241 research outputs found

    Stabilisation of descriptor Markovian jump systems with partially unknown transition probabilities

    Get PDF
    This paper is concerned with the stability and stabilisation problems for continuous-time descriptor Markovian jump systems with partially unknown transition probabilities. In terms of a set of coupled linear matrix inequalities (LMIs), a necessary and sufficient condition is firstly proposed, which ensures the systems to be regular, impulse-free and stochastically stable. Moreover, the corresponding necessary and sufficient condition on the existence of a mode-dependent state-feedback controller, which guarantees the closed-loop systems stochastically admissible by employing the LMI technique, is derived; the stabilizing state-feedback gain can also be expressed via solutions of the LMIs. Finally, numerical examples are given to demonstrate the validity of the proposed methods

    Necessary and sufficient conditions for analysis and synthesis of markov jump linear systems with incomplete transition descriptions

    Get PDF
    This technical note is concerned with exploring a new approach for the analysis and synthesis for Markov jump linear systems with incomplete transition descriptions. In the study, not all the elements of the transition rate matrices (TRMs) in continuous-time domain, or transition probability matrices (TPMs) in discrete-time domain are assumed to be known. By fully considering the properties of the TRMs and TPMs, and the convexity of the uncertain domains, necessary and sufficient criteria of stability and stabilization are obtained in both continuous and discrete time. Numerical examples are used to illustrate the results. © 2006 IEEE.published_or_final_versio

    Integral Sliding Mode Control for Markovian Jump T-S Fuzzy Descriptor Systems Based on the Super-Twisting Algorithm

    Get PDF
    This paper investigates integral sliding mode control problems for Markovian jump T-S fuzzy descriptor systems via the super-twisting algorithm. A new integral sliding surface which is continuous is constructed and an integral sliding mode control scheme based on a variable gain super-twisting algorithm is presented to guarantee the well-posedness of the state trajectories between two consecutive switchings. The stability of the sliding motion is analyzed by considering the descriptor redundancy and the properties of fuzzy membership functions. It is shown that the proposed variable gain super-twisting algorithm is an extension of the classical single-input case to the multi-input case. Finally, a bio-economic system is numerically simulated to verify the merits of the method proposed

    Stability and Stabilization of Continuous-Time Markovian Jump Singular Systems with Partly Known Transition Probabilities

    Get PDF
    This paper investigates the problem of the stability and stabilization of continuous-time Markovian jump singular systems with partial information on transition probabilities. A new stability criterion which is necessary and sufficient is obtained for these systems. Furthermore, sufficient conditions for the state feedback controller design are derived in terms of linear matrix inequalities. Finally, numerical examples are given to illustrate the effectiveness of the proposed methods

    Quantized State-Feedback Stabilization for Delayed Markovian Jump Linear Systems with Generally Incomplete Transition Rates

    Get PDF
    This paper is concerned with the robust quantized state-feedback controller design problem for a class of continuous-time Markovian jump linear uncertain systems with general uncertain transition rates and input quantization. The uncertainties under consideration emerge in both system parameters and mode transition rates. This new uncertain model is more general than the existing ones and can be applicable to more practical situations because each transition rate can be completely unknown or only its estimate value is known. Based on linear matrix inequalities, the quantized state-feedback controller is formulated to ensure the closed-loop system is stable in mean square. Finally, a numerical example is presented to verify the validity of the developed theoretical results

    Finite-Time Boundedness of Markov Jump System with Piecewise-Constant Transition Probabilities via Dynamic Output Feedback Control

    Get PDF
    This paper first investigates the problem of finite-time boundedness of Markovian jump system with piecewise-constant transition probabilities via dynamic output feedback control, which leads to both stochastic jumps and deterministic switches. Based on stochastic Lyapunov functional, the concept of finite-time boundedness, average dwell time, and the coupling relationship among time delays, several sufficient conditions are established for finite-time boundedness and H∞ filtering finite-time boundedness. The system trajectory stays within a prescribed bound. Finally, an example is given to illustrate the efficiency of the proposed method

    Weight Try-Once-Discard Protocol-Based L_2 L_infinity State Estimation for Markovian Jumping Neural Networks with Partially Known Transition Probabilities

    Full text link
    It was the L_2 L_infinity performance index that for the first time is initiated into the discussion on state estimation of delayed MJNNs with with partially known transition probabilities, which provides a more general promotion for the estimation error.The WTOD protocol is adopted to dispatch the sensor nodes so as to effectively alleviate the updating frequency of output signals. The hybrid effects of the time delays, Markov chain, and protocol parameters are apparently reflected in the co-designed estimator which can be solved by a combination of comprehensive matrix inequalities
    corecore