32,803 research outputs found

    evolution, structure and function of metazoan splicing factor PRPF39

    Get PDF
    In the yeast U1 snRNP the Prp39/Prp42 heterodimer is essential for early steps of spliceosome assembly. In metazoans no Prp42 ortholog exists, raising the question how the heterodimer is functionally substituted. Here we present the crystal structure of murine PRPF39, which forms a homodimer. Structure-guided point mutations disrupt dimer formation and inhibit splicing, manifesting the homodimer as functional unit. PRPF39 expression is controlled by NMD-inducing alternative splicing in mice and human, suggesting a role in adapting splicing efficiency to cell type specific requirements. A phylogenetic analysis reveals coevolution of shortened U1 snRNA and the absence of Prp42, which correlates with overall splicing complexity in different fungi. While current models correlate the diversity of spliceosomal proteins with splicing complexity, our study highlights a contrary case. We find that organisms with higher splicing complexity have substituted the Prp39/Prp42 heterodimer with a PRPF39 homodimer

    The Jones polynomial and graphs on surfaces

    Get PDF
    The Jones polynomial of an alternating link is a certain specialization of the Tutte polynomial of the (planar) checkerboard graph associated to an alternating projection of the link. The Bollobas-Riordan-Tutte polynomial generalizes the Tutte polynomial of planar graphs to graphs that are embedded in closed oriented surfaces of higher genus. In this paper we show that the Jones polynomial of any link can be obtained from the Bollobas-Riordan-Tutte polynomial of a certain oriented ribbon graph associated to a link projection. We give some applications of this approach.Comment: 19 pages, 9 figures, minor change

    Flexible RNA design under structure and sequence constraints using formal languages

    Get PDF
    The problem of RNA secondary structure design (also called inverse folding) is the following: given a target secondary structure, one aims to create a sequence that folds into, or is compatible with, a given structure. In several practical applications in biology, additional constraints must be taken into account, such as the presence/absence of regulatory motifs, either at a specific location or anywhere in the sequence. In this study, we investigate the design of RNA sequences from their targeted secondary structure, given these additional sequence constraints. To this purpose, we develop a general framework based on concepts of language theory, namely context-free grammars and finite automata. We efficiently combine a comprehensive set of constraints into a unifying context-free grammar of moderate size. From there, we use generic generic algorithms to perform a (weighted) random generation, or an exhaustive enumeration, of candidate sequences. The resulting method, whose complexity scales linearly with the length of the RNA, was implemented as a standalone program. The resulting software was embedded into a publicly available dedicated web server. The applicability demonstrated of the method on a concrete case study dedicated to Exon Splicing Enhancers, in which our approach was successfully used in the design of \emph{in vitro} experiments.Comment: ACM BCB 2013 - ACM Conference on Bioinformatics, Computational Biology and Biomedical Informatics (2013

    Distribution of graph-distances in Boltzmann ensembles of RNA secondary structures

    Full text link
    Large RNA molecules often carry multiple functional domains whose spatial arrangement is an important determinant of their function. Pre-mRNA splicing, furthermore, relies on the spatial proximity of the splice junctions that can be separated by very long introns. Similar effects appear in the processing of RNA virus genomes. Albeit a crude measure, the distribution of spatial distances in thermodynamic equilibrium therefore provides useful information on the overall shape of the molecule can provide insights into the interplay of its functional domains. Spatial distance can be approximated by the graph-distance in RNA secondary structure. We show here that the equilibrium distribution of graph-distances between arbitrary nucleotides can be computed in polynomial time by means of dynamic programming. A naive implementation would yield recursions with a very high time complexity of O(n^11). Although we were able to reduce this to O(n^6) for many practical applications a further reduction seems difficult. We conclude, therefore, that sampling approaches, which are much easier to implement, are also theoretically favorable for most real-life applications, in particular since these primarily concern long-range interactions in very large RNA molecules.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Image Forgery Localization Based on Multi-Scale Convolutional Neural Networks

    Full text link
    In this paper, we propose to utilize Convolutional Neural Networks (CNNs) and the segmentation-based multi-scale analysis to locate tampered areas in digital images. First, to deal with color input sliding windows of different scales, a unified CNN architecture is designed. Then, we elaborately design the training procedures of CNNs on sampled training patches. With a set of robust multi-scale tampering detectors based on CNNs, complementary tampering possibility maps can be generated. Last but not least, a segmentation-based method is proposed to fuse the maps and generate the final decision map. By exploiting the benefits of both the small-scale and large-scale analyses, the segmentation-based multi-scale analysis can lead to a performance leap in forgery localization of CNNs. Numerous experiments are conducted to demonstrate the effectiveness and efficiency of our method.Comment: 7 pages, 6 figure

    FreePSI: an alignment-free approach to estimating exon-inclusion ratios without a reference transcriptome.

    Get PDF
    Alternative splicing plays an important role in many cellular processes of eukaryotic organisms. The exon-inclusion ratio, also known as percent spliced in, is often regarded as one of the most effective measures of alternative splicing events. The existing methods for estimating exon-inclusion ratios at the genome scale all require the existence of a reference transcriptome. In this paper, we propose an alignment-free method, FreePSI, to perform genome-wide estimation of exon-inclusion ratios from RNA-Seq data without relying on the guidance of a reference transcriptome. It uses a novel probabilistic generative model based on k-mer profiles to quantify the exon-inclusion ratios at the genome scale and an efficient expectation-maximization algorithm based on a divide-and-conquer strategy and ultrafast conjugate gradient projection descent method to solve the model. We compare FreePSI with the existing methods on simulated and real RNA-seq data in terms of both accuracy and efficiency and show that it is able to achieve very good performance even though a reference transcriptome is not provided. Our results suggest that FreePSI may have important applications in performing alternative splicing analysis for organisms that do not have quality reference transcriptomes. FreePSI is implemented in C++ and freely available to the public on GitHub

    Recasting Residual-based Local Descriptors as Convolutional Neural Networks: an Application to Image Forgery Detection

    Full text link
    Local descriptors based on the image noise residual have proven extremely effective for a number of forensic applications, like forgery detection and localization. Nonetheless, motivated by promising results in computer vision, the focus of the research community is now shifting on deep learning. In this paper we show that a class of residual-based descriptors can be actually regarded as a simple constrained convolutional neural network (CNN). Then, by relaxing the constraints, and fine-tuning the net on a relatively small training set, we obtain a significant performance improvement with respect to the conventional detector
    • …
    corecore