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This paper investigates the problem of the stability and stabilization of continuous-time Markovian jump singular systems with
partial information on transition probabilities. A new stability criterion which is necessary and sufficient is obtained for these
systems. Furthermore, sufficient conditions for the state feedback controller design are derived in terms of linearmatrix inequalities.
Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.

1. Introduction

In practice, many dynamical systems cannot be represented
by the class of linear time-invariantmodel since the dynamics
of these systems are randomwith some features, for example,
abrupt changes, breakdowns of components, changes in the
interconnections of subsystems, and so forth. Such class of
dynamical systems can be adequately described by the class
of stochastic hybrid systems. A special class of hybrid systems
referred to as Markovian jump systems (MJS), a class of
multimodel systems in which the transitions among different
modes are governed by a Markov chain, have attracted a lot
of researchers and many problems have been solved, such as
stability, stabilization, and𝐻

∞
control problems; see [1–7].

However, in most of the studies, complete knowledge
of the mode transitions is required as a prerequisite for
analysis and synthesis of MJS. This means that the transition
probabilities of the underlying Markov chain are assumed
to be completely known. However, in practice, incomplete
transition probabilities are often encountered especially if
adequate samples of the transitions are costly or time con-
suming to obtain. So, it is necessary to further consider more
general jump systems with partial information on transition
probabilities. The concept for MJS with partially unknown
transition probabilities is first proposed in [8] and a series of
studies have been carried out [9–12] recently. A new approach
for the analysis and synthesis forMarkov jump linear systems

with incomplete transition descriptions has been proposed
in [12], which can be further used for other analysis and
synthesis issues, such as the stability of Markovian jump
singular systems (MJSS).

A lot of attention has already been focused on robust
stability, robust stabilization, and 𝐻

∞
control problems for

MJSS in recent years, such as the works in [13–17]. However,
to the best of the authors’ knowledge, the necessary and suf-
ficient conditions for the stochastic stability and stabilization
problems of MJSS have not been fully investigated, especially
when the transition probabilities are partially known. The
authors in [15, 16] have, respectively, studied the problems
of stability and stabilization for a class of continuous-time
(discrete-time) singular hybrid systems. New sufficient and
necessary conditions for these singular hybrid systems to
be regular, impulse-free (causal), and stochastically stable
have been proposed in terms of a set of coupled strict
linear matrix inequalities (LMIs). But the case of systems
with partly known transition probabilities still needs to be
considered. In addition to this, it is important to mention
that the derivation of strict LMIs for MJSS with incomplete
transition probabilities renders the synthesis of the state
feedback controllers easier. These problems are important
and challenging in both theory and practice, whichmotivates
us for this study.

In this paper, the problem of the stability and stabiliza-
tion of MJSS with partly known transition probabilities is
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addressed. Inspired by the ideas in [12], which fully unitized
the properties of the transition rate matrix (TRM) and the
convexity of the uncertain domains, we explore a new suffi-
cient and necessary condition in terms of strict linear matrix
inequalities (LMIs) for theMJSS to be regular, impulsive, and
stochastically stable. Then, based on the proposed stability
criterion, the conditions for state feedback controller are
derived. Finally, numerical examples are given to illustrate the
effectiveness of the proposed method.

Compared with the existing works about the stability and
stabilization of Markovian jump systems, the current paper
has the following novel features. First, the current paper deals
with the stability and stabilization problems for MJSS with
partly known transition probabilities, while most literatures
(e.g., [8–12]) focused on those of normal ones that are special
cases of MJSS. Second, the conservatism in the conventional
studies [15] is eliminated by considering the fact that the
unknown elements of each row in TRM exist. Moreover,
the difficulty that the unknown elements contain diagonal
elements is also overcome by introducing a lower bound of
the diagonal element without additional conservatism.

Notation.The notation used in this technical note is standard.
The superscript “𝑇” stands for matrix transposition; R𝑛

denotes the 𝑛 dimensional Euclidean space; Z+ represents
the sets of positive integers, respectively. For the notation
(Ω,F,P),Ω represents the sample space,F is the 𝜎-algebra
of subsets of the sample space, and P is the probability
measure onF. E[⋅] stands for the mathematical expectation.
In addition, in symmetric block matrices or long matrix
expressions, we use ∗ as an ellipsis for the terms that are
introduced by symmetry and diag{𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑁
} stands for

a block-diagonal matrix constituted by 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
. The

notation 𝑋 > 0 means 𝑋 is real symmetric positive definite,
and𝑋

𝑖
is adopted to denote𝑋(𝑖) for brevity. 𝐼 and 0 represent,

respectively, identity matrix and zero matrix. Matrices, if
their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Preliminaries and Problem Formulation

Consider the following continuous-time MJSS with Marko-
vian jump parameters:

𝐸�̇� (𝑡) = 𝐴 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐵 (𝑟

𝑡
) 𝑢 (𝑡) , (1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector and 𝑢(𝑡) ∈ R𝑚 is the
control input.Thematrix𝐸 ∈ R𝑛×𝑛 is supposed to be singular
with rank(𝐸) = 𝑟 < 𝑛. The stochastic process {𝑟

𝑡
, 𝑡 ≥ 0}

taking values in a finite set 𝑆 = {1, 2, . . . , 𝑁} is described
by a continuous-time, discrete-state homogeneous Markov
process and has the following mode transition probabilities:

Pr {𝑟
𝑡+ℎ

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜆
𝑖𝑗
ℎ + 𝑜 (ℎ) , if 𝑗 ̸= 𝑖,

1 + 𝜆
𝑖𝑖
ℎ + 𝑜 (ℎ) , if 𝑗 = 𝑖,

(2)

where ℎ > 0, lim
ℎ→0

(𝑜(ℎ)/ℎ) = 0, and 𝜆
𝑖𝑗
≥ 0 (𝑖, 𝑗 ∈ 𝑆, 𝑗 ̸= 𝑖)

denotes the switching rate frommode 𝑖 at time 𝑡 to mode 𝑗 at

time 𝑡 + ℎ, and 𝜆
𝑖𝑖
= −∑

𝑗∈𝑆,𝑗 ̸= 𝑖
𝜆
𝑖𝑗
for all 𝑖 ∈ 𝑆. The TRM is

given by

Λ =

[
[
[
[

[

𝜆
11

𝜆
12

⋅ ⋅ ⋅ 𝜆
1𝑁

𝜆
21

𝜆
22

⋅ ⋅ ⋅ 𝜆
2𝑁

...
... d

...
𝜆
𝑁1

𝜆
𝑁2

⋅ ⋅ ⋅ 𝜆
𝑁𝑁

]
]
]
]

]

. (3)

The set 𝑆 contains 𝑁 modes of system (1) and for 𝑟
𝑡
=

𝑖 ∈ 𝑆, the system matrices of the ith mode are denoted by
𝐴
𝑖
, 𝐵
𝑖
, which are known real-valued constant matrices of

appropriate dimensions that describe the nominal system.
The transition rates described above are considered to

be partially available; that is, some elements in matrix Λ

are unknown. Take system (1) with 4 operation modes for
example; the TRM Λmay be written as

Λ =

[
[
[
[

[

𝜆
11

𝜆
12

�̂�
13

�̂�
14

�̂�
21

�̂�
22

𝜆
23

𝜆
24

�̂�
31

�̂�
32

𝜆
33

𝜆
34

𝜆
41

𝜆
42

�̂�
43

𝜆
44

]
]
]
]

]

, (4)

where “̂⋅” denotes the unknown element.
For ∀𝑖 ∈ 𝑆, we denote

𝑆 = 𝑆
𝑖

K + 𝑆
𝑖

UK,

𝑆
𝑖

K ≜ {𝑗 : 𝜆
𝑖𝑗
is known} , 𝑆

𝑖

UK ≜ {𝑗 : 𝜆
𝑖𝑗
is unknown} .

(5)

If 𝑆𝑖K ̸= 0, 𝑆𝑖K is further described as

𝑆
𝑖

K = {K
𝑖

1
,K
𝑖

2
, . . . ,K

𝑖

𝑚
} , 1 ≤ 𝑚 ≤ 𝑁, (6)

where K𝑖
𝑚

∈ Z+ represents the index of the 𝑚th known
element in the 𝑖th row of matrix Λ. Also, throughout the
technical note, we denote

𝜆
𝑖

K = ∑

𝑗∈𝑆
𝑖

K

𝜆
𝑖𝑗
. (7)

When �̂�
𝑖𝑖
is unknown, it is necessary to provide a lower bound

𝜆
𝑖

𝑑
for it and 𝜆

𝑖

𝑑
≤ −𝜆
𝑖

K.
Now, we introduce the following definition for the

continuous-time MJSS (1) (with 𝑢(𝑡) ≡ 0).

Definition 1 (see [17]).
(i) The continuous-time MJSS in (1) is said to be regular

if, for each 𝑖 ∈ 𝑆, det(𝑠𝐸 − 𝐴
𝑖
) is not identically zero.

(ii) The continuous-time MJSS in (1) is said to be impul-
sive if, for each 𝑖 ∈ 𝑆, deg(det(𝑠𝐸 − 𝐴

𝑖
)) = rank(𝐸).

(iii) The continuous-timeMJSS in (1) is said to be stochas-
tically stable if, for any 𝑥

0
∈ R𝑛 and 𝑟

0
∈ 𝑆, there exists

a scalar𝑀(𝑥
0
, 𝑟
0
) > 0 such that

E{∫

∞

0

‖𝑥 (𝑡)‖
2

| 𝑥
0
, 𝑟
0
} ≤ 𝑀(𝑥

0
, 𝑟
0
) , (8)

where E is the mathematical expectation, and
𝑥(𝑡, 𝑥
0
, 𝑟
0
) denotes the solution to system (1) at time 𝑡

under the initial conditions 𝑥
0
and 𝑟
0
.
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(iv) The continuous-time MJSS in (1) is said to be
stochastically admissible if it is regular, impulsive, and
stochastically stable.

The following lemma is recalled, which will be used in
what follows.

Lemma 2 (see [18]). Let 𝑃 ∈ 𝑅
𝑛×𝑛 be symmetric such that

𝐸
𝑇

𝑅
𝑃𝐸
𝑅

> 0, Φ ∈ 𝑅
𝑛×𝑛, and 𝑆 are nonsingular. Then, 𝑃𝐸 +

𝑆
𝑇

Φ𝑅
𝑇 is nonsingular and its inverse is expressed as

(𝑃𝐸 + 𝑆
𝑇

Φ𝑅
𝑇

)
−1

= 𝑃𝐸
𝑇

+ 𝑅Φ𝑆, (9)

where 𝐸
𝐿
and 𝐸

𝑅
are full column rank with 𝐸 = 𝐸

𝐿
𝐸
𝑇

𝑅
, 𝑅 ∈

𝑅
(𝑛−𝑟)×𝑛, and 𝑆 ∈ 𝑅

𝑛×(𝑛−𝑟) satisfies 𝑅𝐸 = 0 and 𝐸𝑆 = 0,
respectively. 𝑃 is symmetric and 𝑆 is nonsingular such that

𝐸
𝑇

𝐿
𝑃𝐸
𝐿
= (𝐸
𝑇

𝑅
𝑃𝐸
𝑅
)
−1

,

Φ = (𝑅𝑅
𝑇

)
−1

Φ
−1

(𝑆𝑆
𝑇

)
−1

.

(10)

3. Main Results

In this section, we will derive the stochastic stability criteria
for system (1) when the transition probabilities are partially
unknown and design a state-feedback controller and a static
output feedback controller such that the closed-loop system
is stochastically stabilizable. The mode-dependent controller
considered here has the form

𝑢 (𝑡) = 𝐾 (𝑟
𝑡
) 𝑥 (𝑡) , (11)

where 𝐾
𝑖
= 𝐾(𝑟

𝑡
) ∈ 𝑅

𝑚×𝑛

(∀𝑟
𝑡
= 𝑖 ∈ 𝑆) are the controller

gains to be determined.The closed-loop systems obtained by
applying controllers (11) to system (1) are

𝐸�̇� (𝑡) = (𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
) 𝑥 (𝑡) . (12)

First, we provide the following lemma which presents a
necessary and sufficient condition for the continuous-time
MJSS with completely known transition probabilities matrix
to be stochastically admissible.

Lemma 3 (see [15]). System (1) with 𝑢(𝑡) = 0 is stochastically
admissible if and only if there exist matrices 𝑃

𝑖
∈ 𝑅
𝑛×𝑛

> 0,
𝑖 ∈ 𝑆, and Φ

𝑖
∈ 𝑅
(𝑛−𝑟)×(𝑛−𝑟), such that the following coupled

LMIs hold for each 𝑖 ∈ 𝑆:

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ ∑

𝑗∈𝑆

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝐸 < 0.

(13)

Let us first give the stability result for the unforced system
(1) (with 𝑢(𝑡) ≡ 0). The following theorem presents a neces-
sary and sufficient condition on the stochastic admissibility
of the considered system with partially unknown transition
probabilities.

Theorem 4. Consider the unforced system (1) with partially
unknown transition probabilities. The corresponding system
is stochastically admissible if and only if there exist matrices
𝑃
𝑖
∈ R𝑛×𝑛 > 0 and nonsingular symmetric matrices Φ

𝑖
∈

R(𝑛−𝑟)(𝑛−𝑟), such that for each 𝑖 ∈ 𝑆

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ 𝐸
𝑇

P
𝑖

K𝐸 − 𝜆
𝑖

K𝐸
𝑇

𝑃
𝑗
𝐸 < 0,

∀𝑗 ∈ 𝑆
𝑖

UK, 𝑖𝑓 𝑖 ∈ 𝑆
𝑖

K,

(14)

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ 𝐸
𝑇

P
𝑖

K𝐸 + 𝐸
𝑇

(𝜆
𝑖

𝑑
𝑃
𝑖
− 𝜆
𝑖

𝑑
𝑃
𝑗
− 𝜆
𝑖

K𝑃
𝑗
) 𝐸 < 0,

∀𝑗 ∈ 𝑆
𝑖

UK, 𝑖𝑓 𝑖 ∈ 𝑆
𝑖

UK,

(15)

whereP𝑖K = ∑
𝑗∈𝑆
𝑖

K
𝜆
𝑖𝑗
𝑃
𝑗
and 𝜆𝑖

𝑑
is a given lower bound for the

unknown diagonal element.

Proof. Consider two cases, 𝑖 ∈ 𝑆
𝑖

K and 𝑖 ∈ 𝑆
𝑖

UK, and note that
system (1) is stochastically stable if and only if (13) holds.

Case 1 (𝑖 ∈ 𝑆
𝑖

K). It should be noted that in this case one has
𝜆
𝑖

K ≤ 0. We only need to consider 𝜆𝑖K < 0 since 𝜆
𝑖

K = 0

means the elements in the 𝑖th row of the TRM are known,
so it is not considered here. Now the left-hand side of (13) in
Lemma 3 can be rewritten as

Θ
𝑖
≜ 𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ ∑

𝑗∈𝑆
𝑖

K

𝜆
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝐸 + ∑

𝑗∈𝑆
𝑖

UK

�̂�
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝐸

= 𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ 𝐸
𝑇

P
𝑖

K𝐸 − 𝜆
𝑖

K ∑

𝑗∈𝑆
𝑖

UK

�̂�
𝑖𝑗

−𝜆
𝑖

K

𝐸
𝑇

𝑃
𝑗
𝐸,

(16)

where the elements �̂�
𝑖𝑗
, 𝑗 ∈ 𝑆

𝑖

UK are unknown. Since 0 ≤

�̂�
𝑖𝑗
/(−𝜆
𝑖

K) ≤ 1 and ∑
𝑗∈𝑆
𝑖

UK
�̂�
𝑖𝑗
/(−𝜆
𝑖

K) = 1, we know that

Θ
𝑖
= ∑

𝑗∈𝑆
𝑖

UK

�̂�
𝑖𝑗

−𝜆
𝑖

K

× [𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+𝐸
𝑇

P
𝑖

K𝐸 − 𝜆
𝑖

K𝐸
𝑇

𝑃
𝑗
𝐸] .

(17)

Therefore, for 0 ≤ �̂�
𝑖𝑗
≤ −𝜆
𝑖

K,Θ
𝑖
< 0 is equivalent to𝐴𝑇

𝑖
(𝑃
𝑖
𝐸+

𝑅
𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖
+ 𝐸
𝑇P𝑖K𝐸 − 𝜆

𝑖

K𝐸
𝑇

𝑃
𝑗
𝐸 <

0, ∀𝑗 ∈ 𝑆
𝑖

UK, which implies that, in the presence of unknown



4 Mathematical Problems in Engineering

elements �̂�
𝑖𝑗
, the system stochastic admissibility is ensured if

and only if (14) holds.

Case 2 (𝑖 ∈ 𝑆
𝑖

UK). In this case, �̂�
𝑖𝑖
is unknown, 𝜆𝑖K ≥ 0, and

�̂�
𝑖𝑖
≤ −𝜆
𝑖

K.We also only consider �̂�
𝑖𝑖
< −𝜆
𝑖

K since �̂�
𝑖𝑖
= −𝜆
𝑖

K;
then the 𝑖th row of the TRM is completely known.
Now the left-hand side of (15) can be rewritten as

Θ
𝑖
≜ 𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ 𝐸
𝑇

P
𝑖

K𝐸 + �̂�
𝑖𝑖
𝐸
𝑇

𝑃
𝑖
𝐸 + ∑

𝑗∈𝑆
𝑖

UK
,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
𝐸
𝑇

𝑃
𝑗
𝐸

= 𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖
+ 𝐸
𝑇

P
𝑖

K𝐸

+ 𝐸
𝑇[

[

�̂�
𝑖𝑖
𝑃
𝑖
+ (−�̂�

𝑖𝑖
− 𝜆
𝑖

K) ∑

𝑗∈𝑆
𝑖

UK
,𝑗 ̸= 𝑖

�̂�
𝑖𝑗

−�̂�
𝑖𝑖
− 𝜆
𝑖

K

𝑃
𝑗

]

]

𝐸.

(18)

Likewise, since we have 0 ≤ �̂�
𝑖𝑗
/(−�̂�
𝑖𝑖
− 𝜆
𝑖

K) ≤ 1 and
∑
𝑗∈𝑆
𝑖

UK
,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
/(−�̂�
𝑖𝑖
− 𝜆
𝑖

K) = 1, we know that

Θ
𝑖
= ∑

𝑗∈𝑆
𝑖

UK
,𝑗 ̸= 𝑖

�̂�
𝑖𝑗

−�̂�
𝑖𝑖
− 𝜆
𝑖

K

[𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)

+ (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖
+ 𝐸
𝑇

P
𝑖

K𝐸

+ 𝐸
𝑇

(�̂�
𝑖𝑖
𝑃
𝑖
− �̂�
𝑖𝑖
𝑃
𝑗
− 𝜆
𝑖

K𝑃
𝑗
) 𝐸]

(19)

which means that Θ
𝑖
< 0 is equivalent to ∀𝑗 ∈ 𝑆UK, 𝑗 ̸= 𝑖,

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ 𝐸
𝑇

P
𝑖

K𝐸 + 𝐸
𝑇

(�̂�
𝑖𝑖
𝑃
𝑖
− �̂�
𝑖𝑖
𝑃
𝑗
− 𝜆
𝑖

K𝑃
𝑗
) 𝐸 < 0.

(20)

As �̂�
𝑖𝑖
is lower bounded by 𝜆𝑖

𝑑
, we have

𝜆
𝑖

𝑑
≤ �̂�
𝑖𝑖
< −𝜆
𝑖

K
(21)

which implies that

𝜆
𝑖

𝑑
≤ �̂�
𝑖𝑖
< −𝜆
𝑖

K + 𝜖 (22)

for some 𝜖 < 0 arbitrarily small. Then �̂�
𝑖𝑖
can be further

written as a convex combination

�̂�
𝑖𝑖
= −𝛼𝜆

𝑖

K + 𝛼𝜖 + (1 − 𝛼) 𝜆
𝑖

𝑑
, (23)

where 𝛼 takes value arbitrarily in [0, 1].Thus, (14) holds if and
only if ∀𝑗 ∈ 𝑆

𝑖

UK, 𝑖 ̸= 𝑗,

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ 𝐸
𝑇

P
𝑖

K𝐸 + 𝐸
𝑇

(−𝜆
𝑖

K𝑃
𝑖
+ 𝜖 (𝑃

𝑖
− 𝑃
𝑗
)) 𝐸 < 0,

(24)

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ 𝐸
𝑇

P
𝑖

K𝐸 + 𝐸
𝑇

(𝜆
𝑖

𝑑
𝑃
𝑖
− 𝜆
𝑖

𝑑
𝑃
𝑗
− 𝜆
𝑖

K𝑃
𝑗
) 𝐸 < 0

(25)

simultaneously hold. Since 𝜖 is arbitrarily small, (24) holds if
and only if

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

) + (𝑃
𝑖
𝐸 + 𝑅

𝑇

Φ
𝑖
𝑆
𝑇

)
𝑇

𝐴
𝑖

+ 𝐸
𝑇

P
𝑖

K𝐸 − 𝜆
𝑖

K𝐸
𝑇

𝑃
𝑖
𝐸 < 0,

(26)

which is the case in (25) when 𝑗 = 𝑖, ∀𝑗 ∈ 𝑆
𝑖

UK. Hence (20) is
equivalent to (15).

Therefore, we can conclude that the unforced system
(1) with unknown elements in the TRM is stochastically
admissible if and only if (14) and (15) hold for 𝑖 ∈ 𝑆

𝑖

K and
𝑖 ∈ 𝑆
𝑖

UK, respectively.

Remark 5. Theorem 4 presents a newnecessary and sufficient
condition of stochastic admissibility criterion for the MJSS
(1).The approach adopted inTheorem 4, which uses the TRM
property (the sumof each row is zero), has extended the result
of Theorem 1 in [12] to the MJSS. Note that the lower bound,
𝜆
𝑖

𝑑
, of 𝜆
𝑖𝑖
is allowed to be arbitrarily negative.

Now let us consider the stabilization problem of system
(1) in the presence of unknown elements in the TRM. The
following theorem presents a condition for the existence of a
mode-dependent stabilizing controller of the form in (11).

Theorem 6. Let 𝜀
𝑖
be given scalars. Consider the closed-loop

system (12) with partially unknown transition probabilities. If
there exist matrices 𝑃

𝑖
∈ R𝑛×𝑛 > 0 and nonsingular matrices

Φ
𝑖
∈ R(𝑛−𝑟)×(𝑛−𝑟), matrices 𝐿

𝑖
∈ R𝑛×𝑚 and𝐻

𝑖
∈ R𝑚×(𝑛−𝑟) such

that, for each 𝑖 ∈ 𝑆, the following LMIs hold:

[
[
[

[

𝐴
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐴
𝑇

𝑖
+𝑊
𝑖
+ 𝜆
𝑖𝑖
(𝜀
𝑖
𝐸𝑌
𝑖
+ 𝜀
𝑖
𝑌
𝑇

𝑖
𝐸
𝑇

− 𝜀
2

𝑖
𝐸𝑃
𝑖
𝐸
𝑇

) 𝑌
𝑇

𝑖
𝐹
𝑇

𝑖
(𝐸) √−𝜆

𝑖

K
𝑌
𝑇

𝑖
𝐸
𝑅

∗ −𝑋
𝑖
(𝑃) 0

∗ ∗ −𝐸
𝑇

𝑅
𝑃
𝑗
𝐸
𝑅

]
]
]

]

< 0,

∀𝑗 ∈ 𝑆
𝑖

UK, if 𝑖 ∈ 𝑆
𝑖

K

(27)
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[
[
[

[

𝐴
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐴
𝑇

𝑖
+𝑊
𝑖
+ 𝜆
𝑖

𝑑
(𝜀
𝑖
𝐸𝑌
𝑖
+ 𝜀
𝑖
𝑌
𝑇

𝑖
𝐸
𝑇

− 𝜀
2

𝑖
𝐸𝑃
𝑖
𝐸
𝑇

) 𝑌
𝑇

𝑖
𝐹
𝑇

𝑖
(𝐸) √−𝜆

𝑖

𝑑
− 𝜆
𝑖

K
𝑌
𝑇

𝑖
𝐸
𝑅

∗ −𝑋
𝑖
(𝑃) 0

∗ ∗ −𝐸
𝑇

𝑅
𝑃
𝑗
𝐸
𝑅

]
]
]

]

< 0,

∀𝑗 ∈ 𝑆
𝑖

UK, if 𝑖 ∈ 𝑆
𝑖

UK,

(28)

where

𝑌
𝑖
= 𝑃
𝑖
𝐸
𝑇

+ 𝑅Φ
𝑖
𝑆

𝑊
𝑖
= 𝐵
𝑖
(𝐿
𝑖
𝐸
𝑇

+ 𝐻
𝑖
𝑅) + (𝐿

𝑖
𝐸
𝑇

+ 𝐻
𝑖
𝑅)
𝑇

𝐵
𝑇

𝑖

𝐹
𝑖
(𝐸) = [√𝜆

𝑖K1
𝐸
𝑅
, . . . , √𝜆

𝑖K𝑖
𝑚

𝐸
𝑅
]

𝑇

, K
𝑖

𝑚
̸= 𝑖

𝑋
𝑖
(𝑃) = diag {𝐸𝑇

𝑅
𝑃K1

𝐸
𝑅
, . . . , 𝐸

𝑇

𝑅
𝑃K𝑖
𝑚

𝐸
𝑅
} , K

𝑖

𝑚
̸= 𝑖.

(29)

Then there exists amode-dependent stabilizing controller
of the form in (11) such that the closed-loop system is

stochastically admissible. The gain of the stabilizing state
feedback controller is given by

𝐾
𝑖
= (𝐿
𝑖
𝐸
𝑇

+ 𝐻
𝑖
𝑅) (𝑃

𝑖
𝐸
𝑇

+ 𝑅Φ
𝑖
𝑆)
−1

. (30)

Proof. Consider the closed-loop system (12) and replace 𝐴
𝑖

by 𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
in (14) and (15), respectively. Then, if 𝑖 ∈ 𝑆

𝑖

K,
by Schur complement and performing a congruence trans-
formation to (14) by [

𝑌
𝑇

𝑖
0

0 𝐼

], with 𝑌
𝑖
= (𝑃
𝑖
𝐸 + 𝑆

𝑇

Φ
𝑖
𝑅
𝑇

)
−1

=

𝑃
𝑖
𝐸
𝑇

+ 𝑅Φ
𝑖
𝑆, we can obtain

[
[
[

[

𝐴
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐴
𝑇

𝑖
+ 𝐵
𝑖
𝐾
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝜆
𝑖𝑖
𝑌
𝑇

𝑖
𝐸
𝑅
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

𝐸
𝑇

𝑅
𝑌
𝑖
𝑌
𝑇

𝑖
𝐹
𝑇

𝑖
(𝐸) √−𝜆

𝑖

K
𝑌
𝑇

𝑖
𝐸
𝑅

∗ −𝑋
𝑖
(𝑃) 0

∗ ∗ −𝐸
𝑇

𝑅
𝑃
𝑗
𝐸
𝑅

]
]
]

]

< 0. (31)

Let 𝐿
𝑖
= 𝐾
𝑖
𝑃
𝑖
and𝐻

𝑖
= 𝐾
𝑖
𝑆Φ
𝑖
; we have

𝐵
𝑖
𝐾
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
= 𝐵
𝑖
(𝐿
𝑖
𝐸
𝑇

+ 𝐻
𝑖
𝑅)

+ (𝐿
𝑖
𝐸
𝑇

+ 𝐻
𝑖
𝑅)
𝑇

𝐵
𝑇

𝑖
= 𝑊
𝑖
,

𝐾
𝑖
= (𝐿
𝑖
𝐸
𝑇

+ 𝐻
𝑖
𝑅)𝑌
−1

𝑖
= (𝐿
𝑖
𝐸
𝑇

+ 𝐻
𝑖
𝑅) (𝑃

𝑖
𝐸
𝑇

+ 𝑅Φ
𝑖
𝑆)
−1

.

(32)

So (31) becomes

[
[
[

[

𝐴
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐴
𝑇

𝑖
+𝑊
𝑖
+ 𝜆
𝑖𝑖
𝑌
𝑇

𝑖
𝐸
𝑅
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

𝐸
𝑇

𝑅
𝑌
𝑖

𝑌
𝑇

𝑖
𝐹
𝑇

𝑖
(𝐸) √−𝜆

𝑖

K
𝑌
𝑇

𝑖
𝐸
𝑅

∗ −𝑋
𝑖
(𝑃) 0

∗ ∗ −𝐸
𝑇

𝑅
𝑃
𝑗
𝐸
𝑅

]
]
]

]

< 0. (33)

Considering the nonlinear term in the above inequalities,
the following inequalities are introduced. For any scalars 𝜀

𝑖
,

𝑖 ∈ 𝑆, by Lemma 2, the following inequalities hold:

0 ≤ [𝑌
𝑇

𝑖
𝐸
𝑅
− 𝜀
𝑖
𝐸
𝐿
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)] (𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

× [𝑌
𝑇

𝑖
𝐸
𝑅
− 𝜀
𝑖
𝐸
𝐿
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)]
𝑇

= 𝑌
𝑇

𝑖
𝐸
𝑅
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

𝐸
𝑇

𝑅
𝑌
𝑖
− 𝜀
𝑖
𝐸𝑌
𝑖
− 𝜀
𝑖
𝑌
𝑇

𝑖
𝐸
𝑇

+ 𝜀
2

𝑖
𝐸𝑃
𝑖
𝐸
𝑇

.

(34)

Note that 𝜆
𝑖𝑖
≤ 0; we have

𝜆
𝑖𝑖
𝑌
𝑇

𝑖
𝐸
𝑅
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

𝐸
𝑇

𝑅
𝑌
𝑖

≤ 𝜆
𝑖𝑖
(𝜀
𝑖
𝐸𝑌
𝑖
+ 𝜀
𝑖
𝑌
𝑇

𝑖
𝐸
𝑇

− 𝜀
2

𝑖
𝐸𝑃
𝑖
𝐸
𝑇

) .

(35)

So (33) holds if (27) is fulfilled. In a similar way, if 𝑖 ∈ 𝑆
𝑖

UK,
(28) can be worked out from (15). Therefore, the closed-loop
system is stochastically admissible, and the desired controller
gain is given by (30).

Remark 7. It should be pointed out that if the diagonal
elements in the TRM contain unknown ones, the system
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Table 1

Mode 1 2 3 4
1 −1.2 �̂�

12
�̂�
13

0.6
2 0.3 −0.8 0.1 0.4
3 �̂�

31
�̂�
32

−0.6 0.3
4 �̂�

41
�̂�
42

�̂�
43

−0.9

admissibility, the existence of the admissible controller, and
the controller gains solution will be dependent on 𝜆

𝑖

𝑑
. The

conditions of Theorem 6 are strict LMIs; hence they can be
easily tractable by Matlab LMI toolbox.

4. Examples

Example 1. Consider system (1) with four operation modes
and the following system matrices:

𝐸 = [

[

4 0 0

0 0.8 0

0 0 0

]

]

, 𝐸
𝐿
= [

[

2 0

0 0.4

0 0

]

]

,

𝐸
𝑅
= [

[

2 0

0 2

0 0

]

]

, 𝑅 = [0 0 2] , 𝑆 = [

[

0

0

1

]

]

,

𝐴
1
= [

[

2 −7 1

−5 −2 −1

2 4 −5

]

]

, 𝐴
2
= [

[

5 3 7

7 9 3

2 4 5

]

]

,

𝐴
3
= [

[

2 −5 4

−1 −3 3

4 −6 8

]

]

, 𝐴
4
= [

[

1 4 3

2 4 1

6 1 4

]

]

,

𝐵
1
= [

[

0 6

−7 9

1 0

]

]

, 𝐵
2
= [

[

5 2

0 5

6 0

]

]

,

𝐵
3
= [

[

3 5

0 4

2 0

]

]

, 𝐵
4
= [

[

0 4

7 6

3 0

]

]

.

(36)

The transition rate matrix is given as shown in Table 1.
Let 𝜀
1

= 1.2, 𝜀
2

= −1, 𝜀
3

= −0.2, 𝜀
4

= 2, and �̂�
𝑖𝑗

denote the unknown elements. UsingTheorem 6 and the LMI
control toolbox of Matlab, we obtain the controller gains for
the system as follows:

𝐾
1
= [

3.7123 3.7708 0.0005

2.1986 2.2325 0.0006
] × 10

4

,

𝐾
2
= [

−0.7952 −3.3671 −0.0001

1.1211 4.7407 0.0002
] × 10

4

,

𝐾
3
= [

2.5210 1.2413 −0.0000

0.5945 0.2927 −0.0000
] × 10

5

,

𝐾
4
= [

5.1907 −7.2130 −0.0013

1.7600 −2.4473 0.0008
] × 10

3

.

(37)

Table 2

Mode 1 2 3
1 −1.2 �̂�

12
�̂�
13

2 �̂�
21

�̂�
22

0.4
3 0.3 0.5 −0.8

The closed-loop dynamic responses and theMarkovian chain
are shown in Figure 1 with the initial condition 𝑥(0) =

[0.7, 0.5, −2.3]
𝑇.

Example 2. Consider system (1) with three operation modes
and the following system matrices:

𝐸 = [
2 0

0 0
] , 𝐸

𝐿
= [

2

0
] , 𝐸

𝑅
= [

1

0
] ,

𝑅 = [0 1] , 𝑆 = [
0

2
] , 𝐴

1
= [

1.5 −1.4

0.1 0.2
] ,

𝐴
2
= [

−0.5 −0.3

1 −1.2
] , 𝐴

3
= [

−0.1 0.2

1 1
] ,

𝐵
1
= [

2

0
] , 𝐵

2
= [

−1

−3
] , 𝐵

3
= [

3

−2
] .

(38)

The transition rate matrix is given as shown in Table 2.
Let 𝜀
1

= 1.2, 𝜀
2

= −1, 𝜀
3

= −0.2, 𝜆
2

𝑑
= −1. In the

2nd row of TRM, the diagonal element �̂�
22

is unknown; we
assign its lower bound 𝜆

2

𝑑
a priori with different values (𝜆2

𝑑
∈

(−∞, −0.4]). Using Theorem 6 and LMI control toolbox in
Matlab, the controller gains for the system are given by

𝐾
1
= [−7.6834 0.0014] × 10

5

,

𝐾
2
= [−114.1162 −0.4001] ,

𝐾
3
= [529.6195 0.5013] .

(39)

When 𝜆
2

𝑑
= −2, we obtain the controller gains differently

for the system as follows:

𝐾
1
= [−2.9825 0.0003] × 10

6

,

𝐾
2
= [504.0862 −0.4000] ,

𝐾
3
= [3.0048 0.0005] × 10

3

.

(40)

It is seen from above that the obtained controller gains are
dependent on 𝜆

2

𝑑
. The closed-loop dynamic responses and

the Markovian chain are shown in Figure 2 with the initial
condition 𝑥(0) = [0.7, 2.89]

𝑇 and 𝜆
2

𝑑
= −1.

Remark 8. Notice that, in Example 1, all the diagonal ele-
ments of TRM are known and, in Example 2, there are
unknown diagonal elements in the TRMwhich illustrate that
the controller design is dependent on the lower bound 𝜆

𝑖

𝑑

of the corresponding unknown diagonal element. So they
cannot be solved by the stabilization criterions developed in
[15] which lack considering the case of systems with partly
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Figure 1: System states and Markovian chain.
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Figure 2: System states and Markovian chain.

known transition probabilities. Moreover, here examples are
for MJSS, while the stabilization criterions developed in [12]
which focused on those of normal ones that are special cases
of MJSS.

5. Conclusion

The problems of stability and state feedback control for
continuous-time MJSS with partly known transition prob-
abilities have been studied. A new sufficient and necessary
condition for this class of system to be stochastically admissi-
ble has been proposed in terms of strict LMIs. Furthermore,
sufficient conditions for the state feedback controller are
derived, and numerical examples have also been given to
illustrate the main results. However, the study of stability
and stabilization of continuous-timeMJSSwith partly known
transition probabilities is a basic problem which only serves
as a stepping stone to investigate more complicated systems.
However, time-delay appears commonly in various practi-
cal systems, and researchers have been paying remarkable
attention to the problems of analysis and synthesis for time-
delay systems [18–24].The approaches proposed in this paper
could be further extended to time-delay systems in our future
work. It is expected that the approach can be further used for
other analysis and synthesis issues such as 𝐻

∞
analysis, 𝐻

∞

synthesis, and other applications such as Markov jumping
neural networks with incomplete transition descriptions.
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