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Introduction

Batteries are playing an increasingly central role in today’s society, driven by national and
supranational entities as a means to facilitate the energy transition from fossil fuels to renewable
sources, reducing emissions and pollution while aiming to enhance the quality of life in cities.
An example of this push is the European Union’s mandate that, by 2035, all vehicles sold
in the European common market must be battery-powered. Simultaneously, the transition
to an economy no longer reliant on fossil fuels is occurring, particularly in large-scale energy
production, where renewable resources are being incentivized due to their intermittent energy
supply nature, making energy storage devices crucial.

Redox reactions-based batteries currently stand as the most efficient system for energy stor-
age. They provide a higher energy density compared to any other available storage method.
However, electrochemical cells are not without flaws, and improper management can lead to
an increased risk of accidents with potentially tragic consequences. In this context, it is vital to
develop methods that ensure proper battery operation, effective diagnostic tools, and predic-
tive modeling. The topics addressed by predictive diagnostics align perfectly with the needs of
electric energy storage systems. Notably, predictive diagnostics have gained significant trac-
tion in recent years, becoming a part of Industry 4.0, representing the latest industrial revolu-
tion focused on incorporating new production technologies to improve working conditions,
increase the interconnection of production systems, and enhance plant resilience. Predictive
diagnostics play a pivotal role in each of these aspects and are, therefore, fundamental within
the framework of Industry 4.0.

Predictive diagnostics, also known as predictive maintenance, is defined by two fundamen-
tal components: "data acquisition" and "condition monitoring." The "data acquisition" process
encompasses all the tools and systems used to acquire knowledge about the system. Without
adequate measurement of the phenomenon that accurately reflects reality, any subsequent
action is unlikely to succeed and can even be detrimental.

The thesis work conducted spans both areas characterizing predictive maintenance.
In the realm of measurements on electrochemical cells, data acquisition involves sensor-

based systems, measuring intrinsic parameters (such as voltage, current, temperature, and
internal impedance) and derived parameters (such as State of Charge and State of Health).
This thesis addresses the issue of data quality, seeking methods that not only provide an un-
derstanding of the measured data but also its associated quality. Specifically, a measurement
system for battery impedance was created, capable of stimulating by injecting an alternating
current and measuring both the current and voltage to derive impedance. The system’s flex-
ibility allowed for the study of various signal forms (stepped sine and multisine). An analysis
of processing was also carried out, introducing sinusoidal fitting as a method to overcome the
time constraints dictated by Fast Fourier Transform (FFT). The effectiveness of the created
measurement system led to the development of a distributed embedded measurement system
designed specifically for UPS (Uninterruptible Power Supply).

"Condition monitoring" can be divided into two significant sectors: Diagnosis, which in-
volves understanding the current state of the battery through data acquisition systems, and
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Prognosis, which entails forecasting the future state of the battery. In this thesis, diagnosis is
addressed through the development of a methodology for optimizing measurement times in
estimating the state of charge of lithium iron phosphate batteries.

Knowledge of the state of charge is crucial not only for providing users with information
about system autonomy but also for supplying the Battery Management System (BMS) with
insights into the state of individual cells and enabling actions to protect battery modules. Cur-
rently, state of charge estimation relies on techniques such as Coulomb Counting, which are
based on prior knowledge of the state of charge and battery capacity. Impedance measure-
ment has excellent potential to surpass the limits imposed by current methodologies but has
the significant drawback of requiring extended measurement times, especially when low fre-
quencies are used (typically, these systems have stimulus frequencies ranging from 10 mHz to
10 kHz).

A Support Vector Machine (SVM) is trained to estimate the state of charge based on
impedance spectroscopy measurements within a genetic algorithm framework designed to
reduce the number of stimulus frequencies for measurement time optimization. The results
obtained enable a reduction in measurement time while preserving the accuracy of state of
charge estimation. In the context of diagnosis, a preliminary study of non-destructive test-
ing techniques for batteries has been conducted. In particular, a correlation between state of
charge and the inductance of an inductor, printed on a PCB, attached to the side of a VRLA
lead-acid battery, has been established. The proposed system is intriguing as it allows state of
charge estimation without any galvanic connection to the battery.

Once the current battery state is determined, the challenge is predicting the future state,
i.e., the so-called prognosis. Prognosis cannot be separated from system modeling. Initially,
the focus shifted away from batteries to model electric loads using state-based algorithms based
on Markov Chain. Each device was characterized metrologically and then modeled in a series
of states that vary through coefficients listed in a probability matrix. The result is a synthetic
dataset capable of emulating the simultaneous use of multiple loads and allowing the training
of algorithms for recognizing devices connected to an electrical network by measuring the
electrical signature of the system. In the case of batteries, the modeling concentrated on the
parametric identification of equivalent electrical models (ECMs) with the aim of predicting
terminal voltage knowing the state of charge. The problem was approached in two ways. The
first, already known in the literature, involves pulsed characterization tests in which batteries
are discharged with current pulses, and the voltage response provides information about the
ECM. The second method uses a genetic algorithm to provide a closed form of a function that
relates voltage to state of charge. The pulsed approach has the major disadvantage of requiring
specific characterization with precision instruments capable of discharging the battery while
measuring voltage and current at a high sampling frequency. The approach based on Genetic
Programming (GP) uses a simpler characterization to train the algorithm and also provides a
closed form output that can be easily integrated into a BMS. The system can be constrained
to provide an invertible solution, meaning it can provide the battery’s state of charge based on
terminal voltage as input. In conclusion, this thesis work has covered all the distinctive aspects
of predictive maintenance by providing methodologies, defining and refining hardware tools,
and creating datasets useful for the development of software tools.



Chapter 1

Batteries

1.1 What is a secondary battery

Today, batteries are one of the most popular ways of storing electrical energy by converting
it into chemical energy. In fact, all batteries fall into the category of electrochemical cells.
They consist of two electrodes, anode and cathode, an electrolyte and sometimes an ion sep-
arator [133]. Primary batteries are those in which the conversion of chemical energy into
electrical energy is not reversible, i.e. once all the material of which the battery is composed
has participated in the reaction, there is no way of returning it to its initial state by adding
energy from outside. On the other hand, secondary batteries are those that use chemical el-
ements that allow the elements that make up the battery to ideally return to their initial state
by adding energy from outside. This feature allows secondary batteries to have more than one
discharge cycle, making them extremely versatile and environmentally friendly. In fact, the
extreme popularity of secondary batteries has limited primary batteries to those applications
where energy demand is extremely low.

1.2 Working Principle

Batteries are a particular subgroup of electrochemical cells. An electrochemical cell is a device
capable of converting chemical energy into electricity or vice versa if the reactions allow it.
To do this, they use reactions called oxidation-reduction reactions in which electrons naturally
pass from an element that is oxidized to one that is reduced. Equation 1.1 and Equation 1.2
show the two half-reactions of oxidation Equation 1.1 and reduction Equation 1.2 of a Zinc-
Copper battery, known as a Daniell battery. Zinc is oxidized by losing two electrons, while
copper is reduced by gaining two electrons. In the overall reaction, Equation 1.3, the number
of electrons lost by the Zinc balances the number of electrons gained by the copper.

Zn(s) ⇒ Zn2+(aq) + 2e− (1.1)

Cu2+ + 2e− ⇒ Cu(s) (1.2)

Zn(s) + Cu2+(aq) ⇒ Cu(s) + Zn2+(aq) (1.3)

In batteries, the two half-reactions are kept separate and the exchanging electrons are
forced to pass outside the battery, thus providing work in the form of electrical energy. The
battery voltage is dependent on the elements used. The elements used as reactants are not
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chosen at random but are derived from the scale of electrochemical reduction potentials, in
which, each element has a specific voltage which is nothing other than the voltage of a battery
in which one of the two electrodes is the element in question while the other electrode is a
reference electrode. Typically, the hydrogen electrode is chosen as the reference electrode to
construct the scale. This particular electrode consists of a platinum foil immersed in a 1Molar
solution of hydrogen ions in which hydrogen gas is bubbled at 1 atmosphere.

Figure 1.1 [107] shows the voltage values for each element. Given two different elements,
the battery voltage will be the difference between the voltage of the element chosen as the
cathode and the voltage of the element chosen as the anode. There are many pairs of elements
capable of generating an oxidation-reduction reaction, and the greater the distance between
the elements in the greater the difference in battery potential will be. For example, Nickel-
Cadmium batteries have a terminal voltage of 1.2 V while LFPs have 3.7 V. Sometimes indi-
vidual cells can be connected in series and/or in parallel to increase the output voltage and/or
current of the battery.

Figure 1.1: Standard potentials of electrode reactions [107]
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1.3 Battery typologies

Many electronic devices produced in recent times integrate a battery inside them; the choice
of the type of battery to be adopted depends largely on design constraints such as cost, power
output, energy capacity, device weight, output voltage, usage environment, etc. Figure 1.2
extracted from [42] shows some of the most widely adopted battery types in the industry.
In recent years, lithium-based batteries have gradually replaced other technologies. Lead-
acid-based batteries still resist, as they remain economical to produce compared with lithium
batteries of equivalent capacity and discharge power.

Secondary
Batteries

Lead-Acid

Nickel-Based

Zinc/Halogen

Metal/Air

Sodium-Beta

High-Temperature
Lithium

Ambient-Temperature
Lithium

VRLA
AGM-VRLA
GEL-VRLA

Nickel-Zine (Ni-Zn)
Nickel-Iron (Ni-Fe)

Nickel-Metal Hydrate (Ni-MH)
Nickel-Cadmium (Ni-Cd)

Magnesium/Air (Mg/Air)
Calcium/Air (Ca/Air)

Zinc/Bromine (Zn/Br2)

Lithium/Air (Li/Air)

Zinc/Chlorine (Zn/Cl2)
Nickel-Hydrogen (Ni-H2)

Na/FeCl2

Na/NiCl2

Sodium/Metal Halide (ZEBRA)
Sodium/Sulfur (Na/S)
Zinc/Air (Zn/Air)
Aluminum/Air (Al/Air)
Iron/Air (Fe/Air)

Lithium-Aluminum/Iron
Monosulfide (Li-Al/FeS)

Na/Ni-FeCl2

LiNiMnCoO2

LiFePO4

LiMn2O4

LiCoO2

Lithium-Ion (Li-Ion)
Lithium-Polymer (Li-Po)

Lithium-Aluminum/Iron
Disulfide (Li-Al/FeS2)

LiNiCoAlO2
Li4Ti5O12    etc..

Figure 1.2: Secondary Batteries

1.3.1 Lead Acid Batteries

Since World War II, lead-acid batteries have been the only or at least the most widely used
technology for storing electrical energy using a reversible reaction. The development of this
technology is linked to the development of the automobile, transportation in general, and
telecommunications. The two electrodes of the lead acid battery are composed of Lead (neg-
ative electrode) and Lead Dioxide (Positive electrode)

Pb+ PbO2 + 2H2SO4 ⇌ 2PbSO4 + 2H2O (1.4)

Unlike other types of batteries, lead acid batteries have the special feature of having the
electrolyte actively participate in the oxidation-reduction reaction. Equation 1.4 reports the
overall reaction that takes place inside the cell. On the negative electrode the oxidation of lead
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(Pb− > Pb2+ + 2e−) takes place, releasing two electrons. On the positive electrode there is
reduction of lead dioxide (Pb4+ + 2e−− > Pb2+). If the two electrodes are immersed in a
solution of H2SO4 lead sulfate is generated from both of the two sub-reactions on both elec-
trodes. Also on the positive electrode, during charging, there is as sub reaction the production
of hydrogen that remains mostly dissolved in aqueous solution but can be released as a gas.
The equilibrium potential of the Pb/PbSO4 electrode, compared with the reference potential
of the hydrogen electrode, is very negative. In contrast, the PbO2/PbSO4 electrode has a
positive equilibrium potential, again compared with the hydrogen electrode. By composing
the two electrodes, a relatively high cell voltage is achieved, around 2V per cell. However,
the cell voltage is dependent on the concentration of H2SO4 in the electrolyte [96]. Since
sulfuric acid participates in the reaction its concentration of the electrolyte depends on how
much the battery has been discharged, this implies that the voltage at the cell terminals varies
as the remaining charge of the battery varies. When the voltage at the cell terminals reaches
1.7− 1.8V the cell is called discharged.

Batteries exploiting the Equation 1.4 reaction are mainly of two types:

• Flooded batteries, typically adopted in internal combustion engines as SLI (starting,
lighting, ignition) starters, however, require regular maintenance.

• Maintenance-free batteries with a large electrolyte excess, containing calcium or an-
timony in addition to lead, which help to have less water loss. In addition to Evapora-
tion Loss (Temperature-dependent) most of the water loss is through electrolysis during
charging, over-charging and self-discharge of the battery VRLABs (Valve Regulated
Lead Acid Batteries) are also sealed batteries, but they have a valve capable of expelling
gases that may form inside the battery itself.

– AGM-VRLA: these are batteries in which there is a separator, usually made of fiber-
glass, between the two electrodes that absorbs the electrolyte. This expedient allows
the electrolyte to appear solid and avoid leakage. The concentration of sulfuric acid
in the electrolyte is higher than in flooded batteries.

– GEL-VRLA: are batteries that have a similar principle to AGMs but instead of ab-
sorbing the electrolyte in a mat, in GELs the electrolyte is dispersed in an extremely
viscous gel. Compared with AGMs they have lower performance and generally
lower durability

Defining "Coulomb efficiency" as the ratio of the amount of charge that can be extracted
from a charged battery to the amount of charge fed into the battery, lead-acid batteries achieve
an efficiency of around 85%, the efficiency, however, is closely related to the output current
of the battery. In Figure 1.3 you can see how the energy delivered by the battery decreases as
the output current increases.

The main causes of deterioration of lead-acid batteries are [77]:

• Positive-Plate Expansion: as shown above, on the positive electrode there is a lead
dioxide reduction reaction that has lead sulfate as a product. This occupies a larger volume
than the lead dioxide causing the electrode volume to grow. The continuous growth and
shrinkage of the electrode leads to mechanical deterioration of the electrode and loss of
active material

• Water loss: Oxygen and hydrogen gas can be generated during battery operation,
which, after being expelled, reduce the amount of water in the battery leaving the elec-
trodes partially unimmersed and therefore unusable.
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Figure 1.3: Typical discharge curves for lead-acid batteries [98].

• Acid Stratification: sulfuric acid has a higher density than water and therefore tends to
stratify in the lower part of the battery causing uneven utilization of the active materials

Lead-acid batteries perform better in terms of time life when their discharge rate is very
small, in fact, their use is relegated to those situations where the battery is used as a buffer
battery that is, where discharge is limited and sporadic. Under these conditions, lead-acid
batteries can reach up to 2,000 life cycles. However, unfavorable environmental conditions
can bring down battery performance leading to premature death or loss of capacity. The
main parameter affecting capacity is definitely temperature. As shown in Figure 1.4, fixed the
discharge current (expressed in C-rate) the change in temperature affects the battery’s ability
to store energy.

Figure 1.4: Lead Acid Batteries typical Capacity dependence of Temperature and Current [1]

The recyclability of lead-acid batteries is extremely high, to date the percentage of recycled
batteries is close to 100% [118]. The main reason lies in the profitability of recycling and that
in more developed nations it is illegal to discard lead-acid batteries into the environment. Also
favoring recyclability is the standardization that batteries have achieved, all are formed from
the same elements (ABS case, lead electrodes, Electrolyte as a mixture of sulfuric acid in water,
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etc..) which simplifies the recyclability process. Finally, the elements obtained downstream
from the recycling process have a high quality that allows them to be used for the construction
of new batteries.

1.3.2 Lithium batteries

To date, lithium batteries represent the most popular technology among electrical energy stor-
age systems in the form of chemical energy. The reason behind this success is the performance
that lithium batteries are able to offer. Lithium is the lightest existing alkali metal and is also
the least electronegative element existing in nature. These characteristics make it an excel-
lent electron donor (and therefore an element with a low reduction potential E° = - 3.045 V),
combined with a very electronegative material within an electrochemical cell it is capable of
developing a very high potential difference. Another point in favor of lithium is its low atomic
weight i.e., a low density that allows extremely high energy densities to be achieved

Figure 1.5: Lithium-Ion Battery overview [64]

Figure 1.5 shows a simplified diagram of the internal structure of the battery where the four
main components can be identified: cathode, anode, electrolyte, and separator. The cathode
consists of lithium metal oxide, which has a tunneled or layered structure on an aluminum
electrode. The anode, on the other hand, is generally made of lithiated graphite also with a
layered structure but on a copper electrode. The electrolyte is an ionic conductor interposed
between the two electrodes. The separator is a porous polymer membrane capable of passing
ions from one side of the interface to the other but blocking the passage of electrons that are
then forced outside the battery providing useful work. The lithium ions then move between
the two electrodes by intercalating in the porous structures of the anode and cathode. During
the discharge process, the lithium ions are deintercalated from the negative electrode, releasing
electrons, to migrate to the positive electrode.

There are many types of lithium-based batteries, most differ in the metal oxides used for
the cathode, the Figure 1.6 shows the most common technologies also indicating the battery
voltage and energy density. One of the parameters that most differentiates lithium batteries
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is the cost of the basic elements, for example, Nickel and Cobalt have generally higher costs
than other metals, so batteries using these elements have a higher final cost.

Figure 1.6: Energy density and cell voltage for varius Lithium Ion Batteries

Figure 1.7: Comparisons of different types of Li-ion batteries used in EVs from the following
perspectives: specific energy (capacity), specific power, safety, performance, life span, and cost
(the outer hexagon is most desirable).

Figure 1.7 graphically shows the performance of individual lithium-based construction
technologies, the larger the colored area the greater the battery performance. The parameters
examined are cost, specific energy, specific power, safety, and life span. Where specific energy
is the ratio of the amount of energy the battery is capable of storing to the weight of the battery,
specific power is the ratio of the current the battery is capable of delivering to capacity.

Talking of the safety concerns, the 2022 Lucid Air Dream edition Performance has a battery
pack of 118 kWh this energy is equivalent to 101 kg of equivalent TNT 1. Furthermore,

1Equivalent TNT is used to express the relative explosive power or energy output of an explosive material in
comparison to TNT (trinitrotoluene), which is a standard reference explosive with well-established properties.
Equivalent TNT is often used in the context of measuring or quantifying the destructive potential of various
explosive materials.
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lithium batteries are not well managed and can take on fire. The problem is due to two
reasons:

• The lithium salt added to the electrolyte: This salt has many advantages inside the bat-
tery, but it decomposes at low temperatures (50 °C)In case of fire the products of the
decomposition of the salt interact with the oxygen released by the positive electrode. At
the a 50 kWh battery produces 6 kg of HF (Hydrogen Fluoride) and a toxic phosphoryl
fluoride gas [69] which can provoke irreversible neuronal damage [86].

• The positive electrode oxygen release: Each electrode composition has its own charac-
teristics, but here some general information is reported. Cobalt used inside the positive
electrode tends to lose oxygen on deep lithium extraction so in the time the concentra-
tion of cobalt is lowered or it is doped with aluminum (NCA batteries). The substitution
of Cobalt with another transition metal (like Nickel or Manganese) has been abandoned.

LFPs are significantly cheaper than other Lithium-based technologies while lying a similar
capacity [73]. In addition, LFPs are significantly safer than layered metal oxide. The strong
P-O bond does not allow oxygen to be released as is the case with LCOs, also tolerating abuse
well during their operation [112] [73]. Experiments have shown that LFPs release a small
amount of heat (147 J g-1) if the temperature exceeds 250 °C. [73,135].

Figure 1.8: DSC spectra of over charged layered, spinel and olivine cathodes with traces of
1.2 mol L-1 LiPF6 in EC-EMC (3:7) electrolyte at 10 ◦Cmin−1

In Figure 1.8 form [138] there is a differential scanning calorimetry (DSC) spectra of three
different cathode chemistry during the charging process. When the curve goes up means
that there is an exothermic reaction. The figure shows that the NCA electrode undergoes
in exothermic reaction between 200 °C and 250 °C, much earlier than the LMO or LFP
cathodes. Thus for NCA batteries the self-heating limit could be easily reached when the
battery is mechanically stressed. Recycling when talking of LIBs is still a current problem,
actually, the trend for electric vehicles (EVs) is, despite trashing, to reuse the batteries in another
application like stationary storage systems. This is called secondary use, and it’s possible because
the EVs batteries are considered at the end of their life when the capacity drops under the
80% of the original capacity [84, 143]. Li-ion battery recycling is not as easy as lead acid,
mainly because lead acid batteries are composed of few elements, instead, Li-ions have a wider
variety of materials and elements. As a consequence, the LIBs recycling is not easy and barely
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sustainable from an economic point of view. There are three main methods for recycling the
LIBs [30,37]:

• Pyrometallurgical recycling: batteries are melted in a furnace, plastic, and electrolyte
burn and the result is an alloy of Cobalt Copper nickel, and Iron and a slug with Lithium
Aluminum, and others. Recovering lithium or Aluminum from the slag is not profitable,
instead by leaching is possible to recover the metals from the alloy.

• Intermediate recycling process: The batteries are reduced in small particles by ham-
mering. Then the parts are filtered by an aqueous stream. This technique is commercially
used in Canada but, as Pyrometallurgical recycling is profitable only the batteries have
nickel or cobalt.

• Direct recycling: In this method, the cells are placed in a chamber with CO2 at high
temperature and pressure to separate the electrolyte and the lithium. The rest are pulver-
ized, and the materials are filtered by their different properties of density or conductivity.

The recycling research is still ongoing, and we can expect in future new methods for
profitable recycling the Lithium based batteries.

1.4 Batteries equivalent circuits models

The development of precise and dependable models holds a fundamental significance across all
phases of a battery’s lifecycle. These phases encompass (i) guiding and optimizing its design,
(ii) efficiently managing its standard operational conditions through the Battery Management
System (BMS) to enhance charging/discharging techniques, (iii) averting hazardous opera-
tional states like overcharging or over-discharging, which may result in significant damage or
hazards, and (iv) reliably forecasting its long-term behavior for applications such as predictive
maintenance, secondary utilization, or end-of-lifecycle estimation [109, 121]. Of these mod-
els, the electro-thermal model assumes a unique role as it possesses the capability to elucidate
the battery’s voltage response concerning State of Charge (SoC), C-rate, and temperature (T).
The intricate interconnection of various battery parameters, including voltage, current, tem-
perature, and SoC, necessitates the development of complex, multi-physical models. Due to
its critical importance, battery modeling has received substantial and escalating attention from
the scientific community over recent decades. Consequently, a plethora of battery models,
varying in complexity and accuracy, are now available in the scientific literature, classifiable
into three primary categories based on their level of physical description. On one hand, elec-
trochemical models offer a comprehensive depiction of batteries, delving into the intricacies of
their constituent materials (conductors, electrolytes, etc.) and structural elements (electrodes,
package shapes, etc.). These models simulate the intricate chemical and electrical processes
occurring within the battery, often considering external factors like temperature distribu-
tion [5,36]. Every parameter in such models carries a physical significance, directly tied to the
geometry, physical characteristics of materials, and similar attributes. However, these models
entail certain limitations, demanding a profound understanding of the device for parameteri-
zation and incurring a substantial computational burden, especially when analyzing intricate
systems like battery packs. Conversely, behavioral models are constructed based on empirical
data obtained through experimental characterization, defining input-output relationships in-
herent to the battery. In this context, the battery is treated as a ’black box,’ resulting in model
parameters devoid of physical meaning, as they are determined through the chosen identifi-
cation strategy, similar to coefficients in a fitting function. Behavioral models can take either
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analytical [83] or stochastic [83] forms. Analytical models often rely on a limited set of equa-
tions to describe overall battery characteristics, while stochastic models, particularly Markov
processes, enable future predictions based on present states without necessitating knowledge of
the entire historical record. Notably, these models suffer from the complexity of the methods
employed in their derivation.

In the middle ground between these two extremes, a third category of models, known as
hybrid models, comes into play, with the popular Equivalent Circuit Models (ECMs) being a
prime example. These hybrid models take a unique approach: they combine elements from
both electrochemical and behavioral modeling paradigms.

In the case of ECMs, these models adhere to a predefined and fixed circuit structure. For
instance, an ECM might utilize a cascade of resistors and capacitors along with appropriate
voltage sources in its equivalent circuit. While these circuit elements can be ascribed physical
meanings, akin to the electrochemical models, their values are determined through empir-
ical input-output characterizations of the battery, similar to behavioral models. These hy-
brid models have gained widespread acceptance due to their ability to effectively capture the
electro-thermal behaviors of batteries with a commendable level of accuracy, all without in-
troducing unnecessary complexity [44,54,99,126].

It’s worth noting that electrical models are available for various types of batteries, ranging
from traditional lead-acid batteries to modern Li-ion ones [26]. These models can be classified
into three main classes based on their circuit structures: Thévenin-based models, impedance-
based models, and runtime-based models, each of which has its own set of advantages and
disadvantages.

The Thévenin-based model, representing the most straightforward approach of the three,
relies on a series resistor and an RC parallel network to anticipate a battery’s response to abrupt
load changes at a specific State of Charge (SoC). It simplifies the modeling by assuming a
constant open-circuit voltage [46, 105]. Nevertheless, this model encounters limitations in
accurately predicting the battery’s behavior during steady-state and continuous runtime op-
erations [26].

Conversely, impedance-based models craft an AC-equivalent impedance profile of the bat-
tery, usually in the frequency domain, through techniques like Electrochemical Impedance
Spectroscopy (EIS) [6, 15, 66]. The parameters derived from EIS measurements remain valid
only for particular battery SoC and temperature conditions, necessitating periodic recalibra-
tion during battery use. However, EIS measurements can be time-intensive, and recalibration
might not always be a practical solution, particularly for complex ECMs with many compo-
nents. Furthermore, impedance-based models are unsuitable for forecasting the battery’s DC
response or runtime characteristics [26].

Lastly, runtime-based models adopt a sophisticated circuit network to emulate the bat-
tery’s runtime and DC voltage response under constant discharge current conditions, typi-
cally within SPICE-compatible simulation platforms [40]. However, this approach sacrifices
the capability to conduct dependable AC or transient analyses. Regardless of the chosen model
structure, calibrating an ECM for transient battery analysis is a laborious and time-consuming
process. It involves a substantial number of experimental trials conducted under varying oper-
ational conditions, including alterations in charging/discharging current amplitudes and tem-
perature settings.
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Figure 1.9: Battery modelling

1.5 Batteries status indicies

1.5.1 What and Which they are

Batteries represent intricate systems in which chemical and physical phenomena interplay,
rendering it a challenging endeavor to succinctly depict their operational status. This com-
plexity stems from the amalgamation of chemical reactions and physical processes that happen
inside the battery cell. Consequently, producing a precise state of a battery is not always
straightforward. To help the users and designers in battery status estimation, a series of indices
are created.

The state of Charge (SoC) is an indicator of the remaining energy in the battery. It is
expressed in percentage between 0% to 100% where the first one means that the battery is
empty then the second one means that the battery is fully charged. Equation 1.5 shows how
the SoC is computed [52] where "Cremain" is the remaining capacity of the battery while
"Cpresent" is the present maximum capacity of the battery in that specific moment.

SoC =
Cremain

Cpresent
· 100 (1.5)

Together with SoC another widely used parameter is the State of Health, but while SoC
gives the actual energy present in the battery SoH gives a metric to evaluate the aging level of
the batteries. The SoH, as reported in Equation 1.6, is the ratio between the present maximum
capacity, "Cpresent", and the original battery capacity, "Cinitial".
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SoH =
Cpresent

Cinitial
· 100 (1.6)

The State of Health (SoH), akin to the State of Charge (SoC), is quantified in percentage
terms, with its range spanning from 0% denoting a battery incapable of storing energy to 100%
representing a battery in a pristine, brand-new condition. Other parameters used to describe
the state of a battery are the State of Power (SoP) and State of Energy (SoE). Before explaining
SoP is useful to determine the battery Safe Operating Area (SOA) which is determined by the
operation range regarding temperature, voltage, and current. The SoP can be represented as
the maximum electrical power that the battery is able to absorb or provide while remaining
within the prescribed boundaries of its SOA [114]. SoP is expressed in units of Electrical
power. The State of Energy is intrinsically linked to the State of Charge. SoC is a relative
metric expressed as a percentage, serving as an indicator of the battery’s charge level relative
to its present maximum capacity. In contrast, SoE serves as an absolute metric, delineating the
precise energy content residing within the battery. SoE is expressed in a unit of energy [75].
Remain Useful Life (RUL) relates to a metric used to estimate how much more operational
time or cycles a battery can provide before it reaches the end of its serviceable life. The RUL
is always a prediction and not a measured value.

1.5.2 How they are estimated

SoC and the SoH represent the predominant and widely employed metrics for delineating
the batteries’ status. Consequently, there exists a dynamic and ongoing research effort within
the scientific community to advance the methods to establish these metrics. Over time, this
concerted research endeavor has yielded a plethora of diverse methodologies and approaches
aimed at increasing the precision in SoC and SoH estimation. In this Thesis, I’m focusing on
the SoC methods because, on one hand, the methods used for SoC and SoH are most of the
time the same, and on the other hand, SoC is easier to replicate and allows the researchers to
have more data in less time. In [100] the Authors classify the methods used for SoC estimation,
a condensed graph is reported in Figure 1.10.

In general, because the methods are not precise, the SoC estimation is done by union of
two or more methods together. Direct methods are based on the physical battery proprieties
i.e. current voltage or temperature to determine the SoC.

Coulomb Counting

The most used method is the Coulomb Counting where the only parameter measured is
the battery output current. The integration of the current in time, as shown in Equation 1.7,
is physical and energy and in particular, is the Battery capacity as shown in Equation 1.5.

Capacity(t) = Capacity(t0) +

∫ t

t0
Ibatdt (1.7)

Where Capacity(t0) represents the energy stored within the battery at time t = t0; Ibat
denotes the measured electric current. Typically, the electric current is sampled at regular
intervals of τ , referred to as the "sampling interval" or the inverse "sampling frequency". Both
the "Cpresent" and "Cremain" of Equation 1.5 could be determined with this method. This
algorithm, despite being widely used, has some issues [91]:

• The measured current has an intrinsic measurement error
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• Also the time measurement has an intrinsic measurement error

• The integration operation with discrete data gives an approximation of the real result
which will result in capacity estimation errors.

All these sources of uncertainty bring the capacity estimation to be inaccurate. Furthermore,
both the "Cpresent" and "Cremain" of Equation 1.5 could be determined with the Coulomb
Counting which results in an increase of the SoC estimation error.

Open Circuit Voltage

In Li-ion batteries, the Lithium Ions are intercalated into the crystalline lattice structures
of the battery electrodes. This insertion leads to a differential accumulation of ions between
the positive and negative electrodes, consequently generating an electromotive force (EMF).
EMF exhibits a strict correlation with the SoC of the battery. Open Circuit Voltage (OCV)
is defined as the electrical potential difference observed between the terminals of the battery
when no current is flowing. Under specific operational conditions, OCV closely approximates
the EMF. As a result, it becomes feasible to estimate the SoC of the battery by measuring the
voltage across its terminals and applying a straightforward mathematical transformation. The
OCV methodology is frequently employed due to its inherent advantage of not requiring
complex calculations, as battery voltage can be readily monitored during operation.

The strict closeness between OCV and EMF is true only when the battery is in a steady state
condition; after a charge or a discharge the time to reach the steady state condition depends
on the battery but it can vary from several minutes to hours because the process is mainly
dominated by the diffusion. If the steady state is not achieved, the measurements are not
reliable [101]. Furthermore the State of Charge-Open Circuit Voltage (SOC-OCV) curve
depends also on the battery temperature and battery SoH.

LiBs employing cathode materials such as Lithium Iron Phosphate (LFP) or similar variants
exhibit a nearly flat SOC-OCV and a notable OCV hysteresis phenomenon. Consequently,
for LFP, the utilization of OCV-based SOC estimation methods within the SOC range asso-
ciated with the flat SOC-OCV curve becomes unreliable.

Electrochemical Impedance Spectroscopy

Electrochemical impedance spectroscopy (EIS) emerges as a promising alternative for re-
placing Coulomb/OCV counting methods in State of Charge (SoC) estimation, as indicated
by prior studies [10,87]. Notably, EIS circumvents the challenges previously outlined and of-
fers the potential advantage of real-time applicability in actual operating conditions [65]. EIS
could be performed in galvanostatic or potentiostatic method. In the first case the current is
controlled by the measurement equipment while in the second case the voltage is controlled.
Whatever the measurement method, both current and voltage are measured. The generated
stimulus signal, often sinusoidal, typically has span frequencies ranging from a few millihertz
(mHz) to a few kilohertz (kHz) [68, 89]. Equation 1.8 shows the complex value of the mea-
sured impedance (Ż (fk)) at different frequencies of investigation (fk); V̇ (fk) is the voltage
phasor, and İ (fk) is the current phasor. It’s anyway important to note that the Equation 1.8
is valid only for small signals because batteries are complex non linear systems, so thay can be
considered linear only when the stimulus is small enough. To define the amplitude of a small
signal, the total harmonic distortion (THD) could be a good metric, higher is the THD and
more the cell could not be considered a linear load.
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Figure 1.11: Nyquist plot of a Lithium Iron Phosphate battery impedance at different State of
Charge
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)
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Being the impedance a complex number, it has a Real part and an Imaginary part. The Nyquist
diagram reports on the horizontal axis the real part and on the vertical axis the imaginary part
of the impedance. An example of it is reported in Figure 1.11 at different SoC for the same
battery. Tipically, the electrochemical cell impedances have a capacitive contribution rather
then inductive, so the vertical axis is negative. Low-frequency impedances are on the right of
the curve while the high-frequency impedances are on the left. EIS is interesting because the
battery impedances could be linked to the physical behavior of the elements inside the battery.
The battery’s diffusion processes are indicated by the low-frequency tail 2, the double-layer
capacitance effect is indicated by the mid-frequency semicircle 3, and the battery bulk’s Ohmic
resistance is indicated by the high-frequency region’s intercept of the EIS curve with the real
axis. For this reason, EIS could be also considered as a basic measurement for a data-driven
SoC estimation.

Indirect Methods

The indirect methods are methods developed to connect direct methods to SoC estimation.
2The diffusion layer is a virtual layer in the bulk solution and next to the electrodes where the concentration

of ions is different from the bulk ions concentration
3The double layer is a region at the interface between an electrode and an electrolyte solution where significant

electrical charge separation occurs.
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In other words, they use the direct measurement (current, voltage, temperature, impedance)
and correlate them with the battery SoC.

Model based Methodologies

Model-based methods are widely used for SoC estimation. In general, there are many ap-
plications based on Electrochemical, Hybrid, and behavioral Models. Electrochemical models
uses a combination of electrical parameters (Resistance, Capacitance, etc..) and non linear
models to take in account the real behavior of the system. The obtained differential equations
from the model [90] could be used to estimate the state of charge. Despite the good perfor-
mances, Electrochemical models are computationally heavy. Thevenin models are composed
of a non-linear voltage source, and one or more RC branches. The number of RC branches
depends on the tradeoff between computational costs and model accuracy. More branches
are used and higher are the performances. In general, in literature, one or two branches [9].
Electrical models have the advantages of being simple and easy to compute.

Adaptive filter based Methodologies One of the most used methodology for Soc and SoH

estimation is based on the Kalman Filters (KF). The key idea behind the Kalman Filter is to
maintain a probabilistic representation of the state of the system and update it recursively as
new measurements become available. KF could be divided in three branches:

• Linear Kalman Filters (KF): Incorporates measurement models and linear dynamics. When
dealing with nonlinear systems, it can produce poor results, but it works well when the
system and sensor models are actually linear.

• Extended Kalman Filters (EKF): Extends the Kalman Filter to handle nonlinear models
by linearizing them at each iteration. Even though EKF is capable of handling nonlinear
systems, accuracy problems could arise if the linearization is not a good approximation.

• Unscented Kalman Filters (UKF) employs the Unscented Transform, a deterministic sam-
pling method, to approximate the distribution of the state variables in order to overcome
the limitations of the EKF. Because it doesn’t rely on linearization, the UKF is better
suited for highly nonlinear systems.

KFs are suitable and widely used for the battery status estimation [120].

Adaptive Aritficial Intelligent based Methodologies

Due to their powerful computational intelligence capabilities, machine learning techniques
like artificial neural networks (ANN) [78], fuzzy logic (FL) [53], and support vector machines
(SVM) [18] have attracted a lot of attention in SOC estimation in recent years. A well-liked
machine learning technique called an artificial neural network (ANN) can accurately ana-
lyze SOC while taking into account non-linear characteristics of lithium-ion batteries, aging,
noises, and temperature effects. However, ANN requires a significant amount of data, a stor-
age device, and a lengthy training period while the maximum error in the SoC estimation is
around 5%. SVM has quick and accurate estimation with a good result in terms of classifica-
tion accuracy, [18] report the best case at 0.98%, furthermore the computational cost of SVM
is small if compared with other Machine Learning algorithm

Other Methodologies



1.5. BATTERIES STATUS INDICIES 27

All the methods examined above take as input the current or the voltage from the battery
terminals, but there are several methods that take into account other physical changes in the
battery. In [47], one of many authors who have investigated magnetic methods for charge
state estimation, a coil wound around a ferromagnetic core was mounted on the side of a
lead-acid battery. When the state of charge changes, the magnetic field is impacted due to
electrochemical phenomena that occur inside the battery. At an excitation frequency of 10kHz
and a coil base value of 168mH , a variation of 1mH is obtained. A similar approach has been
tried in [59] but instead of using a single coil, in this case, two coils are placed on either side of
the battery, one of the two coils is used to generate the magnetic field at a frequency of 70 kHz
while the voltage induced on the second battery turns out to be proportional to the SoC of
the battery. In [128] the author places the single excitation coil inside the battery to minimize
the distance to the negative electrode. In fact, in lead-acid batteries, during discharge, the
negative electrode becomes coated with lead sulfate, which has a different permeability than
metallic lead.





Chapter 2

Predictive Maintenance

2.1 Predictive Maintenance on Battery powered devices

The following analysis has the aim of analyzing the status of the art of battery diagnosis by
finding the most valuable contributions to the community knowledge. Furthermore, the most
prolific researcher and istitutions are outlined.

2.1.1 Data collection

The data used in this investigation were obtained from the Web of Science Core Collection
(WoS CC) which is an enormus citations database, where is possibile selecting all the indexed
papers that satisfy the query conditions. This study is focused on the reasearches pubblished in
the last ten years, between the 01/09/2013 and 01/09/2023. The query is structured in two
parts connected in logic "AND". The first block select all the papers that cointains one or more
of the following terms ( TS = “lithium-ion batter*” OR TS = “lead acid batter*” OR TS = “Lithium
ion batter*” OR TS = “Li ion batter*” OR TS = “batter*” ). The symbol "*" is works as wildcard.
The second block instead is composed by (TS = “fault diagnosis” OR TS = “fault prediction” OR
TS = “fault detection” OR TS = “fault monitoring” OR TS = “failure*” OR TS = “diagnos*” OR
TS = “early diagnos*” OR TS = “prognostic*” OR TS = “fault identification” OR TS = “condition
monitoring” OR TS = “prognostics and healthment” OR TS = “condition-based maintenance” OR TS
= “PHM” OR TS = “prognostics and health management”). With the built query, 16′093 pubbli-
cations are selected. Refinig the search by including the article and review contribution the
number of pubblications are 14′117, where 13786 are in english. The last refinment is applied
on the Research Areas, in order to exclude the articles focused on the material science which is
not the focus of this thesis. The selected areas are: Engineering, Energy Fuels, Science Technology
Other Topics, Instruments Instrumentation, Meteorology Atmospheric Sciences, Spectroscopy, Computer
Science. With all the applied filters, 5′784 pubblications are selected.

2.1.2 Topic Engaging

The volume of publications within a specific subject over a defined timeframe serves as a sig-
nificant indicator of the research focus it garners. A comprehensive comprehension of the
temporal patterns and evolving trends in publications is made more accessible through the
systematic examination of publication trends related to the diagnosis of Lithium-Ion Batteries
(LIB).

Figure Figure 2.1 vividly illustrates the escalating interest surrounding battery diagnostic
studies. In the year 2014, the literature contained a mere 190 articles devoted to this subject.
Remarkably, this number surged to a substantial 1156 articles by the year 2022. Over the span
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Figure 2.1: Publication rate in the last 10 years, the analysis is made from September 2013 to
September 2023

of just 8 years, this growth amounts to an impressive 600% increase in the volume of scholarly
works dedicated to this field.

Based on this growth pattern, it is possible to predict that publications on related research
will continue to rise in the years to come, with 2023 not marking the end of exponential
growth in the number of publications.

2.1.3 Geographical Distribution

The rankings of the top ten most productive countries are reported in Figure 2.2. In this
context, both China and the United States stand out as the foremost prolific nations, with
South Korea following behind. It’s worth noting that when considering the European Union
as a single entity, the cumulative contributions of Germany, France, and Italy are substantial
enough to position the EU as the third most productive region.

An analogous discovery is echoed in Table 2.1 as presented in [67]. China emerges as the
highest contributor in terms of sheer volume, yet interestingly, it occupies only the seventh
position in the average citation ranking. This finding suggests that, despite its prolific output,
articles originating from China are comparatively less compelling to the scientific community.

Conversely, research originating from France receives notable recognition within the sci-
entific community. The average citation per document for French contributions stands at a
remarkable sixfold higher than that of China.

2.1.4 Journal Distribution

The pivotal journals in the field of battery fault detection are highlighted in Figure 2.3. Re-
markably, the top two journals, namely, the Journal of Power Sources and the Journal of Energy
Storage, are both under the esteemed banner of Elsevier. In addition, the third influential
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Figure 2.2: Article or review published in the last 10 years from the most prolific countries

journal, emphEnergies, is published by MDPI. Table 2.3 shows the keywords chosen by the
Authors. Lithium-ion batteries are the most studied battery beacause their diffusion in the
market but also because of the safety issues related to them.
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Table 2.1: 10 productive countries/regions in LIB fault diagnosis

Rank Label Continent Publications AC APY TLS

1 China Asia 1139 29 2018.9 470
2 USA North America 810 44.3 2017 426
3 South Korea Asia 185 30.2 2017.9 63
4 Germany Europe 167 27.3 2018.3 100
5 UK Europe 159 40.2 2018.6 132
6 Canada North America 105 179.5 2018.1 96
7 France Europe 105 200.4 2016.8 95
8 Australia Oceania 61 36.5 2018.9 70
9 India Asia 56 20.8 2019.4 40
10 Japan Asia 53 22 2016.5 30
Table 2.2: Note: TC = Total citations, AC = Average citations per document, APY = Average
publication year, TLS = Total link strength.

Figure 2.3: Ten most used Journal on battery fault detection, the area of each rectangle is
proportional to the journal publications on the selected topic
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Table 2.3: Most frequent used keywords

Authors Keywords Number of Articles

1 lithium-ion battery 1404
2 batteries 255
3 state-of-health 255
4 electric vehicles 254
5 thermal runaway 219
6 remaining useful life 178
7 fault diagnosis 173
8 degradation 131
9 reliability 128
10 machine learning 126
11 battery 121
12 state of charge 119
13 energy storage 118
14 safety 106
15 battery safety 93
16 energy harvesting 83
17 deep learning 81
18 battery management system 73
19 internal short circuit 65
20 estimation 64
21 wireless sensor networks 64
22 predictive models 62
23 aging 62
24 remaining useful life prediction 61
25 prognostics and health management 60
26 remaining useful life (rul) 59
27 fault detection 58
28 electrochemical impedance spectroscopy 56
29 particle filter 55
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2.2 State of Art

From the analysis carried out in the previous paragraph, a series of works were selected to
make up the state of the art illustrated below. Maintenance is a fundamental operation within
industry, especially given the growing interest in automation and mechanisation of processes.
Depending on the chosen approach, maintenance can be divided into three different types:
"Failure-driven", "Time-based" and, "Condition-Based" as shown in the Figure 2.4. "Failure-
driven maintenace (FDM), also known as ’run to failure’ is that maintenance based on inter-
vention after failure or breakdown. There are no maintenance plans, but simply repairs are
carried out should an incident occur. The advantages of such an approach are obvious, there is
no need for planning and since there are no ready-made spare parts, there is no inventory cost.
The disadvantages are also obvious, at any time a breakage can render the instrument unusable
for an indefinite period of time, and the repair is an operation carried out in an emergency
situation which tends to be more costly [134]. A possible aid to the ’failure-driven’ approach
can be the ’time-based’ approach. In this case, the process has a series of planned maintenance
operations. Reducing the maintenance plan is not a trivial task, one must carefully identify the
elements that need periodic interventions and decide how often to carry out the interventions.
Too frequent interventions lead to increased costs due to maintenance costs and downtime.
Intervention times are decided on the basis of statistical considerations, operator experience
and instrument datasheets [134]. In recent years, thanks in part to the drive of Industry 4.0, a
new type of maintenance, Condition Based Maintenance (CBM), has begun to be considered.
CBM is based on the need to determine the state of a system (diagnosis) and identify a set of
parameters able to indicate a tendency of the device or process towards a fault condition be-
fore it actually occurs (prognosis) [134]. Prognostic parameters give an indication of potential
issues and developing faults that could cause a component or piece of equipment to perform
below an acceptable standard. Equipment aging and deterioration are frequent issues in main-
tenance. Before equipment fails or is damaged catastrophically, these equipment conditions
serve as useful warning signs of potential faults and issues.

All the above-defined principles could be applied also to batteries and battery-powered
devices. Extensive efforts in the academic literature have been dedicated to developing effective
methods for enhancing the reliability and availability of batteries. CBM methods enable the
automated and real-time monitoring of concealed indicators related to battery degradation,
such as state-of-health (SOH), state-of-charge (SOC), and the prediction of their remaining
useful lifetime (RUL). These predictions are valuable for supporting maintenance strategies
based on the condition or even predictions. CBM techniques are used to optimize battery
maintenance and ensure that the battery can satisfy the required performance over its lifetime.
CBM techniques are normally comprised of three primary components [103]:

• Data acquisition: Data acquisition involves collecting data from the battery’s sensors
and other monitoring equipment. Data acquisition represents a crucial element within
battery prognostic and health management methodologies, encompassing a variety of
approaches for collecting data. Sensor-based data acquisition involves using sensors to
collect data on the battery’s temperature, voltage, current, and other parameters. The
data collected from these sensors can be used to monitor the battery’s condition and to
develop models for predicting the battery’s remaining useful life (RUL) [57] [139]. Ex-
ternal feature-based data acquisition involves collecting data on external features such as
the battery’s charge and discharge cycles, usage patterns, and environmental conditions.
This data can be used to develop empirical models for predicting the battery’s RUL [103].
Between these two extreme edges, there are several combinations of Sensor-based and
External feature that depends on the specific application and the related costs.
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Figure 2.4: Maintenance topologies

• Condition monitoring and health diagnosis: Battery condition monitoring is a crucial
component of battery prognostic and health management (PHM) techniques. Monitor-
ing means having the knowledge at any time of the battery status indices.

• Health management and health prognosis: Health management involves monitoring the
battery’s condition and taking corrective action to prevent failure. This can include ac-
tions such as adjusting the charging rate or replacing a faulty cell [88].

2.2.1 Data Acquisition

Current: The generation of Joule heat is a consequence of the flow of electric current [142].
The heat generated in a battery is proportional to the square of the current flowing through
it [27]. If the heat generated is not dissipated more quickly than it is produced within a battery,
it can potentially lead to thermal runaway. Another risk associated with high current charging
on the negative electrode is the potential for lithium plating, which can pose a safety hazard
[79]

Voltage: Excessive voltage, as seen in overcharging, can trigger decomposition in both
the electrolyte and the positive electrical conductor. This leads to the production of gas and
heat. Conversely, insufficient voltage, as experienced in under-voltage situations such as over-
discharge or deep discharge, can cause lithium plating on the negative electrode. This can also
result in the deterioration of the copper current collector, potentially leading to the formation
of copper dendrites and an increased risk of internal short circuits [3].

Internal Impedance: The internal impedance of batteries can be an indicator to describe
the state of a battery. The battery generally has a behaviour that is definitely resistive but
also more or less capacitive depending on the stimulus frequency. Currently, there are com-
mercial systems that allow impedance measurements in the range from a few mHz to tens
of kHz. Impedance depends not only on the state of health and charge of the battery, but
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also on its internal temperature and the state of operation, online (measurement at the same
time as the current supply) or offline (measurement with the battery electrically disconnected
from the load). In recent years, research has spread that aims to perform online impedance
measurements directly via DC-DC converters in battery modules [2, 119].

Temperature: Battery temperature is an extremely important parameter that must be mea-
sured and kept under strict control both to keep the battery in the ideal thermal operating
regime and to detect any malfunctions. To date, battery modules have a series of temperature
sensors inside them, but these increase the cost of the module and do not allow a real knowl-
edge of the internal temperature of the cells, but only an external knowledge that delays the
intervention of heating or cooling of the battery pack. Research is therefore moving towards
sensorless systems based on impedance spectroscopy [71] or innovative materials combined
with neural networks [51].

State of Battery: The most commonly used external parameters are state of charge, state of
health, but power status, energy status and others are also defined as required. These indicators
bring together in a single piece of information that is of interest to the designer or end user.
They are dealt with extensively in the section 1.5.

2.2.2 Diagnosis

Battery diagnosis encompasses the comprehensive evaluation of a battery’s present condition
and operational performance, encompassing critical parameters such as State of Health (SOH)
and State of Safety (SOS). In recent years, there has been notable progress in the field of bat-
tery diagnosis through the utilization of data–driven methodologies, which primarily rely on
empirical data. One prominent avenue in battery diagnosis involves the application of ma-
chine learning algorithms. These sophisticated algorithms are adept at scrutinizing battery
performance data, enabling them to make precise estimations of critical metrics, such as ca-
pacity and cycle life. Through the training of these models with extensive datasets, machine
learning techniques have demonstrated their potential in achieving highly accurate SOH es-
timations for batteries [142]. Another facet of battery diagnosis centers on the creation of
diagnostic tools and techniques. These tools are designed to continuously monitor battery
behavior and promptly identify any irregularities or signs of deterioration. Researchers have
gained a more profound comprehension of battery degradation mechanisms by scrutinizing
various electrochemical side reactions within batteries.

2.2.3 Prognosis

The trends in battery prognosis are [142]:

• Cloud-Edge Interaction: The future trend in battery prognosis involves the use of cloud-
based AI-powered diagnosis and prognosis. This interconnected framework enables in-
telligent data processing and analysis for accurate battery diagnosis and prognosis. It
allows for the uploading of battery operating data to the cloud, providing valuable in-
sights for battery health management.

• Full-Scale Diagnosis: Another future trend is the development of comprehensive diag-
nostic approaches using in-vehicle field data. This approach aims to assess the state of
health (SOH) and state of safety (SOS) of the battery. By analyzing real-world operating
conditions and aging mechanisms, it provides a more accurate understanding of battery
performance and reliability.

• Artificial Intelligence: The integration of artificial intelligence (AI) techniques is a key
trend in battery prognosis. Data-driven, machine learning-based approaches have shown
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promise in accurately predicting battery SOH, cycle life, remaining useful life (RUL), and
identifying cells with a high risk of failure. AI models trained on laboratory and field
data can provide valuable insights for EV owners.

Overall, the future trends in battery prognosis involve leveraging cloud-based AI-powered
approaches, comprehensive diagnostic methods using field data, integration of artificial intel-
ligence techniques, and the development of electronic health reports. These advancements
aim to improve battery performance, reliability, and safety in real-world EV applications.





Chapter 3

Methods for the Battery Status
Diagnosis

3.1 Accuracy and Measurement Time Optimization in Impedance
Spectroscopy

The importance of impedance measurement extends significantly across a wide range of appli-
cations, each with specific and critical needs in terms of time required and desired accuracy on
the impedance measurement. This quantity, which reflects the resistance to current flow in
an electrical system, is a fundamental parameter for understanding and characterizing systems
and devices in many engineering contexts.

In recent years, impedance measurement has also become increasingly important in bat-
tery research. Batteries are key components in numerous devices and applications, and their
reliability is crucial. Impedance measurement has been used to estimate parameters relating
to the operating state of batteries, such as the State of Charge (SoC) and the State of Health
(SoH), but also to identify behavioral models based on equivalent electrical circuits, which
allow prediction of battery behavior under different operating conditions.

Impedance measurement on batteries is commonly performed through the Electrochem-
ical Impedance Spectroscopy (EIS) technique. This technique provides detailed information
on the electrochemical properties of batteries and can be applied either during battery oper-
ation (online mode) or by interrupting the battery from its normal operation to perform the
measurement (offline mode). Through EIS, a frequency–varying electrical stimulus signal is
applied to the battery, and then the electrical response of the battery is measured. In this way,
battery impedance can be measured at different frequencies. This technique offers numerous
advantages, including the ability to characterize the battery in a non–destructive way and the
possibility of obtaining detailed information on various electrochemical processes occurring
within the battery by analysis due to the wide range of analyzed frequencies.

However, the main disadvantages of EIS concerns the time required to implement the tech-
nique, that is the time to cover all frequencies of interest. Especially in online mode, it is crucial
to minimize the measurement time to avoid significant variations in battery behavior during
the measurement process. Even in offline mode, it is important to minimize the measurement
time to limit the disservice caused by the interruption of normal battery operation.

Therefore, the purpose of this section is to analyze some stimulus signal and processing
techniques approaches in order to identify optimal combinations that allow EIS to be used to
efficiently estimate battery impedance, achieving good trade–offs between measurement time
and measurement uncertainty associated with impedance estimation itself.
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(a) Stepped sine signal in the time domain.
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(b) Spectrogram of the stepped sine signal.
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Figure 3.1: Considered stimulus signals.

The analyzed stimulus signals

Two different stimulus signals were considered: stepped sine and multisine. The stepped
sine represents the most adopted stimulus signal for implementing EIS on batteries. It involves
applying a pure sinusoidal signal with constant amplitude and phase, varying the frequency of
the sinusoidal over time. 3.1a and 3.1b show an example of a stepped sine stimulus signal in
which the frequency varies during the stimulus time with a logarithmic trend. In detail, 3.1a
shows the trend of the signal over time while 3.1b shows the spectrogram of the signal in
which the logarithmic change in frequency during the stimulus execution time can be seen.

Instead, the multisine signal represents a sum of several sinusoidal signals at different fre-
quencies with adjustable amplitude and phase. Therefore, a multisine signal simultaneously
encloses within it all the frequencies to be analyzed. The general form of a multisine signal is
as follows

y (t) =

Nk∑
k=1

Ak cos (2πfkt+ ϕk), (3.1)

in which the multisine signal y (t) is sum of Nk sinusoids having amplitudes Ak, frequencies
fk and phase ϕk. Furthermore, the phases are generally optimized to obtain a minimum crest
factor, therefore the best signal–to–noise ratio. A simple choice of phases is based on Schröder
phases [?], as shown below

ϕk =
−k (k − 1)π

Nk
. (3.2)

3.1c and 3.1d show an example of a multisine signal in the time and frequency domains,
respectively.

The analyzed processing techniques
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Two different processing techniques were considered: frequency domain and time domain
analysis. In all cases, the aim is to analyze the voltage and current signals measured on the
battery in order to estimate the impedance Ż (fk) at different frequencies of investigation.

Regarding the evaluation technique based on frequency analysis, the procedure is to per-
form the ratio between the voltage phasor V̇ (fk) and the current phasor İ (fk) to measure the
real and imaginary part of the impedance, as shown below

Ż (fk) =
V̇ (fk)

İ (fk)
= Re

(
Ż (fk)

)
+ jIm

(
Ż (fk)

)
. (3.3)

The voltage and current phasors are estimated with the FFT algorithm. It is worth noting
that processing by FFT can be applied to both stepped sine and multisine stimulus signals.

Regarding processing by time–domain analysis, the procedure involves making the ra-
tio between the voltage rms value Vrms (fk) and the current rms value Irms (fk) in order to
estimate the amplitude of impedance

∣∣∣Ż (fk)
∣∣∣ and the difference between the voltage phase

ϕV (fk) and the current phase ϕI (fk) allows the impedance phase ϕŻ (fk) to be measured, as
shown below

Ż (fk) =
Vrms (fk) e

j2πfkt+ϕV (fk)

Irms (fk) ej2πfkt+ϕI(fk)
=
∣∣∣Ż (fk)

∣∣∣ ejϕŻ(fk). (3.4)

The voltage and current parameters needed to evaluate (3.4) (Vrms, Irms, ϕV , ϕI) were cal-
culated by sinusoidal fitting (sinefit). In fact, a sinusoidal signal can be described as follows

s(t) = A0 +A sin (2πft+ ϕ), (3.5)

whereA0 is the DC component, A is the amplitude, f is the frequency and ϕ is the phase. In the
analyzed case, for voltage and current signals from the battery, the frequency f is known, as it
is set by the stimulus signal, and therefore only three unknown parameters are needed for the
reconstruction of the signals (A0, A, ϕ). Therefore, from a set of M samples {s1, s2, . . . , sM}
acquired at time instants {t1, t2, . . . , tM} a least–square approach can be used to estimate the
parameters of the sinusoidal signal that minimize the sum of squares of the errors, as shown
below

{Â0, Â, ϕ̂} = argmin
{A0,A,ϕ}

M∑
i=1

(si − (A0 +A sin (2πfti + ϕ)))2 , (3.6)

where {Â0, Â, ϕ̂} represent the estimated unknown parameters. This procedure is applied to
both voltage and current signals in order to evaluate (3.4). It is worth noting that, because of
the signal definition in (3.5), processing by sinefit is only applicable to stepped sine stimulus
signals.

Finally, it is important to emphasize that the performance of all processing techniques
depends on the acquisition settings of the stimulus signals. For this reason, an analysis of the
performance of the techniques is carried out by varying some signal acquisition conditions
such as the duration and power of the acquired signals.

Considered Measurement Methods

Figure 3.2 summarizes all the measurement methods considered in this section. In partic-
ular, all the analyzed conditions in terms of types of stimulus signals, processing techniques,
power and length of stimulus signals used are shown.

Regarding the stimulus signals, 17 frequencies from 50 mHz to 1 kHz with logarithmic
spacing were analyzed for both stepped sine and multisine.
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Next, two different configurations of signals acquisition settings for processing based on
frequency analysis were adopted, FFT–A and FFT–B. In detail, for each frequency to be ana-
lyzed, FFT–A has a fixed sampling frequency of 10 kHz and a fixed observation time of 100 s,
i.e. 5 periods of the lowest analysis frequency (50 mHz). The FFT–A allows both stepped sine
and multisine signals to be acquired with the same acquisition settings. About FFT–B, for each
frequency to be analyzed, the number of signal periods was set equal to 10 and the number of
points per period equal to 500. These settings make FFT–B a processing oriented to optimize
acquisition time, compared with FFT–A, and applicable only to the stepped sine stimulus sig-
nal because the sampling frequency is variable as the frequency of the stimulus signal varies
(this condition is not applicable to a multisine stimulus signal). Concerning the acquisition
settings used for processing based on time analysis (sinefit), for each frequency to be analyzed,
the number of signal periods was set equal to 3 and the number of points per period equal to
500. Sinefit, like FFT–B, is also a processing oriented toward optimizing acquisition time.

Furthermore, since the measurement performance is sensitive to the power of the signals,
an additional consideration should be given to this aspect. First, the signals are current driven
and this aspect will be detailed after. In order to compare the two analyzed stimulus signals it
was chosen to set the amplitude of the stepped sine at 35 mA rms (i.e. the amplitude of each
sinewave of the stepped sine), Power–A in Figure 3.2, while for the multisine two different
power levels have been adopted. Power–A means that each sinewave of the multisine has an
amplitude of 35 mA rms resulting in an overall amplitude of the multisine equal to 142 mA
rms (35 ·

√
17, where 17 is the number of adopted frequencies). Power–B, on the other hand,

intends to fix the overall amplitude of the multisine equal to 35 mA rms, resulting in 8.5 mA
rms the amplitude of the individual sinewaves (35/

√
17).

Finally, a further analysis was conducted by varying the length of the acquired stimulus
signals. As shown in Figure 3.2, starting from a record of the acquired signal (for example
5 periods for the stepped sine with FFT–A) signal reductions were conducted (2 periods and
1 period for the considered example) in order to compare the measurement performances to
vary the length of the acquired signal. This procedure was carried out for all combinations of
stimulus signals, processing techniques and signal power shown in Figure 3.2.

Experimental Setup

In order to carry out the comparison among the different impedance measurement meth-
ods described into the previews Section, an ad–hoc experimental set–up was developed. It is
important to emphasize the need to design and implement a flexible and versatile experimental
set–up. In fact, this set–up must be able to handle any type of signal to be forced on the battery
and must allow the processing of signals starting from the measured raw data. Consequently,
we developed a custom experimental set–up capable of performing impedance spectroscopy on
batteries offering flexibility in the processes of stimulus signal generation and data acquisition.

Figure 3.19 shows the schematic diagram of the experimental set–up. The designed ex-
perimental set–up involves stimulating the battery by an impressed current signal; there are
no constraints on the shape of the current to allow testing of different stimulus signals. This
operation is performed by a current pump circuit that receives as input a voltage signal from an
arbitrary waveform generator and provides the battery stimulus current as output. The volt-
age signal is supplied by a generation channel of a TiePie Handyscope HS5 usb oscilloscope.
In addition, the same TiePie provides measurement of the battery current and voltage. Due to
the low impedance of the batteries, a four wire connection is adopted to measure impedance by
reducing the contribution of wires. A software in the MATLAB environment was developed
and installed on a PC; through a usb communication protocol between PC and the TiePie it
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Figure 3.2: Considered measurement methods for EIS–based impedance estimation.

is possible to manage the whole experimental set–up.
3.6f shows the circuit detail of the realized experimental set–up. Specifically, the wiring

diagram of the current pump that performs the transformation from an input impressed voltage
signal to an output impressed current signal is highlighted. At the output of the current pump,
a shunt resistor and the battery under test are connected in series. The battery current is
measured using a shunt resistor by measuring the voltage across the shunt resistor using an
instrumentation amplifier in buffer configuration (i.e. gain equal to 1). The output signal is
acquired by the TiePie. Regarding the battery voltage measurement, it is initially filtered using
a first–order low–pass filter with a cutoff frequency equal to 5 mHz (an order of magnitude
smaller than the minimum test frequency used for the battery stimulus current). The filtering
operation is used to remove the DC component of the battery voltage in order to optimize
signal acquisition. Downstream of filtering, due to the extremly low battery impedance, the
voltage signal is amplified through an instrumentation amplifier with a gain equal to 25.7 and
finally acquired by the TiePie. The adopted TiePie to acquire the battery current and voltage
uses a 14–bit analog–to–digital converter. 3.3c shows the engineering of the custom board
made on pcb circuit. Finally, a lithium iron phosphate (LiFePO4 – LFP) battery from "NX"
with a nominal capacity of 2300 mAh and a nominal voltage of 3.2 V was used to perform the
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Figure 3.3: Implemented experimental set–up.

tests.

Validation of the custom experimental set–up

Before using the custom board for the comparison of different measurement methods re-
garding impedance measurement, discussed in the preview Section, it is necessary to verify
the proper operation of the realized board. For this purpose, a performance comparison was
carried out between the board and a reference instrument for impedance measurement on
batteries. In particular, the Hioki BT4560 was used as the reference instrument, which uses
sinusoidal stimulus voltage signals in a frequency range of 10 mHz to 1 kHz. The output of
this instrument is directly the complex impedance of the battery.

In order to carry out the performance comparison tests, the same LFP battery was used
for the tests with both the custom board and the Hioki. In both cases, before carrying out
the tests the battery was charged until a SoC level of 100% was reached. In both cases, the
same 17 stimulus frequencies within the frequency range of the Hioki (10 mHz – 1 kHz) were
used. As for the custom board tests, a stepped sine was chosen to be used as the stimulus signal
and FFT-A as the processing type. This choice respects the classical approach widely used in
the literature for performing an EIS test. Each EIS test was repeated 10 times for both the
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custom board and Hioki. Figure 3.4 shows the obtained results for both the custom board and
the Hioki on the Nyquist plane. In this representation, the x–axis shows the real part of the
impedance Re(Ż) while the y–axis shows the imaginary part of the impedance Im(Ż) and
each point on the curves represents a different stimulus frequency. Performance comparisons
between the custom board and the Hioki were carried out by estimating the mean values and
the associated measurement uncertainties for each analyzed stimulus frequency. Relative to
the estimation of measurement uncertainties, a Type A evaluation was followed for the custom
board based on the performed repeated measurements, while for the Hioki the uncertainty was
estimated using both the repeated measurements (Type A evaluation) and the performance
information on the instrument datasheet (Type B evaluation). The estimation of uncertainty
components by Type A and Type B evaluations follows what is stated in the ISO ENV 13005
“Guide to the expression of uncertainty in measurement (GUM)”. The estimated uncertainties
for both the custom board and the Hioki were added to the average trends Figure 3.4 as
horizontal bars (for the real part of the impedance) and vertical bars (for the imaginary part of
the impedance). Finally, it can be seen that the obtained trends are perfectly compatible with
each other. This result validates the performance of the custom board, allowing us to use it to
implement the measurement methodologies described before.

25 30 35 40
-2

0

2

4

6

Custom board

Hioki BT4560

Figure 3.4: Performance comparison between the custom board and the Hioki BT4560 in-
strument.

Measurement Time

After the setup has been constructed, it is possible to assess the performance in terms of
measurement time for all combinations of signal, acquisition settings, and processing. As can
be seen from Figure 3.5, the stepped sine with the Fourier transform with type A settings
requires more time, especially when considering acquisitions with 5 periods for the lowest
stimulus frequency. This is not an unexpected result, as the stepped sine signal requires stimu-
lating the system with all frequencies one after the other, naturally taking more time compared
to other signal types. Performance improves significantly when using type B acquisition set-
tings. Both type A and type B multisine signals exhibit the same measurement time, as the
difference between the two signals lies solely in the stimulus signal’s power, which does not
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affect the measurement time. With the same number of acquired periods, the multisine signal
allows for considerable time savings compared to the stepped sine signal, as it stimulates the
system with all frequencies simultaneously. All processing signals, except for the stepped sine
processed with the "sinefit" method, cannot be sampled with less than one period of the stim-
ulus sinusoid for each frequency due to the using of FFT algorithm. In contrast, the "sinefit"
method, utilizing a sinusoidal fitting algorithm, has a lower limit of K data points to be well
conditioned. K is three for processing when the frequency is known and four when the fre-
quency is unknown. This allows for acquiring less than one period of the stimulus sinusoid,
resulting in significant time savings compared to the classic stepped sine signal processed with
the Fast Fourier Transform.
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Figure 3.5: Measurement time comparison with all the different combinations of signal, ac-
quisition settings, and processing.

Measurement Repeatability

To assess measurement performance, 12 tests were conducted for each combination of sig-
nal acquisition settings and processing. These 12 tests were carried out while keeping the
sample’s temperature and state of charge constant. Therefore, variations among the 12 tests
can be attributed solely to the measurement system’s performance.Figure 3.6 illustrates the
impedance variations at three different frequencies (100 mHz, 8 Hz, 500 Hz), taken as ex-
amples. Since impedance is a complex quantity, it was preferable to separate the real and
imaginary parts.

In general, it is evident that the best repeatability can be attributed to the multisine signal
with type B settings. Interestingly, despite this signal having lower power compared to the
type A multisine, it still exhibits superior repeatability performance. Repeatability appears to
be significantly influenced by the number of acquired periods, i.e., the observation time of the
signal.

the choice of a signal or processing over the others could be done only define the applicant
scenario, because the application gives constrains in terms of measurement time, measurement
accuracy, and repeatability. This work is currently ongoing and his aim is to understand
the better combination of signals, acquisition settings, and processing to fit the parameters of
equivalent circuits and how the measurement performance impacts on the parameters’ value.
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(a) σRe(Ż(100 mHz))
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(c) σRe(Ż(8 Hz))
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(e) σRe(Ż(500 Hz))
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Figure 3.6: Repeatability in terms of standard deviation through 12 repetitions of the different
signals, acquisition settings, and processing.
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3.2 Stimulus Frequencies Selection

The primary objective of a Battery Management System (BMS) is to ensure battery security
and maximize its lifespan. This goal is achieved through the continuous and precise monitor-
ing and control of the battery’s State of Charge (SoC) and State of Health (SoH). Presently,
the predominant techniques for estimating SoC rely on Coulomb counting and Open Circuit
Voltage (OCV), as detailed in chapter 1. Notably, the application of OCV to Lithium Iron
Phosphate (LFP) batteries presents challenges due to their voltage-SoC relationship, which ex-
hibits limited sensitivity. This means that even a minor voltage measurement error can result
in a substantial SoC estimation error. Electrochemical impedance spectroscopy (EIS) emerges
as a promising alternative to Coulomb and OCV counting methods for SoC estimation, as
highlighted in references [10, 87]. EIS offers the advantage of not being susceptible to the
aforementioned issues and can potentially be implemented in real-world operating conditions,
as discussed in [65]. EIS techniques involve generating stimulus signals, typically sinusoidal
waves, and measuring both battery voltage and current. These stimulus signals typically span
frequencies ranging from a few millihertz to a few kilohertz, as indicated in references [68,89].
The primary challenge associated with EIS pertains to extended measurement times due to the
utilization of lower-frequency stimulus signals, which considerably hinders the feasibility of
real-time SoC estimation.

The aim of this section is to outline methodologies for optimizing the use of Electrochem-
ical Impedance Spectroscopy (EIS) in battery State of Charge (SoC) estimation. The proposed
approach is versatile and can be applied in any scenario where the challenge of designing a
real-time SoC estimation system using EIS arises.

Depending on the specific requirements of different applications, including desired accu-
racy levels and the acceptable measurement time for SoC estimation, the proposed method
facilitates the selection of optimal EIS frequencies to meet imposed constraints. Essentially,
this method has the potential to optimize two out of three key parameters in SoC estimation:
the number of SoC classes, target accuracy, and measurement time. For instance, when the
number of SoC classes is predetermined, the method allows for the maximization of classifica-
tion accuracy without constraints on measurement time or the minimization of measurement
time without compromising classification accuracy. Alternatively, it can find a balanced trade-
off between classification accuracy and measurement time when both parameters are subject
to specific application constraints.

The method is structured around two main stages:

• Experimental Characterization: This stage involves the empirical study of the actual
behavior of the batteries under consideration.

• Time-Accuracy Optimization: This stage relies on suitable feature selection and Ma-
chine Learning (ML) techniques. In the context of EIS, a range of stimulus frequencies
spanning from millihertz to kilohertz is typically employed, with the operator having
control over the number of frequencies used. A greater number of frequencies yields a
more comprehensive spectrum knowledge but prolongs measurement time. The critical
aspect of this optimization is selecting the minimum number of measurements at key fre-
quencies. By adopting an ML approach, each measurement at a different frequency can
be treated as a feature for the algorithm. Consequently, this problem can be effectively
addressed through a feature selection (FS) approach. FS serves to reduce the number of
input variables when constructing a predictive model. The advantages of FS encompass
enhanced model performance, mitigation of overfitting, increased interpretability, and
decreased computational complexity, as discussed in [72].
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The FS approach was also employed in a study referenced in [8], where a dataset compris-
ing 54 different frequencies measured on Li-ion batteries across five distinct temperatures was
utilized. In this study, the authors employed a method based on Pearson’s Correlation Coef-
ficient to identify frequencies with the highest correlation to State of Charge (SoC). These
selected frequencies were subsequently used as inputs for a Machine Learning (ML) model and
linear regression analysis. However, the specific frequencies chosen and the extent of their
impact on reducing measurement time remain somewhat unclear in their approach. Fur-
thermore, as highlighted in this section, the correlation-based selection method demonstrated
inferior performance compared to other proposed fitness functions. Another notable applica-
tion of feature selection (FS) pertains to assessing the health status of batteries, as demonstrated
in [76]. In this study, the authors conducted FS using voltage, temperature, and current mea-
surements to identify indicators most strongly correlated with the health status of Lithium
Iron Phosphate (LFP) batteries. These batteries were subjected to aging through 121 equiv-
alent charge and discharge cycles. The features used in this analysis included the time the
battery spent between two voltage thresholds, temperature data, current measurements, and
energy-related metrics, resulting in a total of 69 features. Following a thorough analysis, the
features were ranked based on their correlation to State of Health (SoH). By establishing a
correlation threshold, it was possible to select the most significant features for SoH estimation.
The proposed measurement method extend the research presented in [16], which aimed to
reduce the time required for Electrochemical Impedance Spectroscopy (EIS) by employing
a feature selection technique grounded in Genetic Algorithms (GA). This research effort ex-
tends in multiple directions. To enhance the validity of the findings, the experimental dataset
was expanded to include a larger number of batteries than those considered in [16]. Addition-
ally, the study explored the effectiveness of the Particle Swarm Optimization algorithm, as an
alternative search strategy to GA-based techniques, as introduced in [111]. Furthermore, two
distinct fitness functions were implemented. The first function served to assess the performance
achieved when training a supervised learning model, employing a wrapper approach. In this
context, various Machine Learning (ML) models were tested to determine the most suitable
one. Conversely, the second fitness function was based on a correlation analysis employing
Pearson’s Correlation Coefficient.

The Proposed Method

Utilizing impedance spectroscopy as the method for State of Charge (SoC) assessment
within Battery Management Systems (BMS) offers an alternative to relying on Coulomb
counting or Open Circuit Voltage methods. These conventional methods have inherent lim-
itations, often exhibiting divergence over time or reduced reliability during battery charging
and discharging phases. However, impedance spectroscopy presents a significant drawback
in the form of extended measurement times, primarily stemming from the low inspection
frequencies, resulting in measurement durations on the order of minutes. Such prolonged
measurement times may not align with the requirements of certain applications. To mitigate
measurement time while preserving the efficacy of SoC estimation, a data-driven methodol-
ogy for SoC assessment is introduced. This method is specifically tailored to address the chal-
lenge of designing a real-time SoC estimation system utilizing the Electrochemical Impedance
Spectroscopy (EIS) technique. Depending on the unique demands of diverse applications, in-
cluding the desired level of accuracy and the acceptable measurement duration for SoC esti-
mation, the proposed approach facilitates the optimization of frequency selection within EIS
to meet predefined constraints effectively. Within this methodology, the selection of optimal
frequencies is achieved through feature selection techniques employing search algorithms and
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various fitness functions.
The method is summed up in Figure 3.7 reported in [17]

Characterization of
batteries

under test

Constrains Definition

Is the classifier fixed?

Classifier
selection

Feature Selection

Selected Frequencies

NO

YES

Figure 3.7: The proposed method workflow [17].

The first operation is to define the required constraints and the parameters, below all the
requirements are listed:

• Resolution of SoC output estimation: the higher the resolution the longer the char-
acterization step and in general the greater the number of classes and the greater the
classification error.

• Target measurement time: the target measurement time is the maximum acceptable time
to obtain the measurement.

• Accuracy target: is the minimum acceptable Accuracy of the classifier for SoC estimation.

• The type of batteries: the characteristics of the batteries you want to use (chemistry,
nominal capacity, nominal voltage etc.).

• Classifier: the proposed method uses a classifier built into the search algorithms to esti-
mate the population. The choice of classifier is critical because the next optimization step
will be stitched around the classifier, in other words, the features selected also depend on
the classifier adopted.

The classifier is sometimes defined by design parameters related to hardware requirements,
while at other times the choice of the classifier is related solely to classification performance.
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The proposed method caters to both of these aspects: the classifier can either be specified as an
input parameter or chosen through a preliminary step to identify the most suitable classifier
for the dataset. This selected classifier will serve as the data-driven mechanism employed by
the Battery Management System (BMS) to estimate State of Charge (SoC).

The subsequent step involves the characterization of the devices under examination. Dur-
ing this characterization phase, stringent parameters are employed to ensure the highest pos-
sible SoC resolution and an extensive array of measured features. The selection of batteries for
inclusion in the database should align with the anticipated application of the BMS. Employ-
ing diverse batteries of the same model imparts generality to accommodate various battery
types, just as incorporating batteries at varying states of Health (SoH) ensures adaptability to
different SoH scenarios.

In cases where the initially chosen classifier does not conform to the design constraints,
an evaluation is performed to determine the most suitable classifier for the dataset obtained in
the preceding section. Among a set of pre-selected classifiers, the one that delivers superior
accuracy is subsequently integrated into the feature selection algorithm.

The final stage of the proposed methodology is feature selection, where search algorithms
are employed to select features. This process serves dual objectives: reducing measurement
time to a value equal to or less than the target time while simultaneously attaining accuracy
surpassing the prescribed target level.

The proposed method: Characterization of batteries under test A study aimed at the selection

of Features cannot disregard an initial phase of collecting an adequate dataset. There are two
possible ways: (i) the use of public datasets, i.e. datasets produced by researchers and then made
available to the community for further analysis or (ii) the creation of a measurement setup
to collect the measurement data independently. A number of public datasets of impedance
measurements on batteries were explored but the characteristics required for this study in
terms of number of measurements, stimulus frequencies and temperature did not allow for
the use of a public dataset. It was therefore decided to create a setup and acquire the data
independently. The dataset collection and the related experimental setup will be illustrated in
detail in the next paragraph and Figure 3.19.

At the end of the measurement collection the obtained dataset, as shown in Figure 3.8 [17],
has 20 levels of SoC, and 28 complex impedances for each SoC for a total of 7 different LFP
batteries.
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Figure 3.8: Structure of the entire obtained experimental dataset [17].

The proposed method: Classifier Selection

As shown in Figure 3.7 the adopting classifier could be a parameter or could be fixed by
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external limits (i.e. computational limit). For this reason, the feature selection algorithm is
built to properly work with all types of classifiers The initial experiments consisted of two
distinct phases. In the first phase, multiple ML models were examined to identify a subset of
algorithms that best represented the problem at hand, taking into consideration both their
achieved performance and computational complexity. The second phase involved a more in-
depth analysis of the selected models to assess their suitability for real-world applications.

For the SoC estimation task, a 10-class classification approach was adopted, where each
class represented a 10% SoC interval, resulting in estimation intervals such as [0-10], (10-20],
and so on up to (90-100]. All available features were utilized, totaling 28 impedances for each
SoC (comprising Real and Imaginary components) acquired at various frequencies, resulting
in a total of 56 features used in the analysis. Notably, no normalization techniques or general
pre-processing methods were applied because conventional techniques did not yield significant
performance improvements across various models.

During these experiments, key metrics commonly associated with multiclass classification
problems, as highlighted by Grandini et al. in [41], were employed for performance assess-
ment. These metrics included Accuracy (Acc), Matthews Correlation Coefficient (MCC),
Precision (P), Recall (R), and F1 Score (F1). It’s worth noting that these metrics, originally
designed for binary classification, were adapted for use in a multiclass context by averaging
the unweighted mean per label.

A comparison of different classifiers is performed in this phase, the aim is to identify the
most suitable classifier for this problem. A classical division 80-20 is applied to split the dataset
into two parts where the bigger part is used to train the models while the second part is used to
test them. This approach is well established in the literature because the algorithms are tested
on data that are not used for the training. The classifier selection is conducted in two phases,
first, the most promising classifiers are selected from a series of classifiers, these are then tuned
and adjusted in order to increase the classifiers’ performances. In ?? [17] all the first phase tested
classifiers are reported. Based on this analysis, three models were selected for more in-depth
performance evaluation. The selected models are as follows:

• K-Nearest Neighbors: Known for its low computational complexity during training but
not particularly high performance.

• Random Forest: Chosen for its favorable balance between performance and complexity.

• Support Vector Machine: Selected with the aim of achieving the highest performance
possible.

The previously chosen models were employed in subsequent testing phases. Specifically,
the primary objective was to ensure controlled separation of data for training and testing,
ensuring that measurement data from the batteries did not overlap between the training and
testing sets. These experiments consistently followed the k-fold method, employing six folds in
which measurements from two batteries were allocated for testing, while the remaining data
was used for training. This approach was designed to maximize dataset utilization, resulting
in six trained models for each classification algorithm. The results obtained are presented in
Table 3.2 . The metrics considered in the evaluation confirm that the Support Vector Machine
(SVM)-based model performed the best, achieving a mean accuracy of 0.83 with a standard
deviation of 0.04. The resulting confusion matrix is depicted in Figure 3.9.

As a result of these preliminary classification tests, the SVM emerges as the most effective
ML model among those under consideration. Consequently, in subsequent Feature Selection
(FS) methodologies that involve the use of a classification model, the SVM model will be the
one employed.
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Table 3.1: Average values of the considered evaluation metrics and main best obtained hyper-
parameters for the ML models.

Model Acc MCC P R F1 Hyper–parameter Value
AdaBoost (DecisionTree) 0.34 0.31 0.32 0.36 0.27 Base estimator Decision Tree

Number of estimators 50
Learning rate 0.1

Logistic Regression 0.45 0.39 0.43 0.45 0.43 Inverse of regularization strength 10000
Norm of the penalty l2

Multi–Layer Perceptron 0.55 0.52 0.52 0.57 0.51 Activation function ReLu
Hidden layer sizes 100, 200, 100
Learning rate Constant
Solver Adam

K–Nearest Neighbor 0.57 0.53 0.59 0.57 0.57 Number of neighbors 3
Minkowski metrics Euclidean
Weight function Distance

Gaussian Naive Bayes 0.68 0.65 0.72 0.68 0.67 Variance smoothing 1e-9

Bagging (DecisionTree) 0.75 0.72 0.77 0.74 0.74 Base estimator Decision Tree
Number of estimators 50

Random Forest 0.75 0.73 0.78 0.74 0.74 Criterion log_loss
Number of estimators 100

Support Vector Machine 0.89 0.88 0.92 0.89 0.89 Regularization parameter 10000
Kernel type RBF
Kernel coefficient(gamma) 1
Decision function one-vs-one

The proposed method: Fatures Selection

Feature Selection (FS) is used to reduce the number of utilized features by eliminating those
that are extraneous or contain noise. Let’s consider a collection of data samples for classification
denoted as Z , which is described by a set Y consisting of N features. The FS task involves
the identification of the optimal subset X∗ ∈ Y composed of M (M < N) features. This
selection is guided by an objective function denoted as J . The function J(X) assesses the dis-
criminative capability of the feature subspace represented by the subset X when the samples
in Z are projected onto it. To achieve this goal, a well-defined search strategy, an evaluation
function, and a stopping criterion are essential components. Nevertheless, owing to the ex-
ponential expansion of the solution space, which encompasses all 2N conceivable subsets of Y ,

Table 3.2: Average values and standard deviation of the considered evaluation metrics exam-
ined, where Train and Test datasets are divided by batteries [17].

k-NN Random Forest Support Vector Machine
Acc 0.62± 0.12 0.79± 0.05 0.83± 0.04
MCC 0.58± 0.13 0.77± 0.05 0.82± 0.04
P 0.65± 0.11 0.81± 0.05 0.85± 0.04
R 0.63± 0.12 0.79± 0.05 0.84± 0.04
F1 0.62± 0.13 0.79± 0.05 0.84± 0.04
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Figure 3.9: Obtained confusion matrix of the Support Vector Machine model, with mean
value (top) and standard deviation (bottom) for each class [17].

conducting an exhaustive search to identify the optimal subset X∗ becomes infeasible, partic-
ularly when dealing with a large number of features (i.e., N > 50). In the realm of Feature
Selection (FS), algorithms typically need to specify both an evaluation function and a search
procedure. Evaluation functions can be categorized into two general classes: filter and wrap-
per methods. Filter methods gauge the relevance of features based on statistical measures or
scores. They evaluate a feature subset independently of the Machine Learning (ML) algorithm
being employed. Common examples of filter methods encompass correlation-based FS, mu-
tual information, and chi-square tests. In contrast, wrapper methods assess the performance
of an ML model with various feature subsets. They entail training and evaluating the model
using diverse combinations of features and ultimately selecting the subset that yields the best
performance. It’s worth noting that wrapper methods can be computationally intensive but
generally offer more precise results. Evolutionary Computation (EC) techniques have gained
widespread utilization in this domain due to their renowned capacity for global exploration.
Furthermore, EC techniques operate without requiring domain-specific knowledge and make
no presumptions regarding the nature of the evaluation function, such as linearity or differ-
entiability.

In this study, we tackled the challenge of determining the optimal set of frequencies for
impedance measurements via Electrochemical Impedance Spectroscopy (EIS) in the context
of battery State of Charge (SoC) estimation. To attain this objective, we employed two op-
timization algorithms as search strategies. The first is rooted in the Genetic Algorithm (GA),
while the second is founded on Particle Swarm Optimization (PSO). Additionally, for both of
these search algorithms, we incorporated two distinct fitness functions: the first is based on a
supervised learning model, and the second relies on a correlation analysis. We will elaborate on
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the proposed approaches, including the selection of search algorithms and the implementation
of fitness functions, in the subsequent sections.

Figure 3.25 reports both the implemented searching algorithm.

Particle Swarm  OptimizationGenetic Algorithm First Iteration
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Figure 3.10: Genetic Algorithm (left) and Particle Swarm Optimization (right) flow charts
[17].

A Genetic Algorithm (GA) mimics the natural process of evolution by creating a population
of potential solutions, each represented as binary strings. These solutions are then subjected
to crossover and mutation operations to explore the search space effectively [116]. In our
implemented approach, we employed a generational GA, where individuals were depicted as
binary vectors that encoded specific feature subsets. Each individual took the form of a binary
vector with a fixed length equal to N , with feature inclusion and exclusion represented by 1
and 0, respectively. The algorithm’s flowchart can be seen on the left side of Figure 3.25.

To initiate the algorithm, we generated a population of individuals denoted as P , with each
individual’s values randomly set as either 1 or 0. Subsequently, we applied a fitness function to
assess each individual’s fitness, taking into account the frequencies encoded by that particular
individual. After the evaluation phase, we created a new population. Initially, we implemented
an elitist strategy, copying the best individuals from the current population to retain the top
elements. The remaining (P − e)/2 pairs of individuals, referred to as parents, were chosen
through a tournament selection method with a size of t. This selection method involved
picking an individual from the population by selecting the best among t randomly chosen
individuals. We applied the uniform crossover operator to each selected pair, followed by the
mutation operator, with both operations having probabilities equal to pc and pm, respectively.
The resulting offspring were then evaluated and added to the new population. This entire
process was reiterated for Ng generations. You can find the parameter values for pc, pm, and
Ng in Table 3.3.

The Particle Swarm Optimization (PSO) algorithm [56] stands out as a global optimiza-
tion technique particularly well-suited for addressing problems where the optimal solution
resides within a multidimensional space. PSO can be applied to optimize both real-valued and
discrete-data scenarios. These swarm-based algorithms belong to a family of nature-inspired,
population-based methodologies known for their ability to generate robust solutions for a va-
riety of intricate problems. A swarm comprises a population of simple, homogeneous agents
that execute elementary tasks through interactions with one another and their environment.
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Table 3.3: Genetic Algorithm parameters.

Parameter Symbol Value
population size P 100
selection type - tournament
tournament size t 2
elitism e 2
crossover probability pc 0.6
mutation type - random
mutation number of genes msize 1 bit
generation number Ng 250

From a mathematical standpoint, as expressed in Equation 3.7, assuming we are tackling a
maximization problem and denoting the objective function as f , our objective is to locate the
coordinate point xbest within the search space RD. The value of f(x) is commonly referred
to as the "fitness" of the point. In the context of PSO, each potential solution (xi) is termed a
"particle" and represents a point within the search space.

f : RD −→ R
xbest|f(xbest) ≥ f(x) ∀x ∈ RD

(3.7)

The ensemble of these elements constitutes the swarm. In its quest to find the problem’s
solution, the swarm continually updates its positions through an equation of motion, as illus-
trated in (3.8). Here, vi is a D-dimensional vector that represents the velocity components
of the i-th particle. The time instants t and t + 1 correspond to two successive iterations of
the algorithm (Marini et al., 2015). The algorithmic progression of this iterative process is
depicted in Figure 3.25.

xi(t+ 1) = xi(t) + vi(t+ 1) (3.8)

To address the problem at hand, we applied the optimization algorithm to discrete data [58].
In this context, each particle is represented by a binary vector that characterizes a feature subset.
The parameters employed in the subsequent experiments are detailed in Table 3.4.

Table 3.4: Particle Swarm Optimization parameters [17].

Parameter Symbol Value
optimizer - Binary PSO
cognitive parameter c1 2
social parameter c2 2
inertia parameter w 0.8
iterations i 250
number of particles n 100

As previously mentioned, two fitness functions were implemented for each of the con-
sidered search algorithms. These fitness functions play a pivotal role in determining which
features (and consequently, which frequencies) should be utilized for State of Charge (SoC)
estimation. The underlying concept behind the definition of these fitness functions encom-
passes two primary objectives: maximizing the information content of the features and mini-
mizing the overall measurement time.The measurement time is computed as the sum of all the
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selected stimulus periods. Given that the measured impedances consist of complex numbers,
comprising both real and imaginary components, two features are generated for each stimulus
frequency. It’s important to note that the impedance measurement instrument outputs both
components simultaneously for each measurement. Consequently, the measurement time is
calculated by considering a measurement period whenever one or both of the features at the
same frequency are taken into account.

A fitness function was developed and evaluated based on an SVM (Support Vector Machine)
classifier because, as previously detailed, it demonstrated superior performance in classifying
the State of Charge based on the acquired data. The structure of the fitness function is pre-
sented in (3.9). The SVM operates as a supervised classifier that partitions the feature space
using hyperplanes. The optimal hyperplane is chosen based on its effectiveness in separating
different classes within the test dataset. In the context of Feature Selection (FS), the feature
space undergoes changes in each iteration. For instance, let Ch represent one of the chromo-
somes containing M features. The algorithm utilizes the M-dimensional feature space from
the training sub-dataset to identify the most suitable hyperplane. Subsequently, a test is con-
ducted on the test sub-dataset using the same M-dimensional feature space, and the resulting
SoC estimation accuracy is assessed as described in (3.10), where the parameter A denotes the
ratio of correct predictions (CP ) to total predictions (TP ).

The primary objective of FS in this application is to reduce measurement time while simul-
taneously preserving or achieving a satisfactory compromise with SoC estimation accuracy.
To this end, measurement time is considered through the B parameter, as detailed in (3.11).
This parameter exhibits an inverse relationship with the duration of the measurement process.
In this context, Tmeas represents the measurement time, calculated as the sum of the durations
of the selected features (frequencies). Conversely, the maximum measurement time, Tmax, is
determined by aggregating the durations of all features. In our specific case, Tmax is approx-
imately 4 minutes. Utilizing measurement periods instead of the number of features enables
the algorithm to minimize the feature count while prioritizing higher frequencies over lower
frequencies, as the impact of lower frequencies on measurement time is more pronounced.
Moreover, both A and B terms are confined within the range of [0, 1]. The weight coeffi-
cient α offers a mechanism to adjust the balance between the contributions of SoC estimation
accuracy and measurement time considerations.

S = α ·A+ (1− α) ·B (3.9)

A =
CP

TP
(3.10)

B = 1− Tmeas

Tmax
(3.11)

The fitness function, based on Pearson’s Correlation Coefficient (PCC) as defined in (3.12)
for paired data {(x1, y1), . . . , (xn, yn)}, serves the purpose of enabling the identification of a
feature subset with minimal redundancy in the dataset. For every solution generated by the
algorithms, we compute the correlation matrix among the selected features. Subsequently,
an index associated with the individual is derived by calculating the arithmetic mean of the
unique elements within the matrix. Additionally, the optimization problem takes measurement
time into consideration. The resultant function is formulated as a maximization problem, as
shown in (3.13), and consists of two components weighted by an α weight coefficient. The
first component, denoted as C and presented in (3.14), represents the correlation index of the
solution under examination. Meanwhile, the second component, denoted as B, exhibits an
inverse relationship with measurement time, as explained previously in (3.11).
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rxy =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(3.12)

S = α · C + (1− α) ·B (3.13)

C = 1− 1

n

n∑
i=1

|rxy(i)| (3.14)

Performance Evaluation

In this section, the results of the Feature Selection (FS) process, which involves the appli-
cation of the previously discussed search algorithms and fitness functions to the experimental
dataset as previously described. Specifically, both SVM and PCC-based fitness functions were
implemented on the GA and PSO search algorithms, yielding four potential combinations:
GA+SVM, PSO+SVM, GA+PCC, and PSO+PCC. The experimental parameters for GA and
PSO, used consistently throughout the subsequent experiments, were determined following
preliminary trials, as outlined in Table 3.3 and Table 3.4.

To assess the performance of the tested systems, a total of 50 independent runs were con-
ducted, each initiated with a distinct randomly generated initial population. At the conclusion
of each run, the best individual discovered in that particular run was selected as the output solu-
tion. The results presented herein represent the best outcome in terms of accuracy among the
50 runs conducted. The hyperparameters employed for SVM remained consistent with those
detailed in Table 3.1. In each run, the model construction followed the structure described
before, with one of the available folds being randomly chosen. Furthermore, the achieved
performances were evaluated while considering various α weight coefficients within the im-
plemented fitness functions, as outlined in (3.9) and (3.13). Two distinct application scenarios
were considered. In the first scenario, the objective was to select all solutions that exceeded
a predefined target classification accuracy, without regard to the time involved. In contrast,
the second scenario introduced multiple objectives: selecting the solution with the shortest
measurement time while ensuring that there was no degradation in classification performance
compared to the scenario using all features. To address these objectives, Figures 3.11-3.14
illustrates the trends of the maximum accuracy and measurement time achieved for each α
value, encompassing all combinations of fitness functions and search algorithms.

In this practical case study, we established a target accuracy of 0.95, irrespective of the
measurement time, as outlined in the requirements. Figures 3.11 3.12 3.13 3.14 presents the
maximum accuracy achieved over 50 runs along with the corresponding measurement time as
a function of the α weight coefficient. The blue star-marked point signifies the solution with
the highest accuracy. Additionally, the shaded band illustrates the SoC estimation accuracy
obtained when using all features with the SVM classifier, along with its associated uncertainty,
as presented in Table 3.2.

For accuracy, higher values represent superior solutions, whereas for measurement time,
lower values indicate better solutions. Regardless of the combination of fitness function and
search algorithms, accuracy increases as the alpha coefficient increases. This trend emerges
because, with lower alpha values, the search algorithms tend to generate solutions that prior-
itize minimizing measurement time over maximizing classifier accuracy. Conversely, higher
alpha values prompt the search algorithms to prioritize accuracy at the expense of minimizing
measurement time.
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Figure 3.11: Accuracy and measurement time as a function of α weight coefficient for
GA+SVM combination [17].
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Figure 3.12: Accuracy and measurement time as a function of α weight coefficient for
PSO+SVM combination [17].
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Figure 3.13: Accuracy and measurement time as a function of α weight coefficient for
GA+PCC combination [17].
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Figure 3.14: Accuracy and measurement time as a function of α weight coefficient for
PSO+PCC combination [17].
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Figure 3.15: Accuracy and time performances of the solutions with the higher SoC classifica-
tion Accuracy [17].

When assessing the comparative solution-searching performances of GA and PSO, there
are no significant disparities in accuracy between the obtained solutions, as observed in Figures
3.11, 3.12, 3.13, and 3.14. This suggests that their performances are comparable.

Regarding the fitness functions, it is evident that the one based on the SVM classifier con-
sistently outperforms the PCC algorithm in terms of accuracy. In fact, the target accuracy is
achieved only when the fitness function incorporates the SVM classifier. An interesting find-
ing is that feature selection can even enhance SoC evaluation performance. There are several
cases where the accuracy surpasses that achieved with all features. This phenomenon can be
attributed to the presence of ambiguous features that may mislead the classification algorithm.
Thus, even when there is no imperative need to reduce measurement time, this method can
exclude suboptimal features and improve overall classification accuracy.

Figure ?? provides a detailed view of the star-marked points from Figures 3.11, 3.12, 3.13,
and 3.14. The left axis presents accuracy, while the right axis depicts measurement time for
all combinations of search algorithms and fitness functions. It becomes evident that the most
effective combination for the acquired dataset is PSO+SVM, which achieves an accuracy of
0.98 and a measurement time of 16 seconds. In this case, even without a specific focus on
optimizing time, the method saves over 93% of the total measurement time, which was initially
set at 240 seconds.

The employed Feature Selection (FS) methodology relies on multidimensional search al-
gorithms, specifically utilizing the Genetic Algorithm (GA) and Particle Swarm Optimiza-
tion (PSO) to determine the most pertinent features within the Electrochemical Impedance
Spectroscopy (EIS) signals. Two distinct fitness functions have been taken into account, one
grounded in supervised learning, notably the Support Vector Machine (SVM), and the other
centered on feature correlation assessed through Pearson’s Correlation Coefficient (PCC). The
data source employed for driving the FS algorithms comprises an experimental EIS-derived
dataset encompassing seven Lithium Iron Phosphate batteries.

In scenario A, the primary objective is to attain a SoC classification Accuracy of 0.95, with
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Figure 3.16: Accuracy and time performances of the solutions with two constraints on time
and Accuracy [17].

no consideration given to the measurement time. The optimal solution in this scenario achieves
a classification Accuracy of 0.98, accompanied by a measurement time of 16 seconds, which
is shorter than the measurement time required for all stimulus frequencies.

On the other hand, scenario B introduces two constraints: one on the classification Accu-
racy and another on the measurement time. In this case, the best solution identified by the
search algorithms achieves an Accuracy of 0.82, along with a notably reduced measurement
time of 1.5 seconds.

Scenario A solely emphasizes achieving a SoC classification Accuracy of 0.95, without tak-
ing the measurement time into account. In this context, the most favorable solution achieves
a classification Accuracy of 0.98, with a measurement time of 16 seconds.

In contrast, scenario B imposes dual constraints, targeting both classification Accuracy and
measurement time. In this scenario, the search algorithms identify the best solution, charac-
terized by an Accuracy of 0.82 and a significantly reduced measurement time of 1.5 seconds.

The substantial time savings of up to 99% underscore the efficiency gained by employing
the selected features rather than utilizing all measured features. Furthermore, it is essential
to recognize the impact of misleading features on classification algorithms. The elimination
of these misleading features results in an improvement in SoC estimation Accuracy of over
10%, highlighting the significance of Feature Selection (FS) in enhancing SoC evaluation
performance, even when time savings are not the primary focus.

3.2.1 Data Collection

Studying the relationship between battery States (SoC, SoH) but also temperature with the
impedance requires sometimes expensive instrumentation which is a big obstacle for researchers.
Just to give an order of costs, the minimum requirement in terms of instrumentation includes
a bidirectional, an impedance meter, and a climate chamber. The first one is used to set the
levels of charge in the batteries (SoC) while the second one is used to properly measure the
battery impedance and since the impedance is a function of temperature the climate chamber
helps to keep the temperature constant. The price of a bidirectional in Europe is between 2
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Figure 3.17: Distribution of selected features through the different combinations of searching
algorithms and fitness functions for scenario A [17].
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Figure 3.18: Distribution of selected features through the different combinations of searching
algorithms and fitness functions for scenario B [17].

and 8 k while the impedance meter is around 10 k and the chamber from 15k. To overcome
this issue, researchers with the instrumentations create measurement datasets and then share
them with the community.

Background and Summary

Currently, batteries are regarded as a highly efficient means of energy storage when con-
sidering the energy-to-volume ratio and electrical power output. Among the various battery
technologies available, Li-ion batteries stand out for their exceptional performance in terms of
aging, cycle life, and rapid charging capability, as noted in previous studies [74,144]. Conse-
quently, Li-ion batteries are increasingly being utilized in a wide range of applications, includ-
ing portable electronic devices, electric vehicles, and energy storage systems, as highlighted
by Ding et al. [33]. Despite significant advancements, understanding the electrochemical
phenomena taking place within batteries remains a formidable challenge. Electrochemical
Impedance Spectroscopy (EIS) has emerged as a powerful tool for evaluating the performance
and degradation processes of Li-ion batteries, as emphasized by Islam et al. [50]. EIS mea-
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surements involve the application of an alternating signal across various frequencies, with the
resulting measurements of currents and voltage enabling the assessment of impedances [50].
These impedances are closely related to the electrochemical processes occurring within the
battery, encompassing charge transfer kinetics, ion diffusion, and interfacial reactions, as elu-
cidated by Lazanas et al. [70].

Novelty of Data

However, addressing these relationships is not straightforward, and the literature contains
numerous contributions proposing various approaches for the analysis of EIS data, as outlined
by Jiang et al. [52] and others [48]. A significant challenge in this field is data acquisition,
which necessitates high-end instruments capable of measuring small impedances and a com-
plex measurement setup. Consequently, obtaining reliable data on battery aging is a challeng-
ing endeavor. This section seeks to address this challenge by presenting a novel EIS dataset for
Li-ion batteries at different States of Charge (SoC) levels.

The data contained within this dataset is entirely original and has not been previously
published in any publication or data repository. The dataset primarily comprises Electro-
chemical Impedance Spectroscopy (EIS) measurements conducted on LFP batteries during
the discharge process at various States of Charge (SoC). The selected batteries for this dataset
are the 600mAh LFP batteries manufactured by O’Cell New Energy Technology CO. LTD. Each
battery undergoes three full discharge cycles. The primary contribution of this dataset to the
research community lies in the substantial number of stimulus frequencies employed (58) and
the wide range of SoC values (20). To the best of our knowledge, there is no existing dataset
that combines these two characteristics. The inclusion of such a large number of stimulus fre-
quencies facilitates the exploration of the frequency-domain properties of batteries and their
variations throughout the discharge process. Furthermore, these data can be harnessed for
developing prediction models and training machine learning algorithms to evaluate methods
for the reliable and efficient management of rechargeable battery devices. Researchers in the
fields of electrochemical studies, power generation technologies, and energy storage systems
can derive significant benefits from this dataset. Moreover, industries involved in the man-
ufacturing of consumer electronics, the advancement of power systems, and the progress of
electric transportation can also find these data valuable for their applications.

Existing Li-ion Batteries Datasets

Here are some publicly available Li-ion battery Electrochemical Impedance Spectroscopy
(EIS) measurement datasets, along with brief descriptions of each:

• Zhang et al. Dataset [140]:

– Dataset Description: This dataset, provided by Zhang et al., is one of the largest
EIS datasets publicly available. It comprises over 20,000 impedance spectra values
obtained from 12 Eunicell LR2032 45 mAh LCO/graphite batteries. These batter-
ies underwent cycling at different temperatures, and EIS measurements were con-
ducted at various States of Charge (SoC) levels, including 45°C, 35°C, and 25°C.

– Purpose: The primary purpose of this dataset is to facilitate State of Health (SoH)
analysis of the batteries rather than State of Charge (SoC) analysis. As a result, it
contains only three impedance spectroscopy measurements during discharge.

– Data Format: The data is provided in ".txt" format and includes both the EIS values
and independent capacity measurements.
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• Buchicchio et al. Dataset [19]:

– Dataset Description: This dataset, compiled by Emanuele et al., features EIS measure-
ments from commonly used Li-ion batteries. The measurements were conducted
using a random-phase multi-sine excitation signal, covering a range of fourteen dis-
tinct frequencies from 0.05 Hz to 1000 Hz for six batteries. The temperature was
maintained at a constant 25 ◦C.

– Purpose: This dataset includes 10 impedance measurements at various States of Charge
(SoC), making it suitable for the development of data-driven methods for SoC eval-
uation. However, it should be noted that this dataset contains fewer stimulus fre-
quencies compared to others.

– Data Format: All the data is shared in a single ".csv" format for all the batteries.

• Toyota Dataset [110]:

– Dataset Description: In this dataset, the authors focus on the charging phase of a
1100mAh Lithium Iron Phosphate cylindrical battery. The charging phase is con-
ducted using a four-step fast charging protocol, while the discharge is carried out
at a fixed current. The dataset includes tests on 240 cells, divided into 5 batches.

– Purpose: This dataset primarily emphasizes the charging phase of battery operation.
– Data Format: Detailed data format information is not provided in the source.

• NASA Dataset [104]:

– Dataset Description: This dataset consists of 34 2 Ah battery cells tested at three dif-
ferent temperatures. It provides EIS data with 39 frequencies ranging from 0.1 Hz
to 5 kHz. However, specific frequency values are not given. The primary focus of
this dataset is State of Health (SoH).

– Purpose: The primary objective of this dataset is to facilitate SoH analysis.
– Data Format: Detailed data format information is not provided in the source.

• Panasonic Dataset [97]:

– Dataset Description: This dataset involves testing a 2900 mAh Panasonic 18650PF
cell at five controlled environment temperatures, ranging from 25 ◦C to −20 ◦C.
Each impedance spectroscopy test covers a frequency range from 1 mHz to 6 kHz
with a ∆SoC of 5%.

– Purpose: The dataset provides extensive EIS measurements across various tempera-
tures and SoC values.

– Data Format: Detailed data format information is not provided in the source.

These datasets offer valuable resources for researchers and practitioners in the field of battery
characterization, with each dataset catering to different aspects of battery performance analysis
and providing unique insights into Li-ion battery behavior.

Data Acquisition

Figure 3.19 shows the bult data Acquisition Setup. The equipment utilized comprises a
specialized battery impedance meter, namely the Hioki BT4560. This impedance meter is
capable of measuring battery impedance using stimulus frequencies ranging from 10 mHz
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to 1kHz. Due to the inherently minute nature of battery impedances, a four-contact mea-
surement configuration is employed by the meter to minimize contact and cable resistances.

Hioki

F- S-     S+   F+

Ba
tte

ry

Eload

F+ S+     S-   F-

µC

Climatic Chamber

USBUSB
USB

Figure 3.19: Implemented Setup scheme.

For battery discharging, the system relies on the Electronic Load Zketech EBD-A20H. This
electronic load device enables the preselection of a discharge current, accommodating currents
of up to 20 amps with a resolution of 10mA. It maintains a maximum error rate of ±0.5% in
current measurement accuracy. Similar to the impedance meter, the Electronic Load features
four terminals: two for voltage measurement and an additional two for setting the discharge
current. An intricate switch system is integrated into the setup to physically disconnect the
electronic load during measurements. This complexity is necessary to ensure the impedance
meter operates in accordance with its datasheet specifications. The management of the switch
system is overseen by a dedicated microcontroller, with each switch exhibiting a contact resis-
tance of roughly 100 mΩ. Importantly, this contact resistance does not impact the discharge
current since, as explained earlier, the electronic load’s four terminals allow for compensation
of the switches’ resistance.

The entire system is under the control of a Python-based control script. This script re-
quires input parameters, including the desired discharge current, the minimum battery voltage
(Vcut−off ), the number of impedance measurements, and the corresponding stimulus frequen-
cies. The system generates output data, including the discharge current, voltage readings, and
impedance measurements conducted by the impedance meter.

The experimental setup involves eleven batteries, each with a capacity of 600 mAh and
employing LFP technology. Each battery is uniquely identified by an identification code.
The key characteristics of these selected batteries are summarized in Table 3.5.

Measurement Protocol

Figure 3.20 illustrates the flowchart delineating the process of conducting a comprehensive
test, which is divided into two primary segments: battery charging and battery discharging.

Battery charging adheres to the CC-CV (Constant Current-Constant Voltage) method-
ology. This approach encompasses two distinct phases:

• In the initial phase, a constant charging current (CC) is applied until the battery voltage
attains the maximum voltage threshold (Vcharge).

• Subsequently, the voltage is sustained at a constant level equal to the maximum voltage
(CV), and charging continues.

• Once the charging current reaches the predetermined threshold value (Icutoff ), the bat-
tery is considered fully charged, signaling the readiness for the ensuing discharge test
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Table 3.5: Adopted Batteries Characteristics.

Battery Characteristics

Manufacturer O’Cell New Energy Technology
CO., LTD

Model IRF14500EC-600 mAh
Capacity 600 mAh
Nominal Voltage 3.2 V
Charge Voltage 3.65 V
Charge Current 300 mA (0.5C)
Cut-off Current 30 mA (0.05C)
Cut-off Voltage 2.0 V

Start
Battery connected

to the CC-CV
Charger

Charging Ich< Icutoff Battery Charged

Relaxation timeEIS MeasuramentBattery Discharge
of Delta SoC

Vbat<VcutoffEnd Test

Charging

Discharging

Yes

No

Yes
No

Figure 3.20: Adopted procedure to obtain the dataset.

and impedance measurement.

After absorbing or delivering current, batteries necessitate a designated duration for electro-
chemical recombination processes to occur, termed the relaxation time. Following this inter-
val, the switches are opened, the electronic load is disconnected, and impedance measurements
are executed at all the specified frequencies established during setup. The resulting data is then
stored in a file on the control PC.

Upon completion of the measurement phase, the electronic load is reconnected to the cir-
cuit, and the battery undergoes discharge, expending the anticipated amount of energy. The
battery voltage is continuously monitored throughout this phase, and if it descends below the
minimum battery voltage threshold (Vcutoff ), the test is terminated.

The values of Vcharge, Icutoff , and Vcutoff are provided by the manufacturer and are doc-
umented in Table 3.5. The State of Charge (SoC) is defined as the ratio of the remaining
energy within the battery to its total energy capacity at a specific state of health. It’s worth
noting that determining SoC necessitates knowledge of the battery’s total capacity. In some
instances, nominal capacity is employed for simplicity. However, it’s essential to acknowledge
that the energy a battery can deliver depends on various factors, including discharge current,
cell temperature, health state, and more.

Therefore, within the acquired dataset, a discharge test is conducted at the designated
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current and temperature without concurrent measurements. This test subsequently serves to
ascertain the total energy the battery can deliver by simply integrating the measured current
over time.

Data Validation

The electrochemical impedance spectroscopy is valid under the small signal hypothesis,
or, in other words, when the conditions of linearity, causality, stability, and finiteness are
verified. In order to prove these conditions, the Kramer–Kronigs relations and their particular
application named “Lin–KK” proposed in [14,108] are used. In order to apply this method, it is
necessary to have a mathematical model of the battery’s impedance behavior as the frequency
varies.

The model estimation is performed by fitting the impedance measurements by varying
the frequency with an equivalent circuit model composed of a series of RC elements. An
important operation is to determine the number of RC elements necessary to accurately define
the impedance behavior. To this end, relative errors committed by the fitting operations on
the real part Re(Ż), imaginary part Im(Ż), and complex impedance Ż are used as a figure of
merit to fix the correct number of RC elements. In detail, Equation 3.15,Equation 3.16 and,
Equation 3.17 shows the mathematical definitions of the above relative errors

εRe(Ż) =

√√√√ N∑
i=1

(∆Re(fi))
2 =

√√√√ N∑
i=1

(
Re(Ż(fi))−Re(Żs(fi))

|Ż(fi)|

)2

, (3.15)

εIm(Ż) =

√√√√ N∑
i=1

(∆Im(fi))
2 =

√√√√ N∑
i=1

(
Im(Ż(fi))− Im(Żs(fi))

|Ż(fi)|

)2

, (3.16)

εŻ =

√√√√ N∑
i=1

(∆Re(fi))
2 +

N∑
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(∆Im(fi))
2 =

=

√√√√ N∑
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(
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)2
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(
Im(Ż(fi))− Im(Żs(fi))

|Ż(fi)|

)2

,

(3.17)

where N indicates the number of analyzed frequencies, fi is the i-th considered frequency,
Re(Ż(fi)) and Im(Ż(fi)) represents the measured real and imaginary part for the i-th spe-
cific frequency, Re(Żs(fi)) and Im(Żs(fi)) represent the estimated real and imaginary part
for the i-th specific frequency and |Ż| is the module of the impedance for the i-th specific fre-
quency. Figure 3.21 shows the obtained relative errors by varying the number of considered
RC elements for the model estimation operation.

As an example, the figure reports the analysis to only one impedance spectra, in particular,
the spectra of battery B11 at 20% of SoC. In particular, we choose to adopt 10 RC elements
since from this point on all the relative errors show a very flat behavior with respect to the
number of RC elements.

Once obtained a mathematical model of the battery impedance as the frequency varies,
it is possible to apply the “Lin–KK” method for the measurements validation. The Lin–KK
method is a specific method based on the Kramer Kronig relations and proposed by [108] for
the impedance spectra measurement validation. Figure 3.22 reports the obtained results for
the Lin-KK method.
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Figure 3.21: Committed relative errors among the measured and the estimated impedances

10 1 100 101 102 103

f [Hz]

0.2

0.0

0.2

(f)
[%

] 

Re
Im

Figure 3.22: Obtained performance with the Lin-KK method validation.
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It is possible to note that the estimation performances are always less than 0.3% for the
estimation of both the real and imaginary parts. This confirms the reliability of the conducted
analysis.
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3.3 Innovative Methods: Resonance-based technique

The state of charge is an index that provides how much energy a battery has delivered rela-
tive to its presumed maximum capacity (measured in a precedent cycle). The state of charge
is critical information for both the Battery Management System, i.e., that system that over-
sees the battery, and the user. In the case of electric vehicles, for example, the SoC provides
macroscopic information about the remaining range but the microscopic information about
the individual cells. In fact, SoC is very useful to the BMS for balancing operations. In battery
modules, there are several cells connected in series and in parallel, a cell that has a lower SoC
than the others in series limits the discharge capacity of all the branch because the cell must
not fall below the minimum voltage for safety issues [31] More advanced BMSs use the energy
from the other cells to recharge the cell with the lowest SoC and bring it up to the level of
the others. The most widely used way to evaluate the SoC of batteries is a combination of
battery voltage and the integral of the delivered current from a fully charged situation. The
battery voltage depends on the state of charge but also on the current delivered at that time
or the current delivered in some previous time frame, which may affect the quality of the
remaining charge estimate. In addition, the integration operation on the current results in a
natural divergence of the result over time; continuous recalibration is necessary to avoid this.
To overcome the limitations mentioned above, several alternative methods have been proposed
in the literature, exploiting different principles such as impedance spectroscopy, as extended
shown in this thesis, or so-called data-driven methods. Some authors have also investigated
magnetic methods for charge state estimation, in particular in [47] a coil wound around a fer-
romagnetic core placed on the side of a battery in lead-acid technology was used. The change
in the state of charge affects the magnetic field for reasons related to the electrochemical phe-
nomena occurring inside the battery. With an excitation frequency of 10 kHz a variation of
1 mH is obtained on a coil base value of 168 mH . A similar approach has been tried in [59]
but instead of using a single coil, in this case, two coils are placed on either side of the battery,
one of the two coils is used to generate the magnetic field at a frequency of 70 kHz while the
voltage induced on the second battery turns out to be proportional to the SoC of the battery.
In [128] the author places the single excitation coil inside the battery to minimize the distance
to the negative electrode. In fact, in lead-acid batteries, during discharge, the negative elec-
trode becomes coated with lead sulfate, which has a different permeability than metallic lead.
In this section, we present a novel approach based on a LC tank attached to the battery side
and measured near the resonant frequency with the aim of a Texas Instrument LDC1101. The
used PCB coil has some clear advantages, it is very cheap to realize and also easy to attach to
the battery shell without taking up space.

3.3.1 Background & Overview

Battery modules are made out of dozen or hundred of single cells. For the BMS its not pos-
sible identify the status of every single cell because they are connected in series or in parallel
and its impossible esaminate one cell without the interference of the others. For this reason,
evaluating the SoC without a physical connection to the battery terminals is interesting. The
utilization of Inductance to Digital Converter (LDC) technology offers a potential solution for
assessing the State of Charge (SoC) of a battery. LDC operates on the principle of the eddy
currents effect, wherein an alternating current is supplied to a primary coil, thereby generat-
ing an alternating magnetic field adjacent to the coil. When the coil is in close proximity to
a conductive object, the magnetic field induces eddy currents within the object, subsequently
giving rise to a reactionary magnetic field that interacts with the original field. As a conse-
quence of this phenomenon, the inductance of the primary coil undergoes a change. The
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magnitude of the eddy currents and the alteration in inductance depends on several factors
such as the object’s conductivity, permittivity, and distance from the coil. The transducer is
able to measure the impedance and the resonance frequency of a LC tank. On the left side of
Figure 3.23, the equivalent circuit of a resonant LC tank is reported, the resistance Rs is a par-
asitic resistance, this circuit could be transformed into the circuit on the right side which is the
model used by the LDC transducer. The smd capacitance C is placed next to the coil. In this

C

Ls

Rs C
Lp Rp

Figure 3.23: Caption

section, the target is a lead acid battery, specifically a Valve Regulated Lead Acid (VRLA). Like
all electrochemical cells, lead acid batteries are characterized by three basic elements, the cath-
ode, the anode, and the ’electrolyte. In the case of VRLAs, the anode is composed of lead metal
while the cathode is composed of lead dioxide. The electrolyte is a solution of varying con-
centration of sulfuric acid. Unlike batteries with liquid electrolyte in VRLAs the electrolyte is
diffused within an absorbent mat with the advantage of making the battery maintenance-free
in that no topping up of electrolyte is required during life. The elements that makeup VRLA
batteries have the characteristic of varying electrical and magnetic characteristics depending
on the state of charge.

Electrodes

Rechargeable batteries use a reversible oxidation-reduction reaction to image energy dur-
ing charging and supply it to the load during discharging. as stated in Equation 3.18, at the
anode the metallic lead reacts with the sulfuric acid present in the electrolyte generating two
electrons a hydrogen ion that remains in aqueous solution and a lead sulfate molecule that is
instead a solid that is deposited on the electrode. The magnetic and electrical characteristics
of lead sulfate are very different from those of metallic lead as can be seen from Table 3.6. In
Equation 3.19 shows the half-reaction that occurs at the cathode, again during discharge, lead
dioxide combines with sulfuric acid, hydrogen ions and two electrons to form a molecule of
water and lead sulfate. The variation in magnetic susceptibility between lead dioxide and lead
sulfate is less pronounced than the variation between metallic lead and lead sulfate. Equation
3.20 then reports the whole oxidation-reduction equation, The lead sulfate produced is a salt
that creates a thin distributed layer on the electrodes.

Pb+HSO−
4 → PbSo4 +H+ + 2e− (3.18)

PbO2 + 3H+HSO−
4 + 2e− → PbSO4 + 2H2O (3.19)

Pb+ PbO2 + 2H2SO4 → 2PbSO4 + 2H2O (3.20)

Electrolyte

In lead-acid batteries the electrolyte is composed of a solution of sulfuric acid in water, the
acid concentration is dependent on the construction technology but for lead-acid batteries it
is about 30− 40%. As can be deduced from the oxidation-reduction Equations 3.18 3.19, 3.20
sulfuric acid contributes to the reaction that takes place during discharge, reacting with the
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Table 3.6

Material Magnetic Susceptibilities Electrical Conductivity

Lead -23 [128] 5.30 E5 S/m [38]
Lead Oxide -42 [128] 1.35 E4 S/m [38]
Lead Sulphate -69.7 [128] 1 uS/m [38]
Electrolyte -57E-6 [93] 0.8S/m [7]
Distilled Water – [] – []

electrode material and generating lead sulfate and water as residual material. Therefore, the
concentration of sulfuric acid is inversely proportional to the state of charge of the battery.

3.3.2 Setup

Sealed Lead Acid Battery
 EaglePicher CF-12V2.3

Rectangular PCB coil

+ -

Electronic Load 
Tenma 72-13200
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USB USB
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Figure 3.24: Measurament Setup

In this section, the experimental setup is presented. The battery adopted is EaglePicher
CF-12V2.3 Sealed Lead Acid Battery whose characteristics are shown in Table 3.7.

The characteristics required of the setup are:

• The ability to bring the battery to known states of charge either starting from a dis-
charged battery or a fully charged beater, in other words, the ability to discharge and
charge the battery and measure the energy being delivered or drawn is required.
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• Continuous monitoring of temperature, as it is one of the major interferers for measure-
ments on batteries.

• Measurements must be simultaneous in order to ensure time synchronization of results.

All these aspects have been implemented in the setup in Figure 3.24

Table 3.7: Main characteristics of the considered batteries.

Battery features Values
Battery Type Valve Regulated Lead Acid
Nominal capacity 2.3 Ah @ 0.2C Discharge
Nominal voltage 12 V
Minimum voltage 10.67 V@ Id < 1.78C
Charging voltage 15 V
Maximum operating temperature -20°C – 50°C (Charging)

The instruments adopted are:

• Tenma 72 13200 Electonic Load: the electronic load allows the battery to be discharged
and brought to known states of charge by setting the chosen discharge current; it also
outputs a measurement of battery voltage a and current with resolution and accuracy of
0.1 mA and ±0.05%FS for current and 0.1 mV and ±0.05%FS respectively

• Texas Instrument LDC 1101: forms the heart of the measurement system and enables
high-speed measurement of the inductance of a coil; the output is digital and sampled
through a 24-bit resolution converter. The parameters provided are the coil inductance
and the equivalent parallel resonant resistance.

• AZ-DElivery dS18B20 8-bit Temperature sensors: Temperature is one of the major in-
terfering null measurements on batteries for this reason it was chosen to monitor it with
a system based on four different sensors located at different points of the battery. two
near the terminals one near the coil and the last one measures the temperature in the air.
the ESP8266 microcontroller is used as a bridge to convert the I2C protocol to USB.

The coil is a custom spiral PCB coil of rectangular shape and size 20 mm by 30 mm ,
the substrate is composed of FR-4 and has 48 turns arranged in two layers. The resulting
Inductance is 31 µH . According to the manufacturer’s datasheet, a 330pF capacitor is sol-
dered in parallel with the coil to have a resonant frequency in the measurement range of the
LDC1101. All of the above instruments are managed by a python scrip running on a Raspberry
Pi 3B+.. Thanks to the Threading library all measurements are acquired simultaneously albeit
with different sampling rates to account for typical variations in the quantities to be measured
or maximum sampling rate. For example, the temperature is monitored with a sampling rate
of 4.3 Sa/s, while inductance with 0.9 Sa/s and finally 80 Sa/s for battery current and volt-
age. Figure 3.25 shows the flowchart of the measurement program, with "Thread 1" being
the main thread since it is the only one capable of triggering the "end of measurement" event
that forces "Thread 2-3" to stop the acquisition. The trigger is determined by the end of the
test or when the minimum battery voltage is reached.
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Figure 3.25: Measurement Protocol

3.3.3 Performed Test and Discussion

As verified in the overview section, the chemical and physical transformations of the battery
elements (electrolyte and electrodes) during discharge result in a variation of the battery’s
magnetic characteristics. Since the effect is driven by two different battery elements, it is not
possible to define analytically which sensor position maximises sensitivity, i.e., the position
that has the greatest variability as the state of charge changes. the greater the sensitivity, the
greater the ability to discriminate between two neighbouring SoC values. In addition to sen-
sitivity, another characteristic that is commonly considered when analysing the performance
of a transducer is linearity, which is the transducer’s ability to have sensitivity over its entire
operating range. Transducers with linear behavior are preferable. The discharge test is per-
formed starting with the battery fully charged and with at least one hour of resting time before
the discharge test. The battery is considered to be fully discharged when the terminal voltage
reaches the minimum voltage given in the datasheet and equal to 10.87/V . The discharge is a
constant current discharge (0.3C 0.71A). In order to identify the best sensor position, several
battery discharge tests were carried out by varying the sensor position. In Figure 3.26 all six
positions tested are shown. The lead-acid battery used consists of six cells arranged in series.
After a visual inspection carried out on a battery of the same type, it is reported that the elec-
trodes are arranged perpendicular to positions A and B, and U and parallel to positions P and
N. Hence, similar sensitivities are to be expected between positions A and B. Position U, for
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construction reasons, is further away from the electrodes. Positions P and N are at the positive
and negative battery terminals. Finally, in position AR the sensor is concentric to position A
but rotated by 90 degrees.

+ -
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Figure 3.26: Tested positions on battery

The LC tank and the measuring device, in particular, provide two quantities as output, the
parallel inductance "Lp" and the parallel resistance "Rp" of the circuit in figure Figure 3.23,
the values are provided directly in ADC code, i.e. the numerical value output from the analog
to digital converter. Figure Figure 3.27 shows the parallel resistance trend as the battery state
of charge changes; the tests were carried out during a discharge. To make the graphs easier
to understand, the resistance values have been normalized using the formula given in Equa-
tion 3.21. Furthermore, the values are the mean of several tests in order to give more robust
results.

RpNorm = Rp(i)−Rp(1); 1 ≤ i ≤ N (3.21)
Position A appears to have a sensitivity compatible with the other positions; For all positions,

the behavior appears to be exponential.
A similar behavior occurs for the inductance, the main difference is that the sensitivity

is lower for all positions, in fact it begins to be comparable with the resolution of the ADC
converter. For "Rp" the variation of the SoC between 100% and 0% is within about 1000 ADC
levels while for "Lp" the number of levels used by the converter is about 100 ("Lp" is normalized
through the Equation 3.22). The ADC converter used by the instrument to convert the two
values is a 16-bit SAR-type converter. In the case of "Lp", the position relative to the positive
electrode also has a consistent pattern to the other positions.

LpNorm = Lp(i)− Lp(1); 1 ≤ i ≤ N (3.22)
Figure Figure 3.29 reports a 4-hour measurement without battery discharge, the objective

being to rule out that the measured variations are due to a natural drift of the measurement
systems rather than to an actual variation in the measurand, which cannot be ruled out a priori
since the discharge tests, for the chosen current, last more than 3 hours. The change in "Rp"
in more than 4 hours was about 60 ADC levels while the change in "Lp", which is less like a
signal drift and more like noise, is at most 7 ADC levels.

another possible influencing factor is the discharge current, this in fact could make the
measurement system more or less sensitive to the change in charge state as well as vary the
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Figure 3.27: Mean Parallel Resistance Measurement with the sensor at all selected positions

Figure 3.28: Mean Inductance Measurement with the sensor at all selected positions
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Figure 3.29: Drift analysis - The sensor value is acquired for a long time without changing
the battery SoC

transfer function. In Figure 3.30 and Figure 3.31 are shown the trends of "Rp" and "Lp"
respectively for four different values of discharge current. It can be seen that as the current
increases, the transfer function becomes more linear. We also note a well-known behavior of
batteries and particularly evident in lead-acid batteries, the amount of energy the battery is
able to deliver is inversely proportional to the discharge current, in other words, the higher
the discharge current, the less energy the battery is able to deliver.

Figure 3.30 and Figure 3.31 also shows the repeatability of the sensors through different
tests

Measure the inductance of a PCB printed coils at its resonant frequency is successful for
non-intrusively monitoring the state-of-charge of sealed lead acid batteries. The main prob-
lem is due to an offset of the measurement that forces to apply a normalization procedure to the
measurement. Temperature affects the measurements and further studies should be provided
to understand the relation with the temperature, in this preliminary test was not possible to fix
the temperature due to a lack of instrumentation but it was at least measured. Further work
is required in order to confirm the present results and their interpretation, plus to determine
the practicality of the technique in the field.
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Figure 3.30: Measured parallel resistance for different discharge currents

Figure 3.31: Measured parallel inductance for different discharge currents





Chapter 4

Data Driven based Modelling
Methods for Batteries Prognosis

Predicting a system behavior is impossible without modelling it. Modelling means creating a
mathematical object whose behaviour is similar to that of the system in question. Modelling
makes it possible to test different life conditions of the modelled devices and to try to predict
their behaviour in the future. In particular, when dealing with batteries, modelling plays a
central role in trying to predict a future state, e.g. SoC or SoH, of the battery. For example,
SoC or SoH as a result of certain usage conditions. There are many different types of models
and modelling techniques, depending on the complexity of the resulting system, the tech-
nique used to obtain it and the properties required of the model. Three different modelling
techniques are discussed in this chapter: the first is based on statistical analysis, identifying de-
vices as state machines in which the transition from one state to another is linked to a statistical
probability defined by the model. In this case, the method is applied to generic electrical loads,
but a future application to batteries is being studied. The second method uses a battery-pulsed
discharge to fit the values of an equivalent electrical circuit. The third method, on the other
hand, exploits the ability of a genetic algorithm to obtain a mathematical model capable of
predicting the battery voltage during discharge, given certain boundary conditions.

4.1 Makov chain Modelling for electrical appliances

4.1.1 Introduction

Applications related to the smart energy paradigm are demanding novel devices and techniques
for satisfying the increasing issues of more efficient and sustainable use of energy. Nowadays,
these applications are attracting more and more interest, especially due to energy and ecolog-
ical transitions, whose goals are the reduction of CO2 emissions and the increase of energy
efficiency. As the latter increases, international treaties set limits on emissions and global tem-
perature rise that must be met, such as those defined at COP26 [29]. As an example, in Europe,
the development and use of intelligent measurement systems and techniques has been boosted
by European directives in recent years. In 2006, the Directive 2006/32/EC [21] identified the
use of intelligent metering systems as one of the tools to improve energy efficiency through
suitable algorithms and techniques. In 2009, the Electricity Directive 2009/72/EC [22] de-
clared the obligation for the Member States to ensure the adoption of smart metering systems.
Finally, in 2012 the European Energy Efficiency Directive 2012/27/EU [23] reaffirmed the
importance of using smart meters, with strict requirements for the Member States regarding
both metering and billing. In this new paradigm, in which energy efficiency and the de-
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velopment of new services based on the measurement of energy parameters are demanding
data, the smart meter assumes a key role. On one hand, it accomplishes the primary task of
monitoring energy consumption. On the other hand, it could provide new quantities useful
for modern smart energy applications. Among these quantities we can mention those related
to the electrical signature of a device, the power quality, and to the use of energy trends over
time, to cite a few, which could enable the implementation of new high-value services for
energy and plants management. In other words, the smart meter can be the key-enabling
technology to implement modern algorithms and emerging techniques in the field of smart
energy applications such as loads defragmentation through the non-intrusive load monitoring
(i.e NILM), digital twin of the equipment, clustering of devices and predictive detection and
diagnosis of faults on both plants and grids. More in-depth, the above-mentioned techniques
are generally based on machine learning algorithms or on optimization techniques exploiting
electrical parameters related to the electrical signature of a load and/or Power Quality param-
eters. For example, considering the development of NILM solutions that is involving many
researchers in the scientific community, some algorithms are based on the use of Marko-
vian models (HMM) and their variants [4] [63] [131], while others prefer signal processing
techniques using graphs (Graph Signal Processing) [117] [141] or Combinatorial Optimiza-
tion [13]. In recent years, other Machine Learning techniques have also been applied for
non-intrusive monitoring, such as Multilayer Perceptron (MLP) [24], Convolutional Neural
Networks (CNN) [132], Deep Learning [60] [115], Recurrent Neural Network (RNN) [85],
Extreme Learning Machine [106] and Bayes Classifier [39]. Whatever the followed approach,
all these techniques require two fundamental steps to be implemented to reliable train and
tune the algorithms on the considered case study: a) the accurate measurement of the energy
consumption and parameters related to the power signatures and other parameters relying on
the involved devices, b) the monitoring for a time interval wide enough for capturing an ade-
quate amount of data. As for the first step a), it is crucial since it strictly affects the quality and
the quantity of the collected information. It is very important to have energy measurements
characterized by low uncertainties and, at the same time, to provide several energy param-
eters, such as the harmonic and inter-harmonic power, current and voltage values, the total
harmonic distortion, the power factor, etc. that can characterize how a device, or a group of
devices, is consuming the electrical energy. As for b), the monitoring for wide time inter-
vals is very important not only to provide big data to the smart energy algorithms but also
to let the algorithms work on a few operating conditions able to give reliable information on
the monitored process or equipment. For example, to optimize the energy consumption of
a family it is important to monitor the consumption habits considering several days and the
effects of seasonality. As a further example, such as diagnosis or predictive maintenance of
devices and grids, to predict faults on equipment, it is important to have a reliable footprint of
its energy status considering all the possible operating conditions of the involved device. Since
the above-mentioned requirements impose to perform very expensive and time-consuming
measurement campaigns, in the last years some datasets have been proposed in the literature
with the aim of facilitating the development of new algorithms addressing the cited emerging
needs. Many are the contributes to the literature that propose the use of a dataset to train
or tune smart energy algorithms. Examples for NILM can be found in [102], load profiling
can be found in [130] and predictive maintenance can be found in [136]. In literature two
different types of datasets can be found: real [11,12,35,55,62,81,82,92,95,113,129] and sim-
ulated datasets [20,25,45,61]. In particular, real datasets are composed of data, collected on the
field, while simulated ones are obtained through suitable software simulators. However, these
datasets do not meet all the requirements for effective data usage, i.e. the limited amount of
saved electrical parameters, data variability, seasonality, closeness to real scenarios, and defini-
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tion of the current operating states are just some of the missing or not complete information
that makes them poorly suitable for modern Smart Energy Applications. To overcome such
limitations, in this study we present an innovative energy dataset. The main advantages of the
proposal are: (i) data variability, in terms of the operating states of the electrical loads and the
adoption of appropriate consumption models; (ii) the total number of available electrical pa-
rameters (433 in our case) enormously larger than the above-cited datasets, as the full analysis
of frequency behaviors and harmonic computations; (iii) the seasonality of the data. Further-
more, the presented dataset is a hybrid solution between the simulated datasets and the ones
based on real data. Indeed, it is generated through simulation, starting by real measurements,
and customized by means of an effective computed variability model. Finally, it has been val-
idated with further a-posteriori measurement campaign on real loads. The developed dataset,
namely eLAMI, is made publicly available to the whole research community at [34] (download
here) through a modular structure, allowing customized downloads and analyses.

4.1.2 Related Works

The growing demand of new monitoring devices with smart algorithm and technique has
led to the development of several dataset capable to tune the performance. In Tab. 4.1, some
examples of public datasets with data collected from the field are shown; they differ for the
number of devices, number and type of provided electrical parameters and length. In the
following they are briefly described.

Table 4.1: Main Characteristics of Some Public Dataset Based on Real Data

Name Number Appliances Parameters Period

AMPds [82] 20 P,Q,S,V,I 1 year
AMPds2 [81] 20 P,Q,S,V,I 2 years
BLUED [35] 50 P,Q,V,I 1 week
Dataport [95] 8598 P,S 4 years
DRED [129] 12 P 6 months

ECO [12] 45 P,V,I 8 months
ENERTALK [113] 75 P,Q 1714 days

iAWE [11] 63 P,Q,S,V,I 73 days
REDD [62] 92 P,V,I 119 days
REFIT [92] 20 P 2 years

UK-DALE [55] 109 P,Q,S,V,I 2247 days

• AMPds [82] The Almanac of Minutely Power dataset is a public dataset, published in 2013,
containing 1 year of collected data of residential appliances from a single household in
Canada. This first version contains measurements of electricity, water and natural gas at
one-minute intervals, for a total of 525600 readings per year per meter.

• AMPds2 [81] This second version of the AMPds dataset differs from the previous one only
in the number of total readings, 1051200, corresponding to 2 years of acquisition.

• BLUED [35] The Building-level fully labeled dataset for electricity disaggregation was re-
leased in 2012 by 1 week electricity data from 1 building in the USA. This dataset contains
not only the steady-state, but also the state transition of each appliance.

https://dx.doi.org/10.21227/sj97-0828
https://dx.doi.org/10.21227/sj97-0828
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• Dataport [95] The Dataport database was created by Pecan Street Inc and published in
2015. It contains electricity data from 722 houses and commercial buildings across different
cities in the USA. As it has a sampling period of 1 min for aggregate and appliance signal,
this is considered a low frequency dataset.

• DRED [129] The Dutch Residential Energy Dataset was released in 2015 and contains en-
ergy consumption data from a household in Netherlands, with a total duration over six
months. It includes electricity measurements for the aggregate and submetered signal of
each device.

• ECO [12] Electricity Consumption and Occupancy dataset was collected in 6 Swiss house-
holds over a period of 8 months. It contains data recordings of active power, voltage and
current at low frequency sampling rate.

• ENERTALK [113] The ENERTALK dataset was created in Korea from 22 houses with a
total period of 1714 days and it was published in 2019. It provides active and reactive power
measurements (both aggregate and each device), with a sampling frequency of 15 Hz.

• iAWE [11] Indian Dataset for Ambient Water and Energy was released in 2013, from
recordings electricity, water and ambient data in a house in New Delhi, for a total du-
ration of 73 days. The electrical data were recorded with a sampling period from 1 to 6
seconds over 63 electrical appliances.

• REDD [62] Reference Energy Disaggregation Dataset has been published in 2011. It con-
tains 119 days of collected data from 6 households in the USA and includes both high and
low frequency recordings.

• REFIT [92] The REFIT Electrical Load Measurements dataset includes cleaned electrical
consumption data from 20 households in the UK from 2 years of recordings in 2016. It
contains electrical data with a sampling period of 8 s and active power as only parameter.

• UK-DALE [55] UK-Domestic Appliance Level Electricity was published in 2015 and it
contains 2247 days of data by 5 residential buildings in the UK. Just like REDD, it reports
high and low-frequency data and all appliances are sub-metered.

Collecting data to build a dataset is a fairly complex process. As long measurement cam-
paigns have to be carried out, the process requires a considerable amount of time, effort, and
instrumentation to measure and record data. One of the main limitations of the real datasets
in the literature today is the small number of reported electrical parameters (at most P, Q, S,
V, I).

This could represent a limitation for algorithms in the field of Smart Energy. In particular,
considering methods for load profiling, NILM and fault or predictive diagnosis, the optimal
choice of needed parameters is still a research topic: therefore the availability of a large number
of electrical quantities, able to define the complete "electrical signature of the load", could help
in performing an accurate selection.

Furthermore, real datasets are often characterized by missing data due to several problems
that may occur during the measurement campaigns, time mismatching between individual
load data and aggregate data or possible errors due to malfunctioning and inaccuracy of the
adopted instrumentation.

The absence of information about current operating states of each device can also be a
limitation for these datasets, e.g. in the case of supervised artificial intelligence algorithm
training or in the definition of consumption quality as well as system efficiency indices. A
solution to the aforementioned problems could be the simulation of data.
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A simulated dataset does not require lengthy monitoring campaigns, saving time, costs,
and instrumentation. All these advantages are provided as long as the simulation process is
correctly implemented, which is not trivial in terms of suitable modeling and computational
costs.

In literature, some simulated datasets are presented as reported in Tab. 4.2 and discussed
below.

Table 4.2: Main Characteristics of Some Public Dataset Based on Simulated Data

Name Number Appliances Parameters Period

AMBAL [20] 14 - 1 days
SHED [45] 66 P, S, V, I 14 days

SmartSim [25] 25 P 7 days
SynD [61] 21 P, S, V, I 180 days

• AMBAL [20] Automated model builder for appliance load dataset was published in 2017 and
it comprises 14 domestic loads at a sampling rate of 1 Hz for a time duration of one day. The
AMBAL dataset allows the user to build models using real energy consumption data, based
on parameterised signature sequences. The main operational phase of the AMBAL dataset
includes preprocessing, extraction of active segments, segmentation, and model fitting.

• SHED [45] Simulated high-frequency energy disaggregation dataset, released in 2018. It
is a commercial dataset containing the power consumption of 66 buildings at a sampling
frequency of 1/30 Hz. The data is generated synthetically and based on modeling the current
flowing through an electrical device and is matched with the real model of electrical devices.

• SynD [61] SynD is a synthetic dataset that was published in 2020 and simulates readings of
electricity consumption for a house for 180 days. The measurements campaign was based on
the monitoring of 21 different residential devices from 2 households in Austria. In particular,
the consumption patterns were observed, the absorption profiles of each device were then
extracted and finally the dataset was generated.

• SmartSim [25] A Device Accurate Smart Home Simulator for Energy Analytics was re-
leased in 2016 and is a simulated dataset of 1 week total duration. It uses the energy mod-
elling of individual devices to build the final dataset with the aim of generating accurate
domestic energy traces that are qualitatively and quantitatively similar to real energy data
traces.

Despite the large amount of simulated datasets in the literature, most of them still suffer
some of the aforementioned problems, as limited number of saved electrical parameters, ab-
sence of harmonic and power quality information of seasonality, monthly, daily variability, as
well as variability of operating states; furthermore, they often provide a low likelihood value
with respect to real scenario profiles.

4.1.3 Design of Dataset generation

In this section, the design process of the eLAMI (electrical Loads Acquisition for Monitoring
Instruments) dataset and its implementation is described. At first, main requirements that a
modern energy dataset must have are discussed. Issues related to the the choice of a simulator
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and possible solution are then faced. Chosen electrical loads, along with consumption patterns
and the simulator description close the section.

Requirements

A modern energy dataset for monitoring and investigating consumers’ energy behaviors must
have specific characteristics. The main requirements are:

a) High number of saved electrical parameters, both in time and frequency domain;

b) High likelihood to real scenario profiles;

c) Faithful representation of the devices;

d) Considering the metrological performance of commonly used energy smart meters;

e) Presence of Power Quality and harmonic data;

f ) Appropriate observation times congruent with the objectives;

g) Current operating state of the monitored device.

As regards a) having a large number of electrical parameters allows for a better representa-
tion of the electrical signature of the load. In this way, for example, as also proved in Section
IV, energy efficiency algorithms can drastically increase their performance. Therefore, in the
eLAMI dataset, 433 electrical parameters are calculated at each measurement interval. Further-
more, in our simulated dataset we try to represent an electrical scenario as faithful as possible
to reality. Specifically, reported consumptions are related to a 2–person–household.

Having a good match between the simulated scenario and the real one, simply summarized
as likelihood, is crucial as it offers the possibility, for instance, of training AI algorithms on
consistent data, as mentioned in b). This avoids possible mismatches between performance
obtained in simulation and real scenarios.

As said in c) it is necessary to take into account both how the electrical energy is consumed,
but also how the individual load behaves in terms of electrical operation in reality. In partic-
ular, in our case we have chosen to represent equipment as ’state machines’, simulating the
corresponding nominal operating states. We consider this choice to be valid, having chosen
to simulate the assumed scenario under permanent regime. Of course, in reality, between
different ’operating states’ there are transients that can lead to more or less marked variations
in electrical quantities. As regards d), furthermore, these variations can also be related to the
natural duty cycle of the equipment or be due to the uncertainty of the monitoring system
used [13]. eLAMI reports this variability thanks to the mathematical model for generating
absorption profiles implemented.

As said in e) today, given the widespread use of electronic equipment, we consider the
study of the harmonic behavior of electrical loads to be of great interest. For example, the
analysis of the frequency spectra of voltage and current absorption of devices can provide
useful information on the health of loads and in general of the entire system, also in terms
of the quality of the power supply system (Power Quality). eLAMI in this case reports a
considerable amount of harmonic and quality parameters.

With regard to the observation time of the monitored system f), it must be chosen in such
a way as to meet the objectives of the applications for which it was hypothesized. Classifica-
tion, clustering, NILM, Load Profiling, and energy retrofit algorithms in most cases aim at
analyzing the system over sufficiently long time horizons. In our case, eLAMI refers to a time
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horizon of one year. As regards, g), an operating state of the monitored device can be defined
as a steady-state voltage and current joint profile, whose availability allows the dataset user
to evaluate the proper load working cycle and extract electrical signature quality indices and
detecting possible incoming anomalies.

Indeed, referring to "electrical signature", it not only deals with the typical quantities (P,
Q, IRMS, etc.) but with the entire frequency spectrum of voltage and current profiles absorbed
by the electrical load. Such information are therefore also state-related, i.e. they can change
for each operating state of the load.

Therefore, the proposed simulator must be designed to generate voltage and current pro-
files under all possible load states tested and for a predefined simulated time, in order to get the
spectrum information.

An issue raised at this stage is related to the way the frequency spectrum could be faithfully
simulated. The approach here followed is to make measurements on real loads under different
tested operating states and adopt acquired information as a basis to generate simulated profiles.

Based on the knowledge of these quantities and the known usage habits of the electrical
loads, it is possible to create the dataset by using the acquired information.

Any accidental failures or malfunctions that might occur in the real electrical system are ne-
glected in the current status of the simulator. This is reasonable as these are very rare events in
reality that, when compared with the simulation time frame, can be neglected. The simulator
modular structure would eventually permit to add such situations in a fairly easy fashion.

Electrical Loads Description
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Figure 4.1: House Scheme and Electrical Loads Distribution. The blue zone represents
the "Partial 1" with 7 electric loads; the pink zone represents the "Partial 2" with 10
electric loads; the green zone represents the "Partial 3" with 19 electric loads [80]

According to the aforementioned requirements of a new simulated energy consumption
dataset for the residential appliances with innovative saved electrical parameters, namely eLAMI,
has been developed. The choice of simulating a residential building consumption profile has
the aim to provide a means with innovative characteristics compared to the datasets currently
present in the literature for the evaluation of new techniques and algorithms in the field of
Smart Energy, including NILM, Load profiling, Management Systems, and Energy Efficiency
algorithms.
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Figure 4.2: Block Diagram of Data Acquisition Setup [80]

eLAMI refers to 360 days of simulation of a house having 36 connected appliances, as
described in Tab. 4.3. But in the future other years will be added. The "ID" is the appliance
identifier, NS is the overall discrete number of tested operating states (including the OFF state)
and the PNom is the upper bound each appliance can absorb, according to the manufacturer’s
indications. At each measurement interval, 433 electrical parameters are computed, whose
details are reported in Subsection 4.1.3. In addition to the information on the individual load,
the same parameters are also calculated for the total aggregate and three partial sub-aggregates
consisting of subsets of loads. In addition to the calculated quantities, current operating state
is also provided.

The partial aggregates are provided for the three different identified zones of the virtual
house. For each zone, a subset of loads was defined. The combination of loads for each sub-
group was chosen to obtain aggregates with a progressive number of loads, as shown in Fig.
4.1. This is an important feature for the structure of eLAMI as it offers researchers the pos-
sibility to test the algorithms on an increasing number of loads, therefore on an increasing
complexity level.

Although all loads are connected in parallel, their supply is carried out by means of radial
lines. Therefore, in eLAMI, the voltage at the terminals of each load is not the same but
depends on the load conditions.

Moreover, the reported OFF state, for some devices, is an indication of a standby state.
Therefore, the absorbed current is slightly different than zero.

Simulation basis: data acquisition

In order to define the frequency spectrum of a load, as mentioned above, it is necessary to
experimentally acquire its absorption profile. Through a measurement campaign in Industrial
Measurement Laboratory (LAMI) in the University of Cassino and Southern Lazio, 36 resi-
dential typical electric loads (Tab. 4.3) have been acquired. Current and voltage waveforms
for each devices has been recorded and get the corresponding reference profiles for use in
data generation software. The block diagram of the experimental setup for data acquisition is
shown in Fig. 4.2.

The adopted power supply system is a Pacific Smart Source, an electrical network emulator
which allows reproducing any mains profile both in terms of amplitude and harmonic content
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Table 4.3: Electrical Loads Specifications. Returns the appliance identifier (ID), the
name of the loads (Appliance), the number of states tested (NS) and and the maximum
active power that each load can absorb (PNom)

ID Appliance NS PNom [W]

1 Beard Trimmer 2 4
2 Blender 2 60
3 Boiler 2 220
4 Coffee Machine 2 1200
5 Dehumidifier 2 190
6 Desk Lamp 4 10
7 Electrical Oven 3 2400
8 Electric Toothbrush 2 5
9 Fan 4 40
10 Fan Heater 4 1900
11 Fridge 2 140
12 Hair Clipper 2 6
13 Hair Dryer 3 420
14 Hair Straightener 2 65
15 Headphones Charger 2 5
16 Hoover 3 600
17 Infrared Heater 2 1350
18 Iron 2 1300
19 Kettle 2 2000
20 Lamps Bathroom 2 30
21 Lamps Bedroom 2 90
22 Lamps Closet 2 75
23 Lamps Corridor 2 55
24 Lamps Entrance 2 65
25 Lamps Kitchen 2 125
26 Lamps Livingroom 2 145
27 Microwave 2 1300
28 Notebook 2 60
29 PC-Desktop 2 300
30 Printer 2 750
31 Router 1 5
32 Smart TV 2 105
33 Smartphone Charger 2 25
34 Toaster 2 640
35 TV 2 85
36 Washing Machine 4 800

[94]. In particular, it has been used as arbitrary voltage generator to supply the electric loads.
In order to emulate real working conditions, the power grid voltage was first acquired and

the corresponding harmonic characteristics were calculated up to the 50th harmonic order.
The harmonic coefficients obtained, in terms of amplitude and phase, are used as an input for
the Pacific Power Source.

The emulated mains voltage profiles both with and without load, are shown in Figs. 4.3, 4.4
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Figure 4.3: Emulated Voltage profiles with load and without load [80]
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Figure 4.4: Percentage harmonic coefficients normalized with respect to the funda-
mental frequency [80]

along with the harmonic contents. For clarity we report the distribution of the percentages
harmonic coefficients from the 2th to the 13th order. The harmonic coefficients shown in
Fig. 4.4 were obtained by extrapolating the characteristics of the harmonics of the voltage
signals and evaluating the amplitudes in percentage terms with respect to the corresponding
fundamental tones.

Furthermore, it can be seen from the figures that there are differences between the voltages
in different load conditions. In particular, the voltage under load is lower and has a slightly
different distribution of harmonic coefficients. As expected, the voltage profiles of Fig. 4.3 do
not reproduce a perfect sinewave, since it contains the harmonics contributions.

In Tab. 4.4, is reported a numerical comparison between the main acquired voltage and
the emulated one, both with and without load. The compared values are: the root mean
square (RMS) value (VRMS) of both the overall voltage and only the voltage first harmonic
(VRMS Fundamental). Furthermore, the offset component (VDC), the peak value (VPK), and the
total harmonic distortion (THD) voltage are also compared.

Through the use of a Tektronix P202A Hall effect probe [125], powered by a Tektronix
1103 power supply [124], with a transformation ratio of 100 mV/A, the electrical current
flowing in the circuit was measured.

Using a Tektronix P5200 differential probe [123], with a transformation ratio of 1:500, the
voltage supplied by the Pacific to the electrical loads was measured.

A TiePie HS5 [127] was used to acquire the measurements through a customized software
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Table 4.4: Comparison of some characteristics of the voltages: Acquired Main Voltage,
Emulated Voltage With Load and Emulated Voltage Without Load

VRMS [V] VRMS Fund [V] VDC [V] Vpk [V] THDV [%]

Acquired 231.35 230.82 12.79 326.27 3.94
Main Voltage

Emulated Voltage 232.27 231.99 10.06 327.31 4.85
With Load

Emulated Voltage 226.89 226.39 10.07 317.86 4.72
Without Load

developed in MatlabTM environment.
30 repeated measurements (NACQ) were performed for each operating state tested. The

iterated procedure allowed obtaining the corresponding average absorption profiles and the
associated standard deviations for voltage and current waveforms.

The sampling frequency (Fs) used for profile acquisition is 5 kHz. For each acquisition (of
each load state) 25000 points (NP) were acquired.

The amplitude resolution of the acquisition system, through the TiePie Hs5, was set to 14
bits per channel, with a full scale of 0.8 for the voltage channel and 2 V for the current channel.
Considering the conversion factors of the probes used, therefore (1:500 and 100 mV/A) this
gives 400 V for the voltage channel and 20 A for the current channel. Values are chosen in
relation to the electrical systems considered. All the sampling characteristics are summarized
in Tab. 4.5.

Table 4.5: Sampling characteristics used for the acquisition of electrical load profiles

Specifications Descriptions

Fs 5 kHz
NP 25000

TOSS 5 s
NACQ 30

A/D converter resolution 14 bit
Full scale of the voltage channel 0.8 V
Full scale of the Current channel 2 V
Voltage probe conversion factor 1:500
Current probe conversion factor 100 mV/A

Simulator Description

The purpose of this section is to provide a general description of some of the fundamental parts
that make up the innovative simulator created for the realisation of eLAMI, highlighting the
procedures followed in the simulation. All processing operations were performed in MatlabTM

environment.
The simulator consists of three sections: (1) INPUT, (2) PROCESSING and (3) OUTPUT.
For each section, the chronological flow and the main operations are described.

1) The "INPUT" section consists of 4 macro blocks:
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Figure 4.5: Block diagram of the simulator composed of three sections: "INPUT",
"PROCESSING" and "OUTPUT" [80]

1.1) In "Simulation Parameter" block, specifications for the simulation are defined, e.g.
simulation interval (1 year), measurement time (5 s), and aggregation criteria, just
to cite a few. The content in round brackets is the assignment of possible parameter
values. They are sent to the following blocks, defining the characteristics of the
electrical scenario to be simulated.

1.2) In "Electrical Loads Stochastic Model", mathematical relations about operating state
changes are defined according to output got by previous surveys performed by the
authors in residential buildings.

1.3) In "Definition of Consumption Habits", taking into account the many factors in-
fluencing the electric consumption and adopting the mathematical models defined
in the previous block, along with the hypothesized simulation interval, typical con-
sumption habits, or patterns, are defined and used as input to generate faithful ab-
sorption profiles. The behavioural consumption patterns, defined for each load, take
into account daily variability and seasonality. This is made possible by the imple-
mentation of a stochastic process, studied ad-hoc for the assumed dynamic system.
To explain the suitability of the implemented stochastic model to avoid a mismatch
with real scenarios, in our simulation framework it is absolutely unlikely that the
blender or hoover will switch on during the night as well as lighting or heating
during winter periods for consecutive days is more likely than in summer times. In
eLAMI, the defined stochastic model also considers all these factors. In this way, for
each load, the days turn out to be dependent.

1.4) In "Acquired Absorption Profiles" contain the reference absorption profiles obtained
as described in Section 4.1.3.

2) The PROCESSING section is composed of:

2.1) "Generation of Absorption Profiles" is a block that, taking inputs as described be-
fore, generates the voltage and current waveforms related to the conditions to be
simulated. Such signals are simultaneously sent to both "Loads Aggregation" and
"Features Processing" to perform different operations, as described below. Such
waveforms are referred to the i-th iteration for a specific instant of a simulated day
and condition of each considered appliance. The compounded values define the
"Current Operating State" of each load.
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2.2) The "Loads Aggregation" block receives the output of "Generation of Absorption
Profiles" and "Simulation Parameter" and aggregates individual loads in a macro-
load condition, i.e. considers all appliances belonging to a specific category (e.g.
bathroom) as they were one only aggregated load.

2.3) In "Features Processing", all electrical quantities assumed for individual loads and
aggregates are calculated. For electrical parameters calculations, our simulator im-
plements the definitions of Power in IEEE-1459, especially referring to single-phase
non-sinusoidal case [?]. The calculated electrical parameters refer to: VRMS

TOT and
IRMS

TOT, VRMS and IRMS at the fundamental, of harmonics and DC components
alone; active, apparent, non-active and distorted power; power factor and harmon-
ics distorted parameters, for a total of 26 electrical parameters. Furthermore, for
better identification of electrical loads signature, the simulator also implements the
definitions of measurements in IEC 61000-4-7 Standard [49], regarding harmonics
and interharmonics, including the rms values of voltage and current groups up to
the 50th harmonic order are calculated, including harmonic sub-groups (SubGrV,
GrV1...GrV50 ; SubGrI, GrI1...GrI50) and the corresponding phase values of each
group calculated for a total of 202 parameters. In addition, the harmonic index of
the maximum amplitude tones of voltage/current in each group is also provided, the
phase of each harmonic group and the current operating state, to achieve further
205 parameters. Considering the overall processing, the total number of electrical
parameters reported in eLAMI is 433.

3) The "OUTPUT" section is composed of:

3.1) In "Simulated scenario", the computed electrical parameters are packed considering
the "simulation interval" (e.g. 1 day, 1 month, 1 year) parameter and their size also
depends on the measurement time (e.g. 5 s), which is the time resolution over which
the 433 parameters are computed. Future simulated years of eLAMI will be added
to the main folder.

3.2) In "Saving Data" block, a hierarchical structure is created for saving the dataset,
as illustrated in Fig. 4.6. The latter was created to make the data as much usable
as possible for the end user. From a hierarchical point of view, eLAMI is divided
into a first level "by months", then "by loads" and finally "by calculated electrical
parameters".
All information are stored in granular ".csv" files, one for each basic condition (day
of the month).

4.1.4 Results

The aim of our work is to provide a dataset with innovative features compared to datasets
currently found in the scientific literature, for the evaluation and development of new tech-
niques and algorithms in the field of Smart Energy Applications. Of course, it is of paramount
importance that the dataset is physically consistent with real case scenarios.

To this end, we first validate our dataset simulator; then, some dataset peculiarities are
highlighted, and finally some examples of eLAMI applications in the field of Smart Energy, in
particular Load Profiling, NILM, and Energy Management systems, are proposed.
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Figure 4.6: Saving eLAMI Structure [80]

Validation of Dataset Simulator

For the technical validation of the simulator and the corresponding consistency of the gener-
ated data, a comparison between the measurements obtained from a real test and a simulated
one has been carried out, by assessing their metrological compatibility. In particular, the elec-
trical scenario assumed for the test, is composed of 3 real loads of eLAMI with different elec-
trical characteristics, namely "Fan", "Fan Heater" and "Smart TV". They have been connected
to the Pacific network emulator [94], then fed in parallel with the same voltage signal used for
the creation of eLAMI reference profiles 4.1.3. At the same time, the absorption profiles, at the
ends of every single load and the "Aggregate", were monitored using a laboratory wattmeter,
the Precision Power Analyzer WT3000 [137]. The same scenario, without WT3000 mea-
surement instrument, has been replayed in the simulation environment, by starting from the
reference profiles previously acquired. Test set-up settings are total test duration (1 hr), mea-
surement time (5 s), and the total number of measurement points (720).

At the end of the test, a comparison was made between the results obtained in the two
cases, with the aim of showing: i) a comparison between variability ranges in the case of real
and simulated data; ii) the metrological compatibility of the simulated measurements, and thus
of eLAMI, with real acquired values; the combination of i) and ii) leads to state the validity of
the simulator implementation.

Starting from (i), a comparison between the values obtained in the real and simulated cases
is shown in Fig. 4.7, in terms of variability ranges. In this figure, the behaviour of VRMS
(4.7.a), IRMS (4.7.b), P (4.7.c) and S (4.7.d) are reported, for each individual considered load
and its corresponding aggregate.

In this case, the variability ranges are overlapped, although WT3000’s related range is
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almost always narrower than the simulated one. This is because the WT3000 has a higher
accuracy level than what can be obtained by adopting the set-up used in the acquired reference
profiles for simulation. In any case, since WT3000 has been chosen as a reference instrument,
it is expected that it can exhibit a far better metrological performance. Furthermore, the
reference profiles for the generation of eLAMI were constructed to take into account the
variability of the data over a time horizon longer than 1 hour (total test duration). Of course,
increasing the acquisition time would tend to increase the variation intervals of the WT3000
distributions, due to measurand variability.

An interesting aspect, that can be seen in this figure looking at the WT3000 measured
values, is the behaviour of the VRMS (Fig. 4.7.a) ). The 3 loads are simultaneously supplied by
the same power source, each through its own power line: such a setting can cause a potential
voltage drop. As reported in Fig. 4.7.c), the Fan Heater is the load with the highest absorption:
consequently, the VRMS at its ends is the lowest (Fig. 4.7.a) ). Conversely, the WT3000 records
the highest voltage at the ends of the "Fan", which is the closest to the aggregate’s one, i.e. the
power source. Looking at the voltage behavior of eLAMI, the same trend can be observed.
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Figure 4.7: Comparison between WT3000 and eLAMI for devices: "Fan", "Fan Heater",
"Smart TV" and "Aggregate". Comparison made in terms of features: a) Voltage RMS -
b) Current RMS c) Active Power d) Apparent Power [80]

To demonstrate (ii), only the mean value and standard deviation of a few monitored Fea-
tures for the "Fan" load are reported, for sake of brevity, in Tab. 4.6. In particular, the con-
sidered features are: Vrms, Irms, P and S.

The standard deviation values of the measurements recorded by the WT3000, as we ex-
pected, are much smaller than those related to eLAMI, due to the simulator design parameters,
which had the purpose to replicate a typical commercial smart meter less accurate than the
adopted reference (WT3000). Nevertheless, from a measurement point of view, the intervals
(µ-σ, µ-σ) belonging to WT3000 and eLAMI are generally overlapped, demonstrating the
validity of the generated dataset.

The validity of the algorithms implemented in the simulator for the generation of eLAMI
is evident when analyzing the values and behaviors obtained from the features analyzed in
Fig. 4.7 and Tab. 4.6. Furthermore, the similarity between the behaviors of the "Aggregate"
highlights the consistency of the process implemented in the simulator.
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Table 4.6: Comparison of mean and standard deviation values obtained from WT3000
and eLAMI for the electrical load "Fan". Considered features: Vrms, Irms, P and S

Feature WT3000 eLAMI

Vrms [V] µ 231.68 231.94
σ 0.13 0.59

Irms [mA] µ 159.90 161.30
σ 0.58 1.40

P [W] µ 36.38 37.12
σ 0.22 0.37

S [VA] µ 36.82 37.63
σ 0.31 0.32

Descriptions of the general characteristics of eLAMI

Time [h]

A
c
ti
v
e
 E

n
e
rg

y
 [
k
W

h
]

0.5

1.5

2.5

3.5
January February March

Mean

Max

Min

Legend

0.5

1.5

2.5

3.5
April May June

0.5

1.5

2.5

3.5
July August September

00:00 06:00 12:00 18:00 24:00

0.5

1.5

2.5

3.5
October

00:00 06:00 12:00 18:00 24:00

November

00:00 06:00 12:00 18:00 24:00

December

Figure 4.8: Average Monthly Active Energy Consumption Profiles of the Aggregate
Load

As highlighted above, one of the peculiarities of eLAMI is the variability of the data, both in
terms of operating states of the monitored devices and consumption habits. Fig. 4.8 shows the
average monthly active energy consumption profiles of the aggregate load, for the 24 hours
of the day (x-axis), for each month. In particular, in terms of active energy consumption
(y-axis), the curves show: in green, the average trend, in red the maximum reached for each
hourly interval of the month considered, and similarly in blue the minimum. First of all, when
analyzing the individual month, we can see the variability of the absorption curve during the
24 hours of the day, consistent with what happens in the residential area. In particular, the
curve shows an increase in the early morning hours followed by a rapid decrease until midday
when the second absorption peak occurs. A further decrease follows this in consumption
before arriving at the evening hours characterized by the highest energy absorption.

In addition to the variability during the day, by comparing the different months, we can
value the seasonality of consumption and thus the variation in electrical-behavioral habits.
In particular, consumption is higher during the winter months than in the summer months,
which is particularly evident when comparing August and December. This is because in the
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Figure 4.9: Aggregate Active Energy Load Curve per Months [80]

winter months, according to defined habits, there is greater use of certain high-consumption
devices, such as Boiler, Electric Oven and Microwave. Furthermore, it should be noted that
during the winter months lamp utilization is higher than in the summer months, which has
an impact on the consumption peaks mentioned above.
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Figure 4.10: Seasonality Example of Some Different Electrical Loads - a) Boiler - b)
Smartphone Charger - c) Fan - d) Fan Heater [80]

A further interesting aspect is a non-zero consumption during nighttime hours present in
all months, due to the presence of some devices in standby mode, characterized by minimal
but not zero power consumption. This ceiling does not show much variability in terms of
consumption, as the devices on stand-by during the night are almost always the same, so the
3 curves (average, minimum and maximum) almost overlap, with a consumption of less than
0.5 kWh.

In Fig.4.9 the total electricity consumption for each month of the simulated year is shown.
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Figure 4.11: Example of Load Profiling Application for Desk Lamp - a) Power con-
sumption per state b) Active Power as a Function of Power Factor at 50 Hz c) Phase of
5th Voltage Harmonic Group as a Function of Active Power d) Phase of 5th Voltage
Harmonic Group as a Function of Power Factor at 50 Hz [80]

In this case, the seasonality of consumption and thus the variation of the energy absorbed in the
different months is particularly evident. Since there is no cooling system, total consumption
is higher in autumn and winter than in spring and summer. In particular, starting the year in
January, electricity consumption is high and remains more or less constant until March, and
then begins to decrease in April with the arrival of spring. The lowest peak is reached in August
and then starts to rise again from September forward. The highest electricity consumption is
recorded in December, while the lowest is recorded in August in perfect analogy with what
is shown in Fig. 4.8.

In Fig. 4.10 we report the average daily consumption of 4 electrical loads for each month
of eLAMI (in terms of average, maximum and minimum daily consumption), taken as an
example, to show the variation in consumption patterns in eLAMI. Specifically, the devices
are: Boiler (4.10.a), Smartphone Charger (4.10.b), Fan (4.10.c), Fan Heater (4.10.d). Analyzing
Boiler consumption (4.10.a), it can be seen that the average consumption in winter is higher
than in summer, where it is used only for hot water and not for heating. In contrast, the
Fan Heater (4.10.d) is only used in winter, from October to April, peaking in February. The
opposite behavior is obtained by analyzing the Fan (4.10.c), which is only used in the summer
months, from June to September, with a peak in August. Unlike the others, the Smartphone
Charger (4.10.b) does not show substantial variations in consumption between months. This
is because it is used on average every day of the year in the same way.

Smart Energy Application Examples

Load Profiling

Machine Learning and Artificial Intelligence techniques, in general, are based on the use of
large amounts of input data. However, if these techniques have input data that do not correctly
describe the phenomenon to be studied, the output may be far from the desired result. This
is why feature selection algorithms are very often used to find the best set of features to build
useful and robust models of the phenomena studied [122].
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In Fig. 4.11.a the active power absorbed by the Desk Lamp in January eLAMI is reported
as a function of the corresponding assumed states. As previously verified, state variability is
present. Consequently, the active power P alone is not able to discriminate the 4 different load
operating state because states 1 and 2, and similarly 3 and 4, overlap in terms of P. Therefore, in
terms of load profiling, other features must be found for the correct identification of operating
states. For example, the active power P as a function of the power factor at fundamental is
reported in Fig. 4.11.b. This feature is able to discriminate states 1 and 2 better than P alone,
while states 3 and 4 still remain indistinguishable. Conversely, in Fig. 4.11.c we see the phase
of the 6th harmonic voltage group identify states 3 and 4 well but not the first two. Combining
the two features identified, power factor at fundamental and phase of the 6th harmonic voltage
group, Fig. 4.11.d shows an optimal situation where 4 operating states of the load (cluster)
considered are clearly visible. It is therefore very clear how the greater number of electrical
parameters in eLAMI results in a better representation and distinction between the different
electrical signatures of the individual load.
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Figure 4.12: Active Power in time: a) Aggregate - b) Single Loads [80]

Below is reported an example of application in the NILM (Non-intrusive Load Monitoring)
field. NILM is presented as a time series classification problem where the objective is to detect
which appliances are active at a given instant and how much each of them contributes to the
total percentage of consumption. Due to their advantages, techniques based on the analysis of
steady-state features are the most widely used, typically referring to active power only [43].
This feature, however, is not always able to distinguish devices that absorb similar power or
have similar operating principles.

In Fig. 4.12.a we report the total active power obtained from an aggregation of 3 loads
present in eLAMI and in Fig. 4.12.b the individual active powers absorbed by the 3 considered
loads, are reported. In particular, in Fig. 4.12.a and Fig. 4.12.b the active power in time, both
for aggregate and some example of single load, are reported. Conversely, Fig. 4.13.a and Fig.
4.13.b show the RMS values of the 6th harmonic current group in time, both for the individual
loads considered above and for the corresponding aggregate.

It is evident when analyzing the aggregate active power in Fig. 4.12.a and the single active
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Figure 4.13: Current Harmonics of 6th group in time: a) Aggregate - b) Single Loads
[80]

power in Fig. 4.13.b, that the 3 loads are indistinguishable due to the problems mentioned
above. This represents a critical case for NILM algorithms. Instead, analyzing the current
harmonics of 6th group in Fig. 4.13.a for the aggregate and in Fig. 4.13.b for every single
load, three different levels of absorption are present, allowing for correct identification of the
active loads.
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Figure 4.14: Example of Forecasting for Electric Consumption with eLAMI [80]

In the world of Smart Energy, statistical and forecasting analyses based on time series are
often carried out. In particular, one of the goals of an Energy Management System is to create
mathematical models that can simulate trends in electricity consumption as a function of var-
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ious factors. Furthermore, through statistical analysis, it is possible to define statistical and/or
performance indices of the analyzed system. Some of the benefits of modeling analyzed elec-
tricity consumption are: i) construction of past seasonal trends and consequently of future ones,
ii) definition of energy efficiency and optimization plans, iii) forecast balancing of electricity
networks and performance verification.

To this end, eLAMI also offers the possibility of testing forecasting and modeling algo-
rithms for electrical systems. For example, in Fig. 4.14 based on the knowledge of the first 10
months of the year (300 days) relating to the power consumption trend of the total aggregate,
a consumption forecast was made for the last two months of the year. The mathematical model
derived is based on a fitting of the input data. Using the mathematical model, a band (2*DevStd
width) was derived within which the consumption for the 60 forecast days is estimated. As
can be seen from this figure, the real data falls within the obtained forecast band with an error
of approximately 6.6 %, i.e. 56 days out of 60 estimated correctly.

Furthermore, in diagnostic and predictive terms, thanks to the analysis of time series of
data, it is possible to estimate the operating ranges of electrical loads in order to assess and/or
predict any decay in their performance and any drift towards fault states.

4.1.5 Conclusion

A novel approach to provide a simulated electrical energy dataset, from the reference signal ac-
quisition to the data validation has been reported in this study. To enforce motivations leading
to its building and to prove its suitability for Smart Energy applications, a final section regard-
ing examples of Smart Energy profiling and management is also discussed. The output data,
composed of more than 400 electrical parameters and reporting one-year period energy pro-
file simulation of a residential building, are made available for download to enhance research
in Smart Energy sector with novel, detailed, validated and wide-applicable data. The acqui-
sition set-up has been chosen according to typical metering capabilities of currently adopted
home smart meters. Voltage and Current signals, produced for 36 home appliances, have been
processed both in time and frequency domain, to provide a comprehensive set of electrical
parameters composing the electrical signature of each considered appliance. To be as close
as possible to the real scenario, stochastic models have been also implemented to obtain con-
sumption habits to manage state transitions for each load. In its current status, only nominal
operating conditions have been considered, i.e. no failures have been hypothesized during the
simulation interval. This is, to the authors’ opinion, still reasonable given the very low failure
rate of the considered apparatuses in the tested period. The produced data are anyway suitable
for most Smart Metering Applications. A second release is intended to be developed, where
common failures will be implemented and its aim would be voted to fault location research ef-
forts: it could be seen as an appendix to the current dataset, which results as much complete as
possible in terms of detailed representation of typical operating states of considered appliances
in a home environment.
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Figure 4.15: Current profiles for (a) static, (b) basic pulsed and (c) HPPC test procedures, with
the related voltage responses (d, e, f ) [32].

4.2 Characterization procedures

The characterization procedures typically employed can be summarized into three categories:
static, basic pulsed, and HPPC (Hybrid Pulse Power Characterization). All procedures are
carried out during the battery discharge phase and involve monitoring the voltage while the
discharge current is imposed by the electronic load. The operational conditions for character-
izations include the discharge current and temperature.

Figure 4.15 (a) and (d) depict a standard discharge, where at t=0, the battery is fully charged
and has undergone a relaxation period, essential to bring the battery to an equilibrium state.
The discharge is performed without interruptions at a constant current until the minimum
voltage at the battery terminals is reached. The static test is employed when assessing the
effective capacity of an electrochemical cell.

On the other hand, the pulsed procedure, as shown in Figure 4.15 (b)-(e), involves dis-
charging the battery with a series of current pulses interspersed with relaxation times during
which the battery reverts to its electrochemical equilibrium state. Similar to static tests, the
test is terminated when the battery reaches the minimum voltage.

The HPPC test, illustrated in Figure 4.15 (c)-(f ), was formalized by the "Idaho National
Laboratory" in the "Battery Test Manual For Electric Vehicles" [28] and is designed to deter-
mine the dynamic capabilities of cells through a test involving discharge, regeneration, and
charging phases.

All these tests can be valuable for battery diagnostics or prognosis as will be discussed in the
next sections.

4.2.1 Battery models identified through pulsed discharges

Experimental Setup

Characterizing batteries through dynamic discharge methods necessitates a specific setup.
Specifically, the setup must be capable of discharging the battery with a constant current



4.2. CHARACTERIZATION PROCEDURES 103

Active LoadDC Power
Supply BatteryVoltage Meter

Current Meter

uController

T

Figure 4.16: Experimental setup for static and dynamic charging and discharging procedures

set by the operator. Furthermore, the setup should be capable of discharging the battery in
a pulsed manner, i.e., by interspersing the discharge with relaxation periods for the battery.
Throughout the entire test, both the current supplied by the battery and the terminal volt-
age must be measured and recorded. Finally, the setup should be able to set (via a dedicated
climatic chamber) or at least measure the ambient temperature.

The implemented setup is depicted in Figure 4.16, and the instruments within the setup
include two AGILENT 34401A multimeters used as voltmeter and ammeter. The ammeter is
placed to the valley of the voltmeter because the impedance of the battery is lower than the
ammeter’s internal resistance. This way allows to reduce to the minimum the measurement
error because the voltmeter measures only the battery voltage, while the ammeter measures
both the current drawn by the battery and the current drawn by the voltage meter. The
voltage meter drawn current is negligible compared with the battery current. There is also a
TTi power supply for battery charging, and finally, an active load that, when appropriately
controlled, enables discharging the battery with a constant current.

Due to interoperability constraints of the instruments, it was necessary to add relays to
change the circuit configuration. The relays and temperature sensors are controlled by a
microcontroller. A MATLAB script configures the circuit and the instruments to be used
based on the chosen characterization. Additionally, the script retrieves the measured values
from the instruments and creates a text file containing the timestamp and the measurements
of current, voltage, and temperature.

ECM circuit model selection

In literature, various circuit models are available, and in general, each model aims to strike
a balance between circuit complexity (and hence computational complexity) and prediction
accuracy based on specific needs. Furthermore, there are models that focus more on predicting
battery voltage, while others emphasize "storage capability" prediction. In this case, the focus
is primarily on predicting battery voltage. The chosen model is a Thevenin model, which
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Figure 4.17: Example of the electrical circuit model

employs an ideal voltage source in series with a passive resistor and an RC loop, as shown in
the Figure 4.17.

The more loops considered in the circuit model, the higher the computational cost for
fitting and parameter determination. Some circuit models also incorporate a parasitic branch.
Its inclusion becomes necessary because, during battery charging and discharging processes,
there are irreversible reactions that lead to battery efficiency loss and, subsequently, energy
loss. The extent of these "side reactions" greatly depends on the battery’s construction tech-
nology; for example, lead-acid batteries exhibit much lower efficiency compared to lithium
cells. Modeling these side reactions is challenging, and various models in the literature use
voltage and temperature as inputs, while others include current and State of Charge (SoC).
In this initial phase, it was decided to adopt a simple circuit model with a single RC loop to
minimize computational requirements and neglect the contribution of the parasitic parameter.

Testing Protocol

The chosen measurement protocol depicted in Figure 4.18 involves completely discharging
the battery through a standard discharge, which is a constant current discharge. The purpose
of this discharge is to bring the battery back to a known state. The discharge is terminated
when the battery voltage reaches the minimum voltage specified by the manufacturer. In this
condition, the State of Charge (SoC) is 0%.

CC-CV
Charge

Relaxing
Time

CC
Discharge

Relaxing
Time

Pulsed
Discharge

Figure 4.18: Testing protocol for pulsed test

Subsequently, after a relaxation time of 1 hour, the battery is charged following the instruc-
tions provided in the datasheet using a "constant current, constant voltage" (CC-CV) method.
Initially, the battery is charged with a constant current until it reaches the maximum terminal
voltage. Then, the voltage remains fixed at the maximum voltage, and the charging continues
until the current falls below a threshold also specified in the battery’s datasheet. At this point,
a pulsed discharge test is conducted with a constant current. Further details regarding the test
discharge are provided in Table 4.7.

Figure 4.19 displays the voltage and current over time, as measured by the two multimeters
throughout the entire test. The chart clearly illustrates the initial discharge phase, followed by
the second charging phase, and, finally, the pulsed discharge. The relaxation times have been
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Table 4.7: Pulsed discharge test configuration values

Discharging Pulsed Test

Currentpulse 500 mA
Currentoff 0 mA
Timepulse 1800 s
Timeoff 3600 s
Numberofpulses 20 -
CutoffV oltage 5.25 V

omitted from the presentation.
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Figure 4.19: Experiment Voltage and Current

ECM Parameters Fitting

In the context of the circuit depicted in the Figure 4.17, featuring a single RC loop and no
parasitic parameters, the following values should be evaluated:

• Open Circuit Voltage (Vocv)

• Internal resistance of the battery (R0)

• Capacitance of the RC loop (C1)

• Resistance of the RC loop (R1)

All of these parameters can be determined based on the behavior of voltage and current
(which is set by the active load but measured by the ammeter).

The open circuit voltage is measured at the end of each relaxation period, just before the
next discharge current is applied. In Figure 2, a specific part of the experiment from Fig-
ure 4.19 is shown, and the black circle indicates the moment when the open circuit voltage is
extracted. All the extracted open circuit voltages are plotted in Figure 3 as a function of the
battery’s state of charge.
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Figure 4.20: Open circuit voltage and dynamic branch estimation

The change in battery voltage is linked to two phenomena modeled through the resistance
R0 and the RC loop R1 −C1. As the resistance R0 lacks any dynamic components, it exhibits
an immediate response, referred to as "time-invariant." This means that any current variation
instantly results in a voltage change. The value of resistance R0 is evaluated according to
Equation 1, particularly as the ratio between the voltage change and the current change as
soon as the battery is requested to deliver current. The typical time window used to determine
R0 is denoted by τ and is on the order of tens of seconds.

R0 =
∆V

∆I
(4.1)

On the other hand, the R1 − C1 loop is obtained through a curve-fitting process performed
using MATLAB’s nonlinear least squares curve fit. Equation 2 represents the relationship used
within the curve fitting. This relation came from the Kirchoff laws applied to the circuit in
Figure 4.17. whereas the initial (t = 0) condition for the first order differential equation over
the R1 − C1 loop is the voltage across the R1 resistance.

Vbat = Vocv −R1Ie
−t/(R1C1)) (4.2)

Results and Validation

4.21a displays the open circuit voltage as a function of the battery’s state of charge (SoC).
The open circuit voltage exhibits a linear relationship with SoC, except in the higher SoC
range where it appears to follow an exponential trend. In contrast, the resistance R0, shown
in 4.21b, exhibits a strongly nonlinear and non-biunivocal behavior, much like R1 and C1,
which are presented in 4.21c and 4.21d, respectively.

Model validation is performed using the protocol outlined inFigure 4.22.
The measured current serves as a forcing function for both the model, with parameters

Vocv, R0, R1, and C1 depending on SoC, and of course, for the battery.Figure 4.23 illustrates
the comparison between the experimentally measured battery voltage and the battery voltage
simulated by the model.

Consequently, the extracted model can be used to predict battery voltage, provided that a
characterization is conducted to determine the circuit parameters and the knowledge of the
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Figure 4.22: Validation Protocol
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Figure 4.23: Validation results

state of charge. However, a limitation of this approach lies in its inability to reverse the system
and use the measured voltage to estimate the state of charge since the relationships of R0, R1,
and C1 are non-biunivocal.

4.2.2 Characterization Methods based on Abstract Models with Genetic Pro-
gramming

This section introduces an innovative methodology that utilizes a Genetic Programming algo-
rithm to establish behavioral models for capturing the transient behavior of a battery’s output
voltage. These models establish analytical relationships between the battery’s voltage and fac-
tors such as its state-of-charge, charge/discharge rate, and temperature. In contrast to widely-
used equivalent circuit-based models, explained and implemented in the previous section, one
of the key advantages of this approach is the significant reduction in the effort required to
generate the experimental dataset needed for identifying model parameters. Furthermore, the
system could be forced to find a solution which could be inverted in order to determine the
SoC.

The Genetic Programming algorithm generates a set of optimal "candidate" analytical
models, each associated with relevant metrics that assess performance indicators, including
simplicity and accuracy. The methodology is applied here to describe the transient discharge
phase of a Lithium Iron Phosphate (LiFePO4 or LFP) battery under realistic operational con-
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Table 4.8: Main specifications of the 3.2 V 90 Ah LFP battery.

Battery Features Value

Chemistry Lithium Iron Phosphate (LFP)
Nominal capacity 90 Ah
Nominal voltage 3.2 V
Minimum voltage 2.5 V
Maximum voltage 3.65 V
Maximum charging/discharging
continuous Crate 1C
Maximum operating 0°C – 55°C (Charging)
temperature -20°C – 55°C (Discharging)

ditions. This includes variations in state-of-charge ranging from 20% to 80%, discharge rates
spanning from 0.25C to 1C, and temperatures from 5°C to 35°C.

The resulting models are rigorously validated against experimental data, providing diverse
solutions that allow for the selection of an appropriate trade-off between accuracy and sim-
plicity. These selected models ensure a relatively low level of relative root mean square error,
with a maximum of 0.31% and 0.22% across the entire analysis range.

Battery Characterization

this study employs a precise static multi-rate testing procedure to conduct a thorough analysis
of a 90-Ah LFP battery in its discharging mode. The key characteristics of this battery are
outlined in Table 4.8. The voltage at the battery terminal (VB) varies depending on the SoC,
the discharge rate (Crate), and the temperature (T). As a result, four distinct Crate values are
chosen (0.25C, 0.33C, 0.5C, and 1C) and four temperature settings (5 °C, 15 °C, 25 °C,
and 35 °C) to serve as our operating conditions for the static characterization. For each test,
we determine the SoC using the Coulomb counting method, which involves integrating the
current over time.

The experimental setup is simple, the battery is connected to a bidirectional device ("SM70-
CP-450 Delta Elektronika") which is capable of both charging and discharging the battery.
Furthermore, this device can measure both voltage and current.

From the extensive data collected during the static characterization, the number of operat-
ing conditions for our modeling dataset are defined. The specifics of the experimental settings
for our Gaussian Process-based modeling approach are summarized in Table 4.9. In particular,
we include all Crate and T values, but we focus on SoC values in increments of 2.5%, within
the range of 20% to 80% (resulting in 25 values) for the GP dataset.

Consequently, the resulting dataset comprises a total of 400 distinct operating conditions,
encompassing various combinations of SoC, Crate, and T values, for which we have exper-
imentally obtained the battery terminal voltage. To ensure precision, the standard measure-
ment uncertainty based on the specifications of the bidirectional power supply is estimated.
Specifically, is calculated the expanded measurement uncertainty for the selected operating
conditions with a confidence level of approximately 98%, assuming that the measured voltage
adheres to a uniform probability distribution. This allows to represent the measured battery
voltage within a coverage interval with a confidence level of approximately 98%.
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Table 4.9: Adopted settings for GP-based modeling.

Settings Conditions

4 Crate values 0.25 C, 0.33 C, 0.5 C, 1 C
4 Temperature values 5 °C, 15 °C, 25 °C, 35 °C
25 SoC values Minimum 20%, maximum 80%, with step of 2.5%

GP settings and multi-objective optimization

The GP algorithm’s objective is to express the battery terminal voltage (VB,bhv) as a function
that depends on State of Charge (SoC), Crate, and temperature, as stated in Equation 4.3. To
assess the "quality" of each model generated by the GP algorithm, three objective functions
are employed: the error between the model’s outputs and the training data (evaluated by the
objective function FRMS), the model’s complexity (evaluated by the objective function Fcmp),
and the monotonic behavior of its coefficients concerning Crate (assessed by the objective
function Fmnt). This approach results in a multi-objective optimization problem, with the
fitness function FFIT expressed as a weighted sum, as shown in Equation 4.4.

VB,bhv = f [SoC,C − rate, u1, ..., un] (4.3)

FFIT = αFRMS + βFcmp + γFmnt (4.4)

Following there is an explanation of GP settings (e.g., how the GP operators are set) and
on the objective functions FRMS), Fcmp, and Fmnt.

GP Settings

Table 4.10 provides a summary of the GP settings and their associated parameter values.
Figure 4.24 outlines the components of the terminal set (external nodes) and the non-terminal
set (internal nodes) used in the GP algorithm for generating models. In this study, different
complexity factors have been assigned to the external and internal nodes to control the vertical
development of the models, favoring simplicity in the terminal set elements.

The complexity of a model (cf ) is determined as follows:

• Each external node (input or coefficient) contributes 0.8 to the overall complexity.

• Each internal node contributes to complexity, and this contribution varies depending on
the type of algebraic operator or basic function it represents.

• For each internal node, there is an additional contribution, equal to the product of the
complexity of the function and its argument, with different complexities for the function
depending on whether the argument is an external or an internal node.

These choices are made to mitigate the "bloat" phenomenon, which might lead to models
with excessive layers of nested functions or complex operations on simple functions.

GP objective functions
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Table 4.10: GP algorithm settings and parameters.

Description Value

Number of runs 50
Population size 100
Generation number 50
Maximum tree size 25 nodes
Individuals subjected to elitism 1% of the current population
Selection operator binary tournament
Crossover operator subtree crossover
Mutation operator subtree & node mutation
Crossover probability 0.80
Subtree mutation probability 0.20

Figure 4.24: GP external and internal node complexities.
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• Model error FRMS : To derive each coefficient ui(i = 1, . . . , n), the m values uij (j =
1, . . . ,m) are processed using the Levenberg-Marquardt Non-Linear Least Square (NLLS)
optimization method. These uij values are determined based on a data vector of sec-
ondary variables with a size of m. Specifically, for each j = 1, . . . ,m, the NLLS method
identifies the optimal values of uij that minimize the relative root mean square (RMS)
error between the output values within the training dataset and the model’s predictions.
This evaluation is carried out by computing the objective function for the relative RMS
error, as described in Equation 4.5:

FRMS =
1

100

√√√√ 1

pTr

pTr∑
k=1

(
VB,k − VB,bhv,k

VB,k
)2 (4.5)

• Model complexity Fcmp: Numerous methods exist for assessing the complexity of a
model. A widely employed technique involves the evaluation of the depth and quan-
tity of nodes constituting the tree structure. In this study, we have introduced varying
complexity factors for the external and internal nodes, as outlined in Figure 4.24. Subse-
quently, the overall complexity (cf ) of each generated GP model is calculated following
the procedure explained before. The normalized complexity objective function, denoted
as Fcmp, is determined as shown in Equation 4.6.

Fcmp =
cf − cf,min

cf,max − cf,min
(4.6)

in Equation 4.6 cf represents the complexity factor of a specific model function, with
predefined minimum ( cf , and maximum ( cf,max = 80) complexity levels tailored for
this particular scenario. It’s important to emphasize that the function Fcmp exclusively
pertains to the complexity of the model function f and is thus linked solely to its reliance
on the primary variables SoC and Crate.

• Model monotonicity Fmnt: The objective function Fmnt expresses a qualitative char-
acteristic of the u coefficients, namely their monotonicity with respect to temperature
values for the case under study, and is calculated as in Equations 4.7 - 4.11.

Fmnt =
1

k

k∑
i=1

2min
{
X(−), X(+)

}
(4.7)

X(+) =
m−1∑
j=1

(Cratej+1 − Cratej)
u̇
(+)
i,j+1 + u̇

(+)
i,j+1

2
(4.8)

X(−) =
m−1∑
j=1

(Cratej+1 − Cratej)
u̇
(−)
i,j+1 + u̇

(−)
i,j+1

2
(4.9)

˙
u
(+)
i,j = max(

ui,j − ui,j−1

Cratej − Cratej−1
, 0) (4.10)

˙
u
(−)
i,j = max(

ui,j−1 − ui,j
Cratej − Cratej−1

, 0) (4.11)
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Table 4.11: Fitness weighting coefficients and bias/scaling coefficients.

α β γ bias coefficient scaling coefficient

0.9 0.05 0.05 forced forced
0.85 0.075 0.075 forced forced
0.8 0.1 0.1 forced forced
0.9 0.05 0.05 free free
0.85 0.075 0.075 free free
0.8 0.1 0.1 free free
0.33 0.33 0.34 forced forced
0.75 0.2 0.05 forced forced
0.5 0.3 0.2 forced forced

Genetic Programming: dataset, metrics and results

The dataset of the 90-Ah LPF battery serves as the input for executing the GP algorithm. It
comprises a total of 400 operating conditions, involving various combinations of SoC, Crate,
and temperature values (as outlined in Table 4.9). Like all data-driven algorithms for pre-
dictions and decision-making, these input data are typically divided into multiple datasets.
Specifically, three datasets play distinct roles in the model development process: training, val-
idation, and test datasets.

The training dataset encompasses the data samples utilized in the identification of the model
during the GP evolution. Subsequently, the validation dataset is employed to provide an unbi-
ased evaluation of how well a model aligns with the training dataset, all while fine-tuning the
model’s hyperparameters. Finally, the test dataset consists of data samples used to provide an
impartial assessment of the ultimate model selected from among all models discovered through
the training dataset.

In the context of this battery case study, a subset of 40 conditions, equivalent to 10% of the
original dataset, is randomly selected to constitute a common test dataset (Tts) for all GP runs.
The remaining 360 conditions, accounting for 90% of the original dataset, are randomly par-
titioned for each run, with 288 conditions forming the training dataset (Ttr) and 72 conditions
forming the validation dataset (Tvl).

To explore solutions emphasizing different objective functions, a distinct setup of fitness
weighting coefficients (as detailed in Table 4.11) is employed. Among the α, β and γ coef-
ficients, greater weight is assigned to the RMS error objective function FRMS , ensuring the
prevalence of individuals (models) with low RMS error. This decision is informed by the ini-
tial analysis of experimental data, which reveals a inherent smooth behavior in the battery
voltage concerning SoC, Crate, and T, leading to relatively straightforward functions (f ) and
monotonic coefficients (u). Additionally, various combinations of bias and scaling coefficients
have been implemented in the GP algorithm (as described in Table 4.11).

The GP algorithm has been executed through 50 runs for each configuration of weighting
coefficients, with a population comprising 100 models evolving over 50 generations in each
run. Following each run, all GP models can be preliminarily selected based on their RMS error
values computed for both the training and test datasets. In this context, models exhibiting an
error lower than 10 mV , which aligns with the level of accuracy required for modeling this
specific battery and accounts for the associated measurement uncertainties described in detail
later, are considered. Among these solutions, models that are not dominated in the (FRMS),
Fcmp, and Fmnt.) domain are identified, sorted, and assigned numerical labels in ascending
order based on their corresponding FFIT values. These models, along with their fitness value
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Figure 4.25: Expressions of best models obtained from GP.

FFIT, as well as the objective function values Fcmp, FRMS , and Fmnt, are comprehensively
listed in Figure 4.25.

It’s essential to highlight that, at this stage, all u coefficients are purely numerical and are
assessed through a nonlinear least square optimization method. For all GP-based models in
question,Equation 4.2.2 presents a summary of statistical measures, including the mean (µ err),
standard deviation (σ err), maximum (errmax), and RMS values of the absolute error computed
for both the training dataset Ttr and the test dataset Tts.

Equation 4.2.2 employs a color gradient, ranging from blue to red, to emphasize the mini-
mum and maximum values for each parameter. These models exhibit a maximum RMS error
of the absolute error less than 9.5 mV for the training dataset and 9.8 mV for the test dataset.
Some models are preferred over others within this group. For instance, models such as #1 and
#2 exhibit the lowest FFIT value (representing an optimal trade-off among the three objective
functions) and have the added advantage of relying on just two numerical coefficients,u1 and
u2. Both excel on the test dataset, where they achieve the minimum errmax value, an aspect
not explicitly considered during the GP’s evolutionary process.

Conversely, models with more than five u coefficients demonstrate strong metrics on the
training dataset (e.g., models #5, #11, #12, #13, #14, and #16) and offer a reasonable com-
promise on the test dataset. Model 15, featuring eight numerical coefficients, performs excep-
tionally well on the training dataset but exhibits the highest values for standard deviation (σ
err), maximum error (errmax), and RMS over the entire test dataset. Model 5 strikes a notable
balance, as evidenced by the predominance of blue-colored cells inEquation 4.2.2.

Thus, we proceed to compare the following two models: - Model #1, which is the simplest
with the fewest coefficients, boasts the best fitness value FFIT , the highest RMS value (FRMS

= 0.003), a relatively low complexity value (Fcmp = 0.056), and minimal monotonicity factor
(Fmnt = 0). - Model 5, the most complex with the maximum number of coefficients, achieves
a higher fitness value FFIT, the lowest RMS value (FRMS = 0.0013), the highest complexity
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Figure 4.26: Metrics values for selected GP models

value (Fcmp = 0.389), and a moderately low level of monotonicity factor (Fmnt = 0.0008).
It’s important to note that a lower monotonicity factor increases the likelihood of express-

ing the u coefficients as a function of temperature T. For instance, both models #6 and #16
might appear as compelling alternatives, featuring fewer coefficients than model #5 and su-
perior error metrics compared to model 1. However, models #6 and #16 exhibit a relatively
high level of monotonicity factor, which could impede the practical ability to represent the u
coefficients as temperature-dependent functions.

Figure 4.27 and Figure 4.28 illustrate the absolute error (Ea) denoted as VB,expVB,bhv, which
represents the difference between the experimentally observed battery voltage and the corre-
sponding voltage predicted by GP models #1 and #5. In this analysis, all experimental data
points from both the training and validation datasets are considered (indicated by circle mark-
ers), as well as those from the test dataset (designated by star markers).

The results overall affirm the high level of accuracy achieved by behavioral model #1,
particularly evident for intermediate SoC values and lower Crate values. The most significant
error values occur at lower SoC levels, such as when model #1 records the highest error of
errmax = 43.5 mV at Crate = 0.25, SoC = 20%, and T = 5°C.

Conversely, the reliability and strong accuracy of behavioral model #5 are evident for
almost all combinations of SoC, Crate, and temperature. For instance, at Crate = 0.25, SoC
= 20%, and T = 5°C, behavioral model #5 records the highest error of errmax = 38.9 mV at
Crate = 1, SoC = 20%, and T = 15°C.

Both model #1 and model #5 consistently offer a high level of accuracy, with maximum
relative RMS error values of 0.31% and 0.22%, respectively. These error levels align with the
required accuracy standards.

Final Validation and discussion

The final section aims to validate the applicability and reliability of the GP-based models across
the entire range of investigation for the SoC, Crate, and T parameters. For each specific tem-
perature value (T = 5, 15, 25, 35 °C), the numerical coefficients u have already been determined
by the GP algorithm through a nonlinear least square optimization method. This enables us
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Figure 4.27: Absolute error between the experimental dataset and output battery voltage pre-
dicted by using the GP model #1: circle markers = training dataset samples, star markers =
test dataset samples. For each temperature value and Crate subset (Crate=0.25, Crate=0.33,
Crate=0.50, Crate=1), data samples are sorted from SoC = 80% to SoC = 20%

Figure 4.28: Absolute error between the experimental dataset and output battery voltage pre-
dicted by using the GP model #5: circle markers = training dataset samples, star markers =
test dataset samples. For each temperature value and Crate subset (Crate=0.25, Crate=0.33,
Crate=0.50, Crate=1), data samples are sorted from SoC = 80% to SoC = 20%.
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Figure 4.29: Output battery voltage experimental values (circle markers = training dataset
samples, star markers = test dataset samples), and results based on model #1 with constant
coefficients u (continuous lines).

to obtain the VB,bhv versus SoC characteristics for all possible SoC values ranging from 20%
to 80%, in conjunction with the given Crate values of 0.25C, 0.33C, 0.5C, 1.0C.

In the earlier analysis, only 25 SoC values were considered for each Crate value, starting
from SoC = 20% and progressing in increments of 2.5%. Figure 4.29 and Figure 4.30 illustrate
the fitting of the output battery terminal voltage, represented by continuous lines correspond-
ing to SoC values within the 20% to 80% range, as predicted by models #1 and #5. These
predictions are compared against all the experimental data points adopted from the training
and validation datasets (indicated by circle markers), as well as from the test dataset (designated
by star markers).

Consequently, both models facilitate the prediction of the battery terminal voltage trends
for any SoC value within the original dataset. In detail, model #1 accurately predicts the
behavior of the battery terminal voltage for intermediate SoC values, with a more significant
error observed for the lowest SoC values. Note that the voltage scales in Figure 5 have been
adjusted to the curves for enhanced visualization. Conversely, model #5 effectively captures
the expected trends of experimental data points for SoC, Crate, and temperature, displaying
reliable performance.

In the final validation step of our proposed approach, we have confirmed the reliability of
the GP-based models for C-rate and T values within the original definition range but not
included in the GP dataset. To achieve this, we determined the trend of coefficients u with
respect to temperature (T). The plots in Figure 4.31 display the values of coefficients u1 and
u2 for T = 5, 15, 25, 35°C (indicated by red dots), as well as the coefficient trends u1(T) and
u2(T) for model #1. These trends can be expressed as shown in Equation 4.12 for i = 1, 2),
taking into account the numeric coefficients ci1, . . . , ci4 listed in Figure 4.33.

Ui(T ) = ci1T
3 + Ci2T

2 + ci3T + Ci4 (4.12)

Similarly, Figure 4.32 displays the coefficient values u1, . . . , u9 for T = [5, 15, 25, 35] Celsius
Degree (indicated by red dots), along with the coefficient trends u1(T ), . . . , u9(T ) for model
#5. These coefficient trends can be expressed as in Equation 4.12 for i = 1, . . . , 9, taking into
account the numeric coefficients ci1, . . . , ci4 listed in Figure 4.32.
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Figure 4.30: Output battery voltage experimental values (circle markers = training dataset
samples, star markers = test dataset samples), and results based on model #5 with constant
coefficients u (continuous lines).

Figure 4.31: . Coefficients values u1 and u2 for T = 5, 15, 25, 35°C (red dots), and coefficients
trend u1(T) and u2(T) for the GP model #1.

Consequently, both model #1 and model #5, along with their coefficient trends as described
in Equation 4.12, enable the prediction of the battery terminal voltage for any SoC values
within the range of 20% to 80%, Crate values spanning from 0.25 to 1, and temperature
values between 5°C and 35°C. It’s worth noting that certain metrics provided in Figure 4.35
may exhibit variations when model #1 and model #5 are used in conjunction with ui(T ). For
the original dataset, the resulting new metrics are presented in Table ??. In this context, the
new metrics closely resemble those obtained with purely numerical coefficients u identified
by the GP through a non-linear least square algorithm, as detailed in

. This similarity primarily arises from the monotonic trend of the numerical coefficients u,
which can be readily fitted with analytical functions.

As the ultimate step of validation, the same experimental configuration employed for prior
datasets was used to conduct a fresh analysis of the 90-Ah LFP battery in discharge mode.
Specifically, for a Crate of 0.6C and a temperature of 10°C, a total of 55,500 state of charge
(SoC) data points, ranging from 20% to 80%, were gathered. Figure 4.36 illustrates the dis-
parity between this newly acquired experimental dataset of battery voltage output and the
corresponding battery voltage predictions made using GP model #1 (depicted by the blue
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Figure 4.32: Coefficient values u1, . . . , u9 for T = 5, 15, 25, 35°C (red dots), and coefficient
trend u1(T), . . . , u9(T) for the GP model #5

Figure 4.33: Coefficient values for the behavioral model #1

Figure 4.34: Coefficient values for the behavioral model #5
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Figure 4.35: Coefficient values for the behavioral model #5

Figure 4.36: Absolute error between the experimental output battery voltage for Crate = 0.6C
and T = 10°C and the output battery voltage predicted by using model #1 (blue line) and
model #5 (red line) along with coefficients u(T)

line) and GP model #5 (represented by the red line), along with their coefficient trends con-
cerning temperature (denoted as "u(T)"). The dashed black lines indicate the measurement
uncertainty calculated with a confidence level of approximately 98%.

In summary, model #5 predicts the battery’s output voltage with a maximum absolute error
of less than 15mV , falling well within the specified measurement uncertainty for a Crate of
0.6C and a temperature of 10°C, across all SoC values ranging from 20% to 80%. In contrast,
the absolute error of model #1 does not consistently fall within the designated measurement
uncertainty but still offers a fairly accurate prediction of the battery’s output voltage, with a
maximum absolute error of less than 20mV .

Despite the fact that the two GP models analyzed here have been arranged in ascending
order of complexity, it is essential to note that both are analytical models. Therefore, in a
direct problem scenario, their cost would be the same, for instance, when implementing them
into a Battery Management System (BMS) to forecast output voltage. In direct problems,
complexity can be heightened, and constraints on the coefficients can be relaxed, especially
if the ultimate goal is to enhance accuracy. However, a significant advantage of an analytical
representation lies in its potential for reverse usage in inverse problems, such as optimization
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or uncertainty analysis during the design phase.It is evident that, for these alternate purposes,
having simpler analytical models with monotonous coefficients holds substantial added value.





Chapter 5

Case Study: BATMAN

5.1 Platform description

The aim of the project is to realize a distributed, cost-effective, and intelligent platform based
on IoT solutions for the predictive diagnosis and thermal management of batteries involved in
safety-critical and mission-critical applications. In particular, the distributed platform will be
used for monitoring Uninterruptible Power Supply (UPS) in HV/MV and MV/LV transformer
substations. In order to meet the functional requirements of the project, the platform to be
implemented will consist of three basic parts:

• A local sensing system to be applied to the individual batteries being monitored.

• One or more data collection gateways with instrument fault detection capabilities.

• A processing and supervision system with data fusion, predictive diagnostics, and bench-
marking capabilities.

The sensing system will enable continuous sensing of quantities of interest for battery mon-
itoring, including electrical, electrochemical, and environmental parameters that can provide
detailed information on the state of the batteries. The data collection gateways will consist of
devices that will have multiple functions including:

• Acquisition and pre-filtering of data from the sensors.

• Local data processing.

• Reliable data transmission to the subsequent processing and supervision system.

The processing and supervision system with data fusion, predictive diagnostics, and bench-
marking capabilities will aim to collect data from the field and process it, using artificial intel-
ligence algorithms, in order to estimate the state of the batteries and identify possible anomalies
that might require battery maintenance.

5.2 Sensing Platform

The characteristics of the local measurement system to be applied to individual batteries (or
to a limited number of batteries) within UPSs, are defined according to the quantities to be
measured. In particular, it is necessary, in order to estimate the status of the batteries in UPSs
and identify possible anomalies, to continuously monitor the quantities indicated below.
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Figure 5.1: Structure of the acquisition, transmission, processing, and archiving system to be
implemented.

• The continuous current delivered (absorbed) by the batteries during the discharge (charg-
ing) process.

• The continuous voltage of the individual batteries.

• The impedance of the individual batteries, estimated from AC voltage and AC current
measurements.

• The temperature of the individual batteries.

Furthermore, in order to provide the system with greater diagnostic capabilities, it is planned
to measure the power flows at the input and output of UPSs in order to have a global view of
the system status, which is essential for performing planned and predictive maintenance of the
system. Figure 5.2 shows the logic structure and all the measured parameters by the Board.

5.2.1 Device Description

Stimulus Signal

The generation and injection of a sinusoidal signal are achieved through a function gener-
ator, taking as reference Figure 5.3, U1 (AD9833), which can be remotely programmed via
the SPI communication port. The signal is then converted into a current signal using a power
amplifier, OPA544, configured as a voltage-driven current source. Its operational principle,
using negative feedback, ensures that the desired current is achieved when the voltage drop
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Figure 5.2: Logical structure of the measurement system within the UPS.

across the measurement resistor RS_G1 matches the voltage set at the non-inverting input of
the amplifier.

The function generator, U1 (AD9833), receives frequency setting instructions from the
ESP32 microcontroller (U17) via the MOSI channel of SPI, while selecting the chip using the
CS2- (chip select) pin. The output signal, OUT_G, has a fixed amplitude ranging between
V min = 38mV and V max = 650mV . To make this signal have zero DC offset, a precision
voltage regulator VR1 (TC1087) and operational amplifier U3B in an inverting configuration
are used to subtract an offset voltage, V off = 344mV . U3B subtracts Voff from the function
generator signal to achieve a zero DC offset signal.

The device U2 (TMUX7219) serves as an analog signal switch and can be remotely con-
trolled with a digital signal (1 or 0). This switch is employed to connect the input of the next
stage to the output of amplifier U3B or to ground through R6. The latter configuration al-
lows for a null signal at the input of amplifier U3A, effectively cancelling the test current in
the battery, thereby enabling the measurement of the open-circuit voltage (OCV).

Amplifier U3A is configured as an inverting amplifier. This configuration allows for an
adjustable gain via the digital potentiometer RD1B, with gain values both greater than and
less than 1 being possible.

AC Voltage

The battery is connected to the measuring circuit with a 4-terminal configuration to limit
the influence of contact resistances and the measuring circuit. Taking the region 1 in Fig-
ure 5.4 as reference, the Battery DC voltage is measured using operational amplifier U10A in
a differential configuration with a unity gain. This configuration is employed to eliminate any
potential offsets caused by the voltage drop across the measurement resistor RS_G1 when it
carries the test current. The output signal from U10A is then passed through a voltage divider
of 1/11, consisting of R46 and R49. This voltage divider is designed to generate a voltage
within the range of 0 to 3.3V, corresponding to the operational voltage range of the sam-
pler. The output signal from the voltage divider passes through a circuit with zener diodes for
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Figure 5.3: Signal generation section.

protection and is subsequently sampled at 16 bits by the device U11, an MCP33131D. This
operation prepares the signal to be transmitted via the SPI bus to the microcontroller. The
transmission channel used is the SDO, which is connected to the MISO pin of the micropro-
cessor U17, an ESP32. Furthermore, the microcontroller selects the target device using the
"chip select" signal CNVST2.

Figure 5.4: DC and AC Voltage measuring section

DC Voltage

The zero mean signal, coming from the output of U4A, as shown into the region 2 of
Figure 5.4, undergoes appropriate amplification through the variable-gain amplifier U6B,
controlled by the digital potentiometer RD2B. Subsequently, the signal is shifted by 1.65V
through op-amp U6A and voltage regulator U15. The output from U6A is then sampled by
the ADC converter U5 and transferred to the microcontroller via the SPI interface.

AC Current The current is measured via the measuring resistorRS_G1, whose voltage drop

is read by the op-amp U10B. The resulting signal is subsequently amplified using an amplifier
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with variable gain, U14B, which is adjusted via digital potentiometer RD3B. In addition, the
signal is shifted by 1.65V via the operational U14A. The output signal from the latter op-amp
is sampled by U13 and then transmitted to the microcontroller via the SPI interface.

Figure 5.5: Current measure section

5.3 Gateway Platform

The gateway system plays an essential role by acting as an intermediate interface between
the sensing device and the supervisor. Its presence is of fundamental importance since, if
the entire system consisted only of the sensing device and the supervisor, the latter would
have to possess too much computing power to be compatible with current systems. However,
thanks to the intermediate gateway, it is possible to shift part of the computational load and the
management of certain devices to the sensing side, rather than having everything be delegated
to the supervisor system. This approach allows easier scalability of the whole system, as the
gateway can be optimized to handle specific functions and workloads, allowing the supervisor
to concentrate on high-level tasks. Furthermore, considering the community’s orientation
towards systems with high repairability and long life cycles, the use of an intermediate gateway
simplifies replacement in the event of obsolescence caused by an increase in the number of
quantities measured by the sensing system. In summary, the introduction of an intermediate
gateway between the sensing device and the supervisor optimizes the overall efficiency of the
system, reducing the load on the supervisor and allowing easier adaptability and replacement
of components, aligning with the objectives of robustness and long life of today’s systems.

The gateway plays a crucial role in the collection and processing of data from UPSs (Un-
interruptible Power Supply). Each UPS transmits a series of parameters that are essential for
the monitoring and effective operation of the overall system. Among the data collected are:

• VSac and ISac: these values represent the stimulus voltages and currents used to calcu-
late the battery impedance at specific frequencies. By monitoring these parameters, the
gateway can assess the stability and efficiency of the power system.

• Vdc: This value indicates the individual battery voltage, providing valuable information
on the charge level and operational status of the batteries.

• I1i: The current drawn by the individual UPS represents the electrical load that the
system is handling at the input. Monitoring this current helps to optimize UPS utilization
and prevent overloads.

• I1o: This value indicates the current supplied by the individual UPS to the connected
appliances and equipment. By carefully monitoring this current, the gateway can verify
the appropriate power delivery and identify any abnormal situations.
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• Ibat: This is the total continuous current delivered by the battery pack, in practice it is
the current that powers the subsequent DC/AC converter (inverter).

• V1i: The input voltage of the individual UPS represents the quality of the mains power
supply. An accurate control of this parameter allows voltage fluctuations and problems
on the mains to be detected.

• V1o: This value indicates the voltage generated by the individual UPS to the connected
devices. Accurate monitoring of this voltage is essential to ensure a stable and secure
power supply to the devices.

• VBat: this is the total voltage of the battery module, knowing the connection of the
individual cells within the UPS the Vbat value could be calculated as the composition
of the individual voltages, the advantage of also having the total measurement however
allows a controlled and more robust measurement system to be created even at the fault
of a sensor.

In addition to collecting data from UPSs, the gateway performs another important task: it
also collects data from temperature sensors. Monitoring temperature is crucial for preventing
overheating and maintaining optimum operating conditions for the entire system, especially
in those systems, such as UPSs, that use batteries. Through a combination of data from UPSs
and temperature sensors, the gateway becomes a key element for advanced monitoring and
control of the electrical infrastructure, helping to ensure business continuity and security of
connected devices and equipment.

Figure 5.6: Sensing Board and Gateway connection Structure

The microcontroller section is implemented using an ESP32, which handles the measure-
ment of various analog channels for voltage and current on the UPS board. It also implements
the CAN Bus for data collection from various measurement module boards. Additionally,
the ESP32 communicates via the SPI bus with a Raspberry Pi 4 for data collection, potential
processing, and transfer over the internet.

Figure 5.8 illustrates the detailed circuitry for measuring the mains voltage using an isolated
operational amplifier. In addition to the input divider comprising R1, R2, R4, R7, and R9,
there is the isolated operational amplifier TLP7920, which is powered from the mains side
using an isolated DC-DC converter. This amplifier has two outputs referenced to the ground,
which connect to two analog inputs on the microcontroller. These outputs have an offset to
enable measurement of the negative portion of the signal. Software processing can be applied
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Figure 5.7: Gateway Board assembled

to calculate the difference, thereby reducing common-mode error. Three identical channels
are present on the board.

Current measurements, see Figure 5.9, on the mains and UPS input/output are carried out
using the LEM sensor, model LEM LA 55-P, which has a 50 A RMS rating. As shown in
Figure 3, the LEM sensor is powered by a dual 15 V voltage supply and loaded by the 100 Ω
measurement resistor, R42. Subsequently, there is a voltage divider consisting of 1 kΩ and
300 Ω resistors. The filtered output of this divider, through C22, is applied to a differential
stage that introduces a voltage offset of 1.65V with a unity gain.

Figure 5.10 presents the schematic section related to interfacing with the "one-wire" DS18B20
sensors powered at 3.3 V .

5.3.1 Project Status

The system to be created is configured as an additional device based on a distributed architec-
ture which has the purpose of acquiring "online" information useful for verifying in real time
the functioning of the accumulators and estimating, on the basis of regression and classification
techniques based on ML and on historical series also relating to previously occurred events,
the state of health and the residual life of the accumulator and to activate any maintenance
policies based on predictive analysis. The project is divided into the following points:

1. Definition of system requirements

2. Experimental characterization in a laboratory environment
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Figure 5.8: Grid Voltage measurement section

3. Software development

4. Construction and validation of the demonstrator

5. Implementation and acquisition of measurement data

6. Testing of artificial intelligence algorithms to identify possible trends toward failure sit-
uations.

At present, the TRL7 prototypes have been built and validated (point 4) and their implemen-
tation is underway in order to collect an adequate number of data.
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Figure 5.9: UPS input and output current measurement section

Figure 5.10: Temperature measurement section





Conclusions

This thesis work is conducted in the realm of predictive maintenance, where over time, we
have progressed from a failure-driven maintenance approach, where maintenance is per-
formed based on either incipient failures, or a time-based maintenance approach, where the
maintenance is predetermined at time intervals, to a condition-based maintenance approach.
Condition-based maintenance involves conducting maintenance based on the actual wear and
tear of the monitored system and has assumed such significance that it rightfully holds a place
among the themes of Industry 4.0. Predictive maintenance necessitates not only knowledge
of the current state of a device but also its evolution over time. In the case of batteries or
battery-powered devices, determining both the current state and the future state can be chal-
lenging. In both cases, knowledge of the state can only be derived from measuring the system’s
characteristic parameters and appropriate modeling them.

Characteristic parameters in batteries include internal parameters such as battery voltage,
delivered or absorbed current, ambient and cell temperature, and impedance measured at var-
ious stimulus frequencies, as well as external or derived parameters like state of charge and
state of health.

Regarding the data collection challenge, this thesis primarily focuses on impedance mea-
surement of batteries, specifically impedance spectroscopy, which involves measuring impedance
variations across different stimulus frequencies. Various battery stimulus signals, such as stepped
sine or multisine, were analyzed in relation to acquisition system settings and data processing
algorithms. It was observed that for the low frequencies used in battery stimulation, algorithms
based on the Fast Fourier Transform significantly impact measurement times, as they require
at least one full period to avoid the "scallop loss" issue. To address this, sine fitting-based al-
gorithms, adaptable to sub-period acquisitions, were considered, allowing time savings but
potentially sacrificing accuracy.

The experience gained in battery impedance measurement systems was applied to the BAT-
MAN platform, a distributed monitoring system for the state of batteries within Uninter-
ruptible Power Supplies (UPSs). This multisensory measurement device actively stimulates
batteries and communicates all necessary information to a remote server to create a digital
model of the system. Throughout the doctoral experience, several setups were established to
acquire impedance measurement datasets under varying battery state of charge, which were
subsequently shared with the scientific community. This data was also used to train machine
learning algorithms to estimate battery state of charge based on impedance spectroscopy mea-
surements. A methodology for Battery Management System (BMS) designers was created to
determine the ideal stimulus frequency set for classification performance optimization while
minimizing measurement time. An evolutionary algorithm was developed, incorporating a
classifier within the fitness function. The results achieved reduced measurement time by over
90% while maintaining classification performance equal to or exceeding that obtained with
all stimulus frequencies. The system was also observed to simplify the classifier’s task by elim-
inating misleading features.

Additionally, within the realm of battery diagnostics measurement systems, a preliminary
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study, in collaboration with the University of Newcastle, was conducted to estimate state of
charge through non-invasive impedance measurements using a coil attached to one side of the
battery. The innovation lies in the ability to estimate state of charge from a measurement that
is galvanically separated from the battery, i.e., without direct contact with its terminals.

Modeling a system is fundamental to prognosis in predictive maintenance. In this thesis
work, the focus was on predicting battery voltage using two methods. The first method em-
ploys established techniques in the literature based on the current and voltage characteristics
during a pulsed battery discharge procedure, enabling the identification of equivalent circuit
parameters for subsequent use in a battery digital twin capable of predicting terminal voltage
based on absorbed current and battery state of charge. The second method utilizes an inno-
vative system based on genetic programming, utilizing battery voltages and currents during
a constant current discharge procedure. The genetic algorithm yielded an analytical function
that links the State of Charge, discharge current, and battery temperature. The analytical
function is particularly advantageous as it can be easily implemented in cost-effective systems
and, in this specific case, can be forced to be invertible, allowing State of Charge to be obtained
from voltage, current, and temperature measurements.

In conclusion, the accomplished studies have contributed to various aspects of predictive
maintenance for batteries, providing methodologies and metrological tools for the accurate
estimation of fundamental battery parameters.
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