-marking can be viewed as a marking set consisting of 

infinitely many ordinary markings. For instance, m=(1, 0, inf)T is an inf-marking, which 

can be viewed as m={(1, 0, 0)T , (1, 0, 1)T , (1, 0, 2)T , …}. For consistency, an ordinary 

marking can be viewed as a marking set containing only one ordinary marking. In a PG, 

we use m(x) to denote the marking associated with a node x. 

Property 6.1: Given a cycle c in PG, ∀x∈X(c), there exists an ordinary marking m1 

in m(x) such that 1 2 3[ ( ) [ ( ) ...m m mc cσ σ  , i.e., the sequence ( )cσ  can fire infinitely 

from m1, iff c is a repeatable cycle. 

Proof: (=>) By Definition 6.3, if c is a repeatable cycle then [ ] ( )N cσ⋅


≥0. This 

implies that mi≤mj in the case that mj is reached from mi by firing ( )cσ  in the 

Predictor Net N. Trivially, there exists an ordinary marking m1 of x such that 

1 2 3[ ( ) [ ( ) ...m m mc cσ σ  . 

(<=) We can see that mi≤mi+1, ∀i∈{1, 2, …}. Clearly, we have [ ] ( )N cσ⋅


≥0. 

Hence, c is a repeatable cycle.                                            ■  

Roughly speaking, only when a cycle in PG is a repeatable cycle, the sequence 

associated with the cycle can fire infinitely often. 
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Remark 6.2: The concept of repeatable cycles is essentially the same as that of cycles 

associated with a firable repetitive sequence in [10].                          ♣ 

Theorem 6.1: A labeled PN (N, m0, l) is fault-unpredictable iff there exists a dangerous 

node xd in the corresponding PG such that there exists a repeatable cycle accessible 

from it. 

Proof: (=>) Let c be a repeatable cycle in PG that is accessible from a dangerous node 

xd. By Algorithm 6.1, two cases may occur: 1) c is generated by SonNodes(xd); 2) c is 

not generated by SonNodes(xd).  

In Case 1, σ(c)∈(T1)*, i.e., c is a repeatable cycle of the reachability/coverability 

graph of the unfaulty net starting from the marking m(xd). Based on Property 6.1, it is 

trivial to see that there exists an ordinary marking m1∈m(xd) such that an arbitrarily 

long sequence can occur from m1u in the unfaulty net, where m1u is the restriction of m1 

to places of the unfaulty net. 

In Case 2, σ(c)∈(T2)*. By Proposition 6.2 and Property 6.1, we can also conclude 

that there exists an ordinary marking m1∈m(xd) such that an arbitrarily long sequence 

can occur from m1u in the unfaulty net. 

If m(xd) itself is an ordinary marking, then m1 definitely enables a transition t∈TF 

since xd is a dangerous node. If m(xd) is an inf-marking, then ∃m1'∈m(xd) such that 

m1'≥m1 and m1' enables a transition t∈TF since xd is a dangerous node. Consequently, 

no matter in which case, there exists a sequence σ#∈ 2 *
0( , ) ( )N m TL ∩  whose firing 

at m0 leads to an ordinary marking m'∈m(xd) such that m' enables a transition t∈TF 

and an arbitrarily long sequence can occur from m'u in the unfaulty net, where m'u is the 

restriction of m' to places of the unfaulty net. Clearly, t is a transition pair and its first 

component is a fault transition. Here, we use f to denote this fault transition. Let σ and 

θ be two sequences corresponding to the first and second components of σ#. By 
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Proposition 6.2, 0( , )L N mσ ∈ and 0( , )u uL N mθ ∈  with ( ) ( )ul lσ θ= . Besides, we 

can see that σf∈ 0( , )L N m and an arbitrarily long sequence can occur following θ in the 

unfaulty net. Trivially, it holds that 0( , )L N mθ ∈ , ( ) ( )l lσ θ=  and (∀K∈ ) 

0( ' ( , ))L N mθθ∃ ∈ [(| ' | ) ( ' )]FK Tθ θ> ∧ ∩ = ∅ , i.e., an arbitrarily long normal sequence 

can occur following θ in (N, m0). Therefore, the labeled PN is fault-unpredictable by 

Proposition 6.1. 

 (<=) By contradiction, suppose that for each dangerous node in PG, there exists no 

repeatable cycle accessible from it. By Algorithm 6.1 and Property 6.1, it holds: 

(∀σf∈L(N, m0): σ∈TN*∧ 0)( ( , ) : ( ) ( ))u u u
Ff T L N m l lθ σ θ∈ ∀ ∈ = , a deadlock definitely 

arises in finite steps following θ in (Nu, m0u). Since (Nu, m0u) is derived from (N, m0) by 

deleting fault transitions only and (N, m0) does not enter a deadlock before the 

occurrence of a fault by Assumption A1, we can see that a fault transition definitely 

fires in finite steps following θ in (N, m0). In other words,  

*
0( ( , ) : )N Ff L N m T f Tσ σ∀ ∈ ∈ ∧ ∈  

0( ( , ) : ( ( ) ( )) ( ))FL N m l l Tθ θ σ θ∀ ∈ = ∧ ∩ = ∅  

(∃K∈ ) 0( ' ( , ))[(| ' | ) ( ' )]FL N m K Tθθ θ θ∀ ∈ >  ∩ ≠ ∅ . 

It obviously contradicts Proposition 6.1. Consequently, there exists a dangerous node 

xd in PG such that there exists a repeatable cycle accessible from xd.              ■               

It is easy to see that, for labeled PNs that are bounded, any cycle in the corresponding 

PG is repeatable. As a consequence, the following result trivially follows from Theorem 

6.1. 

Corollary 6.1: A labeled bounded PN (N, m0, l) is fault-unpredictable iff there exists 

a dangerous node xd in the corresponding PG such that there exists a cycle accessible 

from it. 

Example 6.5: Consider the PG in Fig. 6.5 relative to the bounded labeled PN in Fig. 

6.1(a), where x1 is the only dangerous node. We can see that no cycle is accessible from 

x1. Hence, by Corollary 6.1, the labeled PN in Fig. 6.1(a) is fault-predictable.  
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As for the PG in Fig. 6.6 relative to the bounded labeled PN in Fig. 6.1(b), there exists 

a dangerous node x2 that is contained in a cycle and thus the labeled PN in Fig. 6.1(b) 

is fault-unpredictable.                                                   ♦ 

Example 6.6: Consider the labeled unbounded PN in Fig. 6.7, where TF ={f1, f2} and 

TN={t1-t5}. Transitions f1 and f2 are unobservable, while the other transitions are 

observable. Note that f1 and f2 belong to the same class of faults. We use the proposed 

approach to determine if the labeled PN is fault-predictable.  

First, we compute the unfaulty net reported in Fig. 6.8.  

Next, the Predictor Net is constructed as shown in Fig. 6.9.  

Finally, the PG of the labeled PN is computed as shown in Fig. 6.10. Looking at the 

PG, we can see that dangerous nodes x2, x3, x4, x5 are followed by cycles. According to 

Theorem 6.1, we need to further determine if such cycles are repeatable. It can be 

verified that [N]⋅ 3
ut


= [N]⋅ 5
ut


=(0, 0, 0, 0; 0u, 0 u, 0 u, – 1 u) and [N]⋅ 3 3( , )ut t


= [N]⋅ 5 5( , )ut t


= (0, 0, 0, – 1; 0u, 0 u, 0 u, – 1 u), where [N] is the incidence matrix of the Predictor Net. 

Hence, by Definition 6.3, we can see that there is no repeatable cycle accessible from a 

dangerous node. Consequently, we may conclude that the labeled unbounded PN in Fig. 

6.7 is fault-predictable.                                                 ♦ 
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Fig. 6.9 Predictor Net of the labeled PN in Fig. 6.7 
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Remark 6.3: According to Corollary 6.1, it is easy to verify the fault-predictability of 

PNs that are bounded. In the case of unbounded PNs, it could be more complicated 

especially for large scale nets since establishing whether cycles are repeatable requires 

further investigation. Fortunately, Cabasino et al. [10] discuss in detail how to search 

repeatable cycles efficiently in a graph. In particular, they show that repeatable cycles 

can be found out by solving linear programming problems.                    ♣ 

Remark 6.4: The computational complexity of the proposed approach is exponential 

with respect to the net size (i.e., the number of places, transitions, and tokens initially 

present in the net). This follows from the fact that the PG is similar to the 

reachability/coverability graph of the Predictor Net.                          ♣ 

6.4.4 Reduction Rules 

When the labeled PN has large size or it has many transitions with the same label, the 

Predictor Net can be very complicated since any two normal transitions from the 

original PN and its unfaulty net with the same label are required to be synchronized. 

Actually, not all transitions are relevant when studying fault-predictability. In this 

subsection, we propose two rules to remove some unnecessary transitions and places 

from the original labeled PN before constructing the Predictor Net. 

 

Rule 1: Given a labeled PN, it is reduced by two steps: 

1) Delete all normal transitions that become dead in the case that all fault transitions 

are forbidden to fire, as well as their related arcs; and then 

2) Delete all places with no output transitions as well as their related arcs. 

 
Theorem 6.2: Given a labeled PN (N, m0, l) and its reduced net (N', m0', l') obtained 

by Rule 1, (N, m0, l) is fault-predictable iff (N', m0', l') is fault-predictable. 

Proof: We can see that the transitions deleted by Rule 1 can only fire after the firing 

of fault transitions in the original net. Trivially, since the original net satisfies 

Assumptions A1 and A2, the reduced net still satisfies Assumptions A1 and A2. 

According to Proposition 6.1, there is no need to consider transitions that fire only after 
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the firing of fault transitions. As a result, we can conclude that (N, m0, l) is fault-

predictable iff (N', m0', l') is fault-predictable.                                ■               

Rule 1 is of exponential complexity with respect to the net size since it involves the 

enumeration of dead transitions. Consequently, it is not applicable to PNs with very 

large size. In the following, we present a reduction rule that can be applied to ordinary 

PNs, which is a refinement of Rule 1 and enjoys polynomial complexity with respect 

to the net size. 

 
Rule 2: Given a labeled ordinary PN (N, m0, l), the reduced net (N', m0', l') is 

derived by the following procedure: 

PD:={p∈P | ((•p)∩T⊆TF) ∧(m0(p)=0)}; 

while PD≠∅ do 

P:=P\PD, T:=T\PD•, and delete the related arcs; 

PD:={p∈P | ((•p)∩T⊆TF )∧(m0(p)=0)}; 

  end while 

denote the resulting net as (N', m0', l'). 

 
In words, Rule 2 repeatedly deletes places whose inputs are all fault transitions and 

token count is 0 at the initial marking m0, plus their output transitions and their related 

arcs. 

Theorem 6.3: Given a labeled ordinary PN (N, m0, l) and its reduced net (N', m0', l') 

obtained by Rule 2, (N, m0, l) is fault-predictable iff (N', m0', l') is fault-predictable. 

Proof: For any place p with all its input transitions dead at m0 and m0(p)=0, its output 

transitions are clearly dead. Since N is ordinary, it is trivial to see that all deleted 

transitions by Rule 2 are those that should be removed by Rule 1, i.e., normal transitions 

that become dead transitions in the case that all fault transitions are forbidden to fire. 

Besides, all deleted places by Rule 2 are exactly those that should be removed by Rule 

1. Hence, the conclusion holds according to Theorem 6.2.                      ■  

Remark 6.5: The reduced net obtained by Rule 1 or 2 still satisfies Assumptions A1 

and A2 in the case that the original net satisfies Assumptions A1 and A2. Hence, the 
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proposed approach can be correctly applied to the reduced nets. In addition, after we 

apply the reduction rules to PNs, the Predictor Net of the reduced net is typically 

simpler than that of the original net while the PG does not change. However, the PG is 

constructed starting from the Predictor Net, so we have an advantage while performing 

intermediate computations.                                              ♣ 

 

f1t1 t2
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p1 p2 p3

t3

dε 
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a

 

(a) A fault-predictable labeled PN 

f1t1 t2

a

p1 p2 p3

t3

dε b

t4t5
a

p4

a

 

(b) A fault-unpredictable labeled PN 

Fig. 6.11 Two labeled PNs 

Example 6.7: Let us consider the two ordinary labeled PNs in Fig. 6.11. According 

to Rule 2, in both cases, transition t5 and place p4, as well as their related arcs can be 

removed, resulting in the reduced nets exactly the same as those in Fig. 6.1(a) and (b), 

respectively. By Theorem 6.3, we can verify the fault-predictability of the two PNs in 

Fig. 6.11(a) and (b) by verifying the fault-predictability of the nets in Fig. 6.1(a) and 

(b), respectively. Note that the Predictor Net of the labeled PN in Fig. 6.11(a) contains 

8 places and 13 transitions, while the Predictor Net of its reduced net contains 6 places 

and 9 transitions only, as shown in Fig. 6.3. As for the labeled PN in Fig. 6.11(b), its 

Predictor Net has 8 places and 17 transitions, while the Predictor Net of its reduced net 

has 6 places and 11 transitions only, as shown in Fig. 6.4.                       ♦ 

Finally, we notice that after using reduction rules, the verification of the fault-
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predictability by the proposed approach still requires the construction of the PG. It 

implies that the computational complexity of the proposed approach after using 

reduction rules is still exponential with respect to the net size. 

6.5  Conclusions 

This chapter presents a novel approach to verify fault-predictability in labeled PNs 

that may also be unbounded. Specifically, by characterizing the structure of a special 

graph, called Predictor Graph, a necessary and sufficient condition for fault-

predictability is derived. Moreover, two rules to reduce the size of the net are proposed 

and it is proven that the fault-predictability of the original net can be verified by 

checking the fault-predictability of the reduced net. 

The work of this chapter has been published in IEEE Transactions on Automatic 

Control; see [125]. 
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CHAPTER VII   

Event-based Opacity and Its Verification 

7.1 Introduction  

Opacity is an important information flow property related to privacy and security of 

a system. The notions of opacity in the literature are generally classified into language-

based opacity and state-based opacity. In this chapter, we use deterministic finite-state 

automata (DFA) as the reference formalism, proposing four notions of event-based 

opacity, namely, K-observation event-opacity, infinite-observation event-opacity, 

event-opacity and combinational event-opacity. In simple words, these properties 

characterize situations in which an intruder, based on a partial observation of the system 

evolution, may never establish the occurrence of a secret event within its critical 

horizon. The critical horizon of a secret event is characterized by a positive integer, e.g., 

K, which defines the horizon from the instant when the secret event occurs until the 

instant when the K-th observable event occurs after the secret. A motivation example is 

presented in the chapter, relative to a business company taking decisions, some of which 

should remain secret to external observers. In addition, the relationship between K-

observation/infinite-observation event-opacity and (K-step) diagnosability is analyzed. 

Moreover, appropriate verifiers are proposed to verify the proposed four properties. 

This chapter is organized as follows. Section 7.2 presents some notations used in 

this chapter but not introduced in Chapter II. Section 7.3 provides a practical scenario 

that motivates the notions of event-based opacity. Four notions of event-based opacity 

are proposed in Section 7.4, as well as the analysis on the relationship between the 
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proposed K-observation/infinite-observation event-opacity and (K-step) diagnosability. 

Methods for the verification of the proposed notions are provided in Section 7.5. 

Section 7.6 concludes this chapter. 

We notice that the work presented in this chapter is now under review by IEEE 

Transactions on Automatic Control. 

7.2 Preliminaries 

In this chapter we assume that DES are modeled as deterministic finite-state 

automata (DFA). The readers are referred to Section 2.3.1 for the basic notions related 

to DFA. 

Given a DFA G=(X, Σ, δ, x0), the event set Σ is partitioned into two disjoint sets, Σo 

the set of observable events and Σu the set of unobservable events, i.e., Σ=Σo∪Σu and 

Σo∩Σu=∅. The observation function in the framework of DFA is typically denoted by 

P, namely, it is a projection P: Σ*→Σo* such that  

1) P(ϵ)= ϵ; and  

2) ∀u∈Σ*, v∈Σ, 
( ) if ,

( )
( ) otherwise.

oP u v v
P uv

P u
∈Σ

= 


 

The observation function P is also extended to the domain 2Σ* such that ∀L∈2Σ*, 

P(L)={P(σ)|σ∈L}. Moreover, we define PG−1: Σo*→L(G) such that 

PG−1(w)=P−1(w)∩L(G), i.e., PG−1(w)={σ∈L(G)| P(σ)=w}. We call σ∈PG−1(w) a 

consistent string of w in G. 

7.3 Motivational Scenario 

In this section, we introduce a practical scenario that motivates the notions of event-

based opacity proposed in this work. 

Consider a company whose board of directors issues various decisions. Some 

decisions are public while others are private, i.e., only known inside the company. 

Suppose that the company issues a public decision every day at a fixed time and may 

issue a private decision at any time. Some of the private decisions are critical to the 
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interests and the development of the company and thus its competitor is really interested 

in detecting such decisions that we call secret decisions. If a secret decision is 

successfully detected by the competitor, the competitor may propose some 

countermeasures. We assume that there is a critical horizon (given in days in this 

scenario) that allows the competitor to cope with a secret decision since it is issued. It 

means that, if a secret decision is not detected within its critical horizon, it is of no use 

for the competitor to propose any countermeasure. Thus, to be precise, the competitor 

aims to detect secret decisions that are within their critical horizons, while the company 

certainly hopes to keep every secret decision undetectable within its critical horizon.  

Suppose that a DFA models how the decisions will be issued by the company. Such 

a model can be established based on the historical data. In the DFA model, an event 

corresponds to a decision. Naturally, public decisions are modelled as observable events 

and private decisions are unobservable events. Secret decisions correspond to some of 

the unobservable events that we call secret events. We use Σs to denote the set of secret 

events. Note that the DFA model does not contain any cycle with unobservable events 

only since a public decision is issued every day. For example, a possible decision-

making model of a company is shown in Fig. 7.1 formalized as a DFA G=(X, Σ, δ, x0). 

It is Σo={a, b, c, d}, Σu={u1-u4, s} and Σs={s}. It indeed shows two possible decision-

making routes, namely, u1absu3cd* and u2au4bcsd*. In the two routes, the daily issued 

public decisions are the same, that is, a, b, c, d, d, …, but the issuing of private decisions 

is different. 

0 1 2 3 6u1 a b
4

s c
d

7 8 10 12
a b

11
sc

d
u2

5
u3

9
u4

 
Fig. 7.1 1-observation event-opaque DFA G 

We assume that the competitor has the complete knowledge of the decision-making 

model. Based on the model, according to the observed events, it detects secret events 

that are within their critical horizons. The critical horizon of each secret event is 
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assumed to be known to both the company and the competitor. In addition, the 

competitor is assumed to be conservative in the sense that it takes countermeasures only 

when it knows for sure that it is now within the critical horizon of a secret event.  

Consider the case that the critical horizon of each secret decision is within three days. 

From the perspective of the company, it should be guaranteed that every time a secret 

decision is issued, in the following three days, the competitor cannot know for sure that 

a secret decision was issued in the past three days; or equivalently, every day the 

competitor is informed about a new public decision, it cannot know for sure that a secret 

decision was issued in the past three days. Such a property is called 3-observation event-

opacity, which will be formally introduced in this work. In the case that the model is 3-

observation event-opaque, no effective countermeasure can be taken by the competitor 

to cope with any secret decision. In other words, the security of the decision-making 

model is guaranteed. 

7.4 Four Notions of Event-based Opacity 

In this section, we propose four notions of event-based opacity, which guarantee the 

security of a system in different scenarios from the simplest one to the most complicate 

one. In addition, we analyze the relationship between the proposed K-

observation/infinite-observation event-opacity and (K-step) diagnosability in the 

literature due to their similarity.  

7.4.1 K-observation and Infinite-observation Event-opacity 

In this subsection, we propose the notions of K-observation and infinite-observation 

event-opacity, which characterize the security requirement of a system in a scenario 

where the following two assumptions are made: 

A1) the critical horizon of each secret event is the same;  

A2) the adversary is not interested in distinguishing among different secret events. 

We introduce some notations before presenting these two notions. Note that, it is 

assumed that K∈ + in the chapter. 
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Given a DFA G=(X, Σ, δ, x0) and an event set Σ' ⊆ Σ, we denote Ψ(Σ')={α∈L(G)| α 

=σe, where σ∈Σ* and e∈Σ'}, i.e., the set of strings in L(G) ending with an event e∈Σ'.  

Recall that a string v∈Σ* is a suffix of σ∈Σ* if ∃u∈Σ* such that uv=σ . Now, we define 

the K-observation suffix of σ∈Σ*, denoted by sufobK(σ), as the suffix of σ starting with 

the last K-th observable event if |P(σ)|≥K and coincides with the entire σ if |P(σ)|<K.  

As an example, consider a string σ=u1u2au1bu1cu2, where u1, u2∈Σu and a, b, c∈Σo. 

It is sufob2(σ)=bu1cu2 and sufob4(σ)=σ =u1u2au1bu1cu2. 

Given a string σ∈Σ* and an event set Σ' ⊆ Σ, with a slight abuse of notation, we write 

σ∩Σ'≠∅ if σ contains an event in Σ', and σ∩Σ'=∅ otherwise. 

Definition 7.1: A DFA G=(X, Σ, δ, x0) is said to be K-observation event-opaque w.r.t. 

a set of secret events ΣS⊆Σu if 

(∀α∈Ψ(ΣS))(∀β∈L(G)/α: 0<|P(β)|≤ K) 

[∃σ∈PG−1(P(αβ)), sufobK+1(σ)∩ΣS=∅]. 

In words, K-observation event-opacity implies that for any string α ending with a 

secret event and any follow-up string β containing at least one but no more than K 

observable events, there exists a string σ that produces the same observation as αβ but 

its (K+1)-observation suffix does not contain any secret event.  

Recall the motivational scenario. The physical meaning of K-observation event-

opacity in that scenario is that every time a secret decision is issued, in the following K 

days, according to the daily public decisions, the competitor cannot know for sure that 

a secret decision was issued in the past K days because there exists a possibility that no 

secret decision was issued in the past K days. Note that the (K+1)-observation suffix 

refers to the past K days. 
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Fig. 7.2 Illustration of 3-observation event-opacity 

To be intuitive, the illustration of 3-observation event-opacity is shown in Fig. 7.2, 

where we focus on one string α∈Ψ(ΣS) and one string β∈L(G)/α with |P(β)|=2 only. 

We observe that there exists a string consistent with the observation w=P(αβ), namely 

σ2, whose 4-observation suffix does not contain any secret event. If for any α∈Ψ(ΣS) 

and any β∈L(G)/α with 0<|P(β)|≤3, it is the case like the one shown in Fig. 7.2, i.e., 

there exists a string consistent with the observation w=P(αβ) whose 4-observation 

suffix does not contain any secret event, the DFA G is 3-observation event-opaque.  

Example 7.1: Consider again the DFA G=(X, Σ, δ, x0) in Fig. 7.1, where Σo={a, b, c, 

d}, Σu={u1-u4, s} and ΣS={s}. It is Ψ(ΣS)={α1, α2}={u1abs, u2au4bcs}.  

Let K=1. Consider α1=u1abs and β=u3c∈L(G)/α1. It is P(α1β)=abc and 

PG−1(abc)={u1absu3c, u2au4bc, u2au4bcs}. It is sufob2(u1absu3c)=bsu3c, 

sufob2(u2au4bc)=bc and sufob2(u2au4bcs)=bcs. Thus, sufob2(u2au4bc)∩ΣS=∅.  

Consider α2=u2au4bcs and β=d∈L(G)/α2. It is P(α2β)=abcd and 

PG−1(abcd)={u2au4bcsd, u1absu3cd}. Moreover, it is sufob2(u2au4bcsd)=csd and 

sufob2(u1absu3cd)=cd. Thus, sufob2(u1absu3cd)∩ΣS=∅.  

Consequently, the DFA is 1-observation event-opaque by Definition 7.1.  
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Now, let K=2. The DFA is not 2-observation event-opaque. To show this, let us 

consider α1=u1abs and β=u3cd∈L(G)/α1. It is P(α1β)=abcd and PG−1(abcd)={u1absu3cd, 

u2au4bcsd}. Thus, sufob3(u1absu3cd)∩ΣS≠∅ and sufob3(u2au4bcsd)∩ΣS ≠∅.       ♦ 

The following proposition presents an alternative way to determine whether a DFA 

is K-observation event-opaque.  

Proposition 7.1: A DFA G=(X, Σ, δ, x0) is K-observation event-opaque w.r.t. a set of 

secret events ΣS⊆Σu iff 

(∀w∈P(L(G)))[∃σ∈PG−1(w), sufobK+1(σ)∩ΣS=∅]. 

Proof: (=>) It trivially holds by Definition 7.1. 

(<=) By contradiction, suppose that  

(∃w∈P(L(G)))[∀σ∈PG−1(w), sufobK+1(σ)∩ΣS≠∅]. 

Hence, there exists a string αβ∈PG−1(w) with α∈Ψ(ΣS) and 0<|P(β)|≤K. Since P(αβ)=w, 

it holds that ∀σ∈PG−1(P(αβ)), sufobK+1(σ)∩ΣS≠∅, which however contradicts the fact 

that G is K-observation event-opaque by Definition 7.1. Consequently, it is   

(∀w∈P(L(G)))[∃σ∈PG−1(w), sufobK+1(σ)∩ΣS=∅].          ■ 

By Proposition 7.1, K-observation event-opacity implies that for any observation 

from the DFA, there exists at least one consistent string whose (K+1)-observation suffix 

does not contain any secret event. Recall the motivational scenario, it means that every 

day the competitor gets a public decision issued by the company, it cannot know for 

sure that a secret decision was issued in the past K days since there exists a possibility 

that no secret decision was issued in the past K days. 

Example 7.2: Consider again the DFA G =(X, Σ, δ, x0) in Fig. 7.1, where Σo={a, b, c, 

d}, Σu={u1-u4, s} and ΣS={s}. Now, we use Proposition 7.1 to determine if it is K-

observation event-opaque. It is P(L(G))={ϵ, a, ab, abc, abcd, abcdd, …}.  

Let K=1. Consider ab∈P(L(G)) as an example. We can find a string u2au4b∈PG−1(ab) 

such that sufob2(u2au4b)∩ ΣS=∅. By checking all the observations, we can see that 

(∀w∈P(L(G)))[∃σ∈PG−1(w), sufob2(σ)∩ΣS=∅]. 

Thus, the DFA is 1-observation event-opaque.  
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Now, let K=2. We can find an observation abcd∈P(L(G)) whose 

PG−1(abcd)={u1absu3cd, u2au4bcsd}. It holds ∀σ∈PG−1(abcd), sufob3(σ)∩ΣS ≠∅.  

Hence, the DFA is not 2-observation event-opaque.                           ♦              

Remark 7.1: Proposition 7.1 may be viewed as the definition of K-observation event-

opacity from a different viewpoint with respect to Definition 7.1. Specifically, 

Definition 7.1 cares if a certain condition is satisfied for every secret-ended string, while 

Proposition 7.1 considers if a certain condition is satisfied for every observation. 

Definition 7.1 is in a form similar to that of (K-step) diagnosability [83], thus facilitating 

the comparison between the notions of K-observation event-opacity and K-step 

diagnosability. Proposition 7.1 provides a more intuitive explanation of K-observation 

event-opacity, namely, it captures a situation where an intruder, based on a partial 

observation of the system evolution, may never establish the occurrence of a secret 

event within its critical horizon, i.e., the horizon from the instant when the secret event 

occurs until the instant when the K-th observable event occurs.                 ♣                

In what follows, we present the notion of infinite-observation event-opacity, which is 

the case that K is infinity. 

Definition 7.2: A DFA G=(X, Σ, δ, x0) is said to be infinite-observation event-opaque 

w.r.t. a set of secret events ΣS⊆Σu if 

(∀α∈Ψ(ΣS))(∀β∈L(G)/α: |P(β)|>0) 

[∃σ∈PG−1(P(αβ)), σ∩ΣS=∅]. 

Proposition 7.2: A DFA G=(X, Σ, δ, x0) is infinite-observation event-opaque w.r.t. a 

set of secret events ΣS⊆Σu iff 

(∀w∈P(L(G)))[∃σ∈PG−1(w), σ∩ΣS=∅]. 

Proof: Similar to the proof of Proposition 7.1.                               ■ 

The following two results show the relationship among infinite-observation, k-

observation and l-observation event-opacity, where k and l are positive integers such 

that k>l, which is also depicted in Fig. 7.3 for intuition. 
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Result 7.1:  Given a DFA G=(X, Σ, δ, x0) with a set of secret events ΣS⊆Σu and two 

positive integers k and l with k>l, it holds that 

G is k-observation event-opaque w.r.t. ΣS 

=> G is l-observation event-opaque w.r.t. ΣS. 

Proof: Since G is k-observation event-opaque w.r.t. ΣS, then (∀w∈P(L(G))) 

[∃σ∈PG−1(w), sufobk+1(σ)∩ΣS=∅] according to Proposition 7.1. Since k>l, it holds that 

sufobl+1(σ) is a suffix of sufobk+1(σ) or sufobl+1(σ)=sufobk+1(σ). In any case, 

sufobl+1(σ)∩ΣS=∅. Thus, G is l-observation event-opaque w.r.t. ΣS.              ■                

Result 7.2:  Given a DFA G=(X, Σ, δ, x0) with a set of secret events ΣS⊆Σu, it holds 

that 

G is infinite-observation event-opaque w.r.t. ΣS 

=> G is k-observation event-opaque w.r.t. ΣS, ∀k∈ +. 

Proof: Since G is infinite-observation event-opaque w.r.t. ΣS, then 

(∀w∈P(L(G)))[∃σ∈PG−1(w), σ∩ΣS=∅] by Proposition 7.2. Trivially, 

(∀w∈P(L(G)))[∃σ∈PG−1(w), sufobk+1(σ)∩ΣS=∅], ∀k∈ +. Thus, G is k-observation 

event-opaque w.r.t. ΣS, ∀k∈ +.                                           ■               

Example 7.3: Consider again the DFA G =(X, Σ, δ, x0) in Fig. 7.1, where Σo={a, b, c, 

d}, Σu={u1-u4, s} and ΣS={s}. As discussed in Example 7.1 or 7.2, G is not 2-

observation event-opaque. Thus, it is not K-observation event-opaque for any K≥2 and 

is not infinite-observation event-opaque due to Results 7.1 and 7.2.               ♦ 

infinite-observation 
event-opacity

l-observation event-opacity

k-observation event-opacity

k > l ≥1 
 

Fig. 7.3 Relationship among infinite-observation, k-observation and l-observation 
event-opacity with k>l≥1 
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7.4.2 Related Notions: (K-step) Diagnosability 

We observe that K-observation and infinite-observation event-opacity are closely 

related to (K-step) diagnosability [83]. Thus, this subsection is devoted to the analysis 

on their relationship. To this end, we recall the definitions of diagnosability and K-step 

diagnosability as follows.  

Definition 7.3 [83]: A DFA G=(X, Σ, δ, x0) is diagnosable w.r.t. a set of fault events 

ΣF⊆Σu if  

(∀α∈Ψ(ΣF))(∃K∈ +)(∀β∈L(G)/α: |P(β)|≥K) 

  [∀σ∈PG−1(P(αβ)), σ∩ΣF≠∅]. 

Definition 7.4 [83]: A DFA G=(X, Σ, δ, x0) is K-step diagnosable w.r.t. a set of fault 

events ΣF⊆Σu if  

(∀α∈Ψ(ΣF))(∀β∈L(G)/α: |P(β)|≥K) 

 [∀σ∈PG−1(P(αβ)), σ∩ΣF≠∅]. 

For the purpose of comparison, we illustrate the definitions of diagnosability, K-step 

diagnosability, K-observation event-opacity and infinite-observation event-opacity in 

Fig. 7.4, where we only consider one fault-ended string α∈Ψ(ΣF) or one secret-ended 

string α∈Ψ(ΣS) and assume that three traces follow α. Note that every dot on the traces 

implies the occurrence of an observable event. Thus, every dot corresponds to an 

observation w∈P(L(G)). Besides, the following notations are introduced in Fig. 7.4 for 

intuition:  

A: [∀σ∈PG−1(w), σ∩Σ'≠∅]; 

AK: [∀σ∈PG−1(w), sufobK+1(σ)∩Σ'≠∅], 

where Σ'⊆Σu is a set of fault events ΣF or a set of secret events ΣS depending on the 

context. Accordingly, it follows that 

A
___

 : [∃σ∈PG−1(w), σ∩Σ'=∅]; 

A
___

K : [∃σ∈PG−1(w), sufobK+1(σ)∩Σ'=∅]. 
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Fig. 7.4 Illustration of different notions 

 

First, let us focus on the notions of diagnosabilty and infinite-observation event-

opacity. We observe that diagnosability implies that, for any fault-ended string α and 

any of its following string β∈L(G)/α, as long as β produces a sufficiently long 

observable word, P(αβ) satisfies condition A, i.e., the observation P(αβ) reveals the 

occurrence of a fault. In contrast, infinite-observation event-opacity implies that, for 

any secret-ended string α and any of its following string β∈L(G)/α, the observation 

P(αβ) can never satisfy condition A, i.e., P(αβ) can never reveal the occurrence of a 

secret. Consequently, the following result holds. 

Proposition 7.3: Given a DFA G=(X, Σ, δ, x0) and a set of events Σ'⊆Σu, it holds that  

G is infinite-observation event-opaque w.r.t. Σ'  

 G is not diagnosable w.r.t. Σ'.  

Proof: Straightforward from Definitions 7.2 and 7.3.                       ■ 

We observe that a DFA can be neither infinite-observation event-opaque nor 

diagnosable w.r.t. a set of events Σ'⊆Σu. For example, the DFA G=(X, Σ, δ, x0) in Fig. 

7.5 (a), where Σo={a, b, c, d, e, f} and Σu={u1, t}, is neither infinite-observation event-

opaque nor diagnosable w.r.t. Σ'={t}.  
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(a) Neither diagnosable nor infinite-observation event-opaque DFA w.r.t. Σ'={t} 
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(b) Neither 1-step diagnosable nor 1-observation event-opaque DFA w.r.t. Σ'={t} 
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(c) Both 1-observation event-opaque and diagnosable DFA w.r.t. Σ'={t} 

Fig. 7.5 Examples of DFA with different properties 

 

Now, looking at Fig. 7.4 (c) and (d), let us consider the relationship between K-step 

diagnosability and K-observation event-opacity. We observe that K-step diagnosability 

requires that every time a fault occurs, at the latest when the K-th observable event 

occurs after that, condition A is satisfied, i.e., it is revealed that a fault has occurred. In 

contrast, K-observation event-opacity requires that every time a secret occurs, within 

the occurrence of K observable events after that, condition AK is never satisfied, i.e., it 

can never be established that a secret occurred in the middle of the past K+1 observable 

events. Note that K-observation event-opacity cares about the (K+1)-observation suffix 

of a string rather than the whole string, which is different from the other three notions. 

Indeed, the following result holds. 
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Proposition 7.4: Given a DFA G=(X, Σ, δ, x0) and a set of events Σ'⊆Σu, it holds that  

G is K-observation event-opaque w.r.t. Σ'  

 G is not K-step diagnosable w.r.t. Σ'.  

Proof: Two cases related to Ψ(Σ') should be distinguished: 1) ∃α∈Ψ(Σ'), |P(α)|=0; 

and 2) ∀α∈Ψ(Σ'), |P(α)|≥1. 

(Case 1) Let β∈L(G)/α such that |P(β)|=K. By Definition 7.1,  

∃σ∈PG−1(P(αβ)), sufobK+1(σ)∩Σ'=∅. 

It is easy to realize that |P(σ)|=|P(αβ)|=K. Thus, σ=sufobK+1(σ). As a result, σ∩Σ'=∅. 

(Case 2) Let α∈Ψ(Σ') such that  

∀α'∈Ψ(Σ'), P(α')∉ ( ) \{ ( )}P Pα α .                  (1) 

Let β∈L(G)/α such that |P(β)|=K. By Definition 7.1,  

 ∃σ∈PG−1(P(αβ)), sufobK+1(σ)∩Σ'=∅.                (2) 

Since |P(α)|≥1, it follows that ∃σ1, σ2∈Σ* and e∈Σo, such that σ =σ1eσ2 with P(σ2)=P(β) 

and P(σ1e)=P(α). Thus, by (1), it holds that ∀α'∈Ψ(Σ'), P(α')∉ 1( )P σ . This implies 

that σ1∩Σ'=∅. In addition, it is eσ2=sufobK+1(σ). By (2), it follows that eσ2∩Σ'=∅. 

Hence, σ∩Σ'=∅.  

Consequently, in any case it holds that  

(∃α∈Ψ(Σ'))(∃β∈L(G)/α: |P(β)|=K) 

 [∃σ∈PG−1(P(αβ)), σ∩Σ'=∅]. 

According to Definition 7.4, G is not K-step diagnosable w.r.t. Σ'.              ■                 

We note that a DFA can be neither K-step diagnosable nor K-observation event-

opaque w.r.t. a set of events Σ'⊆Σu. As an example, the DFA G=(X, Σ, δ, x0) in Fig. 7.5 

(b), where Σo={a, b, c, d} and Σu={u1-u3, t}, is neither 1-step diagnosable nor 1-

observation event-opaque w.r.t. Σ'={t}. In detail, if we focus on string u1at∈Ψ(Σ'), the 

strings u1atb and u2ab share the same observation ab. Thus, G is not 1-step diagnosable 

w.r.t. Σ'. On the other hand, if we focus on string u1atbct∈Ψ(Σ'), the strings u1atbctd 

and u2abctu3d have the same observation abcd and their 2-observation suffixes, i.e., ctd 

and ctu3d, both contain the event t. Thus, G is not 1-observation event-opaque w.r.t. Σ'. 
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As mentioned above, an infinite-observation event-opaque DFA is K-observation 

event-opaque. In addition, it is easy to see that a K-step diagnosable DFA is diagnosable. 

Besides, it could happen that a DFA is both K-observation event-opaque and 

diagonosable w.r.t. a set of events Σ'⊆Σu. As an example, the DFA G=(X, Σ, δ, x0) in 

Fig. 7.5 (c), where Σo={a, b, c, d} and Σu={u1, u2, t}, is 1-observation event-opaque and 

diagonosable w.r.t. Σ'={t}. It could also happen that a DFA is neither K-observation 

event-opaque nor diagonosable w.r.t. a set of events Σ'⊆Σu. Consider again the DFA in 

Fig. 7.5 (a). It is neither K-observation event-opaque nor diagonosable w.r.t. Σ'={t}. 

According to all the above analysis, the relationship among these notions can be 

summarized in the Venn diagram in Fig. 7.6 considering a given K∈ + and the same 

set Σ'⊆Σu. 

diagnosability

K-observation event-opacity

infinite-observation 
event-opacity

K-step 
diagnosability

the set of all DFA
 

Fig. 7.6 Relationship among infinite-observation event-opacity, K-observation event-
opacity, diagnosability and K-step diagnosability 

 

Remark 7.2: We notice that, in some papers, e.g. in [10], the definition of K-step 

diagnosability is slightly different from the one considered in this work. The difference 

is that K in [10] counts the number of events instead of the number of observable events 

that occur after a fault. In this work, we focus on the definition where K refers to the 

number of observable events that occur after a fault. By the way, it is clear that K in the 

definition of K-observation event-opacity refers to the number of observable events that 

occur after a secret. In order to avoid ambiguity, we name it K-observation event-

opacity rather than K-step event-opacity.                                   ♣ 
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7.4.3 Event-opacity and Combinational Event-opacity 

In this subsection, we propose generalized notions of event-based opacity considering 

more general scenarios by relaxing assumptions A1 and A2 made before.  

First, we consider the scenario where assumption A1 is relaxed such that the critical 

horizons of different secret events are allowed to be different. Hence, we introduce a 

function K: ΣS→ +∪{+∞} that associates with each secret event a positive integer 

that may go to infinity, characterizing the critical horizon of the secret event. In this 

scenario, we propose the notion of event-opacity that generalizes the notion of K-

observation/infinite-observation event-opacity. Note that we assume sufob+∞(σ)=σ for 

σ∈Σ*. 

Definition 7.5: A DFA G=(X, Σ, δ, x0) is said to be event-opaque w.r.t. ΣS⊆Σu and K: 

ΣS→ +∪{+∞} if 

(∀w∈P(L(G)))(∃σ∈PG−1(w)) 

[∀s∈ΣS, ( ) 1( ) { }ssufob sK s+ Ç =Æ ]. 

Event-opacity implies that for any observation from the DFA, there exists at least one 

consistent string such that any secret event s is not contained in the (K(s)+1)-

observation suffix of the consistent string. In terms of the motivational example, this 

means that every day the competitor gets the observation on issued public decisions, 

there exists a possibility that none of the secret decisions is within its critical horizon. 

Thus, the “conservative” competitor never takes an action, which guarantees the 

security of the decision-making model. 

Furthermore, we consider a more general scenario by relaxing assumption A2 as well 

such that the adversary may distinguish among secret events. The physical meaning 

behind it is that the competitor needs to take different actions for different classes of 

secret decisions.  
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In this scenario, we assume that there is a partition Pm of the set of secret events ΣS 

such that ΣS is partitioned into m∈ + disjoint sets, that is, 

1 2 ... m
S S S SS =S ÈS È ÈS   . 

Accordingly, we denote K1, K2, …, Km the restrictions of K: ΣS→ +∪{+∞} to ΣS1, 

ΣS2, …, ΣSm, respectively. Then, we introduce the following notion.  

Definition 7.6: Given a DFA G=(X, Σ, δ, x0), a set of secret events ΣS⊆Σu, K: 

ΣS→ +∪{+∞}, and a partition Pm of ΣS, G is said to be combinational event-opaque 

w.r.t. (ΣS, K, Pm) if it is event-opaque w.r.t. ΣSi and Ki, ∀i∈{1, 2, …, m}, i.e., 

(∀i∈{1, 2, …, m})(∀w∈P(L(G)))(∃σ∈PG−1(w)) 

[∀s∈ΣSi, 
( ) 1

( ) { }i s
sufob s

K
s

+
Ç =Æ ]. 

The combinational event-opacity w.r.t. (ΣS, K, Pm) implies that for each class ΣSi, 

i∈{1, 2, …, m}, every observation corresponds to a possibility that none of the secrets 

in the class ΣSi is within its critical horizon. In the motivation example, this means that 

it could happen that when getting an observation, the competitor knows for sure that a 

secret decision is within its critical horizon but it cannot argue to which class it belongs. 

For example, Table 7.1 shows a case related to an observation w∈P(L(G)), where G is 

a combinational event-opaque DFA w.r.t. (ΣS, K, P2). There are three consistent strings 

corresponding to w. We observe that the competitor knows for sure that a secret 

decision among one of the classes ΣS1 and ΣS2 is now within its critical horizon but it 

cannot know to which class it belongs based on the observation w. In the case that 

different classes of secret decisions require different actions, the “conservative” 

competitor still cannot take an action. Thus, the combinational event-opacity implies 

the security of the decision-making model. 
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Table 7.1 A case related to w∈P(L(G)), where G is a  
combinational event-opaque DFA w.r.t. (ΣS, K, P2) 

 PG−1(w) ΣS1 ΣS2 

w∈P(L(G)) 

σ1 √ × 

σ2 × √ 

σ3 √ √ 

* “√” denotes ∃s∈ΣS
i, ( ) 1

( ) { }
s

sufob siK
s

+
Ç ¹Æ   *“×” denotes ∀s∈ΣS

i, ( ) 1
( ) { }

s
sufob siK

s
+

Ç =Æ  

Result 7.3: Given a DFA G=(X, Σ, δ, x0), a set of secret events ΣS⊆Σu, K: ΣS→

+∪{+∞} and a partition Pm of ΣS,  

G is event-opaque w.r.t. ΣS and K 

 G is combinational event-opaque w.r.t. (ΣS, K, Pm).  

Proof: It trivially holds by Definitions 7.5 and 7.6.                         ■ 

Result 7.3 indicates that the event-opacity w.r.t. ΣS and K typically characterizes a 

stronger security requirement than the combinational event-opacity w.r.t. (ΣS, K, Pm). 

7.5 Verification Methods 

In this section, we propose methods for the verification of the proposed notions. In 

particular, we first introduce the verification method for event-opacity in an exhaustive 

manner, which is then reduced to be applied to the verification of K-observation and 

infinite-observation event-opacity and modified to be applied to the verification of 

combinational event-opacity. 

7.5.1 Verification of Event-opacity 

We propose a solution based on the construction of the event-opacity verifier, which 

is a DFA where every node consists of compound states of the considered system. We 

introduce the notion of compound states as well as related notations as follows and then 

formally define the verifier. 

Given a DFA G=(X, Σ, δ, x0), a compound state of G is xc∈Σ*×X×La, where La={“∅”, 

“S”}. In other words, a compound state is a triple consisting of an event string, a state 
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and a label that is either “∅” or “S”. The label “∅” (resp., “S”) indicates that its 

associated state is reachable from the initial state of G via a string without (resp., with) 

secret events. 

Given a set of secret events ΣS'⊆ΣS, we define the label evolution function as 
S'

hS : 

La×Σ*→La such that ∀l∈La, ∀σ∈Σ*,  

" " " "
( , )

" "S

Sif l
l

S otherwise'

's
h sS

ì Æ = Æ  ÇS =Æïï=íïïî
. 

Note that it holds 1 2 1 2( , ) ( ( , ), )
S S S

l l' ' 'h s s h h s sS S S= , ∀l∈La, ∀σ1, σ2∈Σ*. 

Given a set of compound states Xc∈
*

2 X LaS ´ ´  and a set of secret events ΣS'⊆ΣS, we 

define the set of compound states that are unobservably reachable from some compound 

state in Xc as 

( )
S cUR X'S ={(σ', x', l')∈Σ*×X×La |  

∃(σ, x, l)∈Xc, ∃u∈Σu*, s.t. δ(x, u)=x' ∧ σu=σ' ∧ l'= ( , )
S

l u'hS }. 

We define the set of observable events that are enabled at the set Xc as  

Eno(Xc)={v∈Σo| ∃(σ, x, l)∈Xc, s.t. δ(x, v)!}. 

Moreover, we define the set of compound states that are reachable from some 

compound state in Xc via an enabled observable event v∈Eno(Xc) as 

Next(Xc, v)={(σ', x', l')∈Σ*×X×La | ∃(σ, x, l)∈Xc, s.t. δ(x, v)=x'∧σv=σ'∧ l'=l}. 

Example 7.4: Consider the DFA G=(X, Σ, δ, x0) in Fig. 7.7, where Σo={a, b, c, d, e}, 

Σu={u1-u3, s1-s5}, ΣS={s1-s5}, and a set of compound states Xc={(a, 1, ∅), (u3a, 13, ∅)}. 

It is ( )'S cUR XS ={(a, 1, ∅), (au1, 4, ∅), (au2, 8, ∅), (u3a, 13, ∅), (u3as3, 14, S)} given 

ΣS'={s3, s5} and it is ( )'S cUR XS ={(a, 1, ∅), (au1, 4, ∅),  (au2, 8, ∅), (u3a, 13, ∅), (u3as3, 

14, ∅)} given ΣS'={s5}. Moreover, Eno(Xc)={c} and Next(Xc, c)={(ac, 2, ∅)}.      ♦ 
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Fig. 7.7 DFA G with ΣS={s1-s5} 

In the remainder of the chapter, without loss of generality, we assume that, under the 

function K: ΣS→ +∪{+∞}, ΣS can be divided into n+1 categories with different 

critical horizons, that is,  

1 2 ( ) ( )...S S S S n S +¥S =S ÈS È ÈS ÈS    , 

with ∀s∈ΣSi, K(s)=Ki∈ +, i∈{1, 2, …, n}, and ∀s∈ΣS(+∞), K(s)=+∞. Moreover, we 

denote Kmax=max{K1, K2, …, Kn}. Note that we specify Kmax= −1 in the special case 

that ΣS=ΣS(+∞). In addition, we define sufob0(σ)=ϵ, ∀σ∈Σ*. Now, we are ready to 

introduce the event-opacity verifier. 

Definition 7.7: Given a DFA G=(X, Σ, δ, x0) with a set of secret events ΣS⊆Σu and K: 

ΣS→ +∪{+∞}, the event-opacity verifier is defined as a DFA 

VerK(G)=(Z, Σo, δZ, z0), 

where  

 Z ⊆ *

2 X L aS ´ ´ ; 

 z0={(sufobKmax+1(σ), x, l)| (σ, x, l)∈
( ) 0({( , , )})

S
UR x

+¥S Æ }; 

 δZ: Z×Σo→Z is the transition function such that  

∀z∈Z, ∀v∈Σo, if v∈Eno(z), δZ(z, v) is defined such that  
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δZ(z, v)={(sufobKmax+1(σ), x, l)| (σ, x, l)∈
( )

( ( , ))
S

UR Next z v
+¥S }. 

VerK(G) is defined only considering the accessible part from its initial state. 

In other words, the verifier VerK(G) can be constructed as follows. First, the initial 

node z0={(sufobKmax+1(σ), x, l)| (σ, x, l)∈
( ) 0({( , , )})

S
UR x

+¥S Æ } is created. Normally, in 

the case that Kmax ≠−1, it is z0=
( ) 0({( , , )})

S
UR x

+¥S Æ . Next, for each enabled observable 

event v∈Eno(z0), we compute the next node z={(sufobKmax+1(σ), x, l)| (σ, x, l)∈

( ) 0( ( , ))
S

UR Next z v
+¥S }. Specifically, we first compute 

( ) 0( ( , ))
S

UR Next z v
+¥S  and then 

update each string in it by keeping its (Kmax+1)-observation suffix only, which results 

in node z. If node z already exists, we add a transition from node z0 to node z via event 

v; otherwise, we create node z together with a transition from node z0 to node z via event 

v and then for each enabled observable event v∈Eno(z), the above procedure is repeated 

to generate nodes. Finally, the event-opacity verifier is constructed. 

Remark 7.3: The event-opacity verifier contains a finite number of states. This is 

because we only keep the (Kmax+1)-observation suffix for any event string in the verifier 

and the considered system does not contain any cycle with unobservable events only.               

♣ 

Example 7.5: Consider the DFA G=(X, Σ, δ, x0) in Fig. 7.7, where Σo={a, b, c, d, e}, 

Σu={u1-u3, s1-s5} and ΣS={s1-s5}. Given a function K: ΣS→ +∪{+∞} such that 

K(s1)=1, K(s2)=K(s4)=2, K(s3)=K(s5)=+∞, 

we construct its event-opacity verifier w.r.t. ΣS and K.  

It is Kmax=2 and ΣS(+∞)={s3, s5}. Thus, when constructing the event-opacity verifier, 

we always keep the 3-observation suffix of every computed string and update labels 

considering secret events s3 and s5. In more detail, we first create the initial node z0={(ϵ, 

0, ∅), (u3, 12, ∅)}. Since Eno(z0)={a}, we compute Next(z0, a)={(a, 1, ∅), (u3a, 13, 

∅)} and then node z1=UR{s3,s5}(Next(z0, a))={ (a, 1, ∅), (au1, 4, ∅),  (au2, 8, ∅), (u3a, 
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13, ∅), (u3as3, 14, S)} is created with a transition from z0 to z1 via a. Similarly, nodes 

are created one by one, resulting in the event-opacity verifier VerK(G) in Fig. 7.10.   ♦              

We note that the event-opacity verifier VerK(G), if the string and label components 

are ignored in each node, coincides with the observer [15] of G or is the state space 

refinement of the observer of G. In either case, it implies that the language of the verifier 

is the same as the set of all observations produced by G. Moreover, in each node of the 

verifier, each compound state is computed considering a possible consistent string 

corresponding to an observation leading to the node. Specifically, the compound state 

consists of a “string component” that is the (Kmax+1)-observation suffix of the 

considered string, a “state component” that is the state of G reached by the string, and 

a “label component” that reflects the information on whether a secret event in ΣS(+∞) 

occurred in the string. Such properties of the event-opacity verifier are formalized as 

follows. 

Lemma 7.1: Given a DFA G=(X, Σ, δ, x0) with a set of secret events ΣS⊆Σu, K: ΣS→

+∪{+∞}, and the event-opacity verifier VerK(G)=(Z, Σo, δZ, z0), it holds that 

1) ∀w∈L(VerK(G)),  

δZ(z0, w)={(sufobKmax+1(σ), δ(x0, σ), 
( )

( , )
S

h s
+¥S Æ )| σ∈PG−1(w)}; 

2) P(L(G))=L(VerK(G)). 

Proof: See the Appendix.                                             ■  

Given an observation, the event-opacity verifier allows us to determine whether a 

secret event in ΣS1, ΣS2, …, ΣS(n) is in its critical horizon by checking the “string 

components” of the corresponding node and determine whether a secret event in ΣS(+∞) 

occurred by checking the “label components” of the node. Consequently, a method is 

developed for the verification of event-opacity, which is indicated by the following 

result. In words, we can verify the event-opacity by checking if there exists a node in 

the verifier where for every compound state, either it contains a label “S” or there exists 
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i∈{1, 2, …, n} such that the (Ki+1)-observation suffix of its “string component” 

contains a secret event in ΣSi. 

Theorem 7.1: Given a DFA G=(X, Σ, δ, x0) with a set of secret events ΣS⊆Σu, K: ΣS→

+∪{+∞}, and the event-opacity verifier VerK(G)=(Z, Σo, δZ, z0), 

G is not event-opaque w.r.t. ΣS and K 

(∃z∈Z)(∀(σ, x, l)∈z)  

[(l=“S”) ∨ (∃i∈{1, 2, …, n}: sufobKi+1(σ)∩ΣSi≠∅)] 

Proof: (=>) By Definition 7.5, it is  

(∃w∈P(L(G)))( ∀σ∈PG−1(w)) [∃s∈ΣS, ( ) 1( ) { }K ssufob ss+ Ç ¹Æ ].     (3) 

Since P(L(G))=L(VerK(G)) by Lemma 7.1, we can find a node z∈Z, s.t. δZ(z0, w)=z. 

Moreover, it is  

z={(sufobKmax+1(σ), δ(x0, σ), 
( )

( , )
S

h s
+¥S Æ )| σ∈PG−1(w)}. 

Thus, due to (3), ∀(σ', x, l)∈z, [(l=“S”) ∨ (∃i∈{1, 2, …, n}: sufobKi+1(σ')∩ΣSi≠∅)]. 

(<=) There exists a string w∈L(VerK(G)) such that δZ(z0, w)=z. By Lemma 7.1, it is  

z={(sufobKmax+1(σ), δ(x0, σ), 
( )

( , )
S

h s
+¥S Æ )| σ∈PG−1(w)}. 

Since ∀(σ', x, l)∈z, [(l=“S”) ∨ (∃i∈{1, 2, …, n}: sufobKi+1(σ')∩ΣSi≠∅)], it follows that 

∀σ∈PG−1(w), [∃s∈ΣS, ( ) 1( ) { }K ssufob ss+ Ç ¹Æ ]. Since P(L(G))=L(VerK(G)), it holds 

that  

(∃w∈P(L(G)))( ∀σ∈PG−1(w))[∃s∈ΣS, ( ) 1( ) { }K ssufob ss+ Ç ¹Æ ]. 

Thus, G is not event-opaque w.r.t. ΣS and K by Definition 7.5.                 ■                

Example 7.5 (Continued): We verify whether the DFA G in Fig. 7.7 is event-opaque 

w.r.t. ΣS and K based on its event-opacity verifier VerK(G) in Fig. 7.10. We can see 

that there is a node (in grey) where one compound state is with label “S” and the other 

satisfies that s1 is included in the (K(s1)+1)-observation suffix of its string component. 
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By Theorem 7.1, we conclude that G is not event-opaque w.r.t. ΣS and K. Indeed, when 

we observe w=aca, we know for sure that a secret event (s1 or s3) is in its critical horizon.               

♦ 

Remark 7.4: We analyze the complexity of the proposed verification method. It is 
*

max 12 K X LaZ +S ´ ´Í , where *
max 1K +S  denotes the set of (Kmax+1)-observation suffixes of 

strings in *S . Suppose that at most a∈ + continuous unobservable events appear in 

strings in L(G). Then, the verifier VerK(G) contains at most max 1 ( max 1)(| | 1) (| | 1) | |4
K a K

o u X+ ´ +S + ´ S + ´  

states and 
max 1 ( max 1)(| | 1) (| | 1) | || | 4

K a K
o u X

o

+ ´ +S + ´ S + ´S ´ transitions. The complexity of detecting a 

state in VerK(G) is linear with respect to the number of states of VerK(G). Thus, the 

overall complexity of the proposed verification method is 
max 1 ( max 1)(| | 1) (| | 1) | |(| | 4 )

K a K
o u X

o

+ ´ +S + ´ S + ´S ´O .               ♣ 

Remark 7.5: In the case that ΣS(+∞)=∅, i.e., there is no secret event in ΣS whose critical 

horizon is infinite, the “label components” can be omitted when we construct the event-

opacity verifier. In the case that ΣS=ΣS(+∞), i.e., every secret event in ΣS has infinite 

critical horizon, the “string components” can be omitted. The second case is exactly the 

verification of infinite-observation event-opacity, which is discussed in more detail in 

the next subsection.                                                    ♣  

7.5.2 Verification of K-observation and Infinite-observation Event-opacity 

We know that K-observation and infinite-observation event-opacity are special cases 

of event-opacity. Thus, in this subsection, we show verification methods of such 

properties consisting in a reduction of the verification method for event-opacity.  

Let us first focus on infinite-observation event-opacity. It holds that ΣS=ΣS(+∞). Thus, 

“string components” are omitted when we construct the event-opacity verifier. We 

rename the verifier as infinite-observation event-opacity verifier, denoted as 

Ver∞(G)=(Q, Σo, δQ, q0). Then, we have the following corollary from Theorem 7.1. 
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Corollary 7.1: Given a DFA G=(X, Σ, δ, x0) with a set of secret events ΣS⊆Σu and the 

infinite-observation event-opacity verifier Ver∞(G)=(Q, Σo, δQ, q0),  

G is not infinite-observation event-opaque w.r.t. ΣS 

∃ q∈Q, s.t. ∀(x, l)∈q, l=“S”. 

In words, the infinite-observation event-opacity can be verified by checking if there 

exists a node in the verifier where every label is “S”. 

Consider K-observation event-opacity. It is the case that ΣS(+∞)=∅ and Kmax=K. Thus, 

“label components” are omitted in the event-opacity verifier and the “string components” 

are the (K+1)-observation suffixes of all computed strings. We rename the verifier as 

K-observation event-opacity verifier, denoted as VerK(G)=(Y, Σo, δY, y0). Then, we have 

the following corollary from Theorem 7.1.  

Corollary 7.2: Given a DFA G=(X, Σ, δ, x0) with a set of secret events ΣS⊆Σu, K∈ +, 

and the K-observation event-opacity verifier VerK(G)=(Y, Σo, δY, y0),  

G is not K-observation event-opaque w.r.t. ΣS 

∃ y∈Y, s.t. ∀(σ, x)∈y, σ∩ΣS≠∅. 

In words, K-observation event-opacity can be verified by checking if there exists a 

node in the verifier where every string contains a secret event. 

Example 7.6: Consider again the DFA G =(X, Σ, δ, x0) in Fig. 7.1, where Σo={a, b, c, 

d}, Σu={u1-u4, s} and ΣS={s}.  

1) We verify if it is infinite-observation event-opaque w.r.t. ΣS. Then, we construct 

its infinite-observation event-opacity verifier Ver∞(G)=(Q, Σo, δQ, q0) shown in Fig. 7.8.  

We can see that there exists a node q4 where the labels are both “S”. Thus, G is not 

infinite-observation event-opaque w.r.t. ΣS.  

2) We verify if it is 2-observation event-opaque w.r.t. ΣS. Then, we construct its 2-

observation event-opacity verifier Ver2(G)=(Y, Σo, δY, y0) shown in Fig. 7.9. We can see 

that there exists a node y4 where both strings contain a secret event. Thus, G is not 2-

observation event-opaque w.r.t. ΣS.                                       ♦ 
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Fig. 7.8 Infinite-observation event-opacity verifier of G in Fig. 7.1 
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(u1absu3, 5)
 (u2au4b, 10)

b (absu3c, 6)
(au4bc, 11)
(au4bcs, 12)

c

K=2

(bsu3cd, 6)
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Fig. 7.9 2-observation event-opacity verifier of G in Fig. 7.1 

 

Remark 7.6: The infinite-observation event-opacity verifier is similar to the 

diagnoser [83]. However, in the diagnoser, “A” is introduced as a label, indicating the 

“ambiguous” situation of a state, while in the infinite-observation event-opacity verifier, 

no ambiguous state is present but it could happen that there are two labeled states only 

differing for their labels even in the same node.                             ♣                

7.5.3 Verification of Combinational Event-opacity  

Combinational event-opacity can be verified by checking the event-opacity of each 

class of secret events, which means that it can be verified based on the construction of 

multiple event-opacity verifiers. In this subsection, we introduce a verification method 

for combinational event-opacity based on a verifier, which differs from the event-

opacity verifier for the extension of the label set. 

Specifically, we extend the label set such that La= 1 2{ , ,..., }2
mS S S , where each Si indicates 

a class of secret events. Accordingly, given a set of secret events ΣS'⊆ΣS with 
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ΣS'=ΣS'(1)∪ΣS'(2) ∪…∪ΣS'(m), the label evolution function is updated as 
S'

hS : 

La×Σ*→La such that 

∀l∈La, ∀σ∈Σ*, ( )( , ) { : }
S

i i
Sl l S' 'h s sS = È S Ç ¹Æ . 

By using the updated label set and the label evolution function, the verifier in Definition 

7.7 can be used to verify the combinational event-opacity of G w.r.t. (ΣS, K, Pm). We 

denote the verifier as , ( )K PmVer G  with no need to formalize its definition.  

In order to present the verification method, we assume that, without loss of generality, 

each class ΣSi, i∈{1, 2, …, m} under the function K: ΣS→ +∪{+∞}, is divided into 

ni+1 categories with different critical horizons, that is, 

1 2 ( )( )
... i

i i i i i
S S S SS n +¥S =S ÈS È ÈS ÈS    , 

where ∀s∈ΣSij, K(s)=Kij∈ +, j∈{1, 2, …, ni}, and ∀s∈ ( )
i
S +¥S , K(s)=+∞. 

Theorem 7.2: Given a DFA G=(X, Σ, δ, x0), a set of secret events ΣS⊆Σu, K: 

ΣS→ +∪{+∞}, a partition Pm of ΣS, and the verifier , ( )K PmVer G =(Z, Σo, δZ, z0), 

G is not combinational event-opaque w.r.t. (ΣS, K, Pm) 

(∃i∈{1, 2, …, m})(∃z∈Z)(∀(σ, x, l)∈z)  

[(Si∈l) ∨ (∃j∈{1, 2, …, ni}: 1
( )i

j

i
S jK

sufob s
+

ÇS ¹Æ)]. 

Proof: Similar to Lemma 7.1, it is P(L(G))=L( , ( )K PmVer G ) and ∀w∈L( , ( )K PmVer G ), 

δZ(z0, w)={(sufobKmax+1(σ), δ(x0, σ), 
( )

( , )
S

h s
+¥S Æ )| σ∈PG−1(w)}. Thus, the theorem can 

be proved similarly to Theorem 7.1 based on Definition 7.6.                    ■              

In words, the combinational event-opacity can be verified by checking if there is a 

class i of secret events and there is a node in the verifier , ( )K PmVer G  such that for 

every compound state in the node, either it contains a label indicating the class i or there 

exists a subclass ΣSij such that the (Kij+1)-observation suffix of its “string component” 

contains a secret event in ΣSij. 
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Example 7.7: Recall Example 7.5, where we consider the DFA G=(X, Σ, δ, x0) in Fig. 

7.7 with Σo={a, b, c, d, e}, Σu={u1-u3, s1-s5}, ΣS={s1-s5}, and K: ΣS→ +∪{+∞} such 

that 

K(s1)=1, K(s2)=K(s4)=2, K(s3)=K(s5)=+∞. 

Now, suppose that there exists a partition P2 of ΣS such that 1 2
S S SS =S ÈS , where 

ΣS1={s1, s4, s5} and  ΣS2={s2, s3}. We verify the combinational event-opacity of G w.r.t. 

(ΣS, K, P2).  

Since there are two classes of secret events, the label set is now La= 1 2{ , }2 S S . 

Specifically, “S1” records the occurrence of s5 since ΣS1(+∞)={s5} and “S2” records the 

occurrence of s3 since ΣS2(+∞)={s3}. The combinational event-opacity verifier 

2, ( )K PVer G  is shown in Fig. 7.11. Indeed, except the label components, it is the same 

as VerK(G) in Fig. 7.10. Looking at the node reached by the observation aca, it reveals 

that a secret event is in its critical horizon, but it does not reveal which class it is. In 

other words, neither for class 1 nor 2, the node satisfies the violation condition of 

combinational event-opacity in Theorem 7.2. Moreover, it can be checked that, no 

matter for class 1 or 2, none of nodes in 2, ( )K PVer G  satisfies the violating condition 

in Theorem 7.2. Consequently, G is combinational event-opaque w.r.t. (ΣS, K, P2).                 

Considering the practical scenario, the example together with Example 7.5 implies 

that in the case that the competitor has to distinguish between two sets of secret events 

ΣS1={s1, s4, s5} and ΣS2={s2, s3}, the security of the decision-making model is 

guaranteed, while in the case that the competitor does not distinguish among secret 

events, the security of the decision-making model is not guaranteed.              ♦               

Remark 7.7: Since La= 1 2{ , ,..., }2
mS S S , the complexity of the proposed verification 

method for combinational event-opacity is 
max 1 ( max 1)(| | 1) (| | 1) | | 2(| | 2 )

K a K m
o u X

o

+ ´ +S + ´ S + ´ ´S ´O .      

♣  
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Remark 7.8: The verification method can be simplified for special cases.  

Case 1: Secret events in each class ΣSi have the same critical horizon. Without loss of 

generality, we assume that there are g∈  (0≤g≤m) classes of secret events with infinite 

critical horizon and others with finite critical horizon. Moreover, it is assumed that 

∀i∈{1, 2, …, g}, ∀s∈ΣSi, K(s)=+∞ and ∀i∈{g, g+1, …, m}, ∀s∈ΣSi, K(s)=Ki∈ +. 

Then, based on the verifier , ( )mVer GK P , the following implication holds: 

G is not combinational event-opaque w.r.t. (ΣS, K, Pm) 

(∃i∈{1, 2, …, g})(∃z∈Z)(∀(σ, x, l)∈z)[(Si∈l)] 

∨(∃i∈{g, g+1, …, m})(∃z∈Z)(∀(σ, x, l)∈z) [( 1
( )i

i
SK

sufob s
+

ÇS ¹Æ)]. 

Case 2: All secret events in ΣS have the same critical horizon and it is K∈ +. Then, 

based on the verifier , ( )mVer GK P , the following implication holds: 

G is not combinational event-opaque w.r.t. (ΣS, K, Pm) 

(∃i∈{1, 2, …, m})(∃z∈Z)(∀(σ, x, l)∈z) [ 1( ) i
K Ssufob s+ ÇS ¹Æ )]. 

Case 3: All secret events in ΣS have the same critical horizon and it is K=+∞. Then, 

based on the verifier , ( )mVer GK P , the following implication holds: 

G is not combinational event-opaque w.r.t. (ΣS, K, Pm) 

(∃i∈{1, 2, …, m})(∃z∈Z)(∀(σ, x, l)∈z) [(Si∈l)]. 

Finally, in the case that ΣS(+∞)=∅, i.e., there is no secret event in ΣS whose critical 

horizon is infinite, the “label components” can be omitted in , ( )mVer GK P  and in the 

case that ΣS=ΣS(+∞), i.e., all secret events in ΣS are with infinite critical horizon, the 

“string components” can be omitted in , ( )mVer GK P .                         ♣ 
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Fig. 7.10 Verifier VerK(G) in Example 7.5 
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Fig. 7.11 Verifier 2, ( )Ver GK P  in Example 7.7 

7.6 Conclusions 

In this chapter, new notions of opacity, namely, K-observation event-opacity, infinite-

observation event-opacity, event-opacity and combinational event-opacity, are 

proposed. The relationship between K-observation/infinite-observation event-opacity 
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and (K-step) diagnosabililty is presented. Event-opacity is a notion generalized from K-

observation/infinite-observation event-opacity considering that different secret events 

may have different critical horizons and the combinational event-opacity is proposed in 

the case that the intruder distinguishes among secret events. Appropriate verifiers are 

introduced, which allow us to verify the proposed properties by checking their nodes. 

The work of this chapter is now under review by IEEE Transactions on Automatic 

Control. 
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7.7 Appendix: Proof of Lemma 7.1 

1) First, we consider ϵ∈L(VerK(G)). Clearly, |PG−1(ϵ)|≠∅. By Definition 7.7, δZ(z0, 

ϵ)=z0 ={(sufobKmax+1(σ), x, l)| (σ, x, l)∈
( ) 0({( , , )})

S
UR x

+¥S Æ }. Thus, it is trivial to see 

that  

δZ(z0, ϵ)={(sufobKmax+1(σ), δ(x0, σ), 
( )

( , )
S

h s
+¥S Æ )| σ∈PG−1(ϵ)}. 

Next, we consider w'∈L(VerK(G)) with w'=wv, where v∈Σo and w∈L(VerK(G)) 

satisfying |PG−1(w)|≠∅ and 

δZ(z0, w)={(sufobKmax+1(σ), δ(x0, σ), 
( )

( , )
S

h s
+¥S Æ )| σ∈PG−1(w)}.      (4) 

Clearly, δZ(z0, w)≠∅. Let z=δZ(z0, w). By Definition 7.7, v∈Eno(z) and  

δZ(z, v)= {(sufobKmax+1(σ), x, l)| (σ, x, l)∈
( )

( ( , ))
S

UR Next z v
+¥S }. 

Due to (4), since v∈Eno(z), it follows that  

∃σ∈PG−1(w), s.t. δ(x0, σv)!                      (5) 

and it holds that 

Next(z, v)={(sufobKmax+1(σ)v, δ(x0, σv), 
( )

( , )
S

vh s
+¥S Æ )| σ∈PG−1(w), δ(x0, σv)!}. 

Furthermore, it is 

( )
( ( , ))

S
UR Next z v

+¥S ={(sufobKmax+1(σ)vu, δ(x0, σvu), 
( )

( , )
S

vuh s
+¥S Æ )|  

σ∈PG−1(w), u∈Σu*, δ(x0, σvu)!}. 

Trivially, it is 

δZ(z, v)={(sufobKmax+1(σvu), δ(x0, σvu), 
( )

( , )
S

vuh s
+¥S Æ )|             

σ∈PG−1(w), u∈Σu*, δ(x0, σvu)!}.   (6) 

Note that it holds 

PG−1(w')=PG−1(wv)={σvu| σ∈PG−1(w), u∈Σu*, δ(x0, σvu)!}.         (7) 

Thus, |PG−1(w')|≠∅ due to (5). In addition, by (6) and (7), it follows  

δZ(z, v)= {(sufobKmax+1(σ'), δ(x0, σ'), 
( )

( , ')
S

h s
+¥S Æ )|σ'∈PG−1(w')}. 

Since z=δZ(z0, w) and w'=wv, it is 
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δZ(z0, w')=δZ(z, v)={(sufobKmax+1(σ'), δ(x0, σ'), 
( )

( , ')
S

h s
+¥S Æ )|σ'∈PG−1(w')}. 

Consequently, we conclude that ∀w∈L(VerK(G)), |PG−1(w)|≠∅ and  

δZ(z0, w)={(sufobKmax+1(σ), δ(x0, σ), 
( )

( , )
S

h s
+¥S Æ )| σ∈PG−1(w)}. 

2) It is proved that ∀w∈L(VerK(G)), |PG−1(w)|≠∅. It means ∀w∈L(VerK(G)), 

w∈P(L(G)). Thus, L(VerK(G))⊆P(L(G)). Next, we prove L(VerK(G))⊇P(L(G)).  

First, we consider ϵ∈P(L(G)). It is clear that ϵ∈L(VerK(G)).  

Next, we consider w'∈P(L(G)) s.t. w'=wv, where v∈Σo and 

w∈P(L(G))∧w∈L(VerK(G)). We prove w'∈L(VerK(G)). 

Since wv∈P(L(G)), w∈P(L(G)) and v∈Σo, it holds that 

∃σ∈PG−1(w), s.t. σv∈L(G).                      (8) 

Since w∈L(VerK(G)), there exists z∈Z s.t. 

z=δZ(z0, w)={(sufobKmax+1(σ), δ(x0, σ), 
( )

( , )
S

h s
+¥S Æ )| σ∈PG−1(w)}.     (9) 

Due to (8) and (9), it is v∈Eno(z). Thus, w'∈L(VerK(G)) since w∈L(VerK(G)). 

Consequently, it holds that ∀w∈P(L(G)), w∈L(VerK(G)), i.e., L(VerK(G))⊇P(L(G)). 

Therefore, P(L(G))=L(VerK(G)).                                        ■ 
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CHAPTER VIII   

Conclusions and Future Work 

8.1 Conclusions 

This thesis includes two topics on partially-observed discrete event systems (DES), 

namely, supervisory control and analysis.  

In the topic of supervisory control, Petri nets (PN) are used as a reference formalism. 

First, we investigate the forbidden state problem in PN with both unobservable and 

uncontrollable transitions, assuming that unobservable transitions are uncontrollable. 

An optimal on-line control policy with polynomial complexity is proposed for ordinary 

PN subject to an admissible Generalized Mutual Exclusion Constraint (GMEC) such 

that the observation subnet satisfies certain conditions in structure. How to obtain an 

optimal on-line control policy for PN subject to an arbitrary GMEC is also discussed. 

Next, the forbidden state problem in PN vulnerable to sensor-reading disguising attacks 

(SD-attacks) is studied. Given a control specification in terms of a GMEC, three 

methods to derive on-line control policies are provided. Finally, we still consider PN 

vulnerable to SD-attacks but deal with the liveness-enforcing problem. In this problem, 

by restricting the plant within a bounded system, an off-line method that synthesizes a 

liveness-enforcing supervisor tolerant to an SD-attack is proposed. 

In the topic of analysis, we focus on two properties that are related to system security, 

namely, fault-predictability and event-based opacity. In the framework of labeled PN, 

a verification approach for fault-predictability by characterizing the structure of the 

constructed Predictor Graph is developed together with two rules that reduce the size 
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of a PN without changing its fault-predictability. In the framework of deterministic 

finite-state automata, we propose four notions of event-based opacity, namely, K-

observation event-opacity, infinite-observation event-opacity, event-opacity and 

combinational event-opacity. Moreover, appropriate verifiers are proposed to verify the 

proposed four properties. 

8.2 Future Work 

We present the future work of the thesis in terms of the following four parts.  

8.2.1  Forbidden State Problem of DES With Unobservable and 

Uncontrollable Events 

The control policy in Chapter III has limited application due to restrictive 

assumptions made on the structures of PN. In order to extend the control policy to more 

general PN, the future work may be focused on the following two issues:  

1) study the efficient computation of the unobservable minimal decrease in PN with 

more general structures; and  

2) develop efficient techniques to equivalently transform an arbitrary GMEC into 

an admissible one for more general PN structures. 

8.2.2  Supervisory Control of DES Vulnerable to Network Attacks 

In this thesis, we consider sensor-reading disguising attacks (SD-attacks) only and 

assume that transitions in the considered PN are all controllable and observable. Thus, 

one future direction is extending the proposed methods in Chapters IV and V to more 

general types of attacks including erasing and/or adding observations and to more 

general systems containing unobservable and/or uncontrollable transitions. Concerning 

the liveness-enforcing problem studied in Chapter V, the computed liveness-enforcing 

supervisor is not guaranteed to be maximally permissive. Thus, in the future work, we 

plan to investigate how to guarantee the solution to be maximally permissive. 

Furthermore, we are interested in extending the proposed method to unbounded systems 
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based on the construction of coverability graphs. 

8.2.3  Fault-predictability 

As a future work we first plan to use the recent results on reachability analysis of 

unbounded PN in [27, 52] to reduce the complexity of verifying fault-predictability. 

Besides, we plan to study on-line fault prediction, namely we want to design an efficient 

tool that, once an observation is done, allows us to conclude if a fault will occur for 

sure, or it will not occur for sure, or we are in an uncertain condition. Finally, we may 

study the problem of fault-predictability enforcement, namely, given a system that is 

fault-unpredictable, we want to modify the labeling function (adding new sensors) to 

guarantee that the resulting system is fault-predictable. 

8.2.4  Event-based Opacity 

In the future work, we plan to study the enforcement of the proposed properties, 

considering the supervisory control and sensor activation techniques, respectively. Also, 

we are interested in extending the properties to distributed and decentralized settings. 
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