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This paper is devoted to investigating the stability and stabilisation problems for discrete-time piecewise homogeneous Markov
jump linear system with imperfect transition probabilities. A sufficient condition is derived to ensure the considered system to
be stochastically stable. Moreover, the corresponding sufficient condition on the existence of a mode-dependent and variation-
dependent state feedback controller is derived to guarantee the stochastic stability of the closed-loop system, and a new method
is further proposed to design a static output feedback controller by introducing additional slack matrix variables to eliminate
the equation constraint on Lyapunov matrix. Finally, some numerical examples are presented to illustrate the effectiveness of the
proposed methods.

1. Introduction

The control theory of Markov jump systems with incomplete
transition probability has emerged as a hot topic. In fact,
except for the two descriptions of uncertain transition proba-
bility, the polytopic uncertain transition probability is also an
important way for describing such scenario.

Recently, Markov jump linear systems have been attract-
ing more andmore attentions andmany valuable results have
been obtained [1–3]. However, the transition probabilities
(TPs) in the above mentioned literature are assumed to be
completely known. Generally speaking, the TPs in some
jumping processes are hard to be precisely estimated in
practice. Therefore, the control theory of Markov jump
system with uncertain transition probability has attracted
more and more attention from theoretical research and
practical application. Many results on this topic have been
reported [4–15]. Among the existing literatures about the
description for the uncertain transition probability, three
typical descriptions are popular. The first one is the polytopic
uncertain TPs, where the transition probability matrix is
unknown but belongs to a given polytope. RegardingMarkov
jump systems with this kind of TPs, stability analysis and

controller synthesis problems have been considered in [4–
7]. The second one is assuming that the estimated values
of TPs can be obtained easily. A well-known method to
handle this kind of TPs is bounded TPs. In this regard, the
precise value of the TPs does not require to be known; only
their bounds (upper bounds and lower bounds) are known
[12, 13]. The last one is dividing the TPs into two cases:
completely known and completely unknown. A necessary
and sufficient condition of stability of Markov jump linear
systems with partly unknown TPs is proposed in [15]. Since
the above literature can only treat one of these uncertain
TPs, recently, several methods are proposed to deal with the
combined description of the above three uncertain TPs. The
paper [9] considered the stability analysis of continuous-time
Markov jump system and proposed another description for
the TPs, generally uncertain TPs, in which each transition
rate can be completely unknownor only its estimate is known.
This description of the TPs may be less restrictive than the
bounded uncertain TPs and the partly unknown TPs. The
paper [16] presented a series of LMI-based conditions to
ensure the𝐻

∞
norm of the output to beminimized, by which

the above three kinds of uncertain TPs could be handled
in a unified framework. The paper [17] studied the 𝐻
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feedback controller design for discrete-time Markov jump
linear system, in which the elements of the uncertain rows in
the transition probability matrix were modelled as belonging
to the Cartesian product of simplexes and the above three
uncertain TPs could be adequately represented.

On the other hand, the works in the above mentioned
literature assume that the TPs matrix is time-invariant. But
the assumption is actually fragile in some applications. In
reality, however, this assumption is often violated because the
failure probabilities of a component usually depend on many
factors, for example, the external changed environment, its
age, humidity, and the degree of usage. However, there are
few literatures to investigate Markov jump linear systems
with time-varying TPs [18–20]. In [19], the author treated
the discrete-time Markov jump system with a class of finite
piecewise homogeneous Markov chains, and variation of
the TPs matrix is governed by a higher-level homogeneous
Markov chain and 𝐻

∞
filtering for the systems is obtained.

However, it is only considered that the higher-level TPs
(HTPs) are partly unknown and TPs are completely known.
As far as we know, the case where both HTPs and TPs are
partly unknown has not been investigated which leaves a
room for us to improve.

In the paper, the problem of stabilisation for discrete-
time piecewise homogeneous Markov jump linear system
with imperfect TPs will be investigatedwhere each element of
HTPs and TPs can be completely unknown or only its upper
and lower bound are known. By using convex combination
method, a sufficient condition is proposed to guarantee the
stochastic stability of the discrete-time piecewise homoge-
neous Markov jump linear system with imperfect TPs. Based
on this stochastic stability criterion, design approaches for
state feedback and static output feedback are provided which
can stabilize the resulting closed-loop systems.

The remainder of this paper is stated as follows. In Section
2, the imperfect TPs are formulated and some definitions
and lemmas are stated. In Section 3, a sufficient condition
is established firstly such that the unforced discrete-time
piecewise homogeneous Markov jump linear system with
imperfect TPs is stochastically stable, and then design a
mode-dependent and variation-dependent state feedback
and a mode-dependent and variation-dependent static out-
put feedback controller for discrete-time piecewise homoge-
neous Markov jump linear system with imperfect TPs such
that the corresponding closed-loop system is stochastically
stable. In Section 4, some numerical examples are provided
to illustrate the feasibility and applicability of the developed
results. Section 5 concludes the paper.

The notation used in this paper is standard. The super-
script “𝑇” stands for matrix transposition. N+ represents
the sets of positive integers. R𝑛 denotes the 𝑛 dimensional
Euclidean space. The notation ‖ ⋅ ‖ refers to the Euclidean
vector norm.𝐸[⋅] stands for themathematical expectation. In
addition, in symmetric block matrices or long matrix expres-
sions, star ∗ is used as an ellipsis for the terms that are intro-
duced by symmetry and diag{⋅} stands for a block-diagonal
matrix. Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operation.

2. Preliminaries and Problem Formulation

Consider the following discrete-time piecewise homogenous
Markov jump linear systems defined on a complete probabil-
ity space (Ω, 𝐹, 𝑃):

𝑥 (𝑘 + 1) = 𝐴
𝑟𝑘
𝑥 (𝑘) + 𝐵

𝑟𝑘
𝑢
𝑘

𝑦 (𝑘) = 𝐶
𝑟𝑘
𝑥 (𝑘) ,

(1)

where 𝑥(𝑘) ∈ R𝑛 is the state, 𝑢(𝑘) ∈ R𝑚 is the input, and
𝑦(𝑘) ∈ R𝑙 is the measurable output. For fixed 𝑟

𝑘
, 𝐴
𝑟𝑘
, 𝐵
𝑟𝑘
,

and 𝐶
𝑟𝑘
are constant matrices and 𝐶

𝑟𝑘
has full column rank.

The process {𝑟
𝑘
, 𝑘 ≥ 0, 𝑘 ∈ N} is described by a discrete-

time Markov chain, which takes values in the finite set N =

{1, . . . , 𝑁} with mode transition probabilities:

𝑃 (𝑟
𝑘+1

= 𝑗 | 𝑟
𝑘
= 𝑖) = 𝜋

(𝜎𝑘+1)

𝑖𝑗
, (2)

where 𝜋(𝜎𝑘+1)
𝑖𝑗

≥ 0, 𝑖, 𝑗 ∈N, denotes the transition probability
frommode 𝑖 at time 𝑘 tomode 𝑗 at time 𝑘+1 and∑𝑁

𝑗=1
𝜋
(𝜎𝑘+1)

𝑖𝑗
=

1. The TPs matrix of system (1) can be further defined by

Π
(𝑚)

=

[
[
[
[
[
[
[
[
[
[

[

𝜋
(𝑚)

11
𝜋
(𝑚)

12
⋅ ⋅ ⋅ 𝜋

(𝑚)

1𝑁

𝜋
(𝑚)

21
𝜋
(𝑚)

22
⋅ ⋅ ⋅ 𝜋

(𝑚)

2𝑁

.

.

.
.
.
. d

.

.

.

𝜋
(𝑚)

𝑁1
𝜋
(𝑚)

𝑁2
⋅ ⋅ ⋅ 𝜋
(𝑚)

𝑁𝑁

]
]
]
]
]
]
]
]
]
]

]

. (3)

Moreover, the time-dependent variable {𝜎
𝑘
, 𝑘 ≥ 0, 𝑘 ∈ N}

is governed by another Markov chain which is independent
with 𝑟

𝑘
. The variation of 𝜎

𝑘
is in the finite setM = {1, . . . ,𝑀}

and can be regarded as a higher-level Markov chain with
generator 𝑄 = [𝑞

𝑚𝑛
]
𝑀×𝑀

, where 𝑞
𝑚𝑛
≥ 0,𝑚, 𝑛 ∈M, denotes

the transition probability from Π
(𝑚) at time 𝑘 to Π(𝑛) at time

𝑘 + 1 with ∑𝑀
𝑛=1
𝑞
𝑚𝑛
= 1; that is,

𝑃 (𝜎
𝑘+1

= 𝑛 | 𝜎
𝑘
= 𝑚) = 𝑞

𝑚𝑛
. (4)

For more details regarding this refer to [19]. Meanwhile,
in [19], the TPs matrix Π(𝑚) for a fixed 𝑚 ∈ M is considered
to be known and only the completely known and unknown
elements are contained in the HTPs 𝑄, which may lead to
conservativeness. In this paper, we extend this hypothesis to
the more general case, which may be called imperfect TPs
(both HTPs and TPs are deficient); specifically, the elements
in HTPs matrix 𝑄 and TPs matrix Π(𝑚) are considered to
be bounded or completely unknown. Certainly, the precisely
known element can be taken as a special case of bounded one.
Without loss of generality, taking 𝑁 = 4 and 𝑀 = 3, for
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example, the HTPs matrix and TPs matrix of system (1) can
be expressed as

𝜋
(1)

=

[
[
[
[
[
[

[

𝜋
(1)

11
𝜋
(1)

12
? ?

𝜋
(1)

21
? ? 𝜋

(1)

24

? 𝜋
(1)

32
𝜋
(1)

33
?

𝜋
(1)

41
? ? 𝜋

(1)

44

]
]
]
]
]
]

]

,

𝜋
(2)

=

[
[
[
[
[
[

[

? 𝜋
(2)

12
𝜋
(2)

13
?

𝜋
(2)

21
? 𝜋
(2)

23
?

? 𝜋
(2)

32
? 𝜋
(2)

34

𝜋
(2)

41
? 𝜋
(2)

43
?

]
]
]
]
]
]

]

,

𝜋
(3)

=

[
[
[
[
[
[

[

? 𝜋
(3)

12
? ?

𝜋
(3)

21
𝜋
(3)

22
? ?

? 𝜋
(3)

32
? 𝜋
(3)

34

𝜋
(3)

41
? 𝜋
(3)

43
?

]
]
]
]
]
]

]

𝑄 =
[
[

[

𝑞
11
𝑞
12
𝑞
13

𝑞
21

? ?

? ? 𝑞
33

]
]

]

,

(5)

where “?” represents the unknown elements, and the others
denote the elements whose upper and lower bound are
known.

To proceed fluently, the following notations may be
helpful to the derivation of the main results.

(1) For each𝑚 ∈M, introduce the two sets below:

M𝑚
𝑘
= {𝑛: upper and lower bound of 𝑞

𝑚𝑛
are

known for 𝑛 ∈M};
M𝑚
𝑢𝑘
= {𝑛: 𝑞

𝑚𝑛
is completely unknown for 𝑛 ∈

M}.

(2) For each 𝑖 ∈N, define the following two sets:

N𝑖
𝑘

(𝑚)

= {𝑗: upper and lower bound of 𝜋(𝑚)
𝑖𝑗

are
known for 𝑗 ∈N};
N𝑖
𝑢𝑘

(𝑚)

= {𝑗: 𝜋(𝑚)
𝑖𝑗

is completely unknown for
𝑗 ∈N}.

(3) For each𝑚 ∈M and 𝑖 ∈N, denote 𝑞𝑘
𝑚
= ∑
𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛
,

𝜋
𝑘

𝑖

(𝑚)

= ∑
𝑗∈N𝑖
𝑘

(𝑚) 𝜋
(𝑚)

𝑖𝑗
.

Remark 1. Observe that if M𝑚
𝑘

̸= 0, it is further described
as M𝑚
𝑘
= {𝑛
1
, 𝑛
2
, . . . , 𝑛V𝑚}, where 𝑛𝑠 ∈ N+, 𝑠 ∈ {1, . . . , V

𝑚
},

represents the index of the 𝑠th element whose upper and
lower bound are known in the 𝑚th row of matrix 𝑄. In
the same way, if N𝑖

𝑘

(𝑚)

̸= 0, it is further described as
N𝑖
𝑘

(𝑚)

= {𝑘
(𝑚)

1
, 𝑘
(𝑚)

2
, . . . , 𝑘

(𝑚)

𝑙𝑖

}, where 𝑘(𝑚)
𝑡

∈ N+, 𝑡 ∈ {1, . . . , 𝑙
𝑖
},

represents the index of the 𝑡th element whose upper and
lower bound are known in the 𝑖th row of matrix Π(𝑚).

Now, we give the following definition and lemma which
play an indispensable role in the subsequent section.

Definition 2 (see [19]). System (1) is said to be stochastically
stable if, for every initial condition 𝑥

0
∈ R𝑛 and 𝑟

0
∈ N, the

following holds:

𝐸[

∞

∑

𝑘=0

‖𝑥(𝑘)‖
2

| 𝑥
0
, 𝑟
0
] < ∞. (6)

Lemma 3 (see [19]). System (1) is stochastically stable when
𝑢(𝑘) = 0 if there exist a set of positive definite matrices 𝑃

𝑖,𝑚
for

each 𝑖 ∈N, 𝑚 ∈M satisfying

𝐴
𝑇

𝑖
�̃�
𝑖,𝑚
𝐴
𝑖
− 𝑃
𝑖,𝑚
< 0, (7)

where �̃�
𝑖,𝑚
= ∑
𝑀

𝑛=1
𝑞
𝑚𝑛
∑
𝑁

𝑗=1
𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛
.

This paper aims at deriving a criterion to guaran-
tee the stochastic stability of Markov jump system (1)
whose both HTPs (4) and TPs (2) are bounded or com-
pletely unknown and then designing a mode-dependent and
variation-dependent state feedback controller and a mode-
dependent and variation-dependent static output feedback
controller such that the corresponding closed-loop system is
stochastically stable, respectively.

3. Main Results

In this section, a sufficient condition is first presented on the
stochastic stability for the unforced systems (1)with imperfect
TPs. Next a mode-dependent and variation-dependent state
feedback controller and a mode-dependent and variation-
dependent static output feedback controller are designed,
respectively, by using the sufficient condition.

3.1. Stability Analysis. Now, we focus on the stability analysis
of system (1).

Theorem 4. The unforced systems (1) with imperfect TPs (2)
and (4) are stochastically stable, if there exist a group of positive
definite matrices 𝑃

𝑖,𝑚
, 𝑖 ∈ N, 𝑚 ∈ M such that the following

LMIs hold for each 𝑖 ∈N, 𝑚 ∈M:

𝐴
𝑇

𝑖

{{

{{

{

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛

[
[

[

∑

𝑗∈N𝑖
𝑘

(𝑛)

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛
+ (1 − 𝜋

𝑘
(𝑛)

𝑖
)𝑃
𝑗
(𝑛)
,𝑛

]
]

]

+ (1 − 𝑞
𝑘

𝑚
)
[
[

[

∑

𝑗∈N𝑖
𝑘

(n)

𝜋
(n)
𝑖𝑗
𝑃
𝑗,n + (1 − 𝜋

𝑘
(n)

𝑖
)𝑃j,n

]
]

]

}}

}}

}

⋅ 𝐴
𝑖
− 𝑃
𝑖,𝑚
< 0, 𝑗

(𝑛)

∈N
𝑖

𝑢𝑘

(𝑛)

𝑛 ∈M
𝑚

𝑘
,

j ∈N
𝑖

𝑢𝑘

(n) n ∈M
𝑚

𝑢𝑘
,

(8)

where 𝑞
𝑚𝑛

∈ {𝑞
𝑚𝑛

, 𝑞
𝑚𝑛
}, 𝜋(𝑛)
𝑖𝑗

∈ {𝜋
(𝑛)

𝑖𝑗
, 𝜋
(𝑛)

𝑖𝑗
}, 𝜋𝑘

(𝑛)

𝑖
=

∑
𝑗∈N𝑖
𝑘

(𝑛) 𝜋
(𝑛)

𝑖𝑗
, and 𝑞𝑘

𝑚
= ∑
𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛
.
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It is worth noting that, for given 𝑖 and 𝑚, (8) contains
multiple LMIs. The number of LMIs depends on elements
in N𝑖
𝑢𝑘

(𝑛) with 𝑛 ∈ M𝑚
𝑘
, N𝑖
𝑢𝑘

(n) with n ∈ M𝑚
𝑢𝑘

and sets
{𝑞
𝑚𝑛

, 𝑞
𝑚𝑛
} and {𝜋(𝑛)

𝑖𝑗
, 𝜋
(𝑛)

𝑖𝑗
}.

Proof. Consider

�̃�
𝑖,𝑚
=

𝑀

∑

𝑛=1

𝑞
𝑚𝑛

𝑁

∑

𝑗=1

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛

= ∑

𝑛∈M𝑚
𝑢𝑘

𝑞
𝑚𝑛

1 − 𝑞𝑘
𝑚

[

[

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛

𝑁

∑

𝑗=1

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛

+ (1 − 𝑞
𝑘

𝑚
)

𝑁

∑

𝑗=1

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛

]

]

.

(9)

Since 0 ≤ 𝑞
𝑚𝑛

≤ 1 − 𝑞
𝑘

𝑚
, 𝑛 ∈ M𝑚

𝑢𝑘
, the property of convex

combination implies that (7) is equivalent to

𝐴
𝑇

𝑖

[

[

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛

𝑁

∑

𝑗=1

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛
+ (1 − 𝑞

𝑘

𝑚
)

𝑁

∑

𝑗=1

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛

]

]

⋅ 𝐴
𝑖
− 𝑃
𝑖,𝑚
< 0, 𝑛 ∈M

𝑚

𝑢𝑘
.

(10)

On the other hand, for each n ∈M𝑚
𝑢𝑘
, we have

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛

𝑁

∑

𝑗=1

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛
+ (1 − 𝑞

𝑘

𝑚
)

𝑁

∑

𝑗=1

𝜋
(n)
𝑖𝑗
𝑃
𝑗,n

= ∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛

[
[

[

∑

𝑗
(𝑛)
∈N𝑖
𝑢𝑘

(𝑛)

𝜋
(𝑛)

𝑖𝑗

1 − 𝜋
𝑘

𝑖

(𝑛)

⋅
[
[

[

∑

𝑗∈N𝑖
𝑘

(𝑛)

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛
+ (1 − 𝜋

𝑘

𝑖

(𝑛)

)𝑃
𝑗
(𝑛)
,𝑛

]
]

]

]
]

]

+ (1 − 𝑞
𝑘

𝑚
)
[
[

[

∑

j∈N𝑖
𝑢𝑘

(n)

𝜋
(n)
𝑖𝑗

1 − 𝜋
𝑘

𝑖

(n)

⋅
[
[

[

∑

𝑗∈N𝑖
𝑘

(n)

𝜋
(n)
𝑖𝑗
𝑃
𝑗,n + (1 − 𝜋

𝑘

𝑖

(n)
)𝑃
𝑗,n
]
]

]

]
]

]

=
[
[

[

∏

𝑛∈M𝑚
𝑘

[
[

[

∑

𝑗
(𝑛)
∈N𝑖
𝑢𝑘

(𝑛)

𝜋
(𝑛)

𝑖𝑗
(𝑛)

1 − 𝜋
𝑘

𝑖

(𝑛)

]
]

]

]
]

]

[
[

[

∑

j∈N𝑖
𝑢𝑘

(𝑛)

𝜋
(𝑛)

𝑖j

1 − 𝜋
𝑘

𝑖

(𝑛)

]
]

]

⋅
[
[

[

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛

[
[

[

∑

𝑗∈N𝑖
𝑘

(𝑛)

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛
+ (1 − 𝜋

𝑘

𝑖

(𝑛)

)𝑃
𝑗
(𝑛)
,𝑛

]
]

]

+ (1 − 𝑞
𝑘

𝑚
)
[
[

[

∑

𝑗∈N𝑖
𝑘

(n)

𝜋
(n)
𝑖𝑗
𝑃
𝑗,n + (1 − 𝜋

𝑘

𝑖

(n)
)𝑃j,n

]
]

]

]
]

]

,

(11)

where 𝑗(𝑛) is dependent on 𝑛.
Since 𝜋(𝑛)

𝑖𝑗
/(1 − 𝜋

𝑘

𝑖

(𝑛)

) ∈ [0, 1], 𝑗 ∈ N𝑖
𝑢𝑘

(𝑛), 𝑛 ∈ M, and

∑
𝑗∈N𝑖
𝑢𝑘

(𝑛)(𝜋
(𝑛)

𝑖𝑗
/(1 − 𝜋

𝑘

𝑖

(𝑛)

)) = 1, (10) is equivalent to

𝐴
𝑇

𝑖

{{

{{

{

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛

[
[

[

∑

𝑗∈N𝑖
𝑘

(𝑛)

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛
+ (1 − 𝜋

𝑘

𝑖

(𝑛)

)𝑃
𝑗
(𝑛)
,𝑛

]
]

]

+ (1 − 𝑞
𝑘

𝑚
)
[
[

[

∑

𝑗∈N𝑖
𝑘

(n)

𝜋
(n)
𝑖𝑗
𝑃
𝑗,n + (1 − 𝜋

𝑘

𝑖

(n)
)𝑃j,n

]
]

]

}}

}}

}

⋅ 𝐴
𝑖
− 𝑃
𝑖,𝑚
< 0, 𝑗

(𝑛)

∈N
𝑖

𝑢𝑘

(𝑛)

j ∈N
𝑖

𝑢𝑘

(n) n ∈M
𝑚

𝑢𝑘
.

(12)

Noticing that 𝑞
𝑚𝑛
∈ {𝑞
𝑚𝑛

, 𝑞
𝑚𝑛
}, 𝜋(𝑛)
𝑖𝑗
∈ {𝜋
(𝑛)

𝑖𝑗
, 𝜋
(𝑛)

𝑖𝑗
}, where

{𝜋
(𝑛)

𝑖𝑗
, 𝜋
(𝑛)

𝑖𝑗
} and {𝑞

𝑚𝑛

, 𝑞
𝑚𝑛
} are sets, it follows from (8) that (12)

holds.

Remark 5. Theorem 4 provides a sufficient condition on the
stochastic stability of the unforced systems (1) with imperfect
TPs. When 𝑞

𝑚𝑛
= 𝑞
𝑚𝑛

= 𝑞
𝑚𝑛
, 𝜋(𝑛)
𝑖𝑗
= 𝜋
(𝑛)

𝑖𝑗
= 𝜋
(𝑛)

𝑖𝑗
, Theorem

4 reduces to the condition on the stochastic stability for the
unforced systems (1) with partly unknown HTPs and partly
unknown TPs. Further, ifM𝑚

𝑢𝑘
= 0,N𝑖

𝑢𝑘

(𝑚)

= 0, 𝑚 ∈ M, 𝑖 ∈

N, Theorem 4 reduces to Lemma 3.

Remark 6. It should be noted that𝜋(𝑛)
𝑖𝑗
= 𝜋
𝑖𝑗
implies theHTPs

disappear; in this regard, if 𝜋
𝑖𝑗
= 𝜋
𝑖𝑗
= 𝜋
𝑖𝑗
and 𝑃

𝑖,𝑚
= 𝑃
𝑖
,

Theorem 4 reduces to the condition on the stochastic stability
of the unforced systems (1) with homogeneous partly known
transition probabilities [15].

When N𝑖
𝑢𝑘

(𝑚)

= 0 and 𝑞
𝑚𝑛

= 𝑞
𝑚𝑛
= 𝑞
𝑚𝑛
, 𝜋(𝑛)
𝑖𝑗
= 𝜋
(𝑛)

𝑖𝑗
=

𝜋
(𝑛)

𝑖𝑗
, the following corollary is obtained.

Corollary 7. The unforced systems (1) with partly unknown
HTPs (4) and completely known TPs (2) are stochastically
stable, if there exist a group of positive definite matrices 𝑃

𝑖,𝑚

such that the following LMIs are established for each 𝑖 ∈ N,
𝑚 ∈M:

𝐴
𝑇

𝑖

[

[

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛
∑

𝑗∈N

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛
+ (1 − 𝑞

𝑘

𝑚
) ∑

𝑗∈N

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛

]

]

⋅ 𝐴
𝑖
− 𝑃
𝑖,𝑚
< 0, 𝑛 ∈M

𝑚

𝑢𝑘
.

(13)
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Remark 8. Corollary 7 is less conservative when compared
with the result in [19], where the stability conditions are given
by

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛
∑

𝑗∈N

𝜋
(𝑛)

𝑖𝑗
𝐴
𝑇

𝑖
𝑃
𝑗,𝑛
𝐴
𝑖
− 𝑞
𝑘

𝑚
𝑃
𝑖,𝑚
< 0

∑

𝑗∈N

𝜋
(𝑛)

𝑖𝑗
𝐴
𝑇

𝑖
𝑃
𝑗,𝑛
𝐴
𝑖
− 𝑃
𝑖,𝑚
< 0, 𝑛 ∈M

𝑚

𝑢𝑘
.

(14)

The inequalities yield

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛
∑

𝑗∈N

𝜋
(𝑛)

𝑖𝑗
𝐴
𝑇

𝑖
𝑃
𝑗,𝑛
𝐴
𝑖
− 𝑞
𝑘

𝑚
𝑃
𝑖,𝑚
+ (1 − 𝑞

𝑚,𝑘
)

⋅ (∑

𝑗∈N

𝜋
(𝑛)

𝑖𝑗
𝐴
𝑇

𝑖
𝑃
𝑗,𝑛
𝐴
𝑖
− 𝑃
𝑖,𝑚
) < 0, 𝑛 ∈M

𝑚

𝑢𝑘
,

(15)

which is (13). Therefore, Corollary 7 is less conservative than
the result in [19].

3.2. Controller Design. Next the stabilisation problems of
system (1) by state feedback and static output feedback
will be considered. Firstly, let us focus on the design of
themode-dependent and variation-dependent state feedback
controller, which is in the following form:

𝑢 (𝑘) = 𝐾
𝑟𝑘 ,𝜎𝑘

𝑥 (𝑘) , (16)

where𝐾
𝑟𝑘 ,𝜎𝑘

for 𝑟
𝑘
∈N, 𝜎

𝑘
∈M are the controller gains to be

determined. Using (1), the closed-loop system is represented
as

𝑥 (𝑘 + 1) = (𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖,𝑚
) 𝑥 (𝑘) = 𝐴

𝑖,𝑚
𝑥 (𝑘) . (17)

According to Theorem 4, in the next, a mode-dependent
and variation-dependent state feedback controller in the form
of (16) will be designed such that the closed-loop system (17)
is stochastically stable.

Theorem 9. The closed-loop system (17) with imperfect TPs
(2) and (4) is stochastically stable if there exist a set of positive
definitematrices𝑋

𝑖,𝑚
andmatrices𝑌

𝑖,𝑚
, such that the following

LMIs hold for each 𝑖 ∈N,𝑚 ∈M:

[
[
[
[
[
[
[
[
[

[

−𝑋
𝑖,𝑚

ℶ
1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

ℶ
2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

ℶ
3

𝑚,N𝑖
𝑘

(n) ℶ
4

𝑖,𝑚,j,n

∗ −X1
N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

0 0 0

∗ ∗ −X2
M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

0 0

∗ ∗ ∗ −X3
𝑚,N𝑖
𝑘

(n) 0

∗ ∗ ∗ ∗ −𝑋j,n

]
]
]
]
]
]
]
]
]

]

< 0, 𝑗
(𝑛)

∈N
𝑖

𝑢𝑘

(𝑛) j ∈N
𝑖

𝑢𝑘

(n) n ∈M
𝑚

𝑢𝑘
,

(18)

where 𝑞𝑘
𝑚

= ∑
𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛
, 𝜋𝑘

(𝑛)

𝑖
= ∑

𝑗∈N𝑖
𝑘

(𝑛) 𝜋
(𝑛)

𝑖𝑗
, 𝑞
𝑚𝑛

∈

{𝑞
𝑚𝑛

, 𝑞
𝑚𝑛
}, and 𝜋(𝑛)

𝑖𝑗
∈ {𝜋
(𝑛)

𝑖𝑗
, 𝜋
(𝑛)

𝑖𝑗
}. Therefore,

ℶ
1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

= [ √𝑞𝑚𝑛1
𝜋
(𝑛1)

𝑖,𝑗
(𝑛1)

1

⋅ ⋅ ⋅ √𝑞𝑚𝑛1
𝜋
(𝑛1)

𝑖,𝑗
(𝑛1)

𝑙𝑖

⋅ ⋅ ⋅ √𝑞𝑚𝑛V𝑚
𝜋
(𝑛V𝑚 )

𝑖,𝑗

(𝑛V𝑚 )
1

⋅ ⋅ ⋅ √𝑞𝑚𝑛V𝑚
𝜋
(𝑛V𝑚 )

𝑖,𝑗

(𝑛V𝑚 )
𝑙𝑖

] (𝐴
𝑖
𝑋
𝑖,𝑚
+ 𝐵
𝑖
𝑌
𝑖,𝑚
)
𝑇

X
1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

= diag{𝑋
𝑗
(𝑛1)

1
,𝑛1

, . . . , 𝑋
𝑗
(𝑛1)

𝑙𝑖
,𝑛1

, . . . ,

𝑋
𝑗

(𝑛V𝑚 )
1
,𝑛V𝑚
, . . . , 𝑋

𝑗

(𝑛V𝑚 )
𝑙𝑖
,𝑛V𝑚
}

ℶ
2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

= [√𝑞
𝑚𝑛1

(1 − 𝜋
𝑘
(𝑛1)

𝑖
) ⋅ ⋅ ⋅ √𝑞

𝑚𝑛V𝑚
(1 − 𝜋

𝑘
(𝑛V𝑚 )

𝑖
)]

⋅ (𝐴
𝑖
𝑋
𝑖,𝑚
+ 𝐵
𝑖
𝑌
𝑖,𝑚
)
𝑇

X
2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘
= diag {𝑋

𝑗
(𝑛1) ,𝑛

, . . . , 𝑋
𝑗
(𝑛V𝑚 ) ,𝑛}

ℶ
3

𝑚,N𝑖
𝑘

(n) = [√(1 − 𝑞
𝑘

𝑚
) 𝜋
(n)
𝑖𝑗1

⋅ ⋅ ⋅ √(1 − 𝑞
𝑘

𝑚
) 𝜋
(n)
𝑖𝑗𝑙𝑖

]

⋅ (𝐴
𝑖
𝑋
𝑖,𝑚
+ 𝐵
𝑖
𝑌
𝑖,𝑚
)
𝑇

X
3

𝑚,N𝑖
𝑘

(n) = diag {𝑋
𝑗1,n, . . . , 𝑋𝑗𝑙𝑖 ,n

}

ℶ
4

𝑖,𝑚,j,n = √(1 − 𝑞
𝑘

𝑚
) (1 − 𝜋

𝑘
(n)

𝑖
) (𝐴
𝑖
𝑋
𝑖,𝑚
+ 𝐵
𝑖
𝑌
𝑖,𝑚
)
𝑇

.

(19)

Moreover, if the above LMIs are feasible, the stabilising con-
troller gain is given by

𝐾
𝑖,𝑚
= 𝑌
𝑖,𝑚
𝑋
−1

𝑖,𝑚
. (20)

Proof. Considering the closed-loop system (17), based on
Theorem 4, it is easy to see that the closed-loop system (17)
is stochastically stable if the following LMIs hold:

𝐴
𝑇

𝑖,𝑚

{{

{{

{

∑

𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛

[
[

[

∑

𝑗∈N𝑖
𝑘

(𝑛)

𝜋
(𝑛)

𝑖𝑗
𝑃
𝑗,𝑛
+ (1 − 𝜋

𝑘
(𝑛)

𝑖
)𝑃
𝑗
(𝑛)
,𝑛

]
]

]

+ (1 − 𝑞
𝑘

𝑚
)
[
[

[

∑

𝑗∈N𝑖
𝑘

(n)

𝜋
(n)
𝑖𝑗
𝑃
𝑗,n + (1 − 𝜋

𝑘
(n)

𝑖
)𝑃j,n

]
]

]

}}

}}

}
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⋅ 𝐴
𝑖,𝑚
− 𝑃
𝑖,𝑚
< 0, 𝑗

(𝑛)

∈N
𝑖

𝑢𝑘

(𝑛)

j ∈N
𝑖

𝑢𝑘

(n) n ∈M
𝑚

𝑢𝑘
,

(21)

where 𝑞
𝑚𝑛

∈ {𝑞
𝑚𝑛

, 𝑞
𝑚𝑛
}, 𝜋(𝑛)
𝑖𝑗

∈ {𝜋
(𝑛)

𝑖𝑗
, 𝜋
(𝑛)

𝑖𝑗
}, 𝜋𝑘

(𝑛)

𝑖
=

∑
𝑗∈N𝑖
𝑘

(𝑛) 𝜋
(𝑛)

𝑖𝑗
, and 𝑞𝑘

𝑚
= ∑
𝑛∈M𝑚
𝑘

𝑞
𝑚𝑛
.

Noticing Remark 1, by using Schur complement lemma,
(21) is equivalent to

[
[
[
[
[
[
[
[
[

[

−𝑃
𝑖,𝑚

ℸ
1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

ℸ
2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

ℸ
3

𝑚,N𝑖
𝑘

(n) ℸ
4

𝑖,𝑚,j,n

∗ −P1
N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

0 0 0

∗ ∗ −P2
M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

0 0

∗ ∗ ∗ −P3
𝑚,N𝑖
𝑘

(n) 0

∗ ∗ ∗ ∗ −𝑃j,n

]
]
]
]
]
]
]
]
]

]

< 0, 𝑗
(𝑛)

∈N
𝑖

𝑢𝑘

(𝑛) j ∈N
𝑖

𝑢𝑘

(n) n ∈M
𝑚

𝑢𝑘
,

(22)

where

ℸ
1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

= [ √𝑞𝑚𝑛1
𝜋
(𝑛1)

𝑖,𝑗
(𝑛1)

1

𝐴
𝑇

𝑖,𝑚
𝑃
𝑗
(𝑛1)

1
,𝑛1

⋅ ⋅ ⋅ √𝑞𝑚𝑛1
𝜋
(𝑛1)

𝑖,𝑗
(𝑛1)

𝑙𝑖

𝐴
𝑇

𝑖,𝑚
𝑃
𝑗
(𝑛1)

𝑙𝑖
,𝑛1

⋅ ⋅ ⋅ √𝑞𝑚𝑛V𝑚
𝜋
(𝑛V𝑚 )

𝑖,𝑗

(𝑛V𝑚 )
1

𝐴
𝑇

𝑖,𝑚
𝑃
𝑗

(𝑛V𝑚 )
1
,𝑛V𝑚

⋅ ⋅ ⋅ √𝑞𝑚𝑛V𝑚
𝜋
(𝑛V𝑚 )

𝑖,𝑗

(𝑛V𝑚 )
𝑙𝑖

𝐴
𝑇

𝑖,𝑚
𝑃
𝑗

(𝑛V𝑚 )
𝑙𝑖
,𝑛V𝑚

]

P
1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

= diag{𝑃
𝑗
(𝑛1)

1
,𝑛1

, . . . , 𝑃
𝑗
(𝑛1)

𝑙𝑖
,𝑛1

, . . . ,

𝑃
𝑗

(𝑛V𝑚 )
1
,𝑛V𝑚
, . . . , 𝑃

𝑗

(𝑛V𝑚 )
𝑙𝑖
,𝑛V𝑚
}

ℸ
2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘
= [√𝑞

𝑚𝑛1
(1 − 𝜋

𝑘
(𝑛1)

𝑖
)𝐴
𝑇

𝑖,𝑚
𝑃
𝑗
(𝑛1) ,𝑛

⋅ ⋅ ⋅ √𝑞
𝑚𝑛V𝑚

(1 − 𝜋
𝑘
(𝑛V𝑚 )

𝑖
)𝐴
𝑇

𝑖,𝑚
𝑃
𝑗
(𝑛V𝑚 ) ,𝑛 ]

P
2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘
= diag {𝑃

𝑗
(𝑛1) ,𝑛

, . . . , 𝑃
𝑗
(𝑛V𝑚 ) ,𝑛}

ℸ
3

𝑚,N𝑖
𝑘

(n) = [√(1 − 𝑞
𝑘

𝑚
) 𝜋
(n)
𝑖𝑗1

𝐴
𝑇

𝑖,𝑚
𝑃
𝑗1 ,n

⋅ ⋅ ⋅ √(1 − 𝑞
𝑘

𝑚
) 𝜋
(n)
𝑖𝑗𝑙𝑖

𝐴
𝑇

𝑖,𝑚
𝑃
𝑗𝑙𝑖
,n ]

P
3

𝑚,N𝑖
𝑘

(n) = diag {𝑃
𝑗1 ,n, . . . , 𝑃𝑗𝑙𝑖 ,n

}

ℸ
4

𝑖,𝑚,j,n = √(1 − 𝑞
𝑘

𝑚
) (1 − 𝜋

𝑘
(n)

𝑖
)𝐴
𝑇

𝑖,𝑚
𝑃j,n.

(23)

Denote that X1
N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

= (P1
N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

)
−1, X2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

=

(P2
M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

)
−1, X3

𝑚,N𝑖
𝑘

(n) = (P3
𝑚,N𝑖
𝑘

(n))
−1, 𝑋
𝑖,𝑚

= 𝑃
𝑖,𝑚
, and

𝑋j,n = (𝑃j,n)
−1, then multiply (22) by diag{𝑋

𝑖,𝑚
,X1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

,

X2
M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

,X3
𝑚,N𝑖
𝑘

(n) , 𝑋j,n} and its transpose on both sides, and
apply the change of variable 𝑌

𝑖,𝑚
= 𝐾
𝑖,𝑚
𝑋
𝑖,𝑚
, and (18) is

obtained readily. Therefore, if (18) holds, the underlying sys-
tem is stochastically stable. Meanwhile, the desired controller
gain is given by (20).

In the following, a mode-dependent and variation-
dependent static output feedback controller will be designed
such that the closed-loop system is stochastically stable. The
mode-dependent and variation-dependent static feedback
controller in the following form is designed:

𝑢 (𝑘) = 𝐹
𝑟𝑘,𝜎𝑘

𝑦 (𝑘) , (24)

where 𝐹
𝑟𝑘,𝜎𝑘

for 𝑟
𝑘
∈N, 𝜎

𝑘
∈M are the controller gains to be

determined. Using (1), the closed-loop system is represented
as

𝑥 (𝑘 + 1) = (𝐴
𝑖
+ 𝐵
𝑖
𝐹
𝑖,𝑚
𝐶
𝑖
) 𝑥 (𝑘) = �̌�

𝑖,𝑚
𝑥 (𝑘) . (25)

Theorem 10. The closed-loop system (25) with imperfect TPs
(2) and (4) is stochastically stable if there exist a set of scalars
𝛼
𝑖,𝑚

> 0 and a set of positive definite matrices 𝑋
𝑖,𝑚

and
nonsingular𝑍

𝑖,𝑚
,𝐻
𝑖,𝑚
, and𝑊

𝑖,𝑚
, such that the following LMIs

hold for each 𝑖 ∈N,𝑚 ∈M:

[
[
[
[
[
[
[
[
[

[

ϝ
𝑖,𝑚

ℷ
1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

ℷ
2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

ℷ
3

𝑚,N𝑖
𝑘

(n) ℷ
4

𝑖,𝑚,j,n

∗ −X1
N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

0 0 0

∗ ∗ −X2
M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

0 0

∗ ∗ ∗ −X3
𝑚,N𝑖
𝑘

(n) 0

∗ ∗ ∗ ∗ −𝑋j,n

]
]
]
]
]
]
]
]
]

]

< 0, 𝑗
(𝑛)

∈N
𝑖

𝑢𝑘

(𝑛) j ∈N
𝑖

𝑢𝑘

(n) n ∈M
𝑚

𝑢𝑘

(26)

𝐶
𝑖
𝐻
𝑖,𝑚
= 𝑊
𝑖,𝑚
𝐶
𝑖
, (27)

where the parameters share the same meaning withTheorem 9
and

ϝ
𝑖,𝑚
= 𝛼
2

𝑖,𝑚
𝑋
𝑖,𝑚
− 𝛼
𝑖,𝑚
𝐻
𝑇

𝑖,𝑚
− 𝛼
𝑖,𝑚
𝐻
𝑖,𝑚

ℷ
1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

= [ √𝑞𝑚𝑛1
𝜋
(𝑛1)

𝑖,𝑗
(𝑛1)

1

⋅ ⋅ ⋅ √𝑞𝑚𝑛1
𝜋
(𝑛1)

𝑖,𝑗
(𝑛1)

𝑙𝑖

⋅ ⋅ ⋅ √𝑞𝑚𝑛V𝑚
𝜋
(𝑛V𝑚 )

𝑖,𝑗

(𝑛V𝑚 )
1

⋅ ⋅ ⋅ √𝑞𝑚𝑛V𝑚
, 𝜋
(𝑛V𝑚 )

𝑖,𝑗

(𝑛V𝑚 )
𝑙𝑖

] (𝐴
𝑖
𝐻
𝑖,𝑚
+ 𝐵
𝑖
𝑍
𝑖,𝑚
𝐶
𝑖,𝑚
)
𝑇
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X
1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

= diag{𝑋
𝑗
(𝑛1)

1
,𝑛1

, . . . , 𝑋
𝑗
(𝑛1)

𝑙𝑖
,𝑛1

, . . . ,

𝑋
𝑗

(𝑛V𝑚 )
1
,𝑛V𝑚
, . . . , 𝑋

𝑗

(𝑛V𝑚 )
𝑙𝑖
,𝑛V𝑚
}

ℷ
2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

= [√𝑞
𝑚𝑛1

(1 − 𝜋
𝑘
(𝑛1)

𝑖
) ⋅ ⋅ ⋅ √𝑞

𝑚𝑛V𝑚
(1 − 𝜋

𝑘
(𝑛V𝑚 )

𝑖
)]

⋅ (𝐴
𝑖
𝐻
𝑖,𝑚
+ 𝐵
𝑖
𝑍
𝑖,𝑚
𝐶
𝑖,𝑚
)
𝑇

X
2

M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘
= diag {𝑋

𝑗
(𝑛1) ,𝑛

, . . . , 𝑋
𝑗
(𝑛V𝑚 ) ,𝑛}

ℷ
3

𝑚,N𝑖
𝑘

(n) = [√(1 − 𝑞
𝑘

𝑚
) 𝜋
(n)
𝑖𝑗1

⋅ ⋅ ⋅ √(1 − 𝑞
𝑘

𝑚
) 𝜋
(n)
𝑖𝑗𝑙𝑖

]

⋅ (𝐴
𝑖
𝐻
𝑖,𝑚
+ 𝐵
𝑖
𝑍
𝑖,𝑚
𝐶
𝑖,𝑚
)
𝑇

X
3

𝑚,N𝑖
𝑘

(n) = diag {𝑋
𝑗1 ,n, . . . , 𝑋𝑗𝑙𝑖 ,n

}

ℷ
4

𝑖,𝑚,j,n = √(1 − 𝑞
𝑘

𝑚
) (1 − 𝜋

𝑘
(n)

𝑖
) (𝐴
𝑖
𝐻
𝑖,𝑚
+ 𝐵
𝑖
𝑍
𝑖,𝑚
𝐶
𝑖,𝑚
)
𝑇

.

(28)

Moreover, if the above LMIs are feasible, the stabilising con-
troller gain is given by

𝐹
𝑖,𝑚
= 𝑍
𝑖,𝑚
𝑊
−1

𝑖,𝑚
. (29)

Proof. Note that the closed-loop system (25) is stochastically
stable if (22) holds for 𝑖 ∈ N, 𝑚 ∈ M, where 𝐴

𝑖,𝑚

is replaced by �̌�
𝑖,𝑚
. Multiply (22) by diag{𝐻𝑇

𝑖,𝑚
,X1

N𝑖
𝑘

(𝑛)
,M𝑚
𝑘

,

X2
M𝑚
𝑘
,𝑖,𝑗

M𝑚
𝑘

,X3
𝑚,N𝑖
𝑘

(n) , 𝑋j,n} and its transpose on both sides.

Since −𝐻𝑇
𝑖,𝑚
𝑋
−1

𝑖,𝑚
𝐻
𝑖,𝑚
≤ 𝛼
2

𝑖,𝑚
𝑋
𝑖,𝑚
− 𝛼
𝑖,𝑚
𝐻
𝑇

𝑖,𝑚
− 𝛼
𝑖,𝑚
𝐻
𝑖,𝑚
, using

(27) and applying the change of variable𝑍
𝑖,𝑚
= 𝐹
𝑖,𝑚
𝑊
𝑖,𝑚
, (26)

is obtained easily. Meanwhile, the desired controller gain is
given by (29).

Remark 11. Here an additional slack matrix 𝐻
𝑖,𝑚

is intro-
duced. The advantages of introduction of the slack matrix
𝐻
𝑖,𝑚

are twofold: one is that it makes the equality constraint
and the gain independent of Lyapunov matrix; the other is
that the previous results by using equality constraint𝐶

𝑖
𝑋
𝑖,𝑚
=

𝑊
𝑖,𝑚
𝐶
𝑖
can be regarded as a special case of the obtained

results. Actually, if we take 𝛼
𝑖,𝑚

= 1 and 𝐻
𝑖,𝑚

= 𝑋
𝑖,𝑚
,

Theorem 10 reduces to that by using equality constraint
𝐶
𝑖
𝑋
𝑖,𝑚

= 𝑊
𝑖,𝑚
𝐶
𝑖
. Thus, compared with the results based

on equality constraint 𝐶
𝑖
𝑋
𝑖,𝑚

= 𝑊
𝑖,𝑚
𝐶
𝑖
, the solvability

of (26) and (27) is much larger; as a result, Theorem 10
is less conservative than that with equality constraint on
Lyapunovmatrices. Besides, a numerical comparison ismade
in Example 4 in order to further verify this point.

Condition (27)may be difficult to be solved using the LMI
toolbox of MATLAB. To overcome this drawback, replace

the condition by the following one that may approximate
constraint (27):

(𝐶
𝑖
𝐻
𝑖,𝑚
−𝑊
𝑖,𝑚
𝐶
𝑖
) (𝐶
𝑖
𝐻
𝑖,𝑚
−𝑊
𝑖,𝑚
𝐶
𝑖
)
𝑇

≤ 𝛽
𝑖,𝑚
𝐼, (30)

where 𝛽
𝑖,𝑚

is a given sufficiently small positive scalar. By
Schur complement, (30) is equivalent to the following LMI:

[

−𝛽
𝑖,𝑚
𝐼 𝐶
𝑖
𝐻
𝑖,𝑚
−𝑊
𝑖,𝑚
𝐶
𝑖

∗ −𝐼
] < 0. (31)

4. Numerical Examples

In this section, four examples are given to show the validity
of the proposed method. Firstly, an example is presented
in which state feedback controller is used to stabilize the
considered system.

Example 1. Consider the discrete-timeMarkov jump systems
(1) with 3 TPs matrices and 3 operation modes; the detailed
data is shown as

𝐴
1
=
[
[

[

0.2 0.8 0.5

−0.5 0.6 0

1.2 1.5 0.7

]
]

]

, 𝐴
2
=
[
[

[

0.7 0.5 1.1

0.8 1.8 0.7

0.6 1.7 0.5

]
]

]

,

𝐴
3
=
[
[

[

−1.2 0.4 0.2

1.5 0.2 −1.2

0.6 0.3 −0.9

]
]

]

, 𝐵
1
=
[
[

[

0.3 0

0.4 0.2

0.4 0.5

]
]

]

,

𝐵
2
=
[
[

[

0 0.5

0.3 0.5

0 0.2

]
]

]

, 𝐵
3
=
[
[

[

1.2 1.1

−0.1 0.3

0.3 0

]
]

]

.

(32)

Here the imperfect TPs matrices are described as

𝑄 =
[
[

[

𝑞
11

? ?

? ? 0.2

0.2 0.5 0.3

]
]

]

, (33)

Π
(1)

=

[
[
[

[

0.7 ? ?

0.3 ? ?

? ? 𝜋
(1)

33

]
]
]

]

,

Π
(2)

=
[
[

[

? 0.4 ?

0.3 0.2 0.5

? 0.2 ?

]
]

]

, Π
(3)

=

[
[
[

[

? ? 0.7

? 𝜋
(3)

22
?

0.4 ? ?

]
]
]

]

,

(34)
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Figure 1: A variation of TP matrices (34) subject to HTPs matrix (33) and a path of modes evolution.

where 𝑞
11
∈ [0.3, 0.4], 𝜋(1)

33
∈ [0.4, 0.5], and 𝜋(3)

22
∈ [0.4, 0.6].

By solving (18), the resulting state feedback controller gains
are

𝐾
11
= [

1.1683 −1.6365 −0.5721

−2.8367 −1.4112 −0.6453
] ,

𝐾
12
= [

1.1709 −1.6350 −0.5705

−2.8319 −1.4086 −0.6424

] ,

𝐾
13
= [

1.2071 −1.6147 −0.5489

−2.8516 −1.4196 −0.6542

] ,

𝐾
21
= [

0.0771 −2.4094 1.4103

−1.6320 −2.0875 −2.2440

] ,

𝐾
22
= [

0.0092 −2.3164 1.2299

−1.5012 −1.9318 −2.0601
] ,

𝐾
23
= [

0.0742 −2.4228 1.4098

−1.6320 −2.0875 −2.2435
] ,

𝐾
31
= [

2.7246 0.1961 −2.8475

−4.1139 −0.6251 3.1598
] ,

𝐾
32
= [

2.7243 0.1937 −2.8459

−4.1136 −0.6224 3.1472
] ,

𝐾
33
= [

2.7269 0.1961 −2.8577

−4.1165 −0.6251 3.1598
] .

(35)

The purpose here is to design a mode-dependent and
variation-dependent stabilizing controller of the form of (16)

such that the resulting closed-loop system (17) is stochasti-
cally stable with the HTPs matrix (33) and TPs matrices (34).
Using the LMI toolbox in MATLAB, the controller gains are
calculated, which are shown above. A case for variation of TPs
matrices and variation of modes according to (33) and (34)
(illustrated in Figure 1) is given. With the controller, system
responses are shown in Figure 2, where initial condition is
(𝑥
0
, 𝑟
0
, 𝜎
0
) = ([0.5, 1.0, −1.0]

𝑇

, 1, 1). It can be seen from
Figure 2 that the open-loop system is diverging; after applying
the controller to the open-loop system, the resulting closed-
loop system is stochastically stable.

Next, an example which shows that the resulting closed-
loop system is stochastically stable by using static output
feedback controller will be given.

Example 2. Consider the discrete-timeMarkov jump systems
(1) with 3 TPs matrices and 3 operation modes; the parame-
ters are given by

𝐴
1
=
[
[

[

0.2 0.8 0.5

−0.5 0.6 0

1.2 0.5 0.7

]
]

]

, 𝐴
2
=
[
[

[

0.7 0.5 1.1

0.8 1.8 0.7

0.6 1.7 0.5

]
]

]

,

𝐴
3
=
[
[

[

0.2 0.4 0.2

0.3 0.2 −0.2

0.6 0.3 −0.9

]
]

]

, 𝐵
1
=
[
[

[

0.3 0

0.4 0.2

0.4 0.5

]
]

]

,

𝐵
2
=
[
[

[

0 0.5

0.3 0.5

0 0.2

]
]

]

, 𝐵
3
=
[
[

[

1.2 1.1

−0.1 0.3

0.3 0

]
]

]

,

𝐶
1
= [−0.5, 0.3, 0.2] , 𝐶

2
= [0.3, −0.9, 0.5] ,

𝐶
3
= [−0.4, −1.5, 0.3] .

(36)



Mathematical Problems in Engineering 9

0 10 20 30 40 50 60 70 80

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

−0.5

t (s)

Tr
aj

ec
to

rie
s o

f s
ta

te
 in

 o
pe

n-
lo

op
 sy

ste
m

×10
10

0 10 20 30 40 50 60 70 80

0.2

0.15

0.1

0.05

0

−0.05

−0.1

−0.15

Tr
aj

ec
to

rie
s o

f s
ta

te
 in

 cl
os

ed
-lo

op
 sy

ste
m

t (s)

x1

x2

x3 x1

x2

x3

Figure 2: System response with imperfect TPs matrices (34) and (33).

Here imperfect TPs matrices are the same as Example 1. By
taking 𝛽

𝑖,𝑚
= 0.00001 and solving (26) and (31), the resulting

static output feedback controller gains are

𝐹
11
= [

−3.6310

−4.3705
] , 𝐹

12
= [

−3.6267

−4.2942
] ,

𝐹
13
= [

−3.7754

−4.4359
] , 𝐹

21
= [

−0.3317

−4.4359
] ,

𝐹
22
= [

−0.8459

−0.5463
] , 𝐹

23
= [

−0.9051

−0.5594
] ,

𝐹
31
= [

−0.4350

−0.6934
] , 𝐹

32
= [

−0.6628

−0.8610
] ,

𝐹
33
= [

−0.6990

−0.9155
] .

(37)

Take initial condition 𝑥
0
= [0.5, −1.0, 1.0]

𝑇. It is seen from
Figure 3 that the open-loop system is diverging, whereas,
after applying the controller to the open-loop system, the
resulting closed-loop system is stochastically stable.

Remark 3. It is obtained from the Examples 1 and 2 that,
compared with previous results, the conditions on stability
and stabilisation proposed in the paper can solve the case
where each element of HTPs and TPs can be completely
unknown or only its upper and lower bound are known, but
the result in [19] only deals with the case where HTPs are
partly unknown. Therefore, the methods in the paper are
more effective.

In the sequel, wewill show the less conservativeness of the
proposed method than some existing results; furthermore,

we also check how the stabilization region is effected by the
acquisition of knowledge about the transition probabilities.

Example 4. Consider the discrete-timeMarkov jump systems
(1) with the following parameters:

𝐴
1
= [

𝑎 −1.8

0.5 −2.6
] , 𝐴

2
= [

3.7 −2.5

𝑏 −2.8
] ,

𝐵
1
= [

0.3

𝑎
] , 𝐵

2
= [

1.0

𝑏
] ,

(38)

where 𝑎 ∈ [−3, 3], 𝑏 ∈ [−2.5, 2]. Here imperfect TPs matrices
are described as

𝑄 =
[
[

[

0.3 ? ?

? 0.5 ?

0.2 0.4 0.4

]
]

]

, (39)

Π
(1)

= [

0.3 0.7

0.8 0.2
] ,

Π
(2)

= [

0.4 0.6

0.6 0.4
] , Π

(3)

= [

0.1 0.9

0.7 0.3
] .

(40)

The stability of systems (1) can be checked using Corollary
7 in this paper and the result in [19], for different values of
pairs (𝑎, 𝑏). The result is depicted in Figure 4 and reveals that
Corollary 7 in the paper is less conservative than the result in
[19].
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Figure 3: System responses with imperfect TPs matrices (34) and (33).
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Figure 4: Stability region with Corollary 7 in the paper (blue o) and
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Figure 5: Stabilisation regions on systems with HTP matrix (39)
(blue o) and systems with HTP matrix (41) (red ∗).

The HTPs matrix in (39) is extended to the following
form:

𝑄 =
[
[

[

𝑞
11

? ?

? 𝑞
22

?

0.2 0.4 0.4

]
]

]

, (41)

where 𝑞
11
∈ [0.2, 0.4], 𝑞

22
∈ [0.4, 0.6].

It is seen that, in the HTPs matrix (41), some known
elements in the HTPs matrix (39) become such that only
upper and lower bounds of them are known. In Figure 5,
“red ∗” indicates that 𝑞

11
takes any value between 0.2 to

0.4 and 𝑞
22

takes any value between 0.4 and 0.6; there
is the same state feedback controller such that close-loop
system is stochastically stable, so the controller has a certain
robustness. When we take 𝑞

11
= 0.3, 𝑞

22
= 0.5, the HTPs

matrix (41) reduces to HTPs matrix (39). Compared with
the HTPs matrix (39), stabilisation region of the system with
HTPs matrix (41) is reduced due to more knowledge of
elements in the HTPs matrix.

The TPs matrix Π(𝑛) in (40) is extended to the following
form:

Π
(1)

= [

0.3 0.7

0.8 0.2
] , Π

(2)

= [

? ?

0.6 0.4
] ,

Π
(3)

= [

0.1 0.9

? ?
] .

(42)

It can be seen from Figure 6 that Theorem 9 can handle
the case where TPs are partly unknown simultaneously. That
the first row of Π(2) in (40) is unknown indicates the jump
from mode 1 to mode 1 and mode 2 is not random but
arbitrary. Π(3) is analogous. Compared with the TPs matrix
(40), stabilisation region of the system with TPs matrix (42)
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Figure 6: Stabilisation regions on systems with TPs matrices (40)
(blue o) and systems with TPs matrices (42) (red x).
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Figure 7: Stabilisation regions on TPs matrices (42) and (41) (blue
o) and TPs matrices (40) and (39) (green ∗).

is reduced due to more knowledge of elements in the TPs
matrices.

Now, we consider the joint effect of imperfect TPs matri-
ces (41) and (42) on the stabilisation region, which contains
the above two case.Therefore, in Figure 7, stabilisation region
of the system in the case of imperfect TPs matrices (41) and
(42) contains that in the case of imperfect TPs matrices (39)
and (40).

In particular, in order to illustrate the role of the slack
matrix𝐻

𝑖,𝑚
variables shown in Remark 11, the corresponding

stabilisation regions with and without using these slack
variables are plotted in Figure 8, from which it is known that
the use of these slack variables can reduce the conservatism
of the previous approach.

From Example 4, it is easily seen that the more accurate
transition probability knowledge the system has, the bigger

b
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−1
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−2
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Figure 8: Stabilisation regions on systems with (green ∗) and
without (red o) slack matrix𝐻

𝑖,𝑚
.

the region of stabilisation is, in other words, the more easily
the system can be stabilized.

In the end of this section, a practical example ofDCmotor
is provided.

Example 5. ADCmotor device [21] driving an inertial load is
considered. By themethods in [21], theDCmotor description
is expressed by the following model:

𝑥
𝑘+1

= 𝐴
𝑟𝑘
𝑥
𝑘
+ 𝐵
𝑟𝑘
𝑢
𝑘

𝑦
𝑘
= 𝐶
𝑟𝑘
𝑥
𝑘
,

(43)

where the parameters 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 = 1, 2, 3, of DC motor device

are borrowed in [21] as

𝐴
1
= [

−0.479908 5.1546

−3.81625 14.4723
] ,

𝐴
2
= [

−1.60261 9.1632

−0.5918697 3.0317
] ,

𝐴
3
= [

0.634617 0.917836

−0.50569 2.48116
] ,

𝐵
1
= [5.87058212 15.50107]

𝑇

,

𝐵
2
= [10.285129 2.2282663]

𝑇

,

𝐵
3
= [0.7874647 1.5302844]

𝑇

,

(44)

and the parameters are given as

𝐶
1
= [0 5.2] ,

𝐶
2
= [−0.1 0.6] ,

𝐶
3
= [0 1] .

(45)
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Figure 9: DC motor device responses with imperfect TPs matrices (34) and (33).

Here imperfect TPs matrices are the same as Example 1.
By solving (18), the resulting state feedback controller gains
are

𝐾
11
= [0.2472 −0.9340] ,

𝐾
12
= [0.2452 −0.9333] ,

𝐾
13
= [0.2486 −0.9344] ,

𝐾
21
= [0.1602 −0.9145] ,

𝐾
22
= [0.1440 −0.8231] ,

𝐾
23
= [0.1603 −0.9150] ,

𝐾
31
= [0.3318 −1.6219] ,

𝐾
32
= [0.3113 −1.6137] ,

𝐾
33
= [0.2978 −1.6083] .

(46)

By taking 𝛽
𝑖,𝑚

= 0.00001 and solving (26) and (31), the
resulting static output feedback controller gains are

𝐹
11
= −0.1830,

𝐹
12
= −0.1856,

𝐹
13
= −0.1867,

𝐹
21
= −1.2011,

𝐹
22
= −1.4202,
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𝐹
23
= −1.4301,

𝐹
31
= −1.3868,

𝐹
32
= −1.4263,

𝐹
33
= −1.4170.

(47)

The initial condition is supposed to be 𝑥
0
= [1.5, −0.1]

𝑇. It is
seen from Figure 9 that the open-loop system is diverging,
whereas, after applying the controllers to the open-loop
system, the resulting closed-loop systems are stochastically
stable.

5. Conclusions

This paper has considered the stochastic stability and stabil-
isation problems for discrete-time piecewise homogeneous
Markov jump linear systems with imperfect TPs. A new
less conservative condition for stochastic stability has been
proposed by virtue of LMI technique. Based on the stability
result, the stabilising state feedback controllers and static
output feedback controllers are constructed through the
explicit solutions of LMIs. At last, several numerical examples
are given. Examples 1 and 2 show that the obtained results can
deal with the more general uncertain transition probability
than [19]; a comparisonwith [19] ismade in Example 4, which
illustrates the less conservative property of the obtained
result, and furthermore, from Example 4, it can be informed
that the more accurate transition probability knowledge the
system has, the bigger the region of stabilisation is. Example
5 shows that the proposed results in this paper can be used to
deal with the stabilisation probability of the DC motor.
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