406 research outputs found

    State Estimation of Timed Discrete Event Systems and Its Applications

    Get PDF
    Many industrial control systems can be described as discrete event systems (DES), whose state space is a discrete set where event occurrences cause transitions from one state to another. Timing introduces an additional dimension to DES modeling and control. This dissertation provides two models of timed DES endowed with a single clock, namely timed finite automata (TFA) and generalized timed finite automata (GTFA). In addition, a timing function is defined to associate each transition with a time interval specifying at which clock values it may occur. While the clock of a TFA is reset to zero after each event occurs and the time semantics constrain the dwell time at each discrete state, there is an additional clock resetting function associated with a GTFA to denote whether the clock is reset to a value in a given closed time interval. We assume that the logical and time structure of a partially observable TFA/GTFA is known. The main results are summarized as follows. 1. The notion of a zone automaton is introduced as a finite automaton providing a purely discrete event description of the behaviour of a TFA/GTFA of interest. Each state of a zone automaton contains a discrete state of the timed DES and a zone that is a time interval denoting a range of possible clock values. We investigate the dynamics of a zone automaton and show that one can reduce the problem of investigating the reachability of a given timed DES to the reachability analysis of a zone automaton. 2. We present a formal approach that allows one to construct offline an observer for TFA/GTFA, i.e., a finite structure that describes the state estimation for all possible evolutions. During the online phase to estimate the current discrete state according to each measurement of an observable event, one can determine which is the state of the observer reached by the current observation and check to which interval (among a finite number of time intervals) the time elapsed since the last observed event occurrence belongs. We prove that the discrete states consistent with a timed observation and the range of clock values associated with each estimated discrete state can be inferred following a certain number of runs in the zone automaton. In particular, the state estimation of timed DES under multiple clocks can be investigated in the framework of GTFA. We model such a system as a GTFA with multiple clocks, which generalizes the timing function and the clock resetting function to multiple clocks. 3. As an application of the state estimation approach for TFA, we assume that a given TFA may be affected by a set of faults described using timed transitions and aim at diagnosing a fault behaviour based on a timed observation. The problem of fault diagnosis is solved by constructing a zone automaton of the TFA with faults and a fault recognizer as the parallel composition of the zone automaton and a fault monitor that recognizes the occurrence of faults. We conclude that the occurrence of faults can be analyzed by exploring runs in the fault recognizer that are consistent with a given timed observation. 4. We also study the problem of attack detection in the context of DESs, assuming that a system may be subject to multiple types of attacks, each described by its own attack dictionary. Furthermore, we distinguish between constant attacks, which corrupt observations using only one of the attack dictionaries, and switching attacks, which may use different attack dictionaries at different steps. The problem we address is detecting whether a system has been attacked and, if so, which attack dictionaries have been used. To solve it in the framework of untimed DES, we construct a new structure that describes the observations generated by a system under attack. We show that the attack detection problem can be transformed into a classical state estimation/diagnosis problem for these new structures

    VERIFICATION AND APPLICATION OF DETECTABILITY BASED ON PETRI NETS

    Get PDF
    In many real-world systems, due to limitations of sensors or constraints of the environment, the system dynamics is usually not perfectly known. However, the state information of the system is usually crucial for the purpose of decision making. The state of the system needs to be determined in many applications. Due to its importance, the state estimation problem has received considerable attention in the discrete event system (DES) community. Recently, the state estimation problem has been studied systematically in the framework of detectability. The detectability properties characterize the possibility to determine the current and the subsequent states of a system after the observation of a finite number of events generated by the system. To model and analyze practical systems, powerful DES models are needed to describe the different observation behaviors of the system. Secondly, due to the state explosion problem, analysis methods that rely on exhaustively enumerating all possible states are not applicable for practical systems. It is necessary to develop more efficient and achievable verification methods for detectability. Furthermore, in this thesis, efficient detectability verification methods using Petri nets are investigated, then detectability is extended to a more general definition (C-detectability) that only requires that a given set of crucial states can be distinguished from other states. Formal definitions and efficient verification methods for C-detectability properties are proposed. Finally, C-detectability is applied to the railway signal system to verify the feasibility of this property: 1. Four types of detectability are extended from finite automata to labeled Petri nets. In particular, strong detectability, weak detectability, periodically strong detectability, and periodically weak detectability are formally defined in labeled Petri nets. 2. Based on the notion of basis reachability graph (BRG), a practically efficient approach (the BRG-observer method) to verify the four detectability properties in bounded labeled Petri nets is proposed. Using basis markings, there is no need to enumerate all the markings that are consistent with an observation. It has been shown by other researchers that the size of the BRG is usually much smaller than the size of the reachability graph (RG). Thus, the method improves the analysis efficiency and avoids the state space explosion problem. 3. Three novel approaches for the verification of the strong detectability and periodically strong detectability are proposed, which use three different structures whose construction has a polynomial complexity. Moreover, rather than computing all cycles of the structure at hand, which is NP-hard, it is shown that strong detectability can be verified looking at the strongly connected components whose computation also has a polynomial complexity. As a result, they have lower computational complexity than other methods in the literature. 4. Detectability could be too restrictive in real applications. Thus, detectability is extended to C-detectability that only requires that a given set of crucial states can be distinguished from other states. Four types of C-detectability are defined in the framework of labeled Petri nets. Moreover, efficient approaches are proposed to verify such properties in the case of bounded labeled Petri net systems based on the BRG. 5. Finally, a general modeling framework of railway systems is presented for the states estimation using labeled Petri nets. Then, C-detectability is applied to railway signal systems to verify its feasibility in the real-world system. Taking the RBC handover procedure in the Chinese train control system level 3 (CTCS-3) as an example, the RBC handover procedure is modeled using labeled Petri nets. Then based on the proposed approaches, it is shown that that the RBC handover procedure satisfies strongly C-detectability

    Supervisory Control and Analysis of Partially-observed Discrete Event Systems

    Get PDF
    Nowadays, a variety of real-world systems fall into discrete event systems (DES). In practical scenarios, due to facts like limited sensor technique, sensor failure, unstable network and even the intrusion of malicious agents, it might occur that some events are unobservable, multiple events are indistinguishable in observations, and observations of some events are nondeterministic. By considering various practical scenarios, increasing attention in the DES community has been paid to partially-observed DES, which in this thesis refer broadly to those DES with partial and/or unreliable observations. In this thesis, we focus on two topics of partially-observed DES, namely, supervisory control and analysis. The first topic includes two research directions in terms of system models. One is the supervisory control of DES with both unobservable and uncontrollable events, focusing on the forbidden state problem; the other is the supervisory control of DES vulnerable to sensor-reading disguising attacks (SD-attacks), which is also interpreted as DES with nondeterministic observations, addressing both the forbidden state problem and the liveness-enforcing problem. Petri nets (PN) are used as a reference formalism in this topic. First, we study the forbidden state problem in the framework of PN with both unobservable and uncontrollable transitions, assuming that unobservable transitions are uncontrollable. For ordinary PN subject to an admissible Generalized Mutual Exclusion Constraint (GMEC), an optimal on-line control policy with polynomial complexity is proposed provided that a particular subnet, called observation subnet, satisfies certain conditions in structure. It is then discussed how to obtain an optimal on-line control policy for PN subject to an arbitrary GMEC. Next, we still consider the forbidden state problem but in PN vulnerable to SD-attacks. Assuming the control specification in terms of a GMEC, we propose three methods to derive on-line control policies. The first two lead to an optimal policy but are computationally inefficient for large-size systems, while the third method computes a policy with timely response even for large-size systems but at the expense of optimality. Finally, we investigate the liveness-enforcing problem still assuming that the system is vulnerable to SD-attacks. In this problem, the plant is modelled as a bounded PN, which allows us to off-line compute a supervisor starting from constructing the reachability graph of the PN. Then, based on repeatedly computing a more restrictive liveness-enforcing supervisor under no attack and constructing a basic supervisor, an off-line method that synthesizes a liveness-enforcing supervisor tolerant to an SD-attack is proposed. In the second topic, we care about the verification of properties related to system security. Two properties are considered, i.e., fault-predictability and event-based opacity. The former is a property in the literature, characterizing the situation that the occurrence of any fault in a system is predictable, while the latter is a newly proposed property in the thesis, which describes the fact that secret events of a system cannot be revealed to an external observer within their critical horizons. In the case of fault-predictability, DES are modeled by labeled PN. A necessary and sufficient condition for fault-predictability is derived by characterizing the structure of the Predictor Graph. Furthermore, two rules are proposed to reduce the size of a PN, which allow us to analyze the fault-predictability of the original net by verifying that of the reduced net. When studying event-based opacity, we use deterministic finite-state automata as the reference formalism. Considering different scenarios, we propose four notions, namely, K-observation event-opacity, infinite-observation event-opacity, event-opacity and combinational event-opacity. Moreover, verifiers are proposed to analyze these properties

    Une approche efficace pour l’étude de la diagnosticabilité et le diagnostic des SED modélisés par Réseaux de Petri labellisés : contextes atemporel et temporel

    Get PDF
    This PhD thesis deals with fault diagnosis of discrete event systems using Petri net models. Some on-the-fly and incremental techniques are developed to reduce the state explosion problem while analyzing diagnosability. In the untimed context, an algebraic representation for labeled Petri nets (LPNs) is developed for featuring system behavior. The diagnosability of LPN models is tackled by analyzing a series of K-diagnosability problems. Two models called respectively FM-graph and FM-set tree are developed and built on the fly to record the necessary information for diagnosability analysis. Finally, a diagnoser is derived from the FM-set tree for online diagnosis. In the timed context, time interval splitting techniques are developed in order to make it possible to generate a state representation of labeled time Petri net (LTPN) models, for which techniques from the untimed context can be used to analyze diagnosability. Based on this, necessary and sufficient conditions for the diagnosability of LTPN models are determined. Moreover, we provide the solution for the minimum delay ∆ that ensures diagnosability. From a practical point of view, diagnosability analysis is performed on the basis of on-the-fly building of a structure that we call ASG and which holds fault information about the LTPN states. Generally, using on-the-fly analysis and incremental technique makes it possible to build and investigate only a part of the state space, even in the case when the system is diagnosable. Simulation results obtained on some chosen benchmarks show the efficiency in terms of time and memory compared with the traditional approaches using state enumerationCette thèse s'intéresse à l'étude des problèmes de diagnostic des fautes sur les systèmes à événements discrets en utilisant les modèles réseau de Petri. Des techniques d'exploration incrémentale et à-la-volée sont développées pour combattre le problème de l'explosion de l'état lors de l'analyse de la diagnosticabilité. Dans le contexte atemporel, la diagnosticabilité de modèles RdP-L est abordée par l'analyse d'une série de problèmes K-diagnosticabilité. L'analyse de la diagnosticabilité est effectuée sur la base de deux modèles nommés respectivement FM-graph et FM-set tree qui sont développés à-la-volée. Un diagnostiqueur peut être dérivé à partir du FM-set tree pour le diagnostic en ligne. Dans le contexte temporel, les techniques de fractionnement des intervalles de temps sont élaborées pour développer représentation de l'espace d'état des RdP-LT pour laquelle des techniques d'analyse de la diagnosticabilité peuvent être utilisées. Sur cette base, les conditions nécessaires et suffisantes pour la diagnosticabilité de RdP-LT ont été déterminées. En pratique, l'analyse de la diagnosticabilité est effectuée sur la base de la construction à-la-volée d'une structure nommée ASG et qui contient des informations relatives à l'occurrence de fautes. D'une manière générale, l'analyse effectuée sur la base des techniques à-la-volée et incrémentale permet de construire et explorer seulement une partie de l'espace d'état, même lorsque le système est diagnosticable. Les résultats des simulations effectuées sur certains benchmarks montrent l'efficacité de ces techniques en termes de temps et de mémoire par rapport aux approches traditionnelles basées sur l'énumération des état

    Fourier-Motzkin methods for fault diagnosis in discrete event systems

    Get PDF
    The problem of fault diagnosis under partial observation is a complex problem; and the challenge to solve this problem is to find a compromise between the space complexity and time complexity. The classic method to solve the problem is by constructing an automaton called a diagnoser. This method suffers from the state explosion problem which limits its application to large systems. In this thesis, the problem of fault diagnosis in partially observed discrete event systems is addressed. We assume that the system is modelled by Petri nets having no cycle of unobservable transitions. The class of labelled Petri nets is also considered with both bounded and unbounded cases. We propose a novel approach for fault diagnosis using the Integer Fourier-Motzkin Elimination method. The main idea is to reduce the problem of constructing the diagnoser to a problem of projecting between two spaces. In other words, we first obtain a set of inequalities derived from the state equation of Petri nets. Then, the elimination method is used to drop the variables corresponding to the unobservable transitions and we design two sets of inequalities in variables representing the observable transitions. One set ensures that the fault has occurred, whereas the other ensures that fault has not occurred. Given these two sets, we have proved that the occurrences of faults can be decided as any other diagnoser can do. The obtained result are extended to diagnose violations of constraints such as service level agreement and Quality of Service, which is of particular interested in telecommunication companies. We implement our approach and demonstrate gains in performance with respect to existing approaches on a benchmark example

    Fault diagnosis of hybrid systems with applications to gas turbine engines

    Get PDF
    Stringent reliability and maintainability requirements for modern complex systems demand the development of systematic methods for fault detection and isolation. Many of such complex systems can be modeled as hybrid automata. In this thesis, a novel framework for fault diagnosis of hybrid automata is presented. Generally, in a hybrid system, two types of sensors may be available, namely: continuous sensors supplying continuous-time readings (i.e., real numbers) and threshold sensitive (discrete) sensors supplying discrete outputs (e.g., level high and pressure low). It is assumed that a bank of residual generators (detection filters) designed based on the continuous model of the plant is available. In the proposed framework, each residual generator is modeled by a Discrete-Event System (DES). Then, these DES models are integrated with the DES model of the hybrid system to build an Extended DES model. A "hybrid" diagnoser is then constructed based on the extended DES model. The "hybrid" diagnoser effectively combines the readings of discrete sensors and the information supplied by residual generators (which is based on continuous sensors) to determine the health status of the hybrid system. The problem of diagnosability of failure modes in hybrid automata is also studied here. A notion of failure diagnosability in hybrid automata is introduced and it is shown that for the diagnosability of a failure mode in a hybrid automaton, it is sufficient that the failure mode be diagnosable in the extended DES model developed for representing the hybrid automaton and residual generators. The diagnosability of failure modes in the case that some residual generators produce unreliable outputs in the form of false alarm or false silence signals is also investigated. Moreover, the problem of isolator (residual generator) selection is examined and approaches are developed for computing a minimal set of isolators to ensure the diagnosability of failure modes. The proposed hybrid diagnosis approach is employed for investigating faults in the fuel supply system and the nozzle actuator of a single-spool turbojet engine with an afterburner. A hybrid automaton model is obtained for the engine. A bank of residual generators is also designed, and an extended DES is constructed for the engine. Based on the extended DES model, a hybrid diagnoser is constructed and developed. The faults diagnosable by a purely DES diagnoser or by methods based on residual generators alone are also diagnosable by the hybrid diagnoser. Moreover, we have shown that there are faults (or groups of faults) in the fuel supply system and the nozzle actuator that can be isolated neither by a purely DES diagnoser nor by methods based on residual generators alone. However, these faults (or groups of faults) can be isolated if the hybrid diagnoser is used
    corecore