1,586 research outputs found

    Model-free non-invasive health assessment for battery energy storage assets

    Get PDF
    Increasing penetration of renewable energy generation in the modern power network introduces uncertainty about the energy available to maintain a balance between generation and demand due to its time-fluctuating output that is strongly dependent on the weather. With the development of energy storage technology, there is the potential for this technology to become a key element to help overcome this intermittency in a generation. However, the increasing penetration of battery energy storage within the power network introduces an additional challenge to asset owners on how to monitor and manage battery health. The accurate estimation of the health of this device is crucial in determining its reliability, power-delivering capability and ability to contribute to the operation of the whole power system. Generally, doing this requires invasive measurements or computationally expensive physics-based models, which do not scale up cost-effectively to a fleet of assets. As storage aggregation becomes more commonplace, there is a need for a health metric that will be able to predict battery health based only on the limited information available, eliminating the necessity of installation of extensive telemetry in the system. This work develops a solution to battery health prognostics by providing an alternative, a non-invasive approach to the estimation of battery health that estimates the extent to which a battery asset has been maloperated based only on the battery-operating regime imposed on the device. The model introduced in this work is based on the Hidden Markov Model, which stochastically models the battery limitations imposed by its chemistry as a combination of present and previous sequential charging actions, and articulates the preferred operating regime as a measure of health consequence. The resulting methodology is demonstrated on distribution network level electrical demand and generation data, accurately predicting maloperation under a number of battery technology scenarios. The effectiveness of the proposed battery maloperation model as a proxy for actual battery degradation for lithium-ion technology was also tested against lab tested battery degradation data, showing that the proposed health measure in terms of maloperation level reflected that measured in terms of capacity fade. The developed model can support condition monitoring and remaining useful life estimates, but in the wider context could also be used as the policy function in an automated scheduler to utilise assets while optimising their health.Increasing penetration of renewable energy generation in the modern power network introduces uncertainty about the energy available to maintain a balance between generation and demand due to its time-fluctuating output that is strongly dependent on the weather. With the development of energy storage technology, there is the potential for this technology to become a key element to help overcome this intermittency in a generation. However, the increasing penetration of battery energy storage within the power network introduces an additional challenge to asset owners on how to monitor and manage battery health. The accurate estimation of the health of this device is crucial in determining its reliability, power-delivering capability and ability to contribute to the operation of the whole power system. Generally, doing this requires invasive measurements or computationally expensive physics-based models, which do not scale up cost-effectively to a fleet of assets. As storage aggregation becomes more commonplace, there is a need for a health metric that will be able to predict battery health based only on the limited information available, eliminating the necessity of installation of extensive telemetry in the system. This work develops a solution to battery health prognostics by providing an alternative, a non-invasive approach to the estimation of battery health that estimates the extent to which a battery asset has been maloperated based only on the battery-operating regime imposed on the device. The model introduced in this work is based on the Hidden Markov Model, which stochastically models the battery limitations imposed by its chemistry as a combination of present and previous sequential charging actions, and articulates the preferred operating regime as a measure of health consequence. The resulting methodology is demonstrated on distribution network level electrical demand and generation data, accurately predicting maloperation under a number of battery technology scenarios. The effectiveness of the proposed battery maloperation model as a proxy for actual battery degradation for lithium-ion technology was also tested against lab tested battery degradation data, showing that the proposed health measure in terms of maloperation level reflected that measured in terms of capacity fade. The developed model can support condition monitoring and remaining useful life estimates, but in the wider context could also be used as the policy function in an automated scheduler to utilise assets while optimising their health

    Battery Systems and Energy Storage beyond 2020

    Get PDF
    Currently, the transition from using the combustion engine to electrified vehicles is a matter of time and drives the demand for compact, high-energy-density rechargeable lithium ion batteries as well as for large stationary batteries to buffer solar and wind energy. The future challenges, e.g., the decarbonization of the CO2-intensive transportation sector, will push the need for such batteries even more. The cost of lithium ion batteries has become competitive in the last few years, and lithium ion batteries are expected to dominate the battery market in the next decade. However, despite remarkable progress, there is still a strong need for improvements in the performance of lithium ion batteries. Further improvements are not only expected in the field of electrochemistry but can also be readily achieved by improved manufacturing methods, diagnostic algorithms, lifetime prediction methods, the implementation of artificial intelligence, and digital twins. Therefore, this Special Issue addresses the progress in battery and energy storage development by covering areas that have been less focused on, such as digitalization, advanced cell production, modeling, and prediction aspects in concordance with progress in new materials and pack design solutions

    Direct Comparison using Coulomb Counting and Open Circuit Voltage Method for the State of Health Li-Po Battery

    Get PDF
    Electric cars have undergone many developments in the current digital era. This is to avoid the use of increasingly scarce fuel. Recent studies on electric cars show that battery estimation is an interesting topic to be implemented directly. The battery estimation strategy is carried out by the Battery Management System (BMS). BMS is an indispensable part of electric vehicles or hybrid vehicles to ensure optimal and reliable operation of regulating, monitoring, and protecting batteries. A reliable BMS can extend battery life by setting voltage, temperature, and charging and discharging current limits. The main estimation strategy used by BMS is battery fault, SOH, and battery life. Battery State of Health (SOH) is part of the information provided by the BMS to avoid battery damage and failure. SOC is the proportion of battery capacity SOH is a measure of battery health. This study aims to develop a method for estimating SOH simultaneously using Coulomb Counting and Open Circuit Voltage (OCV) algorithms. The battery is modeled to obtain battery parameters and components of internal resistance, capacitance polarization and OCV voltage source. Several tests were implemented in this research by applying the constant current (CC)-charge CC-discharge test. The state-space system is then formed to apply the Coulomb Counting and OCV algorithms so that SOH can be estimated simultaneously. The OCV-SOC function is obtained in the form of a tenth order polynomial and the battery model parameters say that these parameters change with the health of the battery. The results of the model validation are able to accurately model the battery with an average relative error of 0.027%. Coulomb Counting resulted in an accurate SOH estimation with an error of 3.4%

    Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications

    Get PDF
    The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Management System is crucial in these electric vehicles and also essential for renewable energy storage systems. This review paper focuses on batteries and addresses concerns, difficulties, and solutions associated with them. It explores key technologies of Battery Management System, including battery modeling, state estimation, and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a charge and health. Furthermore, the different battery charging approaches and optimization methods are discussed. The Battery Management System performs a wide range of tasks, including as monitoring voltage and current, estimating charge and discharge, equalizing and protecting the battery, managing temperature conditions, and managing battery data. It also looks at various cell balancing circuit types, current and voltage stressors, control reliability, power loss, efficiency, as well as their advantages and disadvantages. The paper also discusses research gaps in battery management systems.publishedVersio

    The Zinc/Bromine Flow Battery: Fundamentals and Novel Materials for Technology Advancement

    Get PDF
    Flow batteries are a promising solution for solving intermittency challenges and increasing uptake of renewable power sources such as wind and solar. In particular, zinc/bromine batteries are an attractive option for large-scale electrical energy storage due to their relatively low cost of primary electrolyte and high theoretical specific energy of 440 Wh kg-1. However, inefficient materials of construction hinder practical utilization of this capability and reduce power delivery. The work presented in this thesis aims to overcome these limitations by providing an understanding of the fundamental physical and electrochemical processes governing interactions within the bulk electrolyte and at the electrode–electrolyte interface. Suitable alternative materials to improve system performance are developed via electrochemical investigations, physical characterization and molecular modelling. It is shown that conventional chloride-based supporting electrolytes significantly influence the morphology of zinc electrodeposits generated. High chloride concentration causes removal of zinc from the bulk, causing coulombic losses in the system. It is shown that sulfates, phosphates or even a higher proportion of bromides, are potentially suitable alternatives. Single-halide type tetrahedral zinc complexes exist in conventional electrolytes, and a previously unreported Raman vibrational band at 220 cm-1 is assigned to the [ZnBr2Cl(H2O)]– complex. Ionic liquid additives are proven not to be merely spectators in the zinc half-cell, due to the effects of their chemical structures. Studies using hybrid ionic liquid mixtures indicate that each half-cell benefits from the use of different compounds. It is expected that the approaches and findings presented in this thesis contribute towards aiding and guiding the future search for novel materials to further improve Zn/Br battery technology

    NASA SBIR abstracts of 1990 phase 1 projects

    Get PDF
    The research objectives of the 280 projects placed under contract in the National Aeronautics and Space Administration (NASA) 1990 Small Business Innovation Research (SBIR) Phase 1 program are described. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses in response to NASA's 1990 SBIR Phase 1 Program Solicitation. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 280, in order of its appearance in the body of the report. The document also includes Appendixes to provide additional information about the SBIR program and permit cross-reference in the 1990 Phase 1 projects by company name, location by state, principal investigator, NASA field center responsible for management of each project, and NASA contract number

    Modelling and estimation of vanadium redox flow batteries: a review

    Get PDF
    Redox flow batteries are one of the most promising technologies for large-scale energy storage, especially in applications based on renewable energies. In this context, considerable efforts have been made in the last few years to overcome the limitations and optimise the performance of this technology, aiming to make it commercially competitive. From the monitoring point of view, one of the biggest challenges is the estimation of the system internal states, such as the state of charge and the state of health, given the complexity of obtaining such information directly from experimental measures. Therefore, many proposals have been recently developed to get rid of such inconvenient measurements and, instead, utilise an algorithm that makes use of a mathematical model in order to rely only on easily measurable variables such as the system’s voltage and current. This review provides a comprehensive study of the different types of dynamic models available in the literature, together with an analysis of the existing model-based estimation strategies. Finally, a discussion about the remaining challenges and possible future research lines on this field is presented.The research that gave rise to these results received support from “la Caixa” Foundation (ID 100010434. Fellowship code LCF/BQ/DI21/11860023) , the CSIC program for the Spanish Recovery, Transformation and Resilience Plan funded by the Recovery and Resilience Facility of the European Union, established by the Regulation (EU) 2020/2094, CSIC Interdisciplinary Thematic Platform (PTI+) Transición Energética Sostenible+ (PTI-TRANSENER+ project TRE2103000), the Spanish Ministry of Science and Innovation (project PID2021-126001OB-C31 funded by MCIN/AEI/10.13039/501100011033 / ERDF,EU) and the Spanish Ministry of Economy and Competitiveness under Project DOVELAR (ref. RTI2018-096001-B-C32).Peer ReviewedPostprint (published version

    Power Consumption Analysis, Measurement, Management, and Issues:A State-of-the-Art Review of Smartphone Battery and Energy Usage

    Get PDF
    The advancement and popularity of smartphones have made it an essential and all-purpose device. But lack of advancement in battery technology has held back its optimum potential. Therefore, considering its scarcity, optimal use and efficient management of energy are crucial in a smartphone. For that, a fair understanding of a smartphone's energy consumption factors is necessary for both users and device manufacturers, along with other stakeholders in the smartphone ecosystem. It is important to assess how much of the device's energy is consumed by which components and under what circumstances. This paper provides a generalized, but detailed analysis of the power consumption causes (internal and external) of a smartphone and also offers suggestive measures to minimize the consumption for each factor. The main contribution of this paper is four comprehensive literature reviews on: 1) smartphone's power consumption assessment and estimation (including power consumption analysis and modelling); 2) power consumption management for smartphones (including energy-saving methods and techniques); 3) state-of-the-art of the research and commercial developments of smartphone batteries (including alternative power sources); and 4) mitigating the hazardous issues of smartphones' batteries (with a details explanation of the issues). The research works are further subcategorized based on different research and solution approaches. A good number of recent empirical research works are considered for this comprehensive review, and each of them is succinctly analysed and discussed
    corecore