114,021 research outputs found

    Erythropoietin-induced serine 727 phosphorylation of STAT3 in erythroid cells is mediated by a MEK-, ERK-, and MSK1-dependent pathway

    Get PDF
    Objective. Erythropoietin (EPO) is a key regulator of erythropoiesis, playing a role in both the proliferation and differentiation of erythroid cells. One of the signal transduction molecules activated upon EPO stimulation is signal transducer and activator of transcription (STAT) 3. Besides tyrosine 705 phosphorylation of STAT3, serine 727 phosphorylation has been described upon EPO stimulation. In the present study, we investigated which molecular pathways mediate the STAT3 serine 727 phosphorylation and the functional implications of this phosphorylation. Methods. The EPO-dependent erythroid cell line ASE2 was used to investigate which signaling routes were involved in the STAT3 serine 727 phosphorylation. Western blotting using phosphospecific antibodies was used to assess the phosphorylation status of STAT3 molecules. Transfection analysis was performed to investigate the transactivational potential of STAT3, and quantitative RT-PCR was used to study the in vivo gene expression of STAT3-responsive genes. Results. Western blotting of extracts of cells exposed to various chemical inhibitors revealed that the MEK inhibitors PD98059 and U0126 abrogated the EPO-mediated STAT3 serine 727 phosphorylation without an effect on tyrosine phosphorylation. Further analysis showed that MSK1 is activated downstream of ERK, and retroviral transductions with kinase-inactive MSK1 revealed that MSK1 is necessary for STAT3 serine phosphorylation. Furthermore, the STAT3-mediated transactivation was reduced by blocking the STAT3 serine phosphorylation with the MEK inhibitor U0126 or by expression of kinase-inactive MSK1. Conclusions. The EPO-induced STAT3 serine 727 phosphorylation is mediated by a pathway involving MEK, ERK, and MSK1. Furthermore, serine phosphorylation of STAT3 augments the transactivational potential of STAT3.

    Signal transduction and activator of transcription-3 (STAT3) in patients with colorectal cancer: associations with the phenotypic features of the tumour and host

    Get PDF
    Purpose: In patients with colorectal cancer (CRC), a high-density local inflammatory infiltrate response is associated with improved survival, whereas elevated systemic inflammatory responses are associated with poor survival. One potential unifying mechanism is the IL-6/JAK/STAT3 pathway. The present study examines the relationship between tumour total STAT3 and phosphorylated STAT3Tyr705 (pSTAT3) expression, host inflammatory responses and survival in patients undergoing resection of stage I-III CRC. Experimental Design: Immunohistochemical assessment of STAT3/pSTAT3 expression was performed using a tissue microarray and tumour cell expression divided into tertiles using the weighted histoscore. The relationship between STAT3/pSTAT3 expression and local inflammatory (CD3+, CD8+, CD45R0+, FOXP3+ T-cell density and Klintrup-Mäkinen grade) and systemic inflammatory responses and cancer-specific survival were examined. Results: 196 patients were included in the analysis. Cytoplasmic and nuclear STAT3 expression strongly correlated (r=0.363, P<0.001); nuclear STAT3 and pSTAT3 expression weakly correlated (r=0.130, P=0.068). Cytoplasmic STAT3 was inversely associated with the density of CD3+ (P=0.012), CD8+ (P=0.003) and FOXP3+ T-lymphocytes (P=0.002) within the cancer cell nests and was associated with an elevated systemic inflammatory response as measured by modified Glasgow Prognostic Score (mGPS2: 19% vs. 4%, P=0.004). The combination of nuclear STAT3/pSTAT3 stratified five-year survival from 81% to 62% (P=0.012), however was not associated with survival independent of venous invasion, tumour perforation or tumour budding. Conclusion In patients undergoing CRC resection, STAT3 expression was associated with adverse host inflammatory responses and reduced survival. Up-regulation of tumour STAT3 may be an important mechanism whereby the tumour deregulates local and systemic inflammatory responses

    Target-specific glioma therapy in an immunocompetent mouse model : meeting abstract

    Get PDF
    Objective: Establishment of an immunocompetent mouse model representing the typical progressive stages observed in malignant human gliomas for the in vivo evaluation of novel target-specific regimens. Methods: Isolated clones from tumours that arose spontaneously in GFAP-v-src transgenic mice were used to develop a transplantable brain tumour model in syngeneic B6C3F1 mice. STAT3 protein was knocked down by infection of tumour cells with replication-defective lentivirus encoding STAT3-siRNA. Apoptosis is designed to be induced by soluble recombinant TRAIL + chemical Bcl-2/Bcl-xL inhibitors. Results: Striatal implantation of 105 mouse tumour cells resulted in the robust development of microscopically (2 – 3 mm) infiltrating malignant gliomas. Immunohistochemically, the gliomas displayed the astroglial marker GFAP and the oncogenic form of STAT3 (Tyr-705-phosphorylated) which is found in many malignancies including gliomas. Phosphorylated STAT3 was particularly prominent in the nucleus but was also found at the plasma membrane of peripherally infiltrating glioma cells. To evaluate the role of STAT3 in tumour progression, we stably expressed siRNA against STAT3 in several murine glioma cell lines. The effect of STAT3 depletion on proliferation, invasion and survival will be first assessed in vitro and subsequently after transplantation in vivo. Upstream and downstream components of the STAT3 signalling pathway as well as possible non-specific side effects of STAT3-siRNA expression after lentiviral infection will be examined, too. Conclusions: Its high rate of engraftment, its similarity to the malignant glioma of origin, and its rapid locally invasive growth should make this murine model useful in testing novel therapies for malignant gliomas

    TYK2-induced phosphorylation of Y640 suppresses STAT3 transcriptional activity

    Get PDF
    STAT3 is a pleiotropic transcription factor involved in homeostatic and host defense processes in the human body. It is activated by numerous cytokines and growth factors and generates a series of cellular effects. Of the STAT-mediated signal transduction pathways, STAT3 transcriptional control is best understood. Jak kinase dependent activation of STAT3 relies on Y705 phosphorylation triggering a conformational switch that is stabilized by intermolecular interactions between SH2 domains and the pY705 motif. We here show that a second tyrosine phosphorylation within the SH2 domain at position Y640, induced by Tyk2, negatively controls STAT3 activity. The Y640F mutation leads to stabilization of activated STAT3 homodimers, accelerated nuclear translocation and superior transcriptional activity following IL-6 and LIF stimulation. Moreover, it unlocks type I IFN-dependent STAT3 signalling in cells that are normally refractory to STAT3 transcriptional activation

    Progestins induce transcriptional activation of signal transducer and activator of transcription 3 (Stat3) via a Jak- and Src-dependent mechanism in breast cancer cells

    Get PDF
    Interactions between steroid hormone receptors and signal transducer and activator of transcription (Stat)-mediated signaling pathways have already been described. In the present study, we explored the capacity of progestins to modulate Stat3 transcriptional activation in an experimental model of hormonal carcinogenesis in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary adenocarcinomas in BALB/c mice and in the human breast cancer cell line T47D. We found that C4HD epithelial cells, from the MPA-induced mammary tumor model, expressed Stat3 and that MPA treatment of C4HD cells up-regulated Stat3 protein expression. In addition, MPA induced rapid, nongenomic Stat3, Jak1, and Jak2 tyrosine phosphorylation in C4HD and T47D cells. MPA treatment of C4HD cells also resulted in rapid c-Src tyrosine phosphorylation. These effects were completely abolished by the progestin antagonist RU486. Abrogation of Jak1 and Jak2 activity by transient transfection of C4HD cells with dominant negative (DN) Jak1 or DN Jak2 vectors, or inhibition of Src activity by preincubation of cells with the Src family kinase inhibitor PP2, blocked the capacity of MPA to induce Stat3 phosphorylation. Treatment of C4HD cells with MPA induced Stat3 binding to DNA. In addition, MPA promoted strong Stat3 transcriptional activation in C4HD and T47D cells that was inhibited by RU486 and by blockage of Jak1, Jak2, and Src activities. To investigate the correlation between MPA-induced Stat3 activation and cell growth, C4HD cells were transiently transfected with a DN Stat3 expression vector, Stat3Y705-F, or with a constitutively activated Stat3 mutant, Stat3-C. While expression of Stat3Y705-F mutant had an inhibitory effect on MPA-induced growth of C4HD cells, transfection with the constitutively activated Stat3-C vector resulted in MPA-independent proliferation. Finally, we addressed the effect of targeting Stat3 in in vivo growth of C4HD breast tumors. Blockage of Stat3 activation by transfection of C4HD cells with the DN Stat3Y705-F expression vector significantly inhibited these cells' ability to form tumors in syngeneic mice. Our results have for the first time demonstrated that progestins are able to induce Stat3 transcriptional activation, which is in turn an obligatory requirement for progestin stimulation of both in vitro and in vivo breast cancer growth.Fil: Proietti Anastasi, Cecilia Jazmín. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Salatino, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rosemblit, Cinthia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Carnevale, Romina Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Pecci, Adali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Molinolo, Alfredo. National Institutes of Health; Estados UnidosFil: Frahm, Isabel. Sanatorio Mater Dei Hermanas de María de Schoenstatt; ArgentinaFil: Charreau, Eduardo Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Schillaci, Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Elizalde, Patricia Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentin

    The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration.

    Get PDF
    Metabolic reprogramming is an active regulator of stem cell fate choices, and successful stem cell differentiation in different compartments requires the induction of oxidative phosphorylation. However, the mechanisms that promote mitochondrial respiration during stem cell differentiation are poorly understood. Here we demonstrate that Stat3 promotes muscle stem cell myogenic lineage progression by stimulating mitochondrial respiration in mice. We identify Fam3a, a cytokine-like protein, as a major Stat3 downstream effector in muscle stem cells. We demonstrate that Fam3a is required for muscle stem cell commitment and skeletal muscle development. We show that myogenic cells secrete Fam3a, and exposure of Stat3-ablated muscle stem cells to recombinant Fam3a in vitro and in vivo rescues their defects in mitochondrial respiration and myogenic commitment. Together, these findings indicate that Fam3a is a Stat3-regulated secreted factor that promotes muscle stem cell oxidative metabolism and differentiation, and suggests that Fam3a is a potential tool to modulate cell fate choices

    Docosahexaenoic acid (DHA) promotes immunogenic apoptosis in human multiple myeloma cells, induces autophagy and inhibits STAT3 in both tumor and dendritic cells

    Get PDF
    Docosahexaenoic acid (DHA), a ω-3 polyunsaturated fatty acid found in fish oil, is a multi-target agent and exerts anti-inflammatory and anticancer activities alone or in combination with chemotherapies. Combinatorial anticancer therapies, which induce immunogenic apoptosis, autophagy and STAT3 inhibition have been proposed for long-term therapeutic success. Here, we found that DHA promoted immunogenic apoptosis in multiple myeloma (MM) cells, with no toxicity on PBMCs and DCs. Immunogenic apoptosis was shown by the emission of specific DAMPs (CRT, HSP90, HMGB1) by apoptotic MM cells and the activation of their pro-apoptotic autophagy. Moreover, immunogenic apoptosis was directly shown by the activation of DCs by DHA-induced apoptotic MM cells. Furthermore, we provided the first evidence that DHA activated autophagy in PBMCs and DCs, thus potentially acting as immune stimulator and enhancing processing and presentation of tumor antigens by DCs. Finally, we found that DHA inhibited STAT3 in MM cells. STAT3 pathway, essential for MM survival, contributed to cancer cell apoptosis by DHA. We also found that DHA inhibited STAT3 in blood immune cells and counteracted STAT3 activation by tumor cell-released factors in PBMCs and DCs, suggesting the potential enhancement of the anti-tumor function of multiple immune cells and, in particular, that of DCs

    Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130757F mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130757F;µMT−/− compound mutant mice, but fibrosis still occurred in their Smad3−/− counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis
    corecore