2,302 research outputs found

    State Derivation of a 12-Axis Gyroscope-Free Inertial Measurement Unit

    Get PDF
    The derivation of linear acceleration, angular acceleration, and angular velocity states from a 12-axis gyroscope-free inertial measurement unit that utilizes four 3-axis accelerometer measurements at four distinct locations is reported. Particularly, a new algorithm which derives the angular velocity from its quadratic form and derivative form based on the context-based interacting multiple model is demonstrated. The performance of the system was evaluated under arbitrary 3-dimensional motion

    Application of inertial instruments for DSN antenna pointing and tracking

    Get PDF
    The feasibility of using inertial instruments to determine the pointing attitude of the NASA Deep Space Network antennas is examined. The objective is to obtain 1 mdeg pointing knowledge in both blind pointing and tracking modes to facilitate operation of the Deep Space Network 70 m antennas at 32 GHz. A measurement system employing accelerometers, an inclinometer, and optical gyroscopes is proposed. The initial pointing attitude is established by determining the direction of the local gravity vector using the accelerometers and the inclinometer, and the Earth's spin axis using the gyroscopes. Pointing during long-term tracking is maintained by integrating the gyroscope rates and augmenting these measurements with knowledge of the local gravity vector. A minimum-variance estimator is used to combine measurements to obtain the antenna pointing attitude. A key feature of the algorithm is its ability to recalibrate accelerometer parameters during operation. A survey of available inertial instrument technologies is also given

    Mach's principle: Exact frame-dragging via gravitomagnetism in perturbed Friedmann-Robertson-Walker universes with K=(±1,0)K = (\pm 1, 0)

    Full text link
    We show that the dragging of the axis directions of local inertial frames by a weighted average of the energy currents in the universe is exact for all linear perturbations of any Friedmann-Robertson-Walker (FRW) universe with K = (+1, -1, 0) and of Einstein's static closed universe. This includes FRW universes which are arbitrarily close to the Milne Universe, which is empty, and to the de Sitter universe. Hence the postulate formulated by E. Mach about the physical cause for the time-evolution of the axis directions of inertial frames is shown to hold in cosmological General Relativity for linear perturbations. The time-evolution of axis directions of local inertial frames (relative to given local fiducial axes) is given experimentally by the precession angular velocity of gyroscopes, which in turn is given by the operational definition of the gravitomagnetic field. The gravitomagnetic field is caused by cosmological energy currents via the momentum constraint. This equation for cosmological gravitomagnetism is analogous to Ampere's law, but it holds also for time-dependent situtations. In the solution for an open universe the 1/r^2-force of Ampere is replaced by a Yukawa force which is of identical form for FRW backgrounds with K=(1,0).K = (-1, 0). The scale of the exponential cutoff is the H-dot radius, where H is the Hubble rate, and dot is the derivative with respect to cosmic time. Analogous results hold for energy currents in a closed FRW universe, K = +1, and in Einstein's closed static universe.Comment: 23 pages, no figures. Final published version. Additional material in Secs. I.A, I.J, III, V.H. Additional reference

    Guidance, flight mechanics and trajectory optimization. Volume 2 - Observation theory and sensors

    Get PDF
    Observation theory and sensors applicable to navigation of boost and space vehicle

    Multiple IMU Sensor Fusion for SUAS Navigation and Photogrammetry

    Get PDF
    Inertial measurement units (IMUs) are devices that sense accelerations and angular rates in 3D so that vehicles and other devices can estimate their orientations, positions, and velocities. While traditionally large, heavy, and costly, using mechanical gyroscopes and stabilized platforms, the recent development of micro-electromechanical sensor (MEMS) IMUs that are small, light, and inexpensive has led to their adoption in many everyday systems such as cell phones, video game controllers, and commercial drones. MEMS IMUs, despite their advantages, have major drawbacks when it comes to accuracy and reliability. The idea of using more than one of these sensors in an array, instead of using only one, and fusing their outputs to generate an improved solution is explored in this thesis

    On-Manifold Preintegration for Real-Time Visual-Inertial Odometry

    Get PDF
    Current approaches for visual-inertial odometry (VIO) are able to attain highly accurate state estimation via nonlinear optimization. However, real-time optimization quickly becomes infeasible as the trajectory grows over time, this problem is further emphasized by the fact that inertial measurements come at high rate, hence leading to fast growth of the number of variables in the optimization. In this paper, we address this issue by preintegrating inertial measurements between selected keyframes into single relative motion constraints. Our first contribution is a \emph{preintegration theory} that properly addresses the manifold structure of the rotation group. We formally discuss the generative measurement model as well as the nature of the rotation noise and derive the expression for the \emph{maximum a posteriori} state estimator. Our theoretical development enables the computation of all necessary Jacobians for the optimization and a-posteriori bias correction in analytic form. The second contribution is to show that the preintegrated IMU model can be seamlessly integrated into a visual-inertial pipeline under the unifying framework of factor graphs. This enables the application of incremental-smoothing algorithms and the use of a \emph{structureless} model for visual measurements, which avoids optimizing over the 3D points, further accelerating the computation. We perform an extensive evaluation of our monocular \VIO pipeline on real and simulated datasets. The results confirm that our modelling effort leads to accurate state estimation in real-time, outperforming state-of-the-art approaches.Comment: 20 pages, 24 figures, accepted for publication in IEEE Transactions on Robotics (TRO) 201

    Cosmological gravitomagnetism and Mach's principle

    Full text link
    The spin axes of gyroscopes experimentally define local non-rotating frames. But what physical cause governs the time-evolution of gyroscope axes? We consider linear perturbations of Friedmann-Robertson-Walker cosmologies with k=0. We ask: Will cosmological vorticity perturbations exactly drag the spin axes of gyroscopes relative to the directions of geodesics to quasars in the asymptotic unperturbed FRW space? Using Cartan's formalism with local orthonormal bases we cast the laws of linear cosmological gravitomagnetism into a form showing the close correspondence with the laws of ordinary magnetism. Our results, valid for any equation of state for cosmological matter, are: 1) The dragging of a gyroscope axis by rotational perturbations of matter beyond the Hubble-dot radius from the gyroscope is exponentially suppressed, where dot is the derivative with respect to cosmic time. 2) If the perturbation of matter is a homogeneous rotation inside some radius around a gyroscope, then exact dragging of the gyroscope axis by the rotational perturbation is reached exponentially fast as the rotation radius grows beyond the H-dot radius. 3) For the most general linear cosmological perturbations the time-evolution of all gyroscope spin axes exactly follow a weighted average of the energy currents of cosmological matter. The weight function is the same as in Ampere's law except that the inverse square law is replaced by the Yukawa force with the Hubble-dot cutoff. Our results demonstrate (in first order perturbation theory for FRW cosmologies with k = 0) the validity of Mach's hypothesis that axes of local non-rotating frames precisely follow an average of the motion of cosmic matter.Comment: 18 pages, 1 figure. Comments and references adde

    Gravitational Couplings of Intrinsic Spin

    Get PDF
    The gravitational couplings of intrinsic spin are briefly reviewed. A consequence of the Dirac equation in the exterior gravitational field of a rotating mass is considered in detail, namely, the difference in the energy of a spin-1/2 particle polarized vertically up and down near the surface of a rotating body is Ωsinθ\hbar\Omega\sin\theta. Here θ\theta is the latitude and Ω=2GJ/(c2R3)\Omega = 2GJ/(c^2 R^3), where JJ and RR are, respectively, the angular momentum and radius of the body. It seems that this relativistic quantum gravitational effect could be measurable in the foreseeable future.Comment: LaTeX file, no figures, 16 page
    corecore