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This paper first investigates the problem of finite-time boundedness of Markovian jump system with piecewise-constant transition
probabilities via dynamic output feedback control, which leads to both stochastic jumps and deterministic switches. Based on
stochastic Lyapunov functional, the concept of finite-time boundedness, average dwell time, and the coupling relationship among
time delays, several sufficient conditions are established for finite-time boundedness and𝐻

∞
filtering finite-time boundedness.The

system trajectory stays within a prescribed bound. Finally, an example is given to illustrate the efficiency of the proposed method.

1. Introduction

Markovian jump systems were introduced as a class of
stochastic switched systems, which can be governed by a
Markov chain in a finite mode set of linear dynamics. In
recent years, because it is appropriate tomodel many physical
systems with economics, random failures, and networked
control systems, more and more people draw their attention
to Markovian jump systems [1–4]. As a special class of
stochastic systems in the finite operation modes, Markovian
jump systems can switch from one to another at different
time. Up to now, many important results in the literature
are based on the assumption that the complete knowledge
of transition probabilities is available in the jump process.
However, at mode observation instants, the Markovian jump
modes of the systems cannot be accurately obtained, and to
get the ideal information on all transition rates is hard or
generally expensive in reality, and the obtained results are not
accurate. Therefore, it is very important to consider systems
based on the assumption that transition probabilities are
completely unknown. Recently, the Markovian jump systems
subject to partially known transition probabilities have been

reported [5–10]. However, the Markov processes are time-
invariant in most of aforementioned obtained results.

Nowadays, piecewise-homogeneous (namely, time-
varying transition probabilities) Markovian jump systems
are developed for practical applications, affecting not only
the time-varying transition probabilities but also the state
dynamics. The evolution between two operating modes
with time-varying transition probabilities was proposed in
economy systems [11, 12]. Because of the important issue
of the possibility in measuring the variations, up till now, a
few people in view of stochastic Markovian jump systems
with time-varying transition probabilities except in [13–19].
In [14], there is a bounded real lemma for Markovian jump
linear systems with time-varying transition probabilities in
discrete-time domain.TheMarkov switching is employed for
sustainability of US external debt in [15]. The linear matrix
inequalities are used for control theory in Markov switching
[16]. In [19], newly Lyapunov functional is proposed with
piecewise-constant transition probabilities. It should be
noted that average dwell time switching is very important
in dynamic systems [20–23]. In [20], the average dwell time
switching and uncertainties are considered. Correspondingly,
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a dependent average dwell time approach is proposed in [21].
The piecewise-homogeneous is taken into account which
makes the considering dynamic of the Markovian jump
systems more controllable and optimizes the performance of
systems.

Furthermore, in a finite horizon, the practical application
problems tend to care about the described systems’ transient
characteristics state, especially the transient performances of
control systems. It is necessary to consider the state in a
fixed region; therefore, the concept of finite-time stability was
introduced [22, 23]. Some research results in finite-time case
for Markovian jump systems can be found in [24–30]. For
example, the finite-time stabilization with output feedback
control is introduced in [24]. Finite-time boundedness is
considered with state-dependent switching strategy in [26].
In [27], finite-time 𝐻

∞
control is proposed for nonlinear

jump systems. In [29], the partially unknown transition
rates are introduced for finite-time filtering of stochastic
systems. It is noted that, in the engineering area, there are
still some problems related to stochastic systems to be solved.
In order to make the finite-time behaviour of stochastic
Markovian jump systems more reasonable and satisfy the
requirements, the finite-time boundedness of Markov jump
systems with piecewise-constant transition probabilities via
dynamic output feedback control has not been studied. The
problem is interesting but also challenging, which motivates
us to conduct this study.

The main contribution of this paper is that we present
a novel approach for finite-time boundedness of Markovian
jump system with piecewise-constant transition probabilities
via dynamic output feedback control. We establish a more
general model to extend the existing results into more
feedback control systems. The deterministic switches and
stochastic jumps are taken into account at the same times.
The finite-time stability is an independent concept, which is
different from Lyapunov stability and can be determined by
switching. By selecting the appropriate Lyapunov-Krasovskii
functional, under average dwell time constraint on switching
signals, the sufficient conditions among average dwell times,
transition probabilities, and time-varying delay are derived
to guarantee finite-time boundedness of theMarkovian jump
systems.

2. Preliminaries

In this paper, fixing the probability space (Ω,F,P), we
consider the following Markovian jump system described by

�̇� (𝑡) = 𝐴
𝑟
𝑡

𝑥 (𝑡) + 𝐴
𝜏𝑟
𝑡

𝑥 (𝑡 − 𝜏) + 𝐵
𝑟
𝑡

𝑢 (𝑡) + 𝐷
𝑟
𝑡

𝜔 (𝑡) ,

𝑦 (𝑡) = 𝐶
𝑟
𝑡

𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) ,

𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector of the system, 𝑦(𝑡) ∈ R𝑙 is
the measured output, and 𝜔(𝑡) ∈ 𝐿

𝑞

2
[0,∞] is the exogenous

noise signal. 𝐴
𝑟
𝑡

, 𝐴
𝜏𝑟
𝑡

, 𝐵
𝑟
𝑡

, 𝐷
𝑟
𝑡

, and 𝐶
𝑟
𝑡

are constant real

matrices with appropriate dimension. 𝜏 represent the con-
stant delay and 𝜙(𝑡) is the differentiable vector-valued initial
function on [−𝜏, 0]. Let the random form process 𝑟

𝑡
, 𝑡 ≥ 0

be the Markov stochastic process taking values on a finite set
N = {1, 2, . . . , 𝑁}, governing the switching from mode 𝑖 at
time 𝑡 to mode 𝑗 at time 𝑡 + Δ𝑡 with the following transition
probabilities:

𝑃
𝑖𝑗
= Pr (𝑟

𝑡+Δ𝑡
= 𝑗 | 𝑟

𝑡
= 𝑖)

=

{

{

{

𝜇
(𝜎
𝑡
)

𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 ̸= 𝑗,

1 + 𝜇
(𝜎
𝑡
)

𝑖𝑖
Δ𝑡 + 𝑜 (Δ𝑡) , 𝑖 = 𝑗,

(2)

with transition rates 𝜇
(𝜎
𝑡
)

𝑖𝑗
≥ 0, ∀𝑖, 𝑗 ∈ N, ∑𝑁

𝑗=1
𝜇
(𝜎
𝑡
)

𝑖𝑗
= 0,

Δ𝑡 > 0, and lim
Δ𝑡→0

(𝑜(Δ𝑡)/Δ𝑡) → 0. Here, 𝜇(𝜎𝑡)
𝑖𝑗

is now
a function of 𝜎

𝑡
. By 𝜎

𝑡
, we mean that the transition rates

are time-varying. Moreover, 𝜎
𝑡
is assumed to be piecewise-

constant function of time 𝑡, and transition rates Π𝜎𝑡 can be
defined by
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]
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]
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. (3)

Furthermore, to determine the time-varying property, 𝜎
𝑡

represents a high-level average dwell time switching signal.
𝜎
𝑡
is a given initial condition sequence. For simplicity, let 𝑚

represent 𝜎
𝑡
as a piecewise-constant function of time, which

takes values in the finite setM ≡ {1, 2, . . . ,𝑀}. At an arbitrary
time 𝑡, 𝜎 may be dependent on 𝑡 or 𝑥(𝑡), or both, or other
logic rules. For a switching sequence 𝑡

0
< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ ,
𝜎 is continuous from right everywhere and maybe either
autonomous or controlled.When 𝑘 ∈ [𝑡

𝑙
, 𝑡
𝑙+1

), we say that the
𝜎
𝑡
𝑙

th transition probabilitiesmatrix is active and therefore the
trajectory 𝑥

𝑡
of system (1) is trajectory of system (1) with the

𝜎
𝑡
𝑙

th transition probabilities matrix.
In this paper, our goal is to design the following dynamic

output feedback controller, which can guarantee the system
is finite-time boundness:

�̇�
𝑓
(𝑡) = 𝐴

𝑓𝑟
𝑡
,𝜎
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𝑥
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𝑢 (𝑡) = 𝐶
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𝑡
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𝑥
𝑓
(𝑡) + 𝐷

𝑓𝑟
𝑡
,𝜎
𝑡

𝑦 (𝑡) ,

𝑥
𝑓
(𝑡) = 0,

𝑡 ≤ 0,

(4)

where 𝐴
𝑓𝑟
𝑡
,𝜎
𝑡

, 𝐵
𝑓𝑟
𝑡
,𝜎
𝑡

, 𝐶
𝑓𝑟
𝑡
,𝜎
𝑡

, and 𝐷
𝑓𝑟
𝑡
,𝜎
𝑡

are matrices to be
determined.
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Substituting (4) into (1) and ∀𝑟
𝑡
= 𝑖, 𝑖 ∈ N, 𝜎

𝑡
= 𝑚, and

𝑚 ∈ M, we have

̇𝜂 (𝑡) = 𝐴
𝑖,𝑚

𝜂 (𝑡) + 𝐴
𝜏𝑖
𝜂 (𝑡 − 𝜏) + 𝐵

𝑖
𝜔 (𝑡) ,

𝜂 (𝑡) = 𝜓 (𝑡) ,

𝑡 ∈ [−𝜏, 0] ,

(5)

where

𝐴
𝑖,𝑚

= [

𝐴
𝑖
+ 𝐵
𝑖
𝐷
𝑓𝑖,𝑚

𝐶
𝑖
𝐵
𝑖
𝐶
𝑓𝑖,𝑚

𝐵
𝑓𝑖,𝑚

𝐶
𝑖

𝐴
𝑓𝑖,𝑚

] ,

𝐴
𝜏𝑖
= [

𝐴
𝜏𝑖

0

0 0
] ,

𝐵
𝑖
= [

𝐷
𝑖

0
] ,

𝜂 (𝑡) = [

𝑥 (𝑡)

𝑥
𝑓
(𝑡)

] .

(6)

Throughout the paper, suppose that the matrices𝐶
𝑟
𝑡

have
full row rank, in other words, rank(𝐶

𝑟
𝑡

) = 𝑞. Then we have
the singular decomposition of 𝐶

𝑖
as

𝐶
𝑖
= 𝑈
𝑖
[𝑆
𝑖
, 0] 𝑉
⊺

𝑖
, (7)

where 𝑆
𝑖
∈ 𝑅
𝑞×𝑞 is a diagonal positive matrix and 𝑈

𝑖
∈ 𝑅
𝑞×𝑞

and 𝑉
𝑖
∈ 𝑅
𝑛×𝑛 are unitary matrices.

Remark 1. In this paper, matrices 𝐶
𝑖
are singular decomposi-

tion as unitary matrices, which reduce the conservatism.

First of all, we will give definitions and lemmas about
system (5), which plays an important role in the derivation
of our result.

Definition 2 (see [29]). System (5) is said to be finite-time
bounded with respect to (𝑐

1
, 𝑐
2
, 𝑇, 𝑅, 𝑑, 𝜎), where 𝑑 ≥ 0, 𝑅 is

positive define matrix, and 𝜎
𝑡
is a switching signal. We have

sup
−𝜏≤𝑡
0
≤0

{𝑥
⊺

(𝑡
0
) 𝑅𝑥 (𝑡

0
)}

≤ 𝑐
1
⇒ sup
−𝜏≤𝑡≤0

{𝑥
⊺

(𝑡) 𝑅𝑥 (𝑡)} < 𝑐
2
, ∀𝑡 ∈ [0, 𝑇] ,

(8)

where 𝑐
2
> 𝑐
1
≥ 0, ∀𝜔(𝑡) : ∫𝑇

0

𝜔
⊺

(𝑠)𝜔(𝑠) 𝑑𝑠 ≤ 𝑑.

Definition 3 (see [21]). For any 𝑇
2
> 𝑇
1
≥ 0, let 𝑁

𝜎
(𝑇
1
, 𝑇
2
)

denote the switching number of 𝜎(𝑡) during (𝑇
1
, 𝑇
2
). If

𝑁
𝜎
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+ (𝑇
2
− 𝑇
1
)/𝑇
𝑎
holds for𝑁

0
≥ 0 and 𝑇

𝑎
> 0,

then𝑁
0
and𝑇
𝑎
are called chattering bound and average dwell

time, respectively. Here we assume 𝑁
0
= 0 for simplicity as

commonly used in the literature.

Definition 4 (see [31]). Consider𝑉(𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) as the stochastic

Lyapunov function of the resulting system (4); its weak
infinitesimal operator is defined as

m𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
)

= lim
Δ𝑡→0

+

1

Δ𝑡
[E {𝑉 (𝜂

𝑡+Δ𝑡
, 𝑟
𝑡+Δ𝑡

, 𝜎
𝑡
) | 𝑟
𝑡
= 𝑖, 𝜎

𝑡
= 𝑚}

− 𝑉 (𝜂
𝑡
, 𝑖, 𝑚)] =

𝜕

𝜕𝑡
𝑉 (𝜂
𝑡
, 𝑖, 𝑚) +

𝜕

𝜕𝑥
𝑉 (𝜂
𝑡
, 𝑖, 𝑚) ̇𝜂

𝑡

+

𝑁

∑

𝑗=1

𝜇
(𝑚)

𝑖𝑗
𝑉 (𝜂
𝑡
, 𝑗, 𝑚) .

(9)

Definition 5 (see [32]). The jump rates of the visited modes
from a given mode 𝑖 are assumed to satisfy

0 < min𝜇
𝑖
≤ 𝜇
𝑖𝑗
≤ max 𝜇

𝑖
, ∀𝑖, 𝑗 ∈ R, 𝑖 ̸= 𝑗, (10)

where min 𝜇
𝑖
and max 𝜇

𝑖
are known parameters for a given

mode 𝑖 and represent the lower and upper bounds when all
the jump rates are known; that is, 0 < min 𝜇

𝑖
= min{𝜇

𝑖𝑗
̸=

0, 𝑖 ̸= 𝑗, 𝑗 ∈ R} and min𝜇
𝑖
≤ max 𝜇

𝑖
. Meanwhile, the

number of the visited modes from a given mode 𝑖 is denoted
by𝑁
𝑖
including the mode itself.

Lemma 6 (Schur complement [14]). Given constant matrices
𝑋, 𝑌, and 𝑍, where 𝑋 = 𝑋

⊺ and 0 < 𝑌 = 𝑌
⊺, then

𝑋 + 𝑍
⊺

𝑌
−1

𝑍 < 0 if and only if

[

𝑋 𝑍
⊺

∗ −𝑌
] < 0

𝑜𝑟 [

−𝑌 𝑍

∗ 𝑋
] < 0.

(11)

3. Finite-Time Boundedness Analysis

Theorem 7. System (5) is finite-time stochastic boundedness
(FTSB) with respect to (𝑐

1
, 𝑐
2
, 𝑅, 𝑑, 𝑇) if there exist matrices

𝑃
𝑖,𝑚
, 𝐻, and 𝑄

𝑚
and constants 𝛼 ≥ 0, 𝜇 > 1, and 𝜆

𝑠
> 0

(𝑠 = 1, 2, . . . , 4), such that we have the following linear matrix
inequalities:

[
[
[

[

𝐴
⊺

𝑖,𝑚
𝑃
−1

𝑖,𝑚
+ 𝑃
−1

𝑖,𝑚
𝐴
𝑖,𝑚

+ 𝑄
−1

𝑚
+ 𝑃
𝑖,𝑚

− 𝛼𝑃
−1

𝑖,𝑚
𝑃
−1

𝑖,𝑚
𝐴
𝜏𝑖

𝑃
−1

𝑖,𝑚
𝐵
𝑖

∗ −𝑒
𝛼𝜏

𝑄
−1

𝑚
0

∗ ∗ −𝛼𝐻

]
]
]

]

< 0,

(12)

[
[
[
[

[

−𝜆
1
𝑐
2
𝑒
−𝛼𝑇

+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

) 𝜆
2
𝑐
1

𝜆
3
𝑐
1

∗ −𝜆
2
𝑐
1

0

∗ ∗ −
1

𝜏
𝜆
3
𝑐
1
𝑒
−𝛼𝜏

]
]
]
]

]

< 0, (13)
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[
−𝑃
−1

𝑖,𝑚
𝜆
1
𝑃
−1

𝑖,𝑚
𝑅

∗ −𝜆
1
𝑅

] < 0,

[

−𝜆
2
𝑅 𝐼

∗ −𝑃
−1

𝑖,𝑚

] < 0,

∀𝑖 ∈ N

(14)

𝑃
𝑖,𝑚

< 𝜇𝑃
𝑖,𝑛
,

𝑄
𝑚
≤ 𝑄
𝑛
,

∀𝑖, 𝑗 ∈ N, 𝑚, 𝑛 ∈ M,

(15)

𝜆
1
𝑐
2
𝑒
−𝛼𝑇

> (𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

) , (16)

with the average dwell time of the switching signal 𝜎 satisfying

𝜏
𝑎

> 𝜏
∗

𝑎

=
𝑇 ln 𝜇

ln (𝜆
1
𝑐
2
) − ln [(𝜆

2
+ 𝜏𝑒𝛼𝜏𝜆

3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒−𝛼𝑇)] − 𝛼𝑇

,

(17)

where

𝑃
𝑖,𝑚

= − (𝑁
𝑖
− 1) (min𝜇

𝑚

𝑖
) 𝑃
𝑖,𝑚

+ (max 𝜇𝑚
𝑖
)

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑃
𝑗,𝑚

,

�̃�
𝑖,𝑚

= 𝑅
−1/2

𝑃
𝑖,𝑚

𝑅
−1/2

,

𝑄
𝑚
= 𝑅
−1/2

𝑄
𝑚
𝑅
−1/2

,

𝜆
3
= 𝜆max (𝑄𝑚) ,

𝜆
4
= 𝜆max (𝐻) .

(18)

Proof. We consider the following Lyapunov-Krasovskii func-
tional:

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) = 𝜂
⊺

𝑡
𝑃
−1

𝑟
𝑡
,𝜎
𝑡

𝜂
𝑡
+ ∫

𝑡

𝑡−𝜏

𝜂
⊺

𝑠
𝑒
𝛼(𝑡−𝑠)

𝑄
−1

𝜎
𝑠

𝜂
𝑠
𝑑𝑠. (19)

Taking the time derivative of 𝑉(𝜂
𝑡
, 𝑟
𝑡
, 𝜎(𝑡)) along the

trajectory of the system (5), one has

m𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
)

= 𝜂
⊺

𝑡
(𝐴
⊺

𝑖,𝑚
𝑃
−1

𝑖,𝑚
+ 𝑃
−1

𝑖,𝑚
𝐴
𝑖,𝑚

+ 𝑄
−1

𝑚
+

𝑁

∑

𝑗=1

𝜇
(𝑚)

𝑖𝑗
𝑃
𝑗,𝑚

)𝜂
𝑡

+ 2𝜂
⊺

𝑡
𝑃
−1

𝑖,𝑚
𝐴
𝜏𝑖,𝑚

𝜂
𝑡−𝜏

+ 2𝜂
⊺

𝑡
𝑃
−1

𝑖,𝑚
𝐵
𝑖
𝜔
𝑡

− 𝑒
𝛼𝜏

𝜂
⊺

𝑡−𝜏
𝑄
−1

𝑚
𝜂
𝑡−𝜏

+ 𝛼∫

𝑡

𝑡−𝜏

𝜂
⊺

𝑠
𝑒
𝛼(𝑡−𝑠)

𝑄
−1

𝜎
𝑠

𝜂
𝑠
𝑑𝑠.

(20)

Moreover, we have

𝑁

∑

𝑗=1

𝜇
(𝑚)

𝑖𝑗
𝑃
−1

𝑗,𝑚
= 𝜇
𝑚

𝑖𝑖
𝑃
−1

𝑖,𝑚
+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝜇
(𝑚)

𝑖𝑗
𝑃
−1

𝑗,𝑚

= −

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝜇
(𝑚)

𝑖𝑗
𝑃
−1

𝑖,𝑚
+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝜇
(𝑚)

𝑖𝑗
𝑃
−1

𝑗,𝑚

≤ − (𝑁
𝑖
− 1) (min 𝜇

𝑚

𝑖
) 𝑃
−1

𝑖,𝑚

+ (max 𝜇𝑚
𝑖
)

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑃
−1

𝑗,𝑚
.

(21)

Assuming that condition (12) is satisfied, we obtain

m𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) − 𝛼𝑉 (𝜂

𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) < 𝛼𝜔

⊺

𝑡
𝐻𝜔
𝑡
. (22)

Notice that

𝑑

𝑑𝑡
(𝑒
−𝛼𝑡

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
)) < 𝛼𝑒

−𝛼𝑡

𝜔
⊺

𝑡
𝐻𝜔
𝑡
. (23)

Integrate (23) from 𝑡
𝑘
to 𝑡, from which we can get that

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) < 𝑒
𝛼(𝑡−𝑡
𝑘
)

𝑉(𝜂
𝑡
𝑘

, 𝑟
𝑡
𝑘

, 𝜎
𝑡
𝑘

)

+ 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠.

(24)

Noting that ∀𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

], where 𝑡
𝑘
is the 𝑘th switching

instant and 𝑥
𝑡
𝑘

= 𝑥
𝑡
−

𝑘

, from condition (15) it yields

𝑉(𝜂
𝑡
𝑘

, 𝑟
𝑡
𝑘

, 𝜎
𝑡
𝑘

) ≤ 𝜇𝑉 (𝜂
𝑡
−

𝑘

, 𝑟
𝑡
−

𝑘

, 𝜎
𝑡
−

𝑘

) . (25)

From condition (24) and (25), we can easily have

𝑉(𝜂
𝑡
𝑘

, 𝑟
𝑡
𝑘

, 𝜎
𝑡
𝑘

) < 𝜇𝑒
𝛼(𝑡−𝑡
𝑘
)

𝑉(𝜂
𝑡
−

𝑘

, 𝑟
𝑡
−

𝑘

, 𝜎
𝑡
−

𝑘

)

+ 𝛼𝜇∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠.

(26)

Thus, from (24)–(26), it yields

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) ≤ 𝑒
𝛼(𝑡−𝑡
𝑘
)

𝑉(𝜂
𝑡
𝑘

, 𝑟
𝑡
𝑘

, 𝜎
𝑡
𝑘

)

+ 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠
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≤ 𝜇𝑒
𝛼(𝑡−𝑡
𝑘−1
)

𝑉(𝜂
𝑡
−

𝑘−1

, 𝑟
𝑡
−

𝑘−1

, 𝜎
𝑡
−

𝑘−1

)

+ 𝛼𝜇∫

𝑡
𝑘

𝑡
𝑘−1

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠 + 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

≤ 𝜇
2

𝑒
𝛼(𝑡
𝑘
−𝑡
𝑘−2
)

𝑉(𝜂
𝑡
−

𝑘−2

, 𝑟
𝑡
−

𝑘−2

, 𝜎
𝑡
−

𝑘−2

)

+ 𝛼𝜇
2

∫

𝑡
𝑘−1

𝑡
𝑘−2

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

+ 𝛼𝜇∫

𝑡
𝑘

𝑡
𝑘−1

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠 + 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

≤ ⋅ ⋅ ⋅ ≤ 𝜇
𝑁
𝜎
(0,𝑡)

𝑒
𝛼𝑡

𝑉(𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

+ 𝛼𝜇
𝑁
𝜎
(0,𝑡)

∫

𝑡
1

0

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

+ 𝛼𝜇
𝑁
𝜎
(𝑡
1
,𝑡)

∫

𝑡
2

𝑡
1

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠 + ⋅ ⋅ ⋅

+ 𝛼∫

𝑡

𝑡
𝑘

𝑒
𝛼(𝑡−𝑠)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠 = 𝜇

𝑁
𝜎
(0,𝑡)

𝑒
𝛼𝑡

𝑉(𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

+ 𝛼∫

𝑡

0

𝑒
𝛼(𝑡−𝑠)

𝜇
𝑁
𝜎
(𝑠,𝑡)

𝜔
⊺

𝑠
𝐻𝜔
𝑠
𝑑𝑠

≤ 𝜇
𝑁
𝜎
(0,𝑡)

𝑒
𝛼𝑡

𝑉(𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

) + 𝛼𝜇
𝑁
𝜎
(0,𝑡)

𝑑𝜆max (𝐻)

⋅ 𝑒
𝛼𝑡

∫

𝑡

0

𝑒
−𝛼𝑠

𝑑𝑠 ≤ 𝜇
𝑁
𝜎
(0,𝑇)

𝑒
𝛼𝑇

{𝑉 (𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

+ 𝑑𝜆max (𝐻) 𝛼∫

𝑇

0

𝑒
−𝛼𝑠

𝑑𝑠}

≤ 𝜇
𝑇/𝜏
𝑎𝑒
𝛼𝑇

{𝑉 (𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

+ 𝑑𝜆max (𝐻) (1 − 𝑒
−𝛼𝑇

)} .

(27)

Note that

𝑉(𝜂
𝑡
0

, 𝑟
𝑡
0

, 𝜎
𝑡
0

)

= 𝜂
⊺

𝑡
0

𝑃
𝑟
𝑡0
,𝜎(𝑡
0
)
𝜂
𝑡
0

+ ∫

0

−𝜏

𝜂
⊺

𝑠
𝑒
−𝛼𝑠

𝑄
𝜎
𝑠

𝜂
𝑠
𝑑𝑠

≤ 𝜆max (�̃�𝑖,𝑚) 𝜂
⊺

𝑡
0

𝑅𝜂
𝑡
0

+ 𝜏𝑒
𝛼𝜏

𝜆max (𝑄𝑚) sup
−𝜏≤𝜃≤0

{𝜂
⊺

𝜃
𝑅𝜂
𝜃
}

≤ (𝜆max (�̃�𝑖,𝑚) + 𝜏𝑒
𝛼𝜏

𝜆max (𝑄𝑚)) sup
−𝜏≤𝜃≤0

{𝜂
⊺

𝜃
𝑅𝜂
𝜃
}

≤ (𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) sup
−𝜏≤𝜃≤0

{𝜂
⊺

𝜃
𝑅𝜂
𝜃
}

≤ (𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
.

(28)

Thus

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) ≤ 𝜇
𝑇/𝜏
𝑎𝑒
𝛼𝑇

{(𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1

+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)}

= 𝑒
(𝛼+((ln 𝜇)/𝜏

𝑎
))𝑇

{(𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1

+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)} .

(29)

On the other hand

𝑉 (𝜂
𝑡
, 𝑟
𝑡
, 𝜎
𝑡
) ≥ 𝜆max (�̃�𝑟

𝑡
,𝜎
𝑡

) 𝜂
⊺

𝑡
𝑅𝜂
𝑡
= 𝜆
1
𝜂
⊺

𝑡
𝑅𝜂
𝑡
. (30)

Substituting (29) and (30) into (19), one obtains

𝑥
⊺

(𝑡) 𝑅𝑥 (𝑡)

≤

(𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)

𝜆
1

𝑒
(𝛼+((ln 𝜇)/𝜏

𝑎
))𝑇

.

(31)

When 𝜇 = 1, which is the trivial case, from (17), 𝜂⊺
𝑡
𝑅𝑥
𝑡
<

𝑐
2
𝑒
−𝛼𝑇

𝑒
𝛼𝑇

= 𝑐
2
. When 𝜇 > 1, from (17), ln(𝜆

1
𝑐
2
) − ln[(𝜆

2
+

𝜏𝑒
𝛼𝜏

𝜆
3
)𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)] − 𝛼𝑇 > 0 we have

𝑇
𝑓

𝜏
𝑎

<

ln (𝜆
1
𝑐
2
) − ln [(𝜆

2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)] − 𝛼𝑇

ln 𝜇

=

ln (𝜆
1
𝑐
2
𝑒
−𝛼𝑇

/ ((𝜆
2
+ 𝜏𝑒
𝛼𝜏

𝜆
3
) 𝑐
1
+ 𝑑𝜆
4
(1 − 𝑒

−𝛼𝑇

)))

ln 𝜇
.

(32)

Substituting (32) into (31) yields

𝜂
⊺

𝑡
𝑅𝜂
𝑡
< 𝑐
2
. (33)

The proof is completed.

Remark 8. It should be noted that the linear feedback control
subject to piecewise constant transition probability is first
considered in the paper, and it is classical and effective to
stabilize the Markov jump system.

4. Finite-Time 𝐻
∞

Performance Analysis

Theorem 9. For a given constant 𝑇 > 0, 𝛼 > 0, system (5)
is robustly finite-time stochastic boundedness with respect to
(0, 𝑐
2
, 𝑁, 𝑅, 𝑑, 𝜎), if there exist positive definite matrices 𝑋

𝑖,𝑚
,

𝑄
1𝑚
, 𝑄
2𝑚
,𝐻, and 𝜇 > 1, such that the following linear matrix

inequalities
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
11𝑖,𝑚

Σ
12𝑖,𝑚

𝐴
𝜏𝑖
𝑄
1𝑚

0 𝐷
𝑖

𝑋
𝑖,𝑚

0 Σ
18𝑖

Σ
19𝑖

∗ Σ
22𝑖,𝑚

0 0 0 0 𝑋
𝑖,𝑚

0 0

∗ ∗ −𝑒
𝛼𝜏

𝑄
1𝑚

0 0 0 0 0 0

∗ ∗ ∗ −𝑒
𝛼𝜏

𝑄
2𝑚

0 0 0 0 0

∗ ∗ ∗ ∗ −𝛼𝐻 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑄
1𝑚

0 0 0

∗ ∗ ∗ ∗ ∗ 0 −𝑄
2𝑚

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
88𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
99𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

∀𝑖, 𝑗 ∈ N, 𝑚, 𝑛 ∈ M,

(34)

𝑋
𝑖,𝑚

≤ 𝜇𝑋
𝑖,𝑛
,

𝑄
𝑘𝑚

≤ 𝑄
𝑘𝑛
,

(𝑘 = 1, 2) ∀𝑖, 𝑗 ∈ N, 𝑚, 𝑛 ∈ M,

(35)

𝛼𝑐
2
> 𝑑𝜆
4
𝑒
𝛼𝑇

(1 − 𝑒
−𝛼𝑇

) , (36)

where

Σ
11𝑖

= 𝐴
𝑖
𝑋
𝑖,𝑚

+ 𝑋
⊺

𝑖,𝑚
𝐴
𝑖
+ 𝐵
𝑖
𝑌
4𝑖,𝑚

𝐶
𝑖
+ 𝐶
⊺

𝑖
𝑌
⊺

4𝑖,𝑚
𝐵
⊺

𝑖
− 𝛼𝑋
𝑖,𝑚

− (𝑁
𝑖
− 1)max 𝜇

𝑖
𝑋
𝑖,𝑚

,

Σ
12𝑖

= 𝐶
⊺

𝑖
𝑌
⊺

2𝑖,𝑚
+ 𝐵
𝑖
𝑌
3𝑖,𝑚

,

Σ
22𝑖

= 𝑌
1𝑖,𝑚

+ 𝑌
⊺

1𝑖,𝑚
− 𝛼𝑋
𝑖,𝑚

,

Σ
18𝑖

= Σ
19𝑖

=
[
[

[

𝑁
𝑖
−1

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
√max 𝜇

𝑖
𝑋
𝑖,𝑚

, √max 𝜇
𝑖
𝑋
𝑖,𝑚

, . . . , √max 𝜇
𝑖
𝑋
𝑖,𝑚

]
]

]

,

Σ
88𝑖

= Σ
99𝑖

= − diag {𝑋
1,𝑚

, . . . , 𝑋
𝑖−1,𝑚

, 𝑋
𝑖+1,𝑚

, . . . , 𝑋
𝑁,𝑚

} .

(37)

with the average dwell time of the switching signal 𝜎 satisfying

𝜏
𝑎
> 𝜏
∗

𝑎
=

𝑇 ln 𝜇

ln (𝛼𝑐
2
) − ln [𝑑𝜆

4
(1 − 𝑒−𝛼𝑇)] − 𝛼𝑇

, (38)

and the feasible solutions are given as follows:

𝐴
𝑓𝑖,𝑚

= 𝑌
1𝑖,𝑚

𝑋
−1

𝑖,𝑚
,

𝐵
𝑓𝑖,𝑚

= 𝑌
2𝑖,𝑚

𝑈
𝑖
𝑆
𝑖
𝑋
𝑖,𝑚

𝑆
−1

𝑖
𝑈
⊺

𝑖
,

𝐶
𝑓𝑖,𝑚

= 𝑌
3𝑖,𝑚

𝑋
−1

𝑖,𝑚
,

𝐷
𝑓𝑖,𝑚

= 𝑌
2𝑖,𝑚

𝑈
𝑖
𝑆
𝑖
𝑋
𝑖,𝑚

𝑆
−1

𝑖
𝑈
⊺

𝑖
.

(39)

Then the closed-loop systems (5) are finite-time boundedness
with respect to (0, 𝑐

2
, 𝑇, 𝑑, 𝑅, 𝜎).

Proof. Pre- and postmultiply inequality (12) by diag{𝑃−1
𝑖,𝑚

,

𝐼, 𝐼}, it yields that

[
[
[

[

𝑃
𝑖,𝑚

𝐴
⊺

𝑖,𝑚
+ 𝐴
𝑖,𝑚

𝑃
𝑖,𝑚

+ 𝑃
𝑖,𝑚

𝑃
𝑖,𝑚

𝑃
𝑖,𝑚

− 𝛼𝑃
𝑖,𝑚

+ 𝑃
𝑖,𝑚

𝑄
−1

𝑚
𝑃
𝑖,𝑚

𝐴
𝜏𝑖

𝐵
𝑖

∗ −𝑒
𝛼𝜏

𝑄
−1

𝑚
0

∗ ∗ −𝛼𝐻

]
]
]

]

< 0. (40)
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Denote 𝑃
𝑖,𝑚

= diag{𝑋
𝑖,𝑚

, 𝑋
𝑖,𝑚

}, 𝑄
𝑚

= diag{𝑄
1𝑚

, 𝑄
2𝑚

};
using Schur complement, we can obtain

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Σ
11𝑖,𝑚

Σ
12𝑖,𝑚

𝐴
𝜏𝑖
𝑄
1𝑚

0 𝐷
𝑖

𝑋
𝑖,𝑚

0 Σ
18𝑖

Σ
19𝑖

∗ Σ
22𝑖,𝑚

0 0 0 0 𝑋
𝑖,𝑚

0 0

∗ ∗ −𝑒
𝛼𝜏

𝑄
1𝑚

0 0 0 0 0 0

∗ ∗ ∗ −𝑒
𝛼𝜏

𝑄
2𝑚

0 0 0 0 0

∗ ∗ ∗ ∗ −𝛼𝐻 0 0 0 0

∗ ∗ ∗ ∗ ∗ −𝑄
1𝑚

0 0 0

∗ ∗ ∗ ∗ ∗ 0 −𝑄
2𝑚

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
88𝑖

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Σ
99𝑖

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0, (41)

where

Σ
11𝑖

= 𝐴
𝑖
𝑋
𝑖,𝑚

+ 𝑋
⊺

𝑖,𝑚
𝐴
𝑖

+ 𝐵
𝑖
𝐷
𝑓𝑖,𝑚

𝑈
−⊺

𝑖
𝑆
𝑖
𝑋
1𝑖,𝑚

𝑆
−1

𝑖
𝑈
−1

𝑖
𝐶
𝑖

+ 𝐶
⊺

𝑖
𝑈
−⊺

𝑖
𝑆
−⊺

𝑖
𝑋
⊺

1𝑖,𝑚
𝑆
⊺

𝑖
𝑈
−1

𝑖
𝐵
𝑖
𝐷
⊺

𝑓𝑖,𝑚
− 𝛼𝑋
𝑖,𝑚

− (𝑁
𝑖
− 1)max 𝜇

𝑖
𝑋
𝑖,𝑚

,

Σ
12𝑖

= 𝐶
⊺

𝑖
𝑈
−⊺

𝑖
𝑆
−⊺

𝑖
𝑋
𝑖,𝑚

𝑆
⊺

𝑖
𝑈
−1

𝑖
𝐵
⊺

𝑓𝑖,𝑚
+ 𝐵
𝑖
𝐶
𝑓𝑖,𝑚

𝑋
𝑖,𝑚

,

Σ
22𝑖

= 𝐴
𝑓𝑖,𝑚

𝑋
𝑖,𝑚

+ 𝑋
𝑖,𝑚

𝐴
⊺

𝑓𝑖,𝑚
− 𝛼𝑋
𝑖,𝑚

.

(42)

Define

𝑌
1𝑖,𝑚

= 𝐴
𝑓𝑖,𝑚

𝑋
𝑖,𝑚

,

𝑌
2𝑖,𝑚

= 𝐵
𝑓𝑖,𝑚

𝑈
−⊺

𝑖
𝑆
𝑖
𝑋
𝑖,𝑚

𝑆
−1

𝑖
𝑈
−1

𝑖
,

𝑌
3𝑖,𝑚

= 𝐶
𝑓𝑖,𝑚

𝑋
𝑖,𝑚

,

𝑌
4𝑖,𝑚

= 𝐷
𝑓𝑖,𝑚

𝑈
−⊺

𝑖
𝑆
𝑖
𝑋
𝑖,𝑚

𝑆
−1

𝑖
𝑈
−1

𝑖
.

(43)

And𝑋
𝑖,𝑚

≤ 𝜇𝑋
𝑖,𝑛
can guarantee that 𝑃

𝑖,𝑚
≤ 𝜇𝑃
𝑖,𝑛
; then we

can obtain (34).

5. Illustrative Example

Consider the system as follows:

𝐴
1
=
[
[

[

−2.0 −1.5 −1.2

0.7 −1.6 0.5

−1.3 0.5 −1.1

]
]

]

,

𝐴
𝜏1

=
[
[

[

0.2 0.0 0.1

0.1 0.3 0.1

0.3 0.1 0.2

]
]

]

,

𝐵
1
=
[
[

[

1

0.5

2

]
]

]

,

𝐷
1
=
[
[

[

0.3

0.5

0.2

]
]

]

,

𝐶
1
= [−1.2 0.5 0.9] ,

𝐴
2
=
[
[

[

−1.5 −1.2 −1.5

0.2 −1.5 0.4

−0.7 1.1 −1.2

]
]

]

,

𝐴
𝜏2

=
[
[

[

0.2 0.0 0.0

0.1 0.2 0.1

0.1 0.1 0.3

]
]

]

,

𝐵
2
=
[
[

[

0.5

0.7

1.5

]
]

]

,

𝐷
2
=
[
[

[

0.4

0.2

0.3

]
]

]

,

𝐶
2
= [−1.0 1.2 0.5] .

(44)
The piecewise-constant transition probabilities matrices

are given as

Π
1

= [

0.1 −0.1

−0.9 0.9
] ,

Π
2

= [

0.2 −0.2

−0.6 0.6
] .

(45)
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Choosing𝛼 = 0.05, 𝜏 = 0.2, 𝑐
2
= 30,𝑇 = 10, and𝑑 = 0.01,

by solving the matrix equalities in Theorem 9, we have the
following filter parameters:

𝐴
𝑓1,1

=
[
[

[

2.6498 0.1514 −3.48944

−1.4622 −3.1536 3.9281

−5.2184 −3.2024 −8.9715

]
]

]

,

𝐵
𝑓1,1

=

[
[
[

[

0

0

0

]
]
]

]

,

𝐶
𝑓1,1

= [0 0 0] ,

𝐷
𝑓1,1

= −46.3725,

𝐴
𝑓2,1

=

[
[
[

[

−8.1617 10.4852 14.5961

−19.9581 38.1415 64.6288

−10.6012 19.4270 28.2844

]
]
]

]

,

𝐵
𝑓2,1

=

[
[
[

[

0

0

0

]
]
]

]

,

𝐶
𝑓2,1

= [0 0 0] ,

𝐷
𝑓2,1

= −48.6350,

𝐴
𝑓1,2

=

[
[
[

[

−2.8214 1.9349 5.6510

6.9619 −6.9841 −9.9841

4.3016 −10.9846 −17.9894

]
]
]

]

,

𝐵
𝑓1,2

=

[
[
[

[

0

0

0

]
]
]

]

,

𝐶
𝑓1,2

= [0 0 0] ,

𝐷
𝑓1,2

= −48.3364,

𝐴
𝑓2,2

=
[
[

[

−7.2081 4.0201 11.3047

−6.3204 8.6193 16.2141

−4.3612 17.7841 12.9564

]
]

]

,

𝐵
𝑓2,2

=
[
[

[

0

0

0

]
]

]

,

𝐶
𝑓2,2

= [0 0 0] ,

𝐷
𝑓2,2

= −46.0053.

(46)
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Figure 1: 𝜂⊺
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𝑡
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Figure 2: State trajectories of subsystem 1.

From (38), we have 𝜇 = 5.0216. Moreover, we can obtain
the average dwell time

𝜏
𝑎
> 𝜏
∗

𝑎
= 8.1023. (47)

By Theorem 9, through the program 𝑓minsearch in the
optimization toolbox of MATLAB, the optimal bound with
minimum value of 𝑐

2
relies on the parameter 𝛼. We can find

feasible solution when 𝛼 ∈ [0, 0.05]. Figure 1 shows the
solution trajectory of the system. The state trajectory of the
closed-loop system is shown in Figures 2–4, where the initial
state 𝜂

0
= [0, 0]

⊺. From Figures 2–4, it is easy to see that the
system is finite-time boundedness.

6. Conclusions

In this paper, the problems of finite-time boundedness of
Markovian jump system with piecewise-constant transition
probabilities via dynamic output feedback control is con-
cerned. By allowing new Lyapunov-Krasovskii functional,
the switching signal is constraint by average dwell time,
and a numerical example is also given to demonstrate the
effectiveness of the proposed approach.
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Figure 3: State trajectories of subsystem 2.
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Figure 4: The closed-loop system.
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