51 research outputs found

    Energy efficiency in next generation wireless networks: methodologies, solutions and algorithms

    Get PDF
    Mobile Broadband Wireless Access (BWA) networks will offer in the forthcoming years multiple and differentiated services to users with high mobility requirements, connecting via portable or wearable devices which rely on the use of batteries by necessity. Since such devices consume a relatively large fraction of energy for transmitting/receiving data over-the-air, mechanisms are needed to reduce power consumption, in order to increase the lifetime of devices and hence improve user’s satisfaction. Next generation wireless network standards define power saving functions at the Medium Access Control (MAC) layer, which allow user terminals to switch off the radio transceiver during open traffic sessions for greatest energy consumption reduction. However, enabling power saving usually increases the transmission latency, which can negatively affect the Quality of Service (QoS) experienced by users. On the other hand, imposing stringent QoS requirements may limit the amount of energy that can be saved. The IEEE 802.16e standard defines the sleep mode is power saving mechanism with the purpose of reducing energy consumption. Three different operation classes are provided, each one to serve different class of traffic: class I, best effort traffic, class II real time traffic and class III multicast traffic. Several aspects of the sleep mode are left unspecified, as it is usually done in standards, allowing manufacturers to implement their own proprietary solutions, thus gaining a competitive advantage over the rivals. The work of this thesis is aimed at verifying, the effectiveness of the power saving mechanism proposed into IEEE 802.16e standard, focusing on the mutual interaction between power saving and QoS support. Two types of delay constrained applications with different requirements are considered, i.e., Web and Voice over IP (VoIP). The performance is assessed via detailed packet-level simulation, with respect to several system parameters. To capture the relative contribution of all the factors on the energy- and QoS-related metrics, part of the evaluation is carried out by means of 2k · r! analysis. Our study shows that the sleep mode can achieve significant power consumption reduction, however, when real time traffic is considered a wise configuration of the parameters is mandatory in order to avoid unacceptable degradation of the QoS. Finally, based on the guidelines drawn through the analysis, we extend our contribution beyond a simple evaluation, proposing a power saving aware scheduling framework aimed at reducing further the energy consumption. Our framework integrates with existing scheduling policies that can pursue their original goals, e.g. maximizing throughput or fairness, while improving the energy efficiency of the user terminals. Its effectiveness is assessed through an extensive packet level simulation campaign

    On analyzing the intra-frame power saving potentials of the IEEE 802.16e downlink vertical mapping

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is generally considered as a competitive candidate networking technology for the realization of the 4G vision. Among the key factors towards its successful and widespread deployment are the effective support of mobility and the provision of mechanisms for enabling service access at a high quality level in an efficient and cost-effective manner. Nonetheless, this effort should take into account and adequately address strict and severe energy limitations that the mobile devices are currently facing. Power saving constitutes an issue of vital importance, as mobile terminals continue to incorporate more and more functionalities and energy-hungry features in order to support the ever increasing user requirements and demands. The standard employs variations of power saving classes in a frame-to-frame basis, while recent power saving mechanisms proposed in related research literature limit their activity in whole frames, neglecting, thus, the intra-frame power saving capabilities. In this work, the intra-frame energy conservation potentials of the mobile WiMAX network are studied and a novel analytical approach is provided, focusing on the downlink direction where the bandwidth allocation involves idle intervals and dynamic inactivity periods. Specifically, we endeavour to accurately analyse the potential energy conservation capabilities in an intra-frame point of view, applying the well-known simple packing algorithm to distribute the available bandwidth to the various subscribers. Our analytical findings are thoroughly cross-validated via simulation, providing clear insights into the intra-frame energy reduction capabilities

    Quality of service in WiMAX networks

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesO acesso à banda larga é um requisito importante na actualidade para satisfazer os utilizadores em termos de novas aplicações e serviços em tempo real. O WiMAX, como tecnologia sem fios para áreas metropolitanas, prometendo cobrir uma maior superfície e com maior débito, é uma tecnologia promissora para as redes de próxima geração. No entanto um requisito importante para a instalação e massificação desta tecnologia é o seu comportamento a nível de qualidade de serviços e garantia aos utilizadores do cumprimento eficiente dos requisitos de QoS. Esta tese aborda e estuda o suporte de qualidade de serviços para redes WiMAX presente em diferentes modelos de simulação, implementados na ferramenta de simulação ns-2. Para além da validação e comparação entre os modelos existentes, também é efectuada a especificação e implementação de uma solução de QoS composta por um classificador e escalonador, e é proposto e avaliado um algoritmo de escalonamento que utiliza prioritização de classes de serviço e informação física dinâmica “cross layer” para decisões de escalonamento no simulador. Para validar e avaliar as soluções propostas e desenvolvidas, um conjunto de cenários orientados para a utilização de vários serviços e aferição de métricas de QoS foram simulados. Os resultados obtidos mostram a diferenciação entre distintas classes de tráfego. O mecanismo proposto apresenta um pequeno ganho em débito e latência comparativamente às soluções previamente analisadas/implementadas. ABSTRACT: Broadband access is an important requirement to satisfy user demands and support a new set of real time services and applications. WiMAX, as a Broadband Wireless Access solution for Wireless Metropolitan Area Networks, covering large distances with high throughputs, is a promising technology for Next Generation Networks. Nevertheless, for the successful deployment and massification of WiMAX based solutions, Quality of Service (QoS) is a mandatory feature that must be supported. In this thesis , the QoS support for WiMAX in ns-2 simulation software is addressed. A QoS framework, composed by a packet classification mechanism and a scheduler, has been specified and implemented on the simulator, providing service differentiation over WiMAX networks. Furthermore, validation and comparison of different IEEE 802.16 simulation models is provided. Finally a scheduling solution is proposed and evaluated that uses prioritization and dynamic cross layer information for schedulling decisions in WiMAX networks. In order to validate the developed solutions, a set of QoS oriented scenarios have been simulated and the obtained results show that the implemented schedullers are able to efficiently differentiate between the different traffic classes and achieve gains in throughput and delay

    WiMax - a critical view of the technology and its economics

    Get PDF
    University of the Witwatersrand Faculty of Engineering and the Built Environment School of Information and Electrical EngineeringMobile Broadband is now more of a necessity than a luxury, especially amongst the younger generation, irrespective of where they live. Mobile WiMax and LTE, the latest and fastest Mobile Broadband technologies, mark significant improvements over 3G networks because they use IP (Internet Protocol) end-to-end. To end-users, this means faster network speeds, better quality services, and increased coverage area. To the Network Operators, this means simplified network architectures, efficient use of resources, and improved security. In this report, the different issues and challenges related to deploying Mobile WiMax (802.16e or 802.16m) in rural South Africa, were identifed and explored. In this project, Atoll, SONAR, and Touch Point analysis tools were used to determine which Mobile Broadband technology is economically and technically suited for rural South Africa. It was found that LTE yields superior performance results than WiMax, which in turn yields superior performance results to all other existing 3G technologies. However it will take time for LTE to reach rural areas therefore WiMax can be considered as a solution to extend Broadband services to rural South Africa and thus assist in bridging the digital divide. Recommendations on how best to deploy Mobile WiMax are made based on observations made from the experimental work.MT201

    Mobile Networks

    Get PDF
    The growth in the use of mobile networks has come mainly with the third generation systems and voice traffic. With the current third generation and the arrival of the 4G, the number of mobile users in the world will exceed the number of landlines users. Audio and video streaming have had a significant increase, parallel to the requirements of bandwidth and quality of service demanded by those applications. Mobile networks require that the applications and protocols that have worked successfully in fixed networks can be used with the same level of quality in mobile scenarios. Until the third generation of mobile networks, the need to ensure reliable handovers was still an important issue. On the eve of a new generation of access networks (4G) and increased connectivity between networks of different characteristics commonly called hybrid (satellite, ad-hoc, sensors, wired, WIMAX, LAN, etc.), it is necessary to transfer mechanisms of mobility to future generations of networks. In order to achieve this, it is essential to carry out a comprehensive evaluation of the performance of current protocols and the diverse topologies to suit the new mobility conditions

    Security-centric analysis and performance investigation of IEEE 802.16 WiMAX

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    A Technical and Market study for WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is a broadband wireless technology based on IEEE 802.16-2004 and IEEE 802.16e-2005. This thesis is a study of WiMAX technology and market. The background of WiMAX development is introduced and opportunities and challenges for WiMAX are analyzed in the beginning. Then the thesis focuses on an overview of WiMAX technology, which addresses the physical layer, MAC layer and WiMAX network architecture. The deployment status is investigated in the fourth chapter. Both product development situation and market status are discussed in this section. In the last chapter, the future development trend of WiMAX is addressed

    Energy Efficient and Cooperative Solutions for Next-Generation Wireless Networks

    Get PDF
    Energy efficiency is increasingly important for next-generation wireless systems due to the limited battery resources of mobile clients. While fourth generation cellular standards emphasize low client battery consumption, existing techniques do not explicitly focus on reducing power that is consumed when a client is actively communicating with the network. Based on high data rate demands of modern multimedia applications, active mode power consumption is expected to become a critical consideration for the development and deployment of future wireless technologies. Another reason for focusing more attention on energy efficient studies is given by the relatively slow progress in battery technology and the growing quality of service requirements of multimedia applications. The disproportion between demanded and available battery capacity is becoming especially significant for small-scale mobile client devices, where wireless power consumption dominates within the total device power budget. To compensate for this growing gap, aggressive improvements in all aspects of wireless system design are necessary. Recent work in this area indicates that joint link adaptation and resource allocation techniques optimizing energy efficient metrics can provide a considerable gain in client power consumption. Consequently, it is crucial to adapt state-of-the-art energy efficient approaches for practical use, as well as to illustrate the pros and cons associated with applying power-bandwidth optimization to improve client energy efficiency and develop insights for future research in this area. This constitutes the first objective of the present research. Together with energy efficiency, next-generation cellular technologies are emphasizing stronger support for heterogeneous multimedia applications. Since the integration of diverse services within a single radio platform is expected to result in higher operator profits and, at the same time, reduce network management expenses, intensive research efforts have been invested into design principles of such networks. However, as wireless resources are limited and shared by clients, service integration may become challenging. A key element in such systems is the packet scheduler, which typically helps ensure that the individual quality of service requirements of wireless clients are satisfied. In contrastingly different distributed wireless environments, random multiple access protocols are beginning to provide mechanisms for statistical quality of service assurance. However, there is currently a lack of comprehensive analytical frameworks which allow reliable control of the quality of service parameters for both cellular and local area networks. Providing such frameworks is therefore the second objective of this thesis. Additionally, the study addresses the simultaneous operation of a cellular and a local area network in spectrally intense metropolitan deployments and solves some related problems. Further improving the performance of battery-driven mobile clients, cooperative communications are sought as a promising and practical concept. In particular, they are capable of mitigating the negative effects of fading in a wireless channel and are thus expected to enhance next-generation cellular networks in terms of client spectral and energy efficiencies. At the cell edges or in areas missing any supportive relaying infrastructure, client-based cooperative techniques are becoming even more important. As such, a mobile client with poor channel quality may take advantage of neighboring clients which would relay data on its behalf. The key idea behind the concept of client relay is to provide flexible and distributed control over cooperative communications by the wireless clients themselves. By contrast to fully centralized control, this is expected to minimize overhead protocol signaling and hence ensure simpler implementation. Compared to infrastructure relay, client relay will also be cheaper to deploy. Developing the novel concept of client relay, proposing simple and feasible cooperation protocols, and analyzing the basic trade-offs behind client relay functionality become the third objective of this research. Envisioning the evolution of cellular technologies beyond their fourth generation, it appears important to study a wireless network capable of supporting machine-to-machine applications. Recent standardization documents cover a plethora of machine-to-machine use cases, as they also outline the respective technical requirements and features according to the application or network environment. As follows from this activity, a smart grid is one of the primary machine-to-machine use cases that involves meters autonomously reporting usage and alarm information to the grid infrastructure to help reduce operational cost, as well as regulate a customer's utility usage. The preliminary analysis of the reference smart grid scenario indicates weak system architecture components. For instance, the large population of machine-to-machine devices may connect nearly simultaneously to the wireless infrastructure and, consequently, suffer from excessive network entry delays. Another concern is the performance of cell-edge machine-to-machine devices with weak wireless links. Therefore, mitigating the above architecture vulnerabilities and improving the performance of future smart grid deployments is the fourth objective of this thesis. Summarizing, this thesis is generally aimed at the improvement of energy efficient properties of mobile devices in next-generation wireless networks. The related research also embraces a novel cooperation technique where clients may assist each other to increase per-client and network-wide performance. Applying the proposed solutions, the operation time of mobile clients without recharging may be increased dramatically. Our approach incorporates both analytical and simulation components to evaluate complex interactions between the studied objectives. It brings important conclusions about energy efficient and cooperative client behaviors, which is crucial for further development of wireless communications technologies
    corecore