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A B S T R A C T

Understanding and controlling the complex and dynamic processes at battery interfaces holds the key to devel-
oping more durable and ultra high performance secondary batteries. Interfacial processes like dendrite and Solid
Electrolyte Interphase (SEI) formation span numerous time- and length scales, and despite decades of research,
their formation, composition,structure and function still pose a conundrum. Consequently, ”inverse design” of
high-performance interfaces and interphases like the SEI, remains an elusive dream. Here, we present a
perspective and possible blueprint for a future battery research strategy to reach this ambitious goal. Semi-
supervised generative deep learning models trained on all sources of available data, i.e., extensive multi-
fidelity datasets from multi-scale computer simulations and databases, operando characterization from large-
scale research facilities, high-throughput synthesis and laboratory testing, need to work closely together to un-
lock this dream. We show how understanding and tracking different types of uncertainties in the experimental
and simulation methods, as well as the machine learning framework for the generative model, is crucial for
controlling and improving the fidelity in the predictive design of battery interfaces and interphases. We argue that
simultaneous utilization of data from multiple domains, including data from failed experiments, will play a critical
role in accelerating the development of reliable generative models to enable accelerated discovery and inverse
design of durable ultra high performance batteries based on novel materials, structures and designs.
1. Introduction

Rechargeable (secondary) batteries play a critical role in the transi-
tion towards clean energy and e-mobility. The performance and dura-
bility of existing batteries are, however, limited; not only by the battery
materials themselves but equally by our lack of understanding of the
complex and dynamic processes taking place inside the materials and in
particular at the interfaces within the battery cell. Despite decades of
research, the formation of, e.g., dendrites and the composition and
function of interfacial compounds like the Solid Electrolyte Interphase
(SEI) and Cathode Electrolyte Interphase (CEI) remain a conundrum. The
properties of these interfacial compounds depend in a highly complex
and elusive manner on the specific characteristics of the composition and
structures of the electrolyte and the electrode materials, as well as the
external variables that decide the time evolution of the system [1–3].

The European Large Scale Research Initiative ”Battery 2030þ” has
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recently identified establishing the “Battery Interface Genome (BIG)” and
a “Materials Acceleration Platform (MAP)” as essential milestones to-
wards accelerated discovery of ultra high performance batteries (see
http://www.battery2030.eu). In this perspective, we provide our vision
of a methodological blueprint for enabling inverse design of battery in-
terfaces in a ”BIG-MAP” infrastructure based on a consolidated treatment
of multiple and heterogeneous data sources, AI (Artificial Intelligence)
orchestrated data acquisition from experiments and simulations, com-
pressed representation of interfacial states at different time- and length
scales, and semi-supervised generative deep learning. We present and
discuss the complexity of this massive challenge, the state-of-the-art of
selected critical methods and approaches - ranging from experimental
techniques to physical simulation models and machine learning methods
- and finally, how a closed-loop scheme for accelerated (inverse) inter-
facial design can be established, building upon the accumulated insights
from the individual building blocks.
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While batteries consist of a multitude of different interfaces and in-
terphases, few are as complex and pose as many challenges to the design
of ultra high performance batteries as the SEI/CEI interphase at the
electrode-electrolyte interface. In this perspective, special emphasis will
therefore be placed on these interphases, but the described methodology
will be equally applicable to other battery interfaces and interphases.

The complexity of the SEI and CEI arises from a host of different re-
actions and processes spanning a wide range of time- and length scales
that define their formation, structure and, ultimately, their functionality
in the battery. The initial steps in the formation of the SEI start at the
atomic level, with its nucleation through chemical reactions between the
electrode surface and molecules from the electrolyte. These reactions
normally involve fast transfer of electrons at time-scales down to fem-
toseconds. During the growth of the interphase, different compounds are
formed and the properties of the grains/phases and the boundaries be-
tween them, which extend from the nanometer to the micron scale, are
crucial to allow ionic migration and to block electron conductivity. At the
macroscopic scale, the mechanical stability of the interphase is respon-
sible for the battery aging on the scale of years [4]. All these factors and
their intricate entanglement lead to a combinatorial explosion that makes
the rational (inverse) design of optimal interphases a daunting task.

Proactive and dynamic control of the SEI/CEI formation and complex
composition and morphology remains a ”Grand Challenge” in battery
research and development - a challenge in striking need of more
advanced and versatile prediction and design techniques. Radically new
approaches are needed to accelerate the discovery and development of
ultra high performing and durable materials and interphases in
rechargeable batteries. The purpose of this perspective is to outline a
possible path for bringing this ambitious task within reach through the
use of AI-orchestrated closed-loop optimization and a common data
infrastructure. Hybrid physical and machine learning models trained on
large curated datasets from advanced multi-scale computational model-
ling, materials databases, operando characterization to data from syn-
thesis and materials/cell level testing provide the basis for this
infrastructure (Fig. 1).

The traditional paradigm of trial-and-error based sequential materials
optimization is to start from a known materials composition and struc-
ture, and rely on human intuition to guide the optimization of the ma-
terials to improve the performance. Inverse materials design effectively
inverts this process by allowing the desired performance goals to define
the composition and structure which best fulfills these targets without a
priori defining the starting material or structure [5,6].

State-of-the-art in battery interphase design is unidirectional - going
from structure to the properties. Both the structure and the properties are
measured or simulated for specific interphases to start with, owing to an
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inherent lack of one-to-one mapping between input structure/chemistry
and system performance. On the contrary, inverse design, therefore, re-
lies heavily on the use of generative models. Optimization challenges as
complex as proactive engineering and design of a battery interphase,
requires going from a many-to-one to a one-to-many type mapping (e.g.,
going from the desired SEI/CEI to specifying the optimal ratio of the
numerous components in the electrolyte compositions [7]) over the
specific dimensionality and termination of the electrode to the specific
electrochemical and/or thermal preparation. To implement such models
in battery interphase design, we need to incorporate the relevant physical
understanding, and the model should be capable of performing an in-
verse mapping from the desired properties to the original composition of
the materials and external parameters/conditions. Deep learning models
represent an efficient way to optimize the data flow and build the
required bridges between different domains, helping to solve the biggest
challenges of battery interphases. In this perspective, we discuss the
potential and main challenges facing such procedures for accelerated
inverse design of battery interphases and outline our view towards future
research direction.

2. Experimental and simulation methods for studying reactions
and processes at battery interfaces

In this section, we discuss some of the key processes occurring at a
battery interface and the existing modelling and experimental tech-
niques, which can provide the necessary data and complement the
generative design framework proposed in this perspective. A battery is a
highly complex device where many (electro-)chemical reactions take
place at different interfaces and stages of the battery lifetime. In typical
Li-ion batteries (LIB), (electro-)chemical reactions are responsible for the
formation of the SEI layer on the graphitic anode (negative electrode)
and the CEI on the cathode (positive electrode), involving the electrolyte
and its additives during the first cycles of the battery. Once the layers are
formed, Li penetrates through the SEI/CEI films, which should be an
ionic conductor and, at the same time, electronic insulating to prevent for
further degradation of the electrolyte. The composition of the electrolyte,
together with additives and impurities, directly influences the (electro-)
chemical reactions and thus the performances, durability, and safety of
the battery [8]. Electronic transport is one of the determining mecha-
nisms in the formation of the SEI/CEI, critically influencing the battery
performance. Especially critical is the electronic transport in electrodes
where strongly insulating materials are involved. Some examples are
metal-sulfur batteries and aprotic metal-air batteries. In the former, the
poor conductivity of sulfur determines how much of this element can be
loaded in the sulfur-carbon composites at the cathode [9]. In the latter,
Fig. 1. Starting from the initial cell assembly/
manufacturing, the battery interphase/SEI evolves
continuously while adding complexity - from the mo-
lecular assembly, to SEI deposition and eventual
macro-scale structure formation like cracks. This evo-
lution is determined by the initial chemical, material
and structural details, as well as the environmental
variables during the lifetime of the battery, e.g. tem-
perature and C-rates. The state of the interphase can
be probed by various electrochemical (brown) and
spectroscopic/structural (green) characterization
techniques, as well as simulations (blue). The fidelity
of a specific method in probing the interphase changes
as the SEI matures. The variation from high (low) fi-
delity to low (high) fidelity of a given method due to
the change in SEI complexity is denoted by the tran-
sition from solid color (higher fidelity) to a lighter
tone (lower fidelity). (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the Web version of this article.)
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the peroxides formed as discharge product at the cathode passivates the
carbon support and eventually result in the sudden death of the battery
[10]. The insulating nature of both sulfur and peroxides force charges to
move through mechanisms such as electron tunneling and polaron hop-
ping. An accurate modelling of these two mechanisms is essential to
determine the critical (limiting) thicknesses of these materials at the
cathodes. The conventional method to study polaron hopping, is based
on transition state theory combined with density functional theory
(DFT), but this approach severely overestimates polaronic conductivities
(e.g., by 5 and 10 orders of magnitude in sulfur [9] and peroxides,
respectively), making it necessary to employ more expensive computa-
tional methods based on the Landau-Zenner (LZ) formalism combined
with constrained DFT (cDFT) to get accurate results [11]. However, there
is clearly room to accelerate the LZ-cDFT calculations by applying
ML-based algorithms.

Aprotic metal-air batteries are another example of the formation of a
complex interphase at the electrode-electrolyte interface consisting of
several compounds in which the (grain) boundaries can display improved
electronic conductivity respect to their parent materials. Under particular
circumstances, like carbon dioxide contamination or use of carbon-based
electrolytes, a mixture of lithium peroxide and lithium carbonate is
formed as a discharge product at the air-cathode. At the boundary be-
tween these twomaterials electrons can diffuse, which it is not possible in
their respective bulk phases [10]. This particular case illustrates the level
of complexity of an interphase in an emerging battery chemistry, where
the performance is not only governed by the intrinsic properties of the
materials but also by their boundaries.

Observing and simulating phenomenon like these requires dealing
with a range of time- and length scales from both the experimental and
modelling point of view, where different stages in the formation and
growth of the interphase can be analyzed, e.g. through a combination of
complementary experimental techniques targeting specific scales
(Fig. 1). The formation of the SEI/CEI during the first cycles can be
studied with electrochemical characterization methods like cyclic-
voltammetry (CV), XPS, and in-situ spectroscopies (NMR, Raman, IR)
as sketched in Fig. 2. The structural evolution can be investigated
through in-situ XRD [12], the ionic transport by quasi-elastic neutron
scattering (QENS) [13], or Galvanostatic/Potentiostatic Intermittent
Titration Technique (GITT/PITT) [14]. The aging of the battery can be
tracked through cycling tests, and eventually the battery can be analyzed
post-mortem using Transmission electron microscopy (TEM) and by
spectroscopic techniques, as mentioned above. Safety of the battery can
also be tested using abuse testing [15]. With respect to the computational
448
modelling, the length scales span from the atomistic level, where quan-
tities as the open circuit voltage can be determined, to the device level,
which is employed in battery management systems (BMS). Although in
most cases, specific design tools have been developed to treat each of
them independently [16–18], recently significant progress has been
made in designing multi-scale models to cover multiple length- and
time-scales [19–21].

Interfacial phenomena can be treated directly in short (time-/length)
scale simulations, while long scale simulations usually neglect them or
rely on averaged description. At the atomistic level (i.e., simulations
involving no more than a few hundreds of atoms), first principle calcu-
lations, typically based on DFT, can be used to evaluate the electrolyte
stability and predict if they will eventually decompose to form the SEI
[22]. DFT calculations can also be used to assess the mechanical stability
of interfaces and the charge transport (both ionic and electronic) across
and along interfaces. A step further is to combine the DFT methods with
molecular dynamic (MD) simulations (ab-initio molecular dynamics,
AIMD) [23–26], to obtain a time-resolved analysis of the SEI formation.
Another possibility is to use parameters derived from DFT calculations as
an input for second-principle calculations, i.e., to build for force fields
(FF) for conventional MD [27] or ReaxFF models [28], to obtain
Slater-Koster integrals for Tight-Binding DFT (TBDFT) calculations [29]
or probability rates in Kinetic Monte Carlo (KMC) simulations [30]. This
allows studying model interphases using thousands of atoms in the
simulations. Machine learning is now playing an important role to sup-
port and automatize the construction of parameters for these second
principle simulations from first principle methods [31–36]. Examples of
this span from Cluster Expansion methods [37], which are widely
employed to study the disorder in electrode materials, to neural networks
to systematically improve the reliability of MD simulations [38].

When moving from the microscopic modelling level to the macro-
scopic one, the atomic details about the interface/interphase are typically
neglected, which is an important reason for the challenges in linking
simulation scales. Macroscopic modelling is often based on finite element
methods (FEM) to solve the partial differential equations used to describe
the diffusion of species in the electrodes and the electrolyte (ignoring the
interfaces). Examples of this are the pseudo two-dimensional model
(P2D) [39], which can be used to capture Li migration and has been
combined with KMC to investigate film growth mechanism [19], and the
single particle model (SPM) [40], which can be employed to assess the
battery aging.

Finally, empirical models, based on fitting of experimental data, are
used to monitor the macroscopic behavior of a battery by the BMS.
Fig. 2. The complex relation between the different
state-of-the-art experimental and theoretical methods
for studying battery interphases and their fidelity.
Experimental techniques to characterize and test bat-
teries are used to validate the theoretical modelling at
different scales, while modelling activities help to
interpret experiments. In addition, information from
experiments and atomic-scale modelling is used as
input in meso- and macroscopic modelling. Synthesis
of materials is guided by input from theory and vali-
dated by experiments. The fidelity of each method is
typically inversely proportional to its cost, although
the fidelity/cost relationship can be optimized
depending on the time frame and the experimental
conditions (fidelity refers to the degree to which a
model, simulation or experiment reproduces the state
and behaviour of a real world object, feature or
condition).
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Traditional ML models generally fail in extrapolating beyond the
parameter space, where adequate training data is available and thus have
a limited predictive capability, when extrapolated (far) beyond the
normal operating conditions. Such models are still used in practice, e.g.
to predict state of charge, state of health, etc. (SoX) [41] and improve
battery pack performance and lifetime [42–45]. Under the newly
developed concept of physics informed [46] uncertainty-based deep
learning, uncertainty propagation/estimation starting from training data
as well as within the ML model itself can be used to obtain guidance on
the reliability of the predictions [47–51].

Under the right conditions, i.e., appropriate models and datasets, ML
techniques can accelerate the coupling between the different simulation
scales, incorporating interfacial effects in mesoscopic and macroscopic
simulations, which will enhance the prediction capabilities of the latter.
For example, new ML methods like compressed sensing and autoencoder
can help identify and automatically extract [52–54] necessary interface
respresentations and ”decriptors”, e.g. thermodynamic, structural or ki-
netic parameters, from the expensive, short length/time scale physics
simulations. Given the spatio-temporal complexity of the evolution of
battery interfaces, the lack of simple intuitive physical descriptors can be
overcome with a compressed sensing based ML framework. This can
identify/select the physical descriptors for the limiting physical phe-
nomena for battery interphases like charge and ionic transport, redox
potentials, interfacial stress, etc. This approach has the inherent advan-
tage of providing physical insights over black box ML modelling. ML
driven physical intuition generation can help to develop an interface
descriptor library for advancing battery interface design. It will enable
long time/length scale coarse grained physics or empirical surrogate
model based simulations [55,56] that helps to establish board trends in
performance in a similar fashion as seen in, e.g., catalysis [57–59].
Additionally, ML can be used to make fast surrogate models for esti-
mating properties of the SEI [60] (the most challenging region for
atomistic simulations), to be used alongside macro scale models, thus
improving reliability of multi-scale scale models.

A cardinal requirement for reliable ML or physics based models is the
accuracy and comprehensiveness (quality) of the data it is mapping be-
tween, i.e., the structural/chemical details of the interphase and the
observed properties. Cross validation of data from multiple sources
generally improves the quality. Fig. 2 represents how data that can be
gathered from experimental and simulation methods can be coupled in a
complex and non-sequential manner, and that information often flow
both ways between methods. In a reliable multi-scale approach to design
battery materials, inclusion of interfacial details is necessary to feed the
larger scale models with appropriate parameters. Ideally, the parameters
for mesoscopic and macroscopic simulations should be derived from a set
of relevant experiments combined with the output of microscopic scale
calculations (for instance a KMC calculation can use DFT results and GITT
data as input parameters). At the same time, experiments validate the
results from calculations (for instance an XRD spectrum can validate a
structure predicted by DFT), and calculations help to clarify experiments
which could have several interpretations (for instance DFT can elucidate
the origin of a peak in a Raman spectrum).

In this respect, special care should be taken as models typically as-
sume a set of ideal conditions that are very difficult to achieve experi-
mentally. In general, efforts should be made to bring models closer to the
experimental conditions and also to perform experiments focusing and
decoupling different effects (e.g., working with surfaces and electrolytes
as free of impurities or defects as possible; in particular during the initial
training of the model). An example of this is the formation of the SEI films
on carbon- and silicon-anodes [61,62]. Solid bridges between different
levels of experimental data and (multi-scale) computational models are
thus required in order to make an intelligent choice of materials, addi-
tives, etc., which should be selected to form the desired interphase.

Deep learning models are particularly well suited to optimize the data
flow and build such bridges, helping to solve the biggest challenges of
battery interphases. Ideally, the ML algorithms should be fed with high-
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fidelity simulations and high-fidelity experiments (see definition of fi-
delity in the caption of Fig. 2). However, high-fidelity data is often very
expensive and/or time-consuming to obtain and consequently scarce. A
central element in the schemes for accelerated inverse interphase design
discussed below, is for the generative model to knowwhich experimental
or computational technique can provide the most relevant/pertinent data
at the lowest cost (in terms of time and/or money) for optimizing the
model. It is important to stress that at certain times, a large, low-cost data
set with moderate-to-low fidelity can be more useful than a limited, high-
cost/high-fidelity dataset, e.g., in highly sparse regions of parameter
space, and vice versa.

3. Representative modelling challenges at battery interphases

To illustrate the complexity of interfacial phenomena and processes in
batteries and the concomitant difficulties to model and rationalize them,
we present few representative challenges, i.e., the growth of dendrites in
metallic-anodes, the SEI formation in model electrode surfaces (carbon-
and silicon-based anodes), and electronic transport through the inter-
phase. The later is schematized in Fig. 1, in which different phenomena
are indicated as a function of the battery interphase evolution and SEI
complexity with various modelling, structural and chemical character-
ization methods that can be used to elucidate and rationalize them.

The formation of dendrites upon cycling of a battery is one of the most
vivid examples of an interfacial process, where several time- and length
scales are involved. Preventing the formation of dendrites at the negative
electrode would mean tremendous progress in several battery technolo-
gies, by enabling the use of high energy density metal electrodes. Thus,
there is a enormous interest in understanding their formation and pur-
suing strategies to inhibit their realization. At the atomic level, it is
possible to find dopants which block the nucleation sites for the den-
drites. This strategy has allowed elucidation of the beneficial impact of
additives as Bi and In in Zn anodes for secondary zinc-air batteries [63].

At larger length scales, MD calculations are used to look at the charge
distribution in the cracks present at the interface between metallic
lithium and solid electrolytes and how that influences the growth rate
and the shape of dendrites [64]. With phase-field models, we can model
grain-level localized anisotropic misfit strain during battery cycling [65].
FEM is employed to determine the impact of the specific geometry of the
electrode and the operating conditions (i.e., current density and tem-
perature) on the dendritic growth [66]. It has been used to design a
method to reduce the impact of dendrites in copper electrodes [67].

The initial SEI is formed during the first charge/discharge cycles and
its passivating nature prevents further decomposition of the electrolyte.
The SEI should, however, still allow transport of Li-ions from the elec-
trolyte to the anode electrode and vice versa, relying on different
mechanisms [68]. Various compounds are present in the SEI coming from
different decomposition mechanisms: inorganic compounds like LiF is
obtained from decomposition of HF and water impurities [61] and
organic compounds like Li2CO3 from the decomposition of the organic
electrolyte [69,70], etc. Multiple atomic- and multi-scale models
addressing different aspects of the SEI formation have been proposed
[71,72] in which experimental data are often used as input.

Electrochemical response experiments on single crystal model sur-
faces together with state-of-the-art AIMD DFT simulations [61] and
in-/ex-situ X-ray experiments coupled with first principle calculations
[62] - are two recent examples of how a combination of simulations and
experiments can provide insight into the formation of the SEI on
carbon-based and Si-anodes. Such studies cover the formation of the SEI
layer during the first few cycles, but also provide possible design criteria
for improved anode/SEI interphases. To go beyond that, continuum
models have been proposed to investigate the long-term growth mech-
anism of the SEI [2,73,74].

On the cathode side, descriptors like adsorption energy, the acid
dissociation constant or the oxygen band center can be used to rationalize
the reactivity of the cathode for the electrolyte oxidation reactions by
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correlating simulations with mass spectrometry experiments [22,75,76].
While the state-of-the-art has already progressed in multi-modal data

gathering, we envision that a future ”BIG-MAP” will integrate all
experimental and simulation based data sources and databases under a
shared infrastructure with seamless data sharing between all methods as
well as collective AI-orchestrated control and utilization of them. This
constitutes a paradigm shift concerning the current status for generation
and collection of data. Nowadays, data is typically generated using single
experiments or simulations, which encompasses a well defined length-
and time-scale. Databases, on the other hand, are mostly defined to
contain data coming from similar experimental techniques or computa-
tional models. To reach the point of inverse design of battery interphases,
this has to change.

Workflows need to be created to cover higher (preferably complete)
levels of connectivity among databases gathered from different experi-
ments and simulations, and the underlying interfacial details they cover.
It will allow the AI to recognize which type of data is most critical/
valuable at any given time, and launch the appropriate experiment or
simulation. The database structure should also allow the in-
terconnections between the various sources, and tools that bridge among
various databases are thus a requirement. Progress is currently underway
to create shared data infrastructure within computational materials area
focusing on reproducibility, automation and transparency [77]. Our
aspiration is a shared data infrastructure that is centered around the
structural and dynamic properties of the interphase and encompasses all
the relevant experimental/computational techniques.

4. Deep generative models for inverse design

The principles of battery interphase design are currently being
explored independently through experimental characterization, life cycle
and degradation tests, as well as through simulations at different length
scales. Such results allow for the creation of either physical models or
observation based rules. Given sufficiently detailed information about an
interphase (or interface) and an accurate physics-based model, all rele-
vant properties can, in theory, be predicted. Nonetheless, the lack of
detailed and accurate information about the composition, structure and
dynamic processes at the interphase, as well as the inability to perform
quantum mechanical simulations at the required time- and length scale
makes this approach impractical. Recent developments and deployment
of ML-based tools that improve with training have created a paradigm
shift in many scientific fields [78–87]. The availability of large datasets
from high throughput simulations and large experimental facilities have
made battery research ripe for benefiting from ML orchestrated model-
ling and design principle development [88,89].

The comprehensive term of AI can be broadly defined as ”the study of
agents that receive precepts from the environment and perform actions”,
following Russel and Norvig [90]. Machine learning is a subfield of AI,
where the functional mapping from input to output learns from examples
and improves upon such training. For example, a ML model can learn
from long-term charge/discharge cycling experiments of a battery sys-
tem, e.g., at varying C-rates and temperatures, and become very good at
predicting the online state of charge (SoC) and estimating the state of
health (SoH) for a specific type of battery (e.g. in a BMS), or predict and
classify cells by cycle life [41,91–93]. Such training data can be either
provided by human guided experiments or can be computer generated. If
the ML model can also orchestrate the experiments, simulations or tests
to be performed to further improve the model, it is defined as active
learning. We define a generative model as a probabilistic model for the
observed data.

In supervised learning, the objective is to learn a mapping from a
feature vector x (an n-dimensional vector of numerical features that
represent some object) to a target variable y. In unsupervised learning,
we only have access to a data set of feature vectors x and the goal is to
model the data distribution pðxÞ. A supervised generative model repre-
sents the joint probability distribution pðx;yÞ, which can be factorized as
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pðx; yÞ ¼ pðyjxÞpðxÞ. Many real world applications operate in a semi-
supervised setting, where only some of the feature vectors have a cor-
responding target variable, but the unlabeled data points are still useful
for learning the distribution of all features of interest. Recent de-
velopments in neural network based ML models (popularized as deep
learning [94]), employs many layers of interconnected neurons. The
structure of the model provides immense flexibility in the functional
space and is thus well suited for approximating complex physical in-
teractions at battery interphases. Here, a plethora of physical and
chemical processes occur at multiple time and length scales, and the
mapping from feature vector x to target variable pðyjxÞ and the distri-
bution of features pðxÞ are highly complicated functions and powerful
models such as deep neural networks [95,96] are needed to learn these
functions from the available data.

Generative deep learning is the family of models that combine the
generative modelling approach with deep neural networks. One of the
main reasons for employing deep generative models is that it enables the
simulation (prediction) of new data points. The new data points can be
used for qualitative model evaluation by assessing whether the generated
data looks realistic. Furthermore, the generated data is of practical use
for inverse design, where the goal is to generate data with the desired
property, e.g. a high performance interphase. In this section, we discuss
how emergent ML tools can be used to connect and utilize heterogeneous
data from various experimental techniques and physics-based simulation
methods to create a holistic closed-loop design framework as shown in
Fig. 3 for predictive and generative battery interphase design. The pro-
posed framework would enable inverse design of battery interphases
such that the specific performancemetrics are achieved, while retaining a
(reasonable) degree of control over how the interphase evolves over
battery lifetime. Inverse design [97] of battery materials and interphases,
i.e., optimizing and engineering materials and interphases from the
starting point of a particular desired functionality without a priori
defining a specific composition, structures, etc. [98], has until now been
computationally unfeasible for most battery challenges due to the
massive complexity. However, the complexity of the design space makes
inverse design based on generative models particularly enticing.

The apparent lack of a one-to-one mapping between input variables
such as the chemical/structural starting point, the lifetime environment
and the observables, makes the functional relationship between the
design details and the performance and evolution ”non-invertible”,
necessitating a generative inverse design approach. Furthermore, the
inverse design process must be able to handle incomplete specifications,
where not all properties and observables are specified at any given time,
and needs to be configured such that the overall performance is opti-
mized. For inverse molecular design, where a one-to-one mapping is not
possible and the design space is immensely large, traditional screening
strategies do not work and evolutionary and generative models are often
used [98,99]. The complexity of the inverse design framework extends
onwards for interphases, since the time evolution of the system must also
be taken into account.

Computational materials design has made enormous progress as
outlined in the recent 2019 roadmap [100], but successful examples of
inverse computational design are still rare. A central element in inverse
materials design is the ability to identify and suggest material composi-
tions and structures, which can, in fact, be synthesized. Recent work by
Aykol et al. uses a network representation to identify synthesizable ma-
terials [101] from the OQMD database [102,103]. The future challenge
lies in extending current inverse design strategies to be able to handle
battery interphases and systems of similar complexity.

The full integration of physical, experimental and data-derived
phenomenological models towards closed-loop battery interphase
design is the long term goal. It would allow greater flexibility towards
optimal utilization of all available experimental/simulation techniques
based on the reliability and cost, and accelerate the materials discovery
process dramatically. For example, given a specific performance-limiting
physical process, one can choose between time consuming but



Fig. 3. A framework for semi-supervised deep generative model with ML-optimized active learning from experiments and simulations. The battery interphase is
modeled using a time series model and based on the predictions of the model, an agent decides whether to launch a new experiment/simulation, which then becomes
part of the training data. Given sufficient data, different techniques can be used to explore the input representation space to find new battery interphases that out-
performs the ones in the training data.
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comparatively cheap cycling experiments, synchrotron based XRD
investigation, expensive atomic scale characterization, a handful of high
accuracy DFT simulations, many low accuracy force field simulations or
utilize ML model fitted to existing data. Based on the specific system and
physical process(es), each of these methods has an inherent level of un-
certainty. Intelligent selection is thus needed to obtain the optimal di-
rection to follow based on the estimated fidelity.

ML based surrogate models can reduce the complexity pertaining to
many simultaneous physical/chemical phenomenon by coalescing effects
from multiple physical phenomena into learned functions. However, the
vast number of chemical, environmental and structural details that affect
the battery interphase performance makes it unfeasible to provide even
semi-accurate prediction for all possible configurations. Existing experi-
mental data and that accessible through future experimental efforts cover
only a fraction of the combinations possible. This obstructs using state-of-
the-art supervised ML models as the majority of widely used modelling
frameworks require the availability of reliable data for different input
variable combinations. The reliability of suchmodels is highly dependent
on the quality and quantity of training data [104,105]. As exper-
iments/simulations are merely an end to data gathering in this frame-
work, it is important recognize that data from failed experiments can also
be utilized to train ML models [106].

The fidelity of the predictions from such models is limited if the un-
derlying physical mechanism is different for the training and the test
data. For similar reason, predictive ML models trained with state-of-the-
art simulation and experimental results can not directly support evalua-
tion of exploratory new battery interphases. For instance, an ML model
trained on data from a battery interphase where the charge transport
[107] is polaronic, will have limited success in predicting properties of
interphases where electron tunneling [71] is the dominant mechanism
for charge transport.

A battery interphase changes throughout its lifetime depending on its
configuration and the operating conditions it is exposed to. The initial
battery state is represented through configuration parameters like the
materials and molecules present, as well as structural details like micro-
structure of the electrode composite, etc. How to represent this data in an
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ML model is discussed in more detail in section 4.1, and here it is dis-
cussed how to model the interphase. One possibility is to model the state
of the interphase as a time series with a latent vector representation state
zt at time t. The latent space representation evolves as a Markov chain
[108], i.e., the state at ztþ1 depends only on the current state zt and the
operating conditions xt . The actual (electro-)chemical reactions taking
place between species present are a function of time dependent variables
like operating current rate and temperature etc. Chemical species are
thus formed as a function of those present at the previous state, as well as
the environmental variables. The state transitions can be modeled with a
recurrent neural network (RNN) (e.g., Long Short Term Memory (LSTM)
cells [109]) and include stochastic layers e.g. Ref. [110], to model the
inherent uncertainty of the process. At any time step, the model can be
queried to map the latent state to a set of observable outputs yt . By
defining a cost function that evaluates the cost of performing different
simulation/experiments together with an acquisition function that de-
cides the added value of performing a given experiment, an active
learning scheme can be used to decide to optimal simulation/experiment
to explore next (Fig. 3).

Given the performance metrics provided by the model, it is possible to
envisage inverse design, i.e., determine the required input configuration
and external parameters to yield the desired output, given the output.
One way to achieve this is to do optimization in the input representation
space. Utilizing back-propagation of gradients through the state space
model, it is possible to search for a configuration and set of conditions
that yield the desired performance metrics using gradient descent or
other guided search methods such as genetic algorithms (GA) or rein-
forcement learning (RL) (Fig. 4) [111–114]. Alternatively, a direct
mapping from response variable to configurations can be learned using a
neural network [99] or invertible neural networks [115,116].
4.1. Representation of interphases for machine learning

ML models are limited by training data in two different ways. The
sheer complexity of systems like battery interphases leads to large vari-
ability in the methods and parameters for which experimental and



Fig. 4. Variational auto encoder (VAE) based encoding and decoding of chemical and structural information on a battery interphase into latent space, to enable
generative battery interphase design through the use of genetic algorithms or reinforcement learning based exploration.
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theoretical data (for training) is produced. This is especially true for
databases aggregated from multiple research groups across the world.
Furthermore, reported data often is incomplete in terms of the details of
the battery interphase. The lack of standardization and completeness of
the information can be addressed through the establishment of guide-
lines and data ontology [77,117]. Raw data from experiments and sim-
ulations need to be curated and represented in a interoperable and
specific manner (fingerprint) to improve the training of ML models and
their predictive power. This is especially true for supervised learning
[118], where the physical model is already well established, e.g. pre-
dicting total energy from a molecular or crystal structure [119–122]. The
choice of representation depends both on the physics that is emulated
and the specific ML algorithm. Improved ML methods can learn pattern
like symmetry operations from unrefined data and thus do away with
complex fingerprinting processes. Molecular energies learned through
e.g., kernel ridge regression [123], needs symmetry to be built into the
molecular structure fingerprints, whereas convolutional neural networks
can automatically learn underlying symmetries [124]. The complexity of
the physical models and the diversity in the data landscape coming from
a variety of experimental and simulation based sources for a given bat-
tery interphase makes effective fingerprint creation highly challenging.
By utilizing the flexibility of the learning framework, it is possible to
escape creating a large cohort of fingerprinting that is needed to
encompass the known and unknown physics that occur at the battery
interphase.

Deep generative models (DGL) will become progressively more effi-
cient in an autopilot mode by allowing the creation and assimilation of
more data through ML orchestrated simulations and experiments. DGL
models allow exploration of uncharted territories in phase space and are
able to detect outlier systems, where the current physical modelling
approaches might be inadequate. Variational auto encoder (VAE) [125]
based deep generative models are viable for this approach. VAE enables
the creation of unique representations that are both lightweight and
appropriate for the specific physical process that needs to be learned
(Fig. 4). VAE is a powerful unsupervised learning approach to model an
unlabeled distribution of the data. By utilizing data from particularly well
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characterized battery interphases, the VAE can be trained in a
semi-supervised setting which is expected to improve the representation
and classification.

VAEs are good at filtering out the scatter [126] in experimental and
simulation data originating from differences in simulation parameters
and experimental conditions. Another critical benefit of VAE in
semi-supervised learning for battery interphases is the possibility of
working with incomplete datasets (as is often the case with experimental
data) and make the best utilization of a small set of available experi-
mental data through the completion of the dataset with the technique of
neural inpainting [127]. Using disentangled VAE for semi-supervised
learning can achieve further improvement by making reliable assump-
tions on a subset of interpretable variables and rely on the flexibility of
neural networks to learn representations for the remaining variables
[128]. Utilization of compressed representation from disentangled VAE
will likely enable much faster environment exploration through opti-
mized explorer agents [129], based on, e.g., GA or RL in the final step of
the proposed learning framework.

An alternative approach is to utilize another recently developed
generative model of generative adversarial network (GAN) [130,131] for
conjuring new interphase configurations, which have similar character-
istics as existing interphases for which the synthesis conditions are well
established. GANs can be trained to generate interphase systems such
that generated systems have a high probability of being stable (stability
as refining factor). This is in start contrast to VAEs, which are known to
generate unphysical systems from random latent representations [132].
Yet another direction can be explored, where unsupervised learning is
used to cluster battery interphase into groups with similar performance
defining physical processes [133]. This is followed by identification of a
descriptive physical model, using existing data point within the group for
which experimental and(or) theoretical information exist.

For all of the approaches described above, access to sufficient training
data is a bottleneck. This can, however, be addressed in part by the latest
developments in meta-learning methods like one shot learning, which
can work with few reliable data points [134,135].
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4.2. Uncertainty estimation in atomic-scale simulations and deep learning

While uncertainty estimation is frequently used in experimental
characterization of batteries, e.g., in estimations of state of charge, state
of health, etc. (SoX) [136], the concept is less established in supervised
deep learning techniques [137]. It can be particularly challenging when
the network encounters conditions it has not been exposed to during
training [47]. Methods like the use of probabilistic weights in deep
neural network is gaining popularity in deep learning methods; an
approach which is also compatible with reinforcement learning [138].
Although novel approaches like noise contrastive priors can be used to
obtain uncertainty estimate [50], quantifiable predictive uncertainty
estimates remain a central challenge for DGLmodels in general [48]. This
is especially true in molecular/atomic science [139], where predictions
are often overconfident. Reliable uncertainty quantification is particu-
larly important using deep generative models to explore materials opti-
mization in numerous parameter search space using highly sparse
datasets, as these can be used to determine when particular experiments
or simulations are needed in a specific part of parameter space [140].

The specific ML-based framework for generative battery interphase
design outlined above is well suited for treating and predicting un-
certainties. It is, however, essential to prioritize the requirements of
further experimental work and physics-based simulations specifically for
generative exploration in sparsely sampled parameter space. The pro-
posed time series model output includes uncertainty estimates of each
parameter. In essence, it is modelling two types of uncertainties, the
inherent uncertainty of the process, also called aleatoric uncertainty, as
well as the systematic uncertainty or epistemic uncertainty, which is the
uncertainty that arises due to insufficient data to provide reliable esti-
mates of the response variables. The aleatoric uncertainty can, for
example, be modeled by outputting a mean and variance for each vari-
able to model, e.g. the probability distribution pðyt jztÞ as a Gaussian
distribution with mean μðztÞ and variance σ2ðztÞ. Another option is
quantile regression [141], where the model is trained to output quantiles
rather than point estimates. The epistemic uncertainty is more chal-
lenging for deep learning models, but initial steps in this direction have
been taken via approximate Bayesian inference [51,142,143] and
ensemble models [49,144,145]. The type of uncertainty and at which
time step it occurs aids the decision about which simulation, synthesis,
characterization or test to run next. Note that while some of the
observable variables will come from the training data, the rest will be
generated by the model.

In addition to the model uncertainty, the uncertainty of the training
data must also be taken into consideration. In atomic scale simulations
and (high-fidelity) materials prediction, uncertainty estimation is an
emerging field with a limited number of applications in the design of
clean energy materials. In DFT-level calculations, the specific choice of
exchange-correlation functional can have large implications on whether
predictive accuracy can be achieved for a given system. The development
of the Bayesian error estimation functional with van der Waals correla-
tion (BEEF–vdW) [146] has set a new standard for uncertainty estimation
in atomic-scale simulations and, e.g., used to predict high-fidelity lith-
ium-graphite phase diagrams [147]. The generated ensemble of possible
exchange correlation functionals can also be used to identify intrinsic
DFT-errors associated with the formation and breaking of specific
chemical bonds [148,149]. By correcting the DFT-level training data,
improved accuracy of the DGL models can thus be obtained.

5. Outlook

Designing high-performance battery interfaces in general and in-
terphases like the SEI and CEI specifically remains a Grand Challenge in
the discovery and development of emerging and future battery chemis-
tries. Here, we have outlined a possible path to achieve the highly
ambitious goal of enabling the accelerated inverse design of battery
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interphases through utilization of semi-supervised generative deep
learning (DGL) models with uncertainty estimation. The outlined multi-
modal approach would combine data-driven models with physical in-
sights and models when available, e.g. by enforcing parameter bounds
based on the laws of physics. The described approach utilizes training
data spanning all relevant domains of the battery discovery and devel-
opment cycle, i.e., multi-scale computer simulations and materials da-
tabases, structural and electrochemical characterization, synthesis and
manufacturing, as well as cell and pack level testing and utilization.

The DGL approach stand on automated learning of compressed
representation of chemical/structural details of battery interphases and
identification of descriptors that define the limiting physical phenom-
ena. This data assimilation and generation method not only facilitate
explorative DGL in whole latent space but also provide physical in-
sights, beyond that is feasible with only human intuition, from models
with identified battery interface descriptors. A central aspect in the
approach is that the DGL models should be capable of utilizing uncer-
tainty estimation to identify when new training data is needed. More
importantly, the model needs to query/request data from the specific
domain or technique, where new data can bring maximum value for this
specific training task. For example, whether high-fidelity atomic-scale
computer simulations or operando characterization data is needed, or
(low-fidelity) high-throughput electrochemical testing is more
valuable.

The success of the outlined AI-orchestrated approach will depend
extensively on the availability of data. A guiding example of the required
dataset size can be found in deep learning for geosciences. The corre-
sponding heterogeneity of data sources, parameters bound by the laws of
physics, and a spatio-temporal dependence of external parameter is
comparable to the SEI and CEI. Dozens of petabyte of data is currently
available, but generative models for predicting long-time scale events,
e.g., droughts, are still limited by the model uncertainty [150]. Compa-
rable or larger data sets is expected to be required for inverse design of
dynamic battery interphases, which stresses the need for standardization
and curation of data across research disciplines and domains.

A first validation of the generative approach can be found within
drug-like molecule and synthesis reaction design [151], where the
datasets employed are now in excess of a million molecules [152], e.g. for
the training of long short-termmemory (LSTM) recurrent neural network
(RNN) [153]. As long as only static properties are considered, similar
dataset sizes should be applicable to battery interphases. Prediction of
properties over time can be achieved with a semi-supervised approach,
where cycle data is available for only a subset of materials.

The promise of AI and deep learning in materials science shines
brightly [154], but it is important also to keep potential failure risk in
mind. In the presence of adequate data and a fully operational BIG-MAP
infrastructure, we believe that a 10x acceleration in the total discovery
time would be within reach, leading to a 1–2 year discovery time within
the next 5–10 years [6]. That being said, it is important to stress that the
acceleration pace will depend on the specific battery chemistry and
interface/phase in question and the time-scale of the associated tar-
gets/goals for the inverse design procedure.

Ultimately, the outlined approaches could even be used to identify
possible self-healing additives that could be added to the electrolyte and
activated via external stimuli, if needed to heal or re-active specific
battery interphase possesses. This provided another distinctly interesting
opportunity in the development of ultra-high performance battery in-
terphases in future battery technologies.
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